summaryrefslogtreecommitdiff
path: root/sys/dev/pci/if_em_hw.c
diff options
context:
space:
mode:
authorNathan Binkert <nate@cvs.openbsd.org>2002-09-24 18:56:03 +0000
committerNathan Binkert <nate@cvs.openbsd.org>2002-09-24 18:56:03 +0000
commitc6114f8901bd269105a2d6f7131dea78a070ecb6 (patch)
treec63dd3ca76eb52bb5b4562532ed75a7d791b0c37 /sys/dev/pci/if_em_hw.c
parent59c0d446267e5ac5962411ba74fe8dc57703e0cf (diff)
Driver for Intel PRO/1000 gigabit ethernet adapters.
This driver should work with all current models of gigabit ethernet adapters. Driver written by Intel Ported from FreeBSD by Henric Jungheim <henric@attbi.com> bus_dma and endian support by me.
Diffstat (limited to 'sys/dev/pci/if_em_hw.c')
-rw-r--r--sys/dev/pci/if_em_hw.c3567
1 files changed, 3567 insertions, 0 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c
new file mode 100644
index 00000000000..de65f593f64
--- /dev/null
+++ b/sys/dev/pci/if_em_hw.c
@@ -0,0 +1,3567 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+/* if_em_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "bpfilter.h"
+#include "vlan.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/device.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#ifdef INET
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/in_var.h>
+#include <netinet/ip.h>
+#include <netinet/if_ether.h>
+#endif
+
+#if NVLAN > 0
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+#endif
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#endif
+
+#include <uvm/uvm_extern.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcidevs.h>
+
+#include <dev/pci/if_em_hw.h>
+
+static int32_t em_setup_fiber_link(struct em_hw *hw);
+static int32_t em_setup_copper_link(struct em_hw *hw);
+static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
+static int32_t em_config_mac_to_phy(struct em_hw *hw);
+static int32_t em_force_mac_fc(struct em_hw *hw);
+static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
+static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
+static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count);
+static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
+static int32_t em_phy_reset_dsp(struct em_hw *hw);
+static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
+static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
+static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count);
+static uint16_t em_shift_in_ee_bits(struct em_hw *hw);
+static void em_setup_eeprom(struct em_hw *hw);
+static void em_standby_eeprom(struct em_hw *hw);
+static int32_t em_id_led_init(struct em_hw * hw);
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_reset_hw(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+ uint32_t icr;
+ uint32_t manc;
+ uint16_t pci_cmd_word;
+
+ DEBUGFUNC("em_reset_hw");
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word);
+ }
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+ hw->tbi_compatibility_on = FALSE;
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ if(hw->mac_type > em_82543)
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ else
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+ /* Force a reload from the EEPROM if necessary */
+ if(hw->mac_type < em_82540) {
+ /* Wait for reset to complete */
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ /* Wait for EEPROM reload */
+ msec_delay(2);
+ } else {
+ /* Wait for EEPROM reload (it happens automatically) */
+ msec_delay(4);
+ /* Dissable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word);
+ }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+int32_t
+em_init_hw(struct em_hw *hw)
+{
+ uint32_t ctrl, status;
+ uint32_t i;
+ int32_t ret_val;
+ uint16_t pci_cmd_word;
+ uint16_t pcix_cmd_word;
+ uint16_t pcix_stat_hi_word;
+ uint16_t cmd_mmrbc;
+ uint16_t stat_mmrbc;
+
+ DEBUGFUNC("em_init_hw");
+
+ /* Initialize Identification LED */
+ ret_val = em_id_led_init(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+
+ /* Set the Media Type and exit with error if it is not valid. */
+ if(hw->mac_type != em_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = FALSE;
+ }
+
+ if(hw->mac_type >= em_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_TBIMODE) {
+ hw->media_type = em_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = FALSE;
+ } else {
+ hw->media_type = em_media_type_copper;
+ }
+ } else {
+ /* This is an 82542 (fiber only) */
+ hw->media_type = em_media_type_fiber;
+ }
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ E1000_WRITE_REG(hw, VET, 0);
+
+ em_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word);
+ }
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. This involves initializing all of the Receive
+ * Address Registers (RARs 0 - 15).
+ */
+ em_init_rx_addrs(hw);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if(hw->mac_type == em_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ msec_delay(1);
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+ /* Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if(hw->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+ if(hw->bus_type == em_bus_type_pcix) {
+ em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+ em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if(cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+ }
+ }
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = em_setup_link(hw);
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ em_clear_hw_cntrs(hw);
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+int32_t
+em_setup_link(struct em_hw *hw)
+{
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("em_setup_link");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if(hw->fc == em_fc_default) {
+ if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = em_fc_none;
+ else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = em_fc_tx_pause;
+ else
+ hw->fc = em_fc_full;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if(hw->mac_type == em_82542_rev2_0)
+ hw->fc &= (~em_fc_tx_pause);
+
+ if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~em_fc_rx_pause);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before em_setup_pcs_link()
+ * or em_phy_setup() is called.
+ */
+ if(hw->mac_type == em_82543) {
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = (hw->media_type == em_media_type_fiber) ?
+ em_setup_fiber_link(hw) :
+ em_setup_copper_link(hw);
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if(!(hw->fc & em_fc_tx_pause)) {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ } else {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ if(hw->fc_send_xon) {
+ E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ * ctrl - Current value of the device control register
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int32_t
+em_setup_fiber_link(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal;
+ int32_t ret_val;
+
+ DEBUGFUNC("em_setup_fiber_link");
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
+ else signal = 0;
+
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ em_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case em_fc_none:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case em_fc_rx_pause:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case em_fc_tx_pause:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case em_fc_full:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-neogtiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ hw->txcw = txcw;
+ msec_delay(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ */
+ if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_LU) break;
+ }
+ if(i == (LINK_UP_TIMEOUT / 10)) {
+ /* AutoNeg failed to achieve a link, so we'll call
+ * em_check_for_link. This routine will force the link up if we
+ * detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ ret_val = em_check_for_link(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Detects which PHY is present and the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - current value of the device control register
+******************************************************************************/
+static int32_t
+em_setup_copper_link(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_setup_copper_link");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if(hw->mac_type > em_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ em_phy_hw_reset(hw);
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = em_detect_gig_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if(hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = em_phy_reset(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Options:
+ * autoneg = 1 (default)
+ * PHY will advertise value(s) parsed from
+ * autoneg_advertised and fc
+ * autoneg = 0
+ * PHY will be set to 10H, 10F, 100H, or 100F
+ * depending on value parsed from forced_speed_duplex.
+ */
+
+ /* Is autoneg enabled? This is enabled by default or by software override.
+ * If so, call em_phy_setup_autoneg routine to parse the
+ * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
+ * user should have provided a speed/duplex override. If so, then call
+ * em_phy_force_speed_duplex to parse and set this up.
+ */
+ if(hw->autoneg) {
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if(hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = em_phy_setup_autoneg(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if(hw->wait_autoneg_complete) {
+ ret_val = em_wait_autoneg(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+ } else {
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = em_phy_force_speed_duplex(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for(i = 0; i < 10; i++) {
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & MII_SR_LINK_STATUS) {
+ /* We have link, so we need to finish the config process:
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ */
+ if(hw->mac_type >= em_82544) {
+ em_config_collision_dist(hw);
+ } else {
+ ret_val = em_config_mac_to_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+ DEBUGOUT("Valid link established!!!\n");
+ return 0;
+ }
+ usec_delay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return 0;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_phy_setup_autoneg(struct em_hw *hw)
+{
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+
+ DEBUGFUNC("em_phy_setup_autoneg");
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ if(em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case em_fc_none: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case em_fc_rx_pause: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in em_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case em_fc_tx_pause: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case em_fc_full: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if(em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if(em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Force PHY speed and duplex settings to hw->forced_speed_duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+em_phy_force_speed_duplex(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t mii_ctrl_reg;
+ uint16_t mii_status_reg;
+ uint16_t phy_data;
+ uint16_t i;
+
+ DEBUGFUNC("em_phy_force_speed_duplex");
+
+ /* Turn off Flow control if we are forcing speed and duplex. */
+ hw->fc = em_fc_none;
+
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+ /* Read the Device Control Register. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(DEVICE_SPEED_MASK);
+
+ /* Clear the Auto Speed Detect Enable bit. */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Read the MII Control Register. */
+ if(em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* We need to disable autoneg in order to force link and duplex. */
+
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Are we forcing Full or Half Duplex? */
+ if(hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_10_full) {
+ /* We want to force full duplex so we SET the full duplex bits in the
+ * Device and MII Control Registers.
+ */
+ ctrl |= E1000_CTRL_FD;
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ /* We want to force half duplex so we CLEAR the full duplex bits in
+ * the Device and MII Control Registers.
+ */
+ ctrl &= ~E1000_CTRL_FD;
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ /* Are we forcing 100Mbps??? */
+ if(hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_100_half) {
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+ ctrl |= E1000_CTRL_SPD_100;
+ mii_ctrl_reg |= MII_CR_SPEED_100;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb ");
+ } else {
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ mii_ctrl_reg |= MII_CR_SPEED_10;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb ");
+ }
+
+ em_config_collision_dist(hw);
+
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Write the MII Control Register with the new PHY configuration. */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed are duplex are forced.
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+ /* Need to reset the PHY or these changes will be ignored */
+ mii_ctrl_reg |= MII_CR_RESET;
+ if(em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ usec_delay(1);
+
+ /* The wait_autoneg_complete flag may be a little misleading here.
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+ * But we do want to delay for a period while forcing only so we
+ * don't generate false No Link messages. So we will wait here
+ * only if the user has set wait_autoneg_complete to 1, which is
+ * the default.
+ */
+ if(hw->wait_autoneg_complete) {
+ /* We will wait for autoneg to complete. */
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
+ mii_status_reg = 0;
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ }
+ if(i == 0) { /* We didn't get link */
+ /* Reset the DSP and wait again for link. */
+
+ ret_val = em_phy_reset_dsp(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Resetting PHY DSP\n");
+ return ret_val;
+ }
+ }
+ /* This loop will early-out if the link condition has been met. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ }
+ }
+
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock. This value
+ * defaults back to a 2.5MHz clock when the PHY is reset.
+ */
+ if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* In addition, because of the s/w reset above, we need to enable CRS on
+ * TX. This must be set for both full and half duplex operation.
+ */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+void
+em_config_collision_dist(struct em_hw *hw)
+{
+ uint32_t tctl;
+
+ tctl = E1000_READ_REG(hw, TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int32_t
+em_config_mac_to_phy(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_config_mac_to_phy");
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
+ else ctrl &= ~E1000_CTRL_FD;
+
+ em_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int32_t
+em_force_mac_fc(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_force_mac_fc");
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case em_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case em_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case em_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case em_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if(hw->mac_type == em_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+int32_t
+em_config_fc_after_link_up(struct em_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+
+ DEBUGFUNC("em_config_fc_after_link_up");
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
+ ret_val = em_force_mac_fc(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if((hw->media_type == em_media_type_copper) && hw->autoneg) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+
+ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | em_fc_none
+ * 0 | 1 | 0 | DC | em_fc_none
+ * 0 | 1 | 1 | 0 | em_fc_none
+ * 0 | 1 | 1 | 1 | em_fc_tx_pause
+ * 1 | 0 | 0 | DC | em_fc_none
+ * 1 | DC | 1 | DC | em_fc_full
+ * 1 | 1 | 0 | 0 | em_fc_none
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | em_fc_full
+ *
+ */
+ if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if(hw->original_fc == em_fc_full) {
+ hw->fc = em_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | em_fc_tx_pause
+ *
+ */
+ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = em_fc_tx_pause;
+ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if(hw->original_fc == em_fc_none ||
+ hw->original_fc == em_fc_tx_pause) {
+ hw->fc = em_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ } else {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ em_get_speed_and_duplex(hw, &speed, &duplex);
+
+ if(duplex == HALF_DUPLEX)
+ hw->fc = em_fc_none;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = em_force_mac_fc(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
+ }
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+int32_t
+em_check_for_link(struct em_hw *hw)
+{
+ uint32_t rxcw;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t rctl;
+ uint32_t signal;
+ int32_t ret_val;
+ uint16_t phy_data;
+ uint16_t lp_capability;
+
+ DEBUGFUNC("em_check_for_link");
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
+ else signal = 0;
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ status = E1000_READ_REG(hw, STATUS);
+ rxcw = E1000_READ_REG(hw, RXCW);
+
+ /* If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ * Read the register twice since the link bit is sticky.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ if(phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = FALSE;
+ } else {
+ /* No link detected */
+ return 0;
+ }
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if(!hw->autoneg) return -E1000_ERR_CONFIG;
+
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if(hw->mac_type >= em_82544)
+ em_config_collision_dist(hw);
+ else {
+ ret_val = em_config_mac_to_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
+ * need to restore the desired flow control settings because we may
+ * have had to re-autoneg with a different link partner.
+ */
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+
+ /* At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * parter capability register. We use the link partner capability to
+ * determine if TBI Compatibility needs to be turned on or off. If
+ * the link partner advertises any speed in addition to Gigabit, then
+ * we assume that they are GMII-based, and TBI compatibility is not
+ * needed. If no other speeds are advertised, we assume the link
+ * partner is TBI-based, and we turn on TBI Compatibility.
+ */
+ if(hw->tbi_compatibility_en) {
+ if(em_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
+ NWAY_LPAR_10T_FD_CAPS |
+ NWAY_LPAR_100TX_HD_CAPS |
+ NWAY_LPAR_100TX_FD_CAPS |
+ NWAY_LPAR_100T4_CAPS)) {
+ /* If our link partner advertises anything in addition to
+ * gigabit, we do not need to enable TBI compatibility.
+ */
+ if(hw->tbi_compatibility_on) {
+ /* If we previously were in the mode, turn it off. */
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ hw->tbi_compatibility_on = FALSE;
+ }
+ } else {
+ /* If TBI compatibility is was previously off, turn it on. For
+ * compatibility with a TBI link partner, we will store bad
+ * packets. Some frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if(!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = TRUE;
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ }
+ }
+ }
+ }
+ /* If we don't have link (auto-negotiation failed or link partner cannot
+ * auto-negotiate), the cable is plugged in (we have signal), and our
+ * link partner is not trying to auto-negotiate with us (we are receiving
+ * idles or data), we need to force link up. We also need to give
+ * auto-negotiation time to complete, in case the cable was just plugged
+ * in. The autoneg_failed flag does this.
+ */
+ else if((hw->media_type == em_media_type_fiber) &&
+ (!(status & E1000_STATUS_LU)) &&
+ ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if(hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ return 0;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ }
+ /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable forced link in the
+ * Device Control register in an attempt to auto-negotiate with our link
+ * partner.
+ */
+ else if((hw->media_type == em_media_type_fiber) &&
+ (ctrl & E1000_CTRL_SLU) &&
+ (rxcw & E1000_RXCW_C)) {
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+ E1000_WRITE_REG(hw, TXCW, hw->txcw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+void
+em_get_speed_and_duplex(struct em_hw *hw,
+ uint16_t *speed,
+ uint16_t *duplex)
+{
+ uint32_t status;
+
+ DEBUGFUNC("em_get_speed_and_duplex");
+
+ if(hw->mac_type >= em_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if(status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if(status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\r\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\r\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_wait_autoneg(struct em_hw *hw)
+{
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_wait_autoneg");
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+ return 0;
+ }
+ msec_delay(100);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+em_raise_mdi_clk(struct em_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ usec_delay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+em_lower_mdi_clk(struct em_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ usec_delay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+em_shift_out_mdi_bits(struct em_hw *hw,
+ uint32_t data,
+ uint16_t count)
+{
+ uint32_t ctrl;
+ uint32_t mask;
+
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while(mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if(data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ usec_delay(2);
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
+
+ /* Clear the data bit just before leaving this routine. */
+ ctrl &= ~E1000_CTRL_MDIO;
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+em_shift_in_mdi_bits(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ for(data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ em_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if(ctrl & E1000_CTRL_MDIO) data |= 1;
+ em_lower_mdi_clk(hw, &ctrl);
+ }
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ /* Clear the MDIO bit just before leaving this routine. */
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+int32_t
+em_read_phy_reg(struct em_hw *hw,
+ uint32_t reg_addr,
+ uint16_t *phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("em_read_phy_reg");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > em_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 64; i++) {
+ usec_delay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if(mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (uint16_t) mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * em_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ em_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *phy_data = em_shift_in_mdi_bits(hw);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+int32_t
+em_write_phy_reg(struct em_hw *hw,
+ uint32_t reg_addr,
+ uint16_t phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("em_write_phy_reg");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > em_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 64; i++) {
+ usec_delay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * em_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ em_shift_out_mdi_bits(hw, mdic, 32);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+void
+em_phy_hw_reset(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+
+ DEBUGFUNC("em_phy_hw_reset");
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if(hw->mac_type > em_82543) {
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ msec_delay(10);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ msec_delay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+ usec_delay(150);
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+int32_t
+em_phy_reset(struct em_hw *hw)
+{
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_phy_reset");
+
+ if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= MII_CR_RESET;
+ if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ usec_delay(1);
+ return 0;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_detect_gig_phy(struct em_hw *hw)
+{
+ uint16_t phy_id_high, phy_id_low;
+ boolean_t match = FALSE;
+
+ DEBUGFUNC("em_detect_gig_phy");
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ if(em_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ usec_delay(2);
+ if(em_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+
+ switch(hw->mac_type) {
+ case em_82543:
+ if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ break;
+ case em_82544:
+ if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ break;
+ case em_82540:
+ case em_82545:
+ case em_82546:
+ if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ break;
+ default:
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ if(match) {
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+ return 0;
+ }
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
+}
+
+/******************************************************************************
+* Resets the PHY's DSP
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+em_phy_reset_dsp(struct em_hw *hw)
+{
+ int32_t ret_val = -E1000_ERR_PHY;
+ DEBUGFUNC("em_phy_reset_dsp");
+
+ do {
+ if(em_write_phy_reg(hw, 29, 0x001d) < 0) break;
+ if(em_write_phy_reg(hw, 30, 0x00c1) < 0) break;
+ if(em_write_phy_reg(hw, 30, 0x0000) < 0) break;
+ ret_val = 0;
+ } while(0);
+
+ if(ret_val < 0) DEBUGOUT("PHY Write Error\n");
+ return ret_val;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+em_phy_get_info(struct em_hw *hw,
+ struct em_phy_info *phy_info)
+{
+ int32_t ret_val = -E1000_ERR_PHY;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_phy_get_info");
+
+ phy_info->cable_length = em_cable_length_undefined;
+ phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
+ phy_info->cable_polarity = em_rev_polarity_undefined;
+ phy_info->polarity_correction = em_polarity_reversal_undefined;
+ phy_info->mdix_mode = em_auto_x_mode_undefined;
+ phy_info->local_rx = em_1000t_rx_status_undefined;
+ phy_info->remote_rx = em_1000t_rx_status_undefined;
+
+ if(hw->media_type != em_media_type_copper) {
+ DEBUGOUT("PHY info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ do {
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+ if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ DEBUGOUT("PHY info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0)
+ break;
+ phy_info->extended_10bt_distance =
+ (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
+ phy_info->polarity_correction =
+ (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
+
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
+ break;
+ phy_info->cable_polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
+ M88E1000_PSSR_REV_POLARITY_SHIFT;
+ phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
+ M88E1000_PSSR_MDIX_SHIFT;
+ if(phy_data & M88E1000_PSSR_1000MBS) {
+ /* Cable Length Estimation and Local/Remote Receiver Informatoion
+ * are only valid at 1000 Mbps
+ */
+ phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+ if(em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0)
+ break;
+ phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT;
+ phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT;
+ }
+ ret_val = 0;
+ } while(0);
+
+ if(ret_val < 0) DEBUGOUT("PHY Read Error\n");
+ return ret_val;
+}
+
+int32_t
+em_validate_mdi_setting(struct em_hw *hw)
+{
+ DEBUGFUNC("em_validate_mdi_settings");
+
+ if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->mdix = 1;
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+em_raise_ee_clk(struct em_hw *hw,
+ uint32_t *eecd)
+{
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+em_lower_ee_clk(struct em_hw *hw,
+ uint32_t *eecd)
+{
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+em_shift_out_ee_bits(struct em_hw *hw,
+ uint16_t data,
+ uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if(data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ usec_delay(50);
+
+ em_raise_ee_clk(hw, &eecd);
+ em_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while(mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+em_shift_in_ee_bits(struct em_hw *hw)
+{
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+
+ /* In order to read a register from the EEPROM, we need to shift 16 bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the "DO"
+ * bit. During this "shifting in" process the "DI" bit should always be
+ * clear..
+ */
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for(i = 0; i < 16; i++) {
+ data = data << 1;
+ em_raise_ee_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DI);
+ if(eecd & E1000_EECD_DO)
+ data |= 1;
+
+ em_lower_ee_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static void
+em_setup_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_standby_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Deselct EEPROM */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Raises then lowers the EEPROM's clock pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_clock_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Terminates a command by lowering the EEPROM's chip select pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_cleanup_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ em_clock_eeprom(hw);
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+int32_t
+em_read_eeprom(struct em_hw *hw,
+ uint16_t offset,
+ uint16_t *data)
+{
+ uint32_t eecd;
+ uint32_t i = 0;
+ boolean_t large_eeprom = FALSE;
+
+ DEBUGFUNC("em_read_eeprom");
+
+ /* Request EEPROM Access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if(!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Prepare the EEPROM for reading */
+ em_setup_eeprom(hw);
+
+ /* Send the READ command (opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
+ if(large_eeprom) {
+ /* If we have a 256 word EEPROM, there are 8 address bits */
+ em_shift_out_ee_bits(hw, offset, 8);
+ } else {
+ /* If we have a 64 word EEPROM, there are 6 address bits */
+ em_shift_out_ee_bits(hw, offset, 6);
+ }
+
+ /* Read the data */
+ *data = em_shift_in_ee_bits(hw);
+
+ /* End this read operation */
+ em_standby_eeprom(hw);
+
+ /* Stop requesting EEPROM access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+
+ return 0;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int32_t
+em_validate_eeprom_checksum(struct em_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("em_validate_eeprom_checksum");
+
+ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if(em_read_eeprom(hw, i, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if(checksum == (uint16_t) EEPROM_SUM) {
+ return 0;
+ } else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
+}
+
+/******************************************************************************
+ * Calculates the EEPROM checksum and writes it to the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ *****************************************************************************/
+int32_t
+em_update_eeprom_checksum(struct em_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("em_update_eeprom_checksum");
+
+ for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if(em_read_eeprom(hw, i, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+ checksum = (uint16_t) EEPROM_SUM - checksum;
+ if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum) < 0) {
+ DEBUGOUT("EEPROM Write Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * data - 16 bit word to be writen to the EEPROM
+ *
+ * If em_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ *****************************************************************************/
+int32_t
+em_write_eeprom(struct em_hw *hw,
+ uint16_t offset,
+ uint16_t data)
+{
+ uint32_t eecd;
+ uint32_t i = 0;
+ int32_t status = 0;
+ boolean_t large_eeprom = FALSE;
+
+ DEBUGFUNC("em_write_eeprom");
+
+ /* Request EEPROM Access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if(!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Prepare the EEPROM for writing */
+ em_setup_eeprom(hw);
+
+ /* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable) command
+ * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This puts the EEPROM
+ * into write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
+ if(large_eeprom)
+ em_shift_out_ee_bits(hw, 0, 6);
+ else
+ em_shift_out_ee_bits(hw, 0, 4);
+
+ /* Prepare the EEPROM */
+ em_standby_eeprom(hw);
+
+ /* Send the Write command (3-bit opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
+ if(large_eeprom)
+ /* If we have a 256 word EEPROM, there are 8 address bits */
+ em_shift_out_ee_bits(hw, offset, 8);
+ else
+ /* If we have a 64 word EEPROM, there are 6 address bits */
+ em_shift_out_ee_bits(hw, offset, 6);
+
+ /* Send the data */
+ em_shift_out_ee_bits(hw, data, 16);
+
+ /* Toggle the CS line. This in effect tells to EEPROM to actually execute
+ * the command in question.
+ */
+ em_standby_eeprom(hw);
+
+ /* Now read DO repeatedly until is high (equal to '1'). The EEEPROM will
+ * signal that the command has been completed by raising the DO signal.
+ * If DO does not go high in 10 milliseconds, then error out.
+ */
+ for(i = 0; i < 200; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_DO) break;
+ usec_delay(50);
+ }
+ if(i == 200) {
+ DEBUGOUT("EEPROM Write did not complete\n");
+ status = -E1000_ERR_EEPROM;
+ }
+
+ /* Recover from write */
+ em_standby_eeprom(hw);
+
+ /* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable) command
+ * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This takes the EEPROM
+ * out of write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
+ if(large_eeprom)
+ em_shift_out_ee_bits(hw, 0, 6);
+ else
+ em_shift_out_ee_bits(hw, 0, 4);
+
+ /* Done with writing */
+ em_cleanup_eeprom(hw);
+
+ /* Stop requesting EEPROM access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+
+ return status;
+}
+
+/******************************************************************************
+ * Reads the adapter's part number from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ * part_num - Adapter's part number
+ *****************************************************************************/
+int32_t
+em_read_part_num(struct em_hw *hw,
+ uint32_t *part_num)
+{
+ uint16_t offset = EEPROM_PBA_BYTE_1;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("em_read_part_num");
+
+ /* Get word 0 from EEPROM */
+ if(em_read_eeprom(hw, offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 0 in upper half of part_num */
+ *part_num = (uint32_t) (eeprom_data << 16);
+
+ /* Get word 1 from EEPROM */
+ if(em_read_eeprom(hw, ++offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 1 in lower half of part_num */
+ *part_num |= eeprom_data;
+
+ return 0;
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_read_mac_addr(struct em_hw * hw)
+{
+ uint16_t offset;
+ uint16_t eeprom_data, i;
+
+ DEBUGFUNC("em_read_mac_addr");
+
+ for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if(em_read_eeprom(hw, offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+ hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+ }
+ if((hw->mac_type == em_82546) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ if(hw->perm_mac_addr[5] & 0x01)
+ hw->perm_mac_addr[5] &= ~(0x01);
+ else
+ hw->perm_mac_addr[5] |= 0x01;
+ }
+ for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
+ return 0;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+void
+em_init_rx_addrs(struct em_hw *hw)
+{
+ uint32_t i;
+ uint32_t addr_low;
+ uint32_t addr_high;
+
+ DEBUGFUNC("em_init_rx_addrs");
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+ addr_low = (hw->mac_addr[0] |
+ (hw->mac_addr[1] << 8) |
+ (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
+
+ addr_high = (hw->mac_addr[4] |
+ (hw->mac_addr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the
+ * multicast table.
+ *****************************************************************************/
+void
+em_mc_addr_list_update(struct em_hw *hw,
+ uint8_t *mc_addr_list,
+ uint32_t mc_addr_count,
+ uint32_t pad)
+{
+ uint32_t hash_value;
+ uint32_t i;
+ uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
+
+ DEBUGFUNC("em_mc_addr_list_update");
+
+ /* Set the new number of MC addresses that we are being requested to use. */
+ hw->num_mc_addrs = mc_addr_count;
+
+ /* Clear RAR[1-15] */
+ DEBUGOUT(" Clearing RAR[1-15]\n");
+ for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+
+ /* Clear the MTA */
+ DEBUGOUT(" Clearing MTA\n");
+ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ }
+
+ /* Add the new addresses */
+ for(i = 0; i < mc_addr_count; i++) {
+ DEBUGOUT(" Adding the multicast addresses:\n");
+ DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+ hash_value = em_hash_mc_addr(hw,
+ mc_addr_list +
+ (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+ DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+
+ /* Place this multicast address in the RAR if there is room, *
+ * else put it in the MTA
+ */
+ if(rar_used_count < E1000_RAR_ENTRIES) {
+ em_rar_set(hw,
+ mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+ rar_used_count);
+ rar_used_count++;
+ } else {
+ em_mta_set(hw, hash_value);
+ }
+ }
+ DEBUGOUT("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash
+ *****************************************************************************/
+uint32_t
+em_hash_mc_addr(struct em_hw *hw,
+ uint8_t *mc_addr)
+{
+ uint32_t hash_value = 0;
+
+ /* The portion of the address that is used for the hash table is
+ * determined by the mc_filter_type setting.
+ */
+ switch (hw->mc_filter_type) {
+ /* [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ */
+ case 0:
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ break;
+ case 1:
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+ break;
+ case 2:
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ break;
+ case 3:
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+ break;
+ }
+
+ hash_value &= 0xFFF;
+ return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+void
+em_mta_set(struct em_hw *hw,
+ uint32_t hash_value)
+{
+ uint32_t hash_bit, hash_reg;
+ uint32_t mta;
+ uint32_t temp;
+
+ /* The MTA is a register array of 128 32-bit registers.
+ * It is treated like an array of 4096 bits. We want to set
+ * bit BitArray[hash_value]. So we figure out what register
+ * the bit is in, read it, OR in the new bit, then write
+ * back the new value. The register is determined by the
+ * upper 7 bits of the hash value and the bit within that
+ * register are determined by the lower 5 bits of the value.
+ */
+ hash_reg = (hash_value >> 5) & 0x7F;
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+
+ /* If we are on an 82544 and we are trying to write an odd offset
+ * in the MTA, save off the previous entry before writing and
+ * restore the old value after writing.
+ */
+ if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ }
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+em_rar_set(struct em_hw *hw,
+ uint8_t *addr,
+ uint32_t index)
+{
+ uint32_t rar_low, rar_high;
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((uint32_t) addr[0] |
+ ((uint32_t) addr[1] << 8) |
+ ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+
+ rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+em_write_vfta(struct em_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ uint32_t temp;
+
+ if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_clear_vfta(struct em_hw *hw)
+{
+ uint32_t offset;
+
+ for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+static int32_t
+em_id_led_init(struct em_hw * hw)
+{
+ uint32_t ledctl;
+ const uint32_t ledctl_mask = 0x000000FF;
+ const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ uint16_t eeprom_data, i, temp;
+ const uint16_t led_mask = 0x0F;
+
+ DEBUGFUNC("em_id_led_init");
+
+ if(hw->mac_type < em_82540) {
+ /* Nothing to do */
+ return 0;
+ }
+
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ hw->ledctl_default = ledctl;
+ hw->ledctl_mode1 = hw->ledctl_default;
+ hw->ledctl_mode2 = hw->ledctl_default;
+
+ if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if((eeprom_data== ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
+ for(i = 0; i < 4; i++) {
+ temp = (eeprom_data >> (i << 2)) & led_mask;
+ switch(temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch(temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_setup_led(struct em_hw *hw)
+{
+ uint32_t ledctl;
+
+ DEBUGFUNC("em_setup_led");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ /* No setup necessary */
+ break;
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ /* Save current LEDCTL settings */
+ hw->ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, LEDCTL, ledctl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Restores the saved state of the SW controlable LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_cleanup_led(struct em_hw *hw)
+{
+ DEBUGFUNC("em_cleanup_led");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ /* No cleanup necessary */
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ /* Restore LEDCTL settings */
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_led_on(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_led_on");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_led_off(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_led_off");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_clear_hw_cntrs(struct em_hw *hw)
+{
+ volatile uint32_t temp;
+
+ temp = E1000_READ_REG(hw, CRCERRS);
+ temp = E1000_READ_REG(hw, SYMERRS);
+ temp = E1000_READ_REG(hw, MPC);
+ temp = E1000_READ_REG(hw, SCC);
+ temp = E1000_READ_REG(hw, ECOL);
+ temp = E1000_READ_REG(hw, MCC);
+ temp = E1000_READ_REG(hw, LATECOL);
+ temp = E1000_READ_REG(hw, COLC);
+ temp = E1000_READ_REG(hw, DC);
+ temp = E1000_READ_REG(hw, SEC);
+ temp = E1000_READ_REG(hw, RLEC);
+ temp = E1000_READ_REG(hw, XONRXC);
+ temp = E1000_READ_REG(hw, XONTXC);
+ temp = E1000_READ_REG(hw, XOFFRXC);
+ temp = E1000_READ_REG(hw, XOFFTXC);
+ temp = E1000_READ_REG(hw, FCRUC);
+ temp = E1000_READ_REG(hw, PRC64);
+ temp = E1000_READ_REG(hw, PRC127);
+ temp = E1000_READ_REG(hw, PRC255);
+ temp = E1000_READ_REG(hw, PRC511);
+ temp = E1000_READ_REG(hw, PRC1023);
+ temp = E1000_READ_REG(hw, PRC1522);
+ temp = E1000_READ_REG(hw, GPRC);
+ temp = E1000_READ_REG(hw, BPRC);
+ temp = E1000_READ_REG(hw, MPRC);
+ temp = E1000_READ_REG(hw, GPTC);
+ temp = E1000_READ_REG(hw, GORCL);
+ temp = E1000_READ_REG(hw, GORCH);
+ temp = E1000_READ_REG(hw, GOTCL);
+ temp = E1000_READ_REG(hw, GOTCH);
+ temp = E1000_READ_REG(hw, RNBC);
+ temp = E1000_READ_REG(hw, RUC);
+ temp = E1000_READ_REG(hw, RFC);
+ temp = E1000_READ_REG(hw, ROC);
+ temp = E1000_READ_REG(hw, RJC);
+ temp = E1000_READ_REG(hw, TORL);
+ temp = E1000_READ_REG(hw, TORH);
+ temp = E1000_READ_REG(hw, TOTL);
+ temp = E1000_READ_REG(hw, TOTH);
+ temp = E1000_READ_REG(hw, TPR);
+ temp = E1000_READ_REG(hw, TPT);
+ temp = E1000_READ_REG(hw, PTC64);
+ temp = E1000_READ_REG(hw, PTC127);
+ temp = E1000_READ_REG(hw, PTC255);
+ temp = E1000_READ_REG(hw, PTC511);
+ temp = E1000_READ_REG(hw, PTC1023);
+ temp = E1000_READ_REG(hw, PTC1522);
+ temp = E1000_READ_REG(hw, MPTC);
+ temp = E1000_READ_REG(hw, BPTC);
+
+ if(hw->mac_type < em_82543) return;
+
+ temp = E1000_READ_REG(hw, ALGNERRC);
+ temp = E1000_READ_REG(hw, RXERRC);
+ temp = E1000_READ_REG(hw, TNCRS);
+ temp = E1000_READ_REG(hw, CEXTERR);
+ temp = E1000_READ_REG(hw, TSCTC);
+ temp = E1000_READ_REG(hw, TSCTFC);
+
+ if(hw->mac_type <= em_82544) return;
+
+ temp = E1000_READ_REG(hw, MGTPRC);
+ temp = E1000_READ_REG(hw, MGTPDC);
+ temp = E1000_READ_REG(hw, MGTPTC);
+}
+
+/******************************************************************************
+ * Resets Adaptive IFS to its default state.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Call this after em_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ *****************************************************************************/
+void
+em_reset_adaptive(struct em_hw *hw)
+{
+ DEBUGFUNC("em_reset_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if(!hw->ifs_params_forced) {
+ hw->current_ifs_val = 0;
+ hw->ifs_min_val = IFS_MIN;
+ hw->ifs_max_val = IFS_MAX;
+ hw->ifs_step_size = IFS_STEP;
+ hw->ifs_ratio = IFS_RATIO;
+ }
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * tx_packets - Number of transmits since last callback
+ * total_collisions - Number of collisions since last callback
+ *****************************************************************************/
+void
+em_update_adaptive(struct em_hw *hw)
+{
+ DEBUGFUNC("em_update_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if((hw->collision_delta * hw->ifs_ratio) >
+ hw->tx_packet_delta) {
+ if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+ hw->in_ifs_mode = TRUE;
+ if(hw->current_ifs_val < hw->ifs_max_val) {
+ if(hw->current_ifs_val == 0)
+ hw->current_ifs_val = hw->ifs_min_val;
+ else
+ hw->current_ifs_val += hw->ifs_step_size;
+ E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+ }
+ }
+ } else {
+ if((hw->in_ifs_mode == TRUE) &&
+ (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ hw->current_ifs_val = 0;
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ }
+ }
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ *
+ * hw - Struct containing variables accessed by shared code
+ * frame_len - The length of the frame in question
+ * mac_addr - The Ethernet destination address of the frame in question
+ *****************************************************************************/
+void
+em_tbi_adjust_stats(struct em_hw *hw,
+ struct em_hw_stats *stats,
+ uint32_t frame_len,
+ uint8_t *mac_addr)
+{
+ uint64_t carry_bit;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /* We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ carry_bit = 0x80000000 & stats->gorcl;
+ stats->gorcl += frame_len;
+ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+ * Received Count) was one before the addition,
+ * AND it is zero after, then we lost the carry out,
+ * need to add one to Gorch (Good Octets Received Count High).
+ * This could be simplified if all environments supported
+ * 64-bit integers.
+ */
+ if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ stats->gorch++;
+ /* Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if(*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ if(frame_len == hw->max_frame_size) {
+ /* In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if(stats->roc > 0)
+ stats->roc--;
+ }
+
+ /* Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if(frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if(frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if(frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if(frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if(frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if(frame_len == 1522) {
+ stats->prc1522++;
+ }
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_get_bus_info(struct em_hw *hw)
+{
+ uint32_t status;
+
+ if(hw->mac_type < em_82543) {
+ hw->bus_type = em_bus_type_unknown;
+ hw->bus_speed = em_bus_speed_unknown;
+ hw->bus_width = em_bus_width_unknown;
+ return;
+ }
+
+ status = E1000_READ_REG(hw, STATUS);
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ em_bus_type_pcix : em_bus_type_pci;
+ if(hw->bus_type == em_bus_type_pci) {
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+ em_bus_speed_66 : em_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ hw->bus_speed = em_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ hw->bus_speed = em_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ hw->bus_speed = em_bus_speed_133;
+ break;
+ default:
+ hw->bus_speed = em_bus_speed_reserved;
+ break;
+ }
+ }
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
+ em_bus_width_64 : em_bus_width_32;
+}
+/******************************************************************************
+ * Reads a value from one of the devices registers using port I/O (as opposed
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to read from
+ *****************************************************************************/
+uint32_t
+em_read_reg_io(struct em_hw *hw,
+ uint32_t offset)
+{
+ uint32_t io_addr = hw->io_base;
+ uint32_t io_data = hw->io_base + 4;
+
+ em_io_write(hw, io_addr, offset);
+ return em_io_read(hw, io_data);
+}
+
+/******************************************************************************
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to write to
+ * value - value to write
+ *****************************************************************************/
+void
+em_write_reg_io(struct em_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ uint32_t io_addr = hw->io_base;
+ uint32_t io_data = hw->io_base + 4;
+
+ em_io_write(hw, io_addr, offset);
+ em_io_write(hw, io_data, value);
+}
+