diff options
author | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
---|---|---|
committer | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
commit | d6583bb2a13f329cf0332ef2570eb8bb8fc0e39c (patch) | |
tree | ece253b876159b39c620e62b6c9b1174642e070e /sys/arch/sparc/fpu/fpu_emu.h |
initial import of NetBSD tree
Diffstat (limited to 'sys/arch/sparc/fpu/fpu_emu.h')
-rw-r--r-- | sys/arch/sparc/fpu/fpu_emu.h | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/sys/arch/sparc/fpu/fpu_emu.h b/sys/arch/sparc/fpu/fpu_emu.h new file mode 100644 index 00000000000..5b2b317c383 --- /dev/null +++ b/sys/arch/sparc/fpu/fpu_emu.h @@ -0,0 +1,189 @@ +/* $NetBSD: fpu_emu.h,v 1.2 1994/11/20 20:52:39 deraadt Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_emu.h 8.1 (Berkeley) 6/11/93 + */ + +/* + * Floating point emulator (tailored for SPARC, but structurally + * machine-independent). + * + * Floating point numbers are carried around internally in an `expanded' + * or `unpacked' form consisting of: + * - sign + * - unbiased exponent + * - mantissa (`1.' + 112-bit fraction + guard + round) + * - sticky bit + * Any implied `1' bit is inserted, giving a 113-bit mantissa that is + * always nonzero. Additional low-order `guard' and `round' bits are + * scrunched in, making the entire mantissa 115 bits long. This is divided + * into four 32-bit words, with `spare' bits left over in the upper part + * of the top word (the high bits of fp_mant[0]). An internal `exploded' + * number is thus kept within the half-open interval [1.0,2.0) (but see + * the `number classes' below). This holds even for denormalized numbers: + * when we explode an external denorm, we normalize it, introducing low-order + * zero bits, so that the rest of the code always sees normalized values. + * + * Note that a number of our algorithms use the `spare' bits at the top. + * The most demanding algorithm---the one for sqrt---depends on two such + * bits, so that it can represent values up to (but not including) 8.0, + * and then it needs a carry on top of that, so that we need three `spares'. + * + * The sticky-word is 32 bits so that we can use `OR' operators to goosh + * whole words from the mantissa into it. + * + * All operations are done in this internal extended precision. According + * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is, + * it is OK to do a+b in extended precision and then round the result to + * single precision---provided single, double, and extended precisions are + * `far enough apart' (they always are), but we will try to avoid any such + * extra work where possible. + */ +struct fpn { + int fp_class; /* see below */ + int fp_sign; /* 0 => positive, 1 => negative */ + int fp_exp; /* exponent (unbiased) */ + int fp_sticky; /* nonzero bits lost at right end */ + u_int fp_mant[4]; /* 115-bit mantissa */ +}; + +#define FP_NMANT 115 /* total bits in mantissa (incl g,r) */ +#define FP_NG 2 /* number of low-order guard bits */ +#define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */ +#define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */ +#define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */ +#define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */ + +/* + * Number classes. Since zero, Inf, and NaN cannot be represented using + * the above layout, we distinguish these from other numbers via a class. + * In addition, to make computation easier and to follow Appendix N of + * the SPARC Version 8 standard, we give each kind of NaN a separate class. + */ +#define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */ +#define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */ +#define FPC_ZERO 0 /* zero (sign matters) */ +#define FPC_NUM 1 /* number (sign matters) */ +#define FPC_INF 2 /* infinity (sign matters) */ + +#define ISNAN(fp) ((fp)->fp_class < 0) +#define ISZERO(fp) ((fp)->fp_class == 0) +#define ISINF(fp) ((fp)->fp_class == FPC_INF) + +/* + * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points + * to the `more significant' operand for our purposes. Appendix N says that + * the result of a computation involving two numbers are: + * + * If both are SNaN: operand 2, converted to Quiet + * If only one is SNaN: the SNaN operand, converted to Quiet + * If both are QNaN: operand 2 + * If only one is QNaN: the QNaN operand + * + * In addition, in operations with an Inf operand, the result is usually + * Inf. The class numbers are carefully arranged so that if + * (unsigned)class(op1) > (unsigned)class(op2) + * then op1 is the one we want; otherwise op2 is the one we want. + */ +#define ORDER(x, y) { \ + if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \ + SWAP(x, y); \ +} +#define SWAP(x, y) { \ + register struct fpn *swap; \ + swap = (x), (x) = (y), (y) = swap; \ +} + +/* + * Emulator state. + */ +struct fpemu { + struct fpstate *fe_fpstate; /* registers, etc */ + int fe_fsr; /* fsr copy (modified during op) */ + int fe_cx; /* exceptions */ + struct fpn fe_f1; /* operand 1 */ + struct fpn fe_f2; /* operand 2, if required */ + struct fpn fe_f3; /* available storage for result */ +}; + +/* + * Arithmetic functions. + * Each of these may modify its inputs (f1,f2) and/or the temporary. + * Each returns a pointer to the result and/or sets exceptions. + */ +struct fpn *fpu_add(struct fpemu *); +#define fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe)) +struct fpn *fpu_mul(struct fpemu *); +struct fpn *fpu_div(struct fpemu *); +struct fpn *fpu_sqrt(struct fpemu *); + +/* + * Other functions. + */ + +/* Perform a compare instruction (with or without unordered exception). */ +void fpu_compare(struct fpemu *, int); + +/* Build a new Quiet NaN (sign=0, frac=all 1's). */ +struct fpn *fpu_newnan(struct fpemu *); + +/* + * Shift a number right some number of bits, taking care of round/sticky. + * Note that the result is probably not a well-formed number (it will lack + * the normal 1-bit mant[0]&FP_1). + */ +int fpu_shr(struct fpn *, int); + +/* Conversion to and from internal format -- note asymmetry. */ +int fpu_itofpn(struct fpn *, u_int); +int fpu_stofpn(struct fpn *, u_int); +int fpu_dtofpn(struct fpn *, u_int, u_int); +int fpu_xtofpn(struct fpn *, u_int, u_int, u_int, u_int); + +u_int fpu_fpntoi(struct fpemu *, struct fpn *); +u_int fpu_fpntos(struct fpemu *, struct fpn *); +u_int fpu_fpntod(struct fpemu *, struct fpn *); +u_int fpu_fpntox(struct fpemu *, struct fpn *); + +void fpu_explode(struct fpemu *, struct fpn *, int, int); +void fpu_implode(struct fpemu *, struct fpn *, int, u_int *); |