summaryrefslogtreecommitdiff
path: root/sys/dev/pci/drm
diff options
context:
space:
mode:
authorJonathan Gray <jsg@jsg.id.au>2013-03-08 15:54:11 +1100
committerJonathan Gray <jsg@jsg.id.au>2013-03-08 15:54:11 +1100
commit21dc1b9ce2d03f5f88279a8e2d3db2d3d0d6ae40 (patch)
tree38607e2ea7be3f85fb2dafeb4d72e7c7e2bac9af /sys/dev/pci/drm
parente96d3e125d6c86197f60240ca63987e82ac7cf4d (diff)
remove some now unused code
Diffstat (limited to 'sys/dev/pci/drm')
-rw-r--r--sys/dev/pci/drm/i915_gem_execbuffer.c180
1 files changed, 0 insertions, 180 deletions
diff --git a/sys/dev/pci/drm/i915_gem_execbuffer.c b/sys/dev/pci/drm/i915_gem_execbuffer.c
index 791084db2e5..10175053cd7 100644
--- a/sys/dev/pci/drm/i915_gem_execbuffer.c
+++ b/sys/dev/pci/drm/i915_gem_execbuffer.c
@@ -56,196 +56,16 @@
#include <sys/queue.h>
#include <sys/workq.h>
-struct change_domains {
- uint32_t invalidate_domains;
- uint32_t flush_domains;
- uint32_t flush_rings;
- uint32_t flips;
-};
-
int i915_reset_gen7_sol_offsets(struct drm_device *,
struct intel_ring_buffer *);
int i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *, u32);
int i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *,
struct drm_obj **, int);
-void i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *,
- struct intel_ring_buffer *, struct change_domains *);
void i915_gem_execbuffer_move_to_active(struct drm_obj **, int,
struct intel_ring_buffer *);
void i915_gem_execbuffer_retire_commands(struct drm_device *,
struct drm_file *, struct intel_ring_buffer *);
-/*
- * Set the next domain for the specified object. This
- * may not actually perform the necessary flushing/invaliding though,
- * as that may want to be batched with other set_domain operations
- *
- * This is (we hope) the only really tricky part of gem. The goal
- * is fairly simple -- track which caches hold bits of the object
- * and make sure they remain coherent. A few concrete examples may
- * help to explain how it works. For shorthand, we use the notation
- * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
- * a pair of read and write domain masks.
- *
- * Case 1: the batch buffer
- *
- * 1. Allocated
- * 2. Written by CPU
- * 3. Mapped to GTT
- * 4. Read by GPU
- * 5. Unmapped from GTT
- * 6. Freed
- *
- * Let's take these a step at a time
- *
- * 1. Allocated
- * Pages allocated from the kernel may still have
- * cache contents, so we set them to (CPU, CPU) always.
- * 2. Written by CPU (using pwrite)
- * The pwrite function calls set_domain (CPU, CPU) and
- * this function does nothing (as nothing changes)
- * 3. Mapped by GTT
- * This function asserts that the object is not
- * currently in any GPU-based read or write domains
- * 4. Read by GPU
- * i915_gem_execbuffer calls set_domain (COMMAND, 0).
- * As write_domain is zero, this function adds in the
- * current read domains (CPU+COMMAND, 0).
- * flush_domains is set to CPU.
- * invalidate_domains is set to COMMAND
- * clflush is run to get data out of the CPU caches
- * then i915_dev_set_domain calls i915_gem_flush to
- * emit an MI_FLUSH and drm_agp_chipset_flush
- * 5. Unmapped from GTT
- * i915_gem_object_unbind calls set_domain (CPU, CPU)
- * flush_domains and invalidate_domains end up both zero
- * so no flushing/invalidating happens
- * 6. Freed
- * yay, done
- *
- * Case 2: The shared render buffer
- *
- * 1. Allocated
- * 2. Mapped to GTT
- * 3. Read/written by GPU
- * 4. set_domain to (CPU,CPU)
- * 5. Read/written by CPU
- * 6. Read/written by GPU
- *
- * 1. Allocated
- * Same as last example, (CPU, CPU)
- * 2. Mapped to GTT
- * Nothing changes (assertions find that it is not in the GPU)
- * 3. Read/written by GPU
- * execbuffer calls set_domain (RENDER, RENDER)
- * flush_domains gets CPU
- * invalidate_domains gets GPU
- * clflush (obj)
- * MI_FLUSH and drm_agp_chipset_flush
- * 4. set_domain (CPU, CPU)
- * flush_domains gets GPU
- * invalidate_domains gets CPU
- * wait_rendering (obj) to make sure all drawing is complete.
- * This will include an MI_FLUSH to get the data from GPU
- * to memory
- * clflush (obj) to invalidate the CPU cache
- * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
- * 5. Read/written by CPU
- * cache lines are loaded and dirtied
- * 6. Read written by GPU
- * Same as last GPU access
- *
- * Case 3: The constant buffer
- *
- * 1. Allocated
- * 2. Written by CPU
- * 3. Read by GPU
- * 4. Updated (written) by CPU again
- * 5. Read by GPU
- *
- * 1. Allocated
- * (CPU, CPU)
- * 2. Written by CPU
- * (CPU, CPU)
- * 3. Read by GPU
- * (CPU+RENDER, 0)
- * flush_domains = CPU
- * invalidate_domains = RENDER
- * clflush (obj)
- * MI_FLUSH
- * drm_agp_chipset_flush
- * 4. Updated (written) by CPU again
- * (CPU, CPU)
- * flush_domains = 0 (no previous write domain)
- * invalidate_domains = 0 (no new read domains)
- * 5. Read by GPU
- * (CPU+RENDER, 0)
- * flush_domains = CPU
- * invalidate_domains = RENDER
- * clflush (obj)
- * MI_FLUSH
- * drm_agp_chipset_flush
- */
-void
-i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
- struct intel_ring_buffer *ring,
- struct change_domains *cd)
-{
- uint32_t invalidate_domains = 0, flush_domains = 0;
-
- /*
- * If the object isn't moving to a new write domain,
- * let the object stay in multiple read domains
- */
- if (obj->base.pending_write_domain == 0)
- obj->base.pending_read_domains |= obj->base.read_domains;
-
- /*
- * Flush the current write domain if
- * the new read domains don't match. Invalidate
- * any read domains which differ from the old
- * write domain
- */
- if (obj->base.write_domain &&
- (((obj->base.write_domain != obj->base.pending_read_domains ||
- obj->ring != ring)) ||
- (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
- flush_domains |= obj->base.write_domain;
- invalidate_domains |=
- obj->base.pending_read_domains & ~obj->base.write_domain;
- }
- /*
- * Invalidate any read caches which may have
- * stale data. That is, any new read domains.
- */
- invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
- if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
- i915_gem_clflush_object(obj);
-
- if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT) {
- inteldrm_wipe_mappings(&obj->base);
- }
-
- if (obj->base.pending_write_domain)
- cd->flips |= atomic_read(&obj->pending_flip);
-
- /* The actual obj->write_domain will be updated with
- * pending_write_domain after we emit the accumulated flush for all
- * of our domain changes in execbuffers (which clears objects'
- * write_domains). So if we have a current write domain that we
- * aren't changing, set pending_write_domain to that.
- */
- if (flush_domains == 0 && obj->base.pending_write_domain == 0)
- obj->base.pending_write_domain = obj->base.write_domain;
-
- cd->invalidate_domains |= invalidate_domains;
- cd->flush_domains |= flush_domains;
- if (flush_domains & I915_GEM_GPU_DOMAINS)
- cd->flush_rings |= intel_ring_flag(obj->ring);
- if (invalidate_domains & I915_GEM_GPU_DOMAINS)
- cd->flush_rings |= intel_ring_flag(ring);
-}
-
// struct eb_objects {
// eb_create
// eb_reset