diff options
author | Brad Smith <brad@cvs.openbsd.org> | 2006-07-05 01:15:31 +0000 |
---|---|---|
committer | Brad Smith <brad@cvs.openbsd.org> | 2006-07-05 01:15:31 +0000 |
commit | 9772abdd787e434bf5b65d9da0b30b172394b3a6 (patch) | |
tree | 234bad276b8f65c089d937c71fb33db4d82505f1 /sys/dev/pci/if_em_hw.c | |
parent | b4f4dbd1a4117f82b85e0839304c69086588d8c1 (diff) |
revert back to the older driver as this causes some breakage.
Diffstat (limited to 'sys/dev/pci/if_em_hw.c')
-rw-r--r-- | sys/dev/pci/if_em_hw.c | 2840 |
1 files changed, 658 insertions, 2182 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c index a782cf30f18..f6b1105d0fa 100644 --- a/sys/dev/pci/if_em_hw.c +++ b/sys/dev/pci/if_em_hw.c @@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ -/* $OpenBSD: if_em_hw.c,v 1.19 2006/07/03 20:55:55 brad Exp $ */ +/* $OpenBSD: if_em_hw.c,v 1.20 2006/07/05 01:15:30 brad Exp $ */ /* if_em_hw.c * Shared functions for accessing and configuring the MAC @@ -41,7 +41,7 @@ POSSIBILITY OF SUCH DAMAGE. #include <sys/cdefs.h> __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $"); #endif - + #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> @@ -64,7 +64,7 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $"); #endif #include <uvm/uvm_extern.h> - + #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcidevs.h> @@ -107,9 +107,8 @@ static int32_t em_polarity_reversal_workaround(struct em_hw *hw); static int32_t em_set_phy_mode(struct em_hw *hw); static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer); static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length); -static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, - uint16_t duplex); -static int32_t em_configure_kmrn_for_1000(struct em_hw *hw); +static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex); +static int32_t em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex); /* IGP cable length table */ static const @@ -144,10 +143,10 @@ em_set_phy_type(struct em_hw *hw) { DEBUGFUNC("em_set_phy_type"); - if (hw->mac_type == em_undefined) + if(hw->mac_type == em_undefined) return -E1000_ERR_PHY_TYPE; - switch (hw->phy_id) { + switch(hw->phy_id) { case M88E1000_E_PHY_ID: case M88E1000_I_PHY_ID: case M88E1011_I_PHY_ID: @@ -155,21 +154,13 @@ em_set_phy_type(struct em_hw *hw) hw->phy_type = em_phy_m88; break; case IGP01E1000_I_PHY_ID: - if (hw->mac_type == em_82541 || - hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547 || - hw->mac_type == em_82547_rev_2) { + if(hw->mac_type == em_82541 || + hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547 || + hw->mac_type == em_82547_rev_2) { hw->phy_type = em_phy_igp; break; } - case IGP03E1000_E_PHY_ID: - hw->phy_type = em_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - hw->phy_type = em_phy_ife; - break; case GG82563_E_PHY_ID: if (hw->mac_type == em_80003es2lan) { hw->phy_type = em_phy_gg82563; @@ -198,7 +189,7 @@ em_phy_init_script(struct em_hw *hw) DEBUGFUNC("em_phy_init_script"); - if (hw->phy_init_script) { + if(hw->phy_init_script) { msec_delay(20); /* Save off the current value of register 0x2F5B to be restored at @@ -214,7 +205,7 @@ em_phy_init_script(struct em_hw *hw) msec_delay(5); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82541: case em_82547: em_write_phy_reg(hw, 0x1F95, 0x0001); @@ -251,22 +242,22 @@ em_phy_init_script(struct em_hw *hw) /* Now enable the transmitter */ em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if (hw->mac_type == em_82547) { + if(hw->mac_type == em_82547) { uint16_t fused, fine, coarse; /* Move to analog registers page */ em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | @@ -346,8 +337,8 @@ em_set_mac_type(struct em_hw *hw) hw->mac_type = em_82546_rev_3; break; case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: case E1000_DEV_ID_82541ER_LOM: + case E1000_DEV_ID_82541EI_MOBILE: hw->mac_type = em_82541; break; case E1000_DEV_ID_82541ER: @@ -386,29 +377,16 @@ em_set_mac_type(struct em_hw *hw) case E1000_DEV_ID_82573V_PM: hw->mac_type = em_82573; break; - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->mac_type = em_80003es2lan; break; - case E1000_DEV_ID_ICH8_IGP_M_AMT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IGP_M: - hw->mac_type = em_ich8lan; - break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } - switch (hw->mac_type) { - case em_ich8lan: - hw->swfwhw_semaphore_present = TRUE; - hw->asf_firmware_present = TRUE; - break; + switch(hw->mac_type) { case em_80003es2lan: hw->swfw_sync_present = TRUE; /* FALLTHROUGH */ @@ -442,7 +420,7 @@ em_set_media_type(struct em_hw *hw) DEBUGFUNC("em_set_media_type"); - if (hw->mac_type != em_82543) { + if(hw->mac_type != em_82543) { /* tbi_compatibility is only valid on 82543 */ hw->tbi_compatibility_en = FALSE; } @@ -461,7 +439,6 @@ em_set_media_type(struct em_hw *hw) case em_82542_rev2_1: hw->media_type = em_media_type_fiber; break; - case em_ich8lan: case em_82573: /* The STATUS_TBIMODE bit is reserved or reused for the this * device. @@ -502,16 +479,16 @@ em_reset_hw(struct em_hw *hw) DEBUGFUNC("em_reset_hw"); /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == em_82542_rev2_0) { + if(hw->mac_type == em_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); em_pci_clear_mwi(hw); } - if (hw->bus_type == em_bus_type_pci_express) { + if(hw->bus_type == em_bus_type_pci_express) { /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ - if (em_disable_pciex_master(hw) != E1000_SUCCESS) { + if(em_disable_pciex_master(hw) != E1000_SUCCESS) { DEBUGOUT("PCI-E Master disable polling has failed.\n"); } } @@ -539,14 +516,14 @@ em_reset_hw(struct em_hw *hw) ctrl = E1000_READ_REG(hw, CTRL); /* Must reset the PHY before resetting the MAC */ - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); msec_delay(5); } /* Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ - if (hw->mac_type == em_82573) { + if(hw->mac_type == em_82573) { timeout = 10; extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); @@ -556,22 +533,14 @@ em_reset_hw(struct em_hw *hw) E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; else extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; msec_delay(2); timeout--; - } while (timeout); - } - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac_type == em_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); + } while(timeout); } /* Issue a global reset to the MAC. This will reset the chip's @@ -581,7 +550,7 @@ em_reset_hw(struct em_hw *hw) */ DEBUGOUT("Issuing a global reset to MAC\n"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82544: case em_82540: case em_82545: @@ -597,20 +566,6 @@ em_reset_hw(struct em_hw *hw) /* Reset is performed on a shadow of the control register */ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); break; - case em_ich8lan: - if (!hw->phy_reset_disable && - em_check_phy_reset_block(hw) == E1000_SUCCESS) { - /* em_ich8lan PHY HW reset requires MAC CORE reset - * at the same time to make sure the interface between - * MAC and the external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - } - - em_get_software_flag(hw); - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - msec_delay(5); - break; default: E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; @@ -620,7 +575,7 @@ em_reset_hw(struct em_hw *hw) * device. Later controllers reload the EEPROM automatically, so just wait * for reload to complete. */ - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -652,10 +607,9 @@ em_reset_hw(struct em_hw *hw) /* FALLTHROUGH */ case em_82571: case em_82572: - case em_ich8lan: case em_80003es2lan: ret_val = em_get_auto_rd_done(hw); - if (ret_val) + if(ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; break; @@ -666,13 +620,13 @@ em_reset_hw(struct em_hw *hw) } /* Disable HW ARPs on ASF enabled adapters */ - if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) { + if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) { manc = E1000_READ_REG(hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(hw, MANC, manc); } - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { em_phy_init_script(hw); /* Configure activity LED after PHY reset */ @@ -690,17 +644,11 @@ em_reset_hw(struct em_hw *hw) icr = E1000_READ_REG(hw, ICR); /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == em_82542_rev2_0) { - if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if(hw->mac_type == em_82542_rev2_0) { + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) em_pci_set_mwi(hw); } - if (hw->mac_type == em_ich8lan) { - uint32_t kab = E1000_READ_REG(hw, KABGTXD); - kab |= E1000_KABGTXD_BGSQLBIAS; - E1000_WRITE_REG(hw, KABGTXD, kab); - } - return E1000_SUCCESS; } @@ -733,7 +681,7 @@ em_init_hw(struct em_hw *hw) /* Initialize Identification LED */ ret_val = em_id_led_init(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Initializing Identification LED\n"); return ret_val; } @@ -743,15 +691,12 @@ em_init_hw(struct em_hw *hw) /* Disabling VLAN filtering. */ DEBUGOUT("Initializing the IEEE VLAN\n"); - /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ - if (hw->mac_type != em_ich8lan) { - if (hw->mac_type < em_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - em_clear_vfta(hw); - } + if (hw->mac_type < em_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + em_clear_vfta(hw); /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == em_82542_rev2_0) { + if(hw->mac_type == em_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); em_pci_clear_mwi(hw); E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); @@ -765,43 +710,37 @@ em_init_hw(struct em_hw *hw) em_init_rx_addrs(hw); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == em_82542_rev2_0) { + if(hw->mac_type == em_82542_rev2_0) { E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_FLUSH(hw); msec_delay(1); - if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) em_pci_set_mwi(hw); } /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); mta_size = E1000_MC_TBL_SIZE; - if (hw->mac_type == em_ich8lan) - mta_size = E1000_MC_TBL_SIZE_ICH8LAN; - for (i = 0; i < mta_size; i++) { + for(i = 0; i < mta_size; i++) E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occuring when accessing our register space */ - E1000_WRITE_FLUSH(hw); - } /* Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it * gives equal priority to transmits and receives. Valid only on * 82542 and 82543 silicon. */ - if (hw->dma_fairness && hw->mac_type <= em_82543) { + if(hw->dma_fairness && hw->mac_type <= em_82543) { ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); } - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; default: /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if (hw->bus_type == em_bus_type_pcix) { + if(hw->bus_type == em_bus_type_pcix) { em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); @@ -809,9 +748,9 @@ em_init_hw(struct em_hw *hw) PCIX_COMMAND_MMRBC_SHIFT; stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { + if(cmd_mmrbc > stat_mmrbc) { pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, @@ -821,15 +760,11 @@ em_init_hw(struct em_hw *hw) break; } - /* More time needed for PHY to initialize */ - if (hw->mac_type == em_ich8lan) - msec_delay(15); - /* Call a subroutine to configure the link and setup flow control. */ ret_val = em_setup_link(hw); /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > em_82544) { + if(hw->mac_type > em_82544) { ctrl = E1000_READ_REG(hw, TXDCTL); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; switch (hw->mac_type) { @@ -838,7 +773,6 @@ em_init_hw(struct em_hw *hw) case em_82571: case em_82572: case em_82573: - case em_ich8lan: case em_80003es2lan: ctrl |= E1000_TXDCTL_COUNT_DESC; break; @@ -847,7 +781,7 @@ em_init_hw(struct em_hw *hw) } if (hw->mac_type == em_82573) { - em_enable_tx_pkt_filtering(hw); + em_enable_tx_pkt_filtering(hw); } switch (hw->mac_type) { @@ -877,10 +811,9 @@ em_init_hw(struct em_hw *hw) /* FALLTHROUGH */ case em_82571: case em_82572: - case em_ich8lan: ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - if (hw->mac_type >= em_82571) + if(hw->mac_type >= em_82571) ctrl |= E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, TXDCTL1, ctrl); break; @@ -899,11 +832,6 @@ em_init_hw(struct em_hw *hw) */ em_clear_hw_cntrs(hw); - /* ICH8/Nahum No-snoop bits are opposite polarity. - * Set to snoop by default after reset. */ - if (hw->mac_type == em_ich8lan) - em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); @@ -929,10 +857,10 @@ em_adjust_serdes_amplitude(struct em_hw *hw) DEBUGFUNC("em_adjust_serdes_amplitude"); - if (hw->media_type != em_media_type_internal_serdes) + if(hw->media_type != em_media_type_internal_serdes) return E1000_SUCCESS; - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; @@ -945,11 +873,11 @@ em_adjust_serdes_amplitude(struct em_hw *hw) return ret_val; } - if (eeprom_data != EEPROM_RESERVED_WORD) { + if(eeprom_data != EEPROM_RESERVED_WORD) { /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if (ret_val) + if(ret_val) return ret_val; } @@ -991,7 +919,6 @@ em_setup_link(struct em_hw *hw) */ if (hw->fc == em_fc_default) { switch (hw->mac_type) { - case em_ich8lan: case em_82573: hw->fc = em_fc_full; break; @@ -1017,10 +944,10 @@ em_setup_link(struct em_hw *hw) * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ - if (hw->mac_type == em_82542_rev2_0) + if(hw->mac_type == em_82542_rev2_0) hw->fc &= (~em_fc_tx_pause); - if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) + if((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) hw->fc &= (~em_fc_rx_pause); hw->original_fc = hw->fc; @@ -1034,13 +961,7 @@ em_setup_link(struct em_hw *hw) * signal detection. So this should be done before em_setup_pcs_link() * or em_phy_setup() is called. */ - if (hw->mac_type == em_82543) { - ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } + if(hw->mac_type == em_82543) { ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); @@ -1058,12 +979,9 @@ em_setup_link(struct em_hw *hw) */ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */ - if (hw->mac_type != em_ich8lan) { - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - } + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); @@ -1073,14 +991,14 @@ em_setup_link(struct em_hw *hw) * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ - if (!(hw->fc & em_fc_tx_pause)) { + if(!(hw->fc & em_fc_tx_pause)) { E1000_WRITE_REG(hw, FCRTL, 0); E1000_WRITE_REG(hw, FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water marks * as well as (optionally) enabling the transmission of XON frames. */ - if (hw->fc_send_xon) { + if(hw->fc_send_xon) { E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); } else { @@ -1127,11 +1045,11 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * the EEPROM. */ ctrl = E1000_READ_REG(hw, CTRL); - if (hw->media_type == em_media_type_fiber) + if(hw->media_type == em_media_type_fiber) signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; ret_val = em_adjust_serdes_amplitude(hw); - if (ret_val) + if(ret_val) return ret_val; /* Take the link out of reset */ @@ -1139,7 +1057,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw) /* Adjust VCO speed to improve BER performance */ ret_val = em_set_vco_speed(hw); - if (ret_val) + if(ret_val) return ret_val; em_config_collision_dist(hw); @@ -1210,15 +1128,15 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * less than 500 milliseconds even if the other end is doing it in SW). * For internal serdes, we just assume a signal is present, then poll. */ - if (hw->media_type == em_media_type_internal_serdes || + if(hw->media_type == em_media_type_internal_serdes || (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { DEBUGOUT("Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { msec_delay(10); status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_LU) break; + if(status & E1000_STATUS_LU) break; } - if (i == (LINK_UP_TIMEOUT / 10)) { + if(i == (LINK_UP_TIMEOUT / 10)) { DEBUGOUT("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call @@ -1227,7 +1145,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * non-autonegotiating link partners. */ ret_val = em_check_for_link(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error while checking for link\n"); return ret_val; } @@ -1261,7 +1179,7 @@ em_copper_link_preconfig(struct em_hw *hw) * the PHY speed and duplex configuration is. In addition, we need to * perform a hardware reset on the PHY to take it out of reset. */ - if (hw->mac_type > em_82543) { + if(hw->mac_type > em_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -1269,13 +1187,13 @@ em_copper_link_preconfig(struct em_hw *hw) ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); E1000_WRITE_REG(hw, CTRL, ctrl); ret_val = em_phy_hw_reset(hw); - if (ret_val) + if(ret_val) return ret_val; } /* Make sure we have a valid PHY */ ret_val = em_detect_gig_phy(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error, did not detect valid phy.\n"); return ret_val; } @@ -1283,19 +1201,19 @@ em_copper_link_preconfig(struct em_hw *hw) /* Set PHY to class A mode (if necessary) */ ret_val = em_set_phy_mode(hw); - if (ret_val) + if(ret_val) return ret_val; - if ((hw->mac_type == em_82545_rev_3) || + if((hw->mac_type == em_82545_rev_3) || (hw->mac_type == em_82546_rev_3)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); phy_data |= 0x00000008; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); } - if (hw->mac_type <= em_82543 || - hw->mac_type == em_82541 || hw->mac_type == em_82547 || - hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) + if(hw->mac_type <= em_82543 || + hw->mac_type == em_82541 || hw->mac_type == em_82547 || + hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) hw->phy_reset_disable = FALSE; return E1000_SUCCESS; @@ -1318,22 +1236,21 @@ em_copper_link_igp_setup(struct em_hw *hw) if (hw->phy_reset_disable) return E1000_SUCCESS; - + ret_val = em_phy_reset(hw); if (ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } - /* Wait 15ms for MAC to configure PHY from eeprom settings */ + /* Wait 10ms for MAC to configure PHY from eeprom settings */ msec_delay(15); - if (hw->mac_type != em_ich8lan) { + /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } /* disable lplu d3 during driver init */ ret_val = em_set_d3_lplu_state(hw, FALSE); @@ -1377,45 +1294,45 @@ em_copper_link_igp_setup(struct em_hw *hw) } } ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* set auto-master slave resolution settings */ - if (hw->autoneg) { + if(hw->autoneg) { em_ms_type phy_ms_setting = hw->master_slave; - if (hw->ffe_config_state == em_ffe_config_active) + if(hw->ffe_config_state == em_ffe_config_active) hw->ffe_config_state = em_ffe_config_enabled; - if (hw->dsp_config_state == em_dsp_config_activated) + if(hw->dsp_config_state == em_dsp_config_activated) hw->dsp_config_state = em_dsp_config_enabled; /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if(ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; } ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; /* load defaults for future use */ @@ -1440,7 +1357,7 @@ em_copper_link_igp_setup(struct em_hw *hw) break; } ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; } @@ -1461,12 +1378,12 @@ em_copper_link_ggp_setup(struct em_hw *hw) DEBUGFUNC("em_copper_link_ggp_setup"); - if (!hw->phy_reset_disable) { - + if(!hw->phy_reset_disable) { + /* Enable CRS on TX for half-duplex operation. */ ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; @@ -1475,7 +1392,7 @@ em_copper_link_ggp_setup(struct em_hw *hw) ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* Options: @@ -1486,7 +1403,7 @@ em_copper_link_ggp_setup(struct em_hw *hw) * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; @@ -1511,11 +1428,11 @@ em_copper_link_ggp_setup(struct em_hw *hw) * 1 - Enabled */ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (hw->disable_polarity_correction == 1) + if(hw->disable_polarity_correction == 1) phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ @@ -1570,10 +1487,11 @@ em_copper_link_ggp_setup(struct em_hw *hw) if (ret_val) return ret_val; + /* Disable Pass False Carrier on the PHY */ phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, phy_data); - if (ret_val) return ret_val; } @@ -1608,12 +1526,12 @@ em_copper_link_mgp_setup(struct em_hw *hw) DEBUGFUNC("em_copper_link_mgp_setup"); - if (hw->phy_reset_disable) + if(hw->phy_reset_disable) return E1000_SUCCESS; - + /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; @@ -1650,47 +1568,35 @@ em_copper_link_mgp_setup(struct em_hw *hw) * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (hw->disable_polarity_correction == 1) + if(hw->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if(ret_val) return ret_val; - phy_data |= M88E1000_EPSCR_TX_CLK_25; + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if(ret_val) + return ret_val; - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = em_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = em_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } + ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if(ret_val) + return ret_val; } /* SW Reset the PHY so all changes take effect */ ret_val = em_phy_reset(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } @@ -1720,16 +1626,12 @@ em_copper_link_autoneg(struct em_hw *hw) /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ - if (hw->autoneg_advertised == 0) + if(hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - /* IFE phy only supports 10/100 */ - if (hw->phy_type == em_phy_ife) - hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = em_phy_setup_autoneg(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); return ret_val; } @@ -1739,20 +1641,20 @@ em_copper_link_autoneg(struct em_hw *hw) * the Auto Neg Restart bit in the PHY control register. */ ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ - if (hw->wait_autoneg_complete) { + if(hw->wait_autoneg_complete) { ret_val = em_wait_autoneg(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } @@ -1763,18 +1665,6 @@ em_copper_link_autoneg(struct em_hw *hw) return E1000_SUCCESS; } -/******************************************************************** -* Copper link setup for em_phy_ife (Fast Ethernet PHY) series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ -static int32_t -em_copper_link_ife_setup(struct em_hw *hw) -{ - if (hw->phy_reset_disable) - return E1000_SUCCESS; - return E1000_SUCCESS; -} /****************************************************************************** * Config the MAC and the PHY after link is up. @@ -1784,7 +1674,7 @@ em_copper_link_ife_setup(struct em_hw *hw) * collision distance in the Transmit Control Register. * 2) Set up flow control on the MAC to that established with * the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. +* 3) Config DSP to improve Gigabit link quality for some PHY revisions. * * hw - Struct containing variables accessed by shared code ******************************************************************************/ @@ -1793,31 +1683,31 @@ em_copper_link_postconfig(struct em_hw *hw) { int32_t ret_val; DEBUGFUNC("em_copper_link_postconfig"); - - if (hw->mac_type >= em_82544) { + + if(hw->mac_type >= em_82544) { em_config_collision_dist(hw); } else { ret_val = em_config_mac_to_phy(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } } ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Configuring Flow Control\n"); return ret_val; } /* Config DSP to improve Giga link quality */ - if (hw->phy_type == em_phy_igp) { + if(hw->phy_type == em_phy_igp) { ret_val = em_config_dsp_after_link_change(hw, TRUE); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Configuring DSP after link up\n"); return ret_val; } } - + return E1000_SUCCESS; } @@ -1838,7 +1728,6 @@ em_setup_copper_link(struct em_hw *hw) switch (hw->mac_type) { case em_80003es2lan: - case em_ich8lan: /* Set the mac to wait the maximum time between each * iteration and increase the max iterations when * polling the phy; this fixes erroneous timeouts at 10Mbps. */ @@ -1858,13 +1747,15 @@ em_setup_copper_link(struct em_hw *hw) /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = em_copper_link_preconfig(hw); - if (ret_val) + if(ret_val) return ret_val; switch (hw->mac_type) { case em_80003es2lan: - /* Kumeran registers are written-only */ - reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; + ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, + ®_data); + if (ret_val) + return ret_val; reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); @@ -1876,37 +1767,32 @@ em_setup_copper_link(struct em_hw *hw) } if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) { ret_val = em_copper_link_igp_setup(hw); - if (ret_val) + if(ret_val) return ret_val; } else if (hw->phy_type == em_phy_m88) { ret_val = em_copper_link_mgp_setup(hw); - if (ret_val) + if(ret_val) return ret_val; } else if (hw->phy_type == em_phy_gg82563) { ret_val = em_copper_link_ggp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == em_phy_ife) { - ret_val = em_copper_link_ife_setup(hw); - if (ret_val) + if(ret_val) return ret_val; } - if (hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ + if(hw->autoneg) { + /* Setup autoneg and flow control advertisement + * and perform autonegotiation */ ret_val = em_copper_link_autoneg(hw); - if (ret_val) - return ret_val; + if(ret_val) + return ret_val; } else { /* PHY will be set to 10H, 10F, 100H,or 100F * depending on value from forced_speed_duplex. */ DEBUGOUT("Forcing speed and duplex\n"); ret_val = em_phy_force_speed_duplex(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Forcing Speed and Duplex\n"); return ret_val; } @@ -1915,20 +1801,20 @@ em_setup_copper_link(struct em_hw *hw) /* Check link status. Wait up to 100 microseconds for link to become * valid. */ - for (i = 0; i < 10; i++) { + for(i = 0; i < 10; i++) { ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if (phy_data & MII_SR_LINK_STATUS) { + if(phy_data & MII_SR_LINK_STATUS) { /* Config the MAC and PHY after link is up */ ret_val = em_copper_link_postconfig(hw); - if (ret_val) + if(ret_val) return ret_val; - + DEBUGOUT("Valid link established!!!\n"); return E1000_SUCCESS; } @@ -1965,23 +1851,26 @@ em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; E1000_WRITE_REG(hw, TIPG, tipg); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); if (ret_val) return ret_val; + /* Enable pass false carrier when in half duplex mode. */ if (duplex == HALF_DUPLEX) reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + reg_data); + return ret_val; } static int32_t -em_configure_kmrn_for_1000(struct em_hw *hw) +em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex) { int32_t ret_val = E1000_SUCCESS; uint16_t reg_data; @@ -2001,14 +1890,18 @@ em_configure_kmrn_for_1000(struct em_hw *hw) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; E1000_WRITE_REG(hw, TIPG, tipg); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); if (ret_val) return ret_val; + /* Disable Pass False Carrier on the PHY */ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + reg_data); + return ret_val; } @@ -2028,16 +1921,13 @@ em_phy_setup_autoneg(struct em_hw *hw) /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) + if(ret_val) return ret_val; - if (hw->phy_type != em_phy_ife) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } else - mii_1000t_ctrl_reg=0; + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if(ret_val) + return ret_val; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for @@ -2056,41 +1946,38 @@ em_phy_setup_autoneg(struct em_hw *hw) DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + if(hw->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + if(hw->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + if(hw->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + if(hw->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - if (hw->phy_type == em_phy_ife) { - DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); - } } /* Check for a software override of the flow control settings, and @@ -2147,16 +2034,14 @@ em_phy_setup_autoneg(struct em_hw *hw) } ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) + if(ret_val) return ret_val; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - if (hw->phy_type != em_phy_ife) { - ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if(ret_val) + return ret_val; return E1000_SUCCESS; } @@ -2195,7 +2080,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) /* Read the MII Control Register. */ ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if (ret_val) + if(ret_val) return ret_val; /* We need to disable autoneg in order to force link and duplex. */ @@ -2203,8 +2088,8 @@ em_phy_force_speed_duplex(struct em_hw *hw) mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; /* Are we forcing Full or Half Duplex? */ - if (hw->forced_speed_duplex == em_100_full || - hw->forced_speed_duplex == em_10_full) { + if(hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_10_full) { /* We want to force full duplex so we SET the full duplex bits in the * Device and MII Control Registers. */ @@ -2221,7 +2106,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) } /* Are we forcing 100Mbps??? */ - if (hw->forced_speed_duplex == em_100_full || + if(hw->forced_speed_duplex == em_100_full || hw->forced_speed_duplex == em_100_half) { /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ ctrl |= E1000_CTRL_SPD_100; @@ -2244,7 +2129,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) if ((hw->phy_type == em_phy_m88) || (hw->phy_type == em_phy_gg82563)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI @@ -2252,44 +2137,32 @@ em_phy_force_speed_duplex(struct em_hw *hw) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); /* Need to reset the PHY or these changes will be ignored */ mii_ctrl_reg |= MII_CR_RESET; - /* Disable MDI-X support for 10/100 */ - } else if (hw->phy_type == em_phy_ife) { - ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IFE_PMC_AUTO_MDIX; - phy_data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); - if (ret_val) - return ret_val; } else { /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed or duplex are forced. */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; } /* Write back the modified PHY MII control register. */ ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if (ret_val) + if(ret_val) return ret_val; usec_delay(1); @@ -2301,50 +2174,50 @@ em_phy_force_speed_duplex(struct em_hw *hw) * only if the user has set wait_autoneg_complete to 1, which is * the default. */ - if (hw->wait_autoneg_complete) { + if(hw->wait_autoneg_complete) { /* We will wait for autoneg to complete. */ DEBUGOUT("Waiting for forced speed/duplex link.\n"); mii_status_reg = 0; /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { + for(i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; - if (mii_status_reg & MII_SR_LINK_STATUS) break; + if(mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); } - if ((i == 0) && + if((i == 0) && ((hw->phy_type == em_phy_m88) || (hw->phy_type == em_phy_gg82563))) { /* We didn't get link. Reset the DSP and wait again for link. */ ret_val = em_phy_reset_dsp(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error Resetting PHY DSP\n"); return ret_val; } } /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - if (mii_status_reg & MII_SR_LINK_STATUS) break; + for(i = PHY_FORCE_TIME; i > 0; i--) { + if(mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; } } @@ -2355,31 +2228,32 @@ em_phy_force_speed_duplex(struct em_hw *hw) * defaults back to a 2.5MHz clock when the PHY is reset. */ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* In addition, because of the s/w reset above, we need to enable CRS on * TX. This must be set for both full and half duplex operation. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; - if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { + if((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { ret_val = em_polarity_reversal_workaround(hw); - if (ret_val) + if(ret_val) return ret_val; } } else if (hw->phy_type == em_phy_gg82563) { @@ -2454,7 +2328,7 @@ em_config_mac_to_phy(struct em_hw *hw) DEBUGFUNC("em_config_mac_to_phy"); - /* 82544 or newer MAC, Auto Speed Detection takes care of + /* 82544 or newer MAC, Auto Speed Detection takes care of * MAC speed/duplex configuration.*/ if (hw->mac_type >= em_82544) return E1000_SUCCESS; @@ -2470,12 +2344,12 @@ em_config_mac_to_phy(struct em_hw *hw) * registers depending on negotiated values. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if (phy_data & M88E1000_PSSR_DPLX) + if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; - else + else ctrl &= ~E1000_CTRL_FD; em_config_collision_dist(hw); @@ -2483,9 +2357,9 @@ em_config_mac_to_phy(struct em_hw *hw) /* Set up speed in the Device Control register depending on * negotiated values. */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; /* Write the configured values back to the Device Control Reg. */ @@ -2553,7 +2427,7 @@ em_force_mac_fc(struct em_hw *hw) } /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == em_82542_rev2_0) + if(hw->mac_type == em_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -2587,12 +2461,11 @@ em_config_fc_after_link_up(struct em_hw *hw) * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ - if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_internal_serdes) && - (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { + if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { ret_val = em_force_mac_fc(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2603,19 +2476,19 @@ em_config_fc_after_link_up(struct em_hw *hw) * has completed, and if so, how the PHY and link partner has * flow control configured. */ - if ((hw->media_type == em_media_type_copper) && hw->autoneg) { + if((hw->media_type == em_media_type_copper) && hw->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; - if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page Ability @@ -2624,11 +2497,11 @@ em_config_fc_after_link_up(struct em_hw *hw) */ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); - if (ret_val) + if(ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register @@ -2665,15 +2538,15 @@ em_config_fc_after_link_up(struct em_hw *hw) * 1 | DC | 1 | DC | em_fc_full * */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ - if (hw->original_fc == em_fc_full) { + if(hw->original_fc == em_fc_full) { hw->fc = em_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { @@ -2689,10 +2562,10 @@ em_config_fc_after_link_up(struct em_hw *hw) * 0 | 1 | 1 | 1 | em_fc_tx_pause * */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = em_fc_tx_pause; DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); } @@ -2704,10 +2577,10 @@ em_config_fc_after_link_up(struct em_hw *hw) * 1 | 1 | 0 | 1 | em_fc_rx_pause * */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = em_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); } @@ -2731,9 +2604,9 @@ em_config_fc_after_link_up(struct em_hw *hw) * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ - else if ((hw->original_fc == em_fc_none || - hw->original_fc == em_fc_tx_pause) || - hw->fc_strict_ieee) { + else if((hw->original_fc == em_fc_none || + hw->original_fc == em_fc_tx_pause) || + hw->fc_strict_ieee) { hw->fc = em_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } else { @@ -2746,19 +2619,19 @@ em_config_fc_after_link_up(struct em_hw *hw) * enabled per IEEE 802.3 spec. */ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if (duplex == HALF_DUPLEX) + if(duplex == HALF_DUPLEX) hw->fc = em_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = em_force_mac_fc(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2797,13 +2670,13 @@ em_check_for_link(struct em_hw *hw) * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. */ - if ((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) { + if((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { rxcw = E1000_READ_REG(hw, RXCW); - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; - if (status & E1000_STATUS_LU) + if(status & E1000_STATUS_LU) hw->get_link_status = FALSE; } } @@ -2814,20 +2687,20 @@ em_check_for_link(struct em_hw *hw) * receive a Link Status Change interrupt or we have Rx Sequence * Errors. */ - if ((hw->media_type == em_media_type_copper) && hw->get_link_status) { + if((hw->media_type == em_media_type_copper) && hw->get_link_status) { /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. * Read the register twice since the link bit is sticky. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if (phy_data & MII_SR_LINK_STATUS) { + if(phy_data & MII_SR_LINK_STATUS) { hw->get_link_status = FALSE; /* Check if there was DownShift, must be checked immediately after * link-up */ @@ -2841,10 +2714,10 @@ em_check_for_link(struct em_hw *hw) * happen due to the execution of this workaround. */ - if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { + if((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { E1000_WRITE_REG(hw, IMC, 0xffffffff); ret_val = em_polarity_reversal_workaround(hw); icr = E1000_READ_REG(hw, ICR); @@ -2861,7 +2734,7 @@ em_check_for_link(struct em_hw *hw) /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ - if (!hw->autoneg) return -E1000_ERR_CONFIG; + if(!hw->autoneg) return -E1000_ERR_CONFIG; /* optimize the dsp settings for the igp phy */ em_config_dsp_after_link_change(hw, TRUE); @@ -2874,11 +2747,11 @@ em_check_for_link(struct em_hw *hw) * speed/duplex on the MAC to the current PHY speed/duplex * settings. */ - if (hw->mac_type >= em_82544) + if(hw->mac_type >= em_82544) em_config_collision_dist(hw); else { ret_val = em_config_mac_to_phy(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } @@ -2889,7 +2762,7 @@ em_check_for_link(struct em_hw *hw) * have had to re-autoneg with a different link partner. */ ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2901,18 +2774,14 @@ em_check_for_link(struct em_hw *hw) * at gigabit speed, then TBI compatibility is not needed. If we are * at gigabit speed, we turn on TBI compatibility. */ - if (hw->tbi_compatibility_en) { + if(hw->tbi_compatibility_en) { uint16_t speed, duplex; - ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { + em_get_speed_and_duplex(hw, &speed, &duplex); + if(speed != SPEED_1000) { /* If link speed is not set to gigabit speed, we do not need * to enable TBI compatibility. */ - if (hw->tbi_compatibility_on) { + if(hw->tbi_compatibility_on) { /* If we previously were in the mode, turn it off. */ rctl = E1000_READ_REG(hw, RCTL); rctl &= ~E1000_RCTL_SBP; @@ -2925,7 +2794,7 @@ em_check_for_link(struct em_hw *hw) * packets. Some frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ - if (!hw->tbi_compatibility_on) { + if(!hw->tbi_compatibility_on) { hw->tbi_compatibility_on = TRUE; rctl = E1000_READ_REG(hw, RCTL); rctl |= E1000_RCTL_SBP; @@ -2941,12 +2810,12 @@ em_check_for_link(struct em_hw *hw) * auto-negotiation time to complete, in case the cable was just plugged * in. The autoneg_failed flag does this. */ - else if ((((hw->media_type == em_media_type_fiber) && + else if((((hw->media_type == em_media_type_fiber) && ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == em_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (hw->autoneg_failed == 0) { + (hw->media_type == em_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if(hw->autoneg_failed == 0) { hw->autoneg_failed = 1; return 0; } @@ -2962,7 +2831,7 @@ em_check_for_link(struct em_hw *hw) /* Configure Flow Control after forcing link up. */ ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2972,9 +2841,9 @@ em_check_for_link(struct em_hw *hw) * Device Control register in an attempt to auto-negotiate with our link * partner. */ - else if (((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + else if(((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); E1000_WRITE_REG(hw, TXCW, hw->txcw); E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); @@ -2984,12 +2853,12 @@ em_check_for_link(struct em_hw *hw) /* If we force link for non-auto-negotiation switch, check link status * based on MAC synchronization for internal serdes media type. */ - else if ((hw->media_type == em_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + else if((hw->media_type == em_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { /* SYNCH bit and IV bit are sticky. */ usec_delay(10); - if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if (!(rxcw & E1000_RXCW_IV)) { + if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if(!(rxcw & E1000_RXCW_IV)) { hw->serdes_link_down = FALSE; DEBUGOUT("SERDES: Link is up.\n"); } @@ -2998,8 +2867,8 @@ em_check_for_link(struct em_hw *hw) DEBUGOUT("SERDES: Link is down.\n"); } } - if ((hw->media_type == em_media_type_internal_serdes) && - (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + if((hw->media_type == em_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); } return E1000_SUCCESS; @@ -3023,12 +2892,12 @@ em_get_speed_and_duplex(struct em_hw *hw, DEBUGFUNC("em_get_speed_and_duplex"); - if (hw->mac_type >= em_82543) { + if(hw->mac_type >= em_82543) { status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_SPEED_1000) { + if(status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { + } else if(status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { @@ -3036,7 +2905,7 @@ em_get_speed_and_duplex(struct em_hw *hw, DEBUGOUT("10 Mbs, "); } - if (status & E1000_STATUS_FD) { + if(status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { @@ -3053,39 +2922,33 @@ em_get_speed_and_duplex(struct em_hw *hw, * if it is operating at half duplex. Here we set the duplex settings to * match the duplex in the link partner's capabilities. */ - if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { + if(hw->phy_type == em_phy_igp && hw->speed_downgraded) { ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) *duplex = HALF_DUPLEX; else { ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) *duplex = HALF_DUPLEX; } } - if ((hw->mac_type == em_80003es2lan) && + if ((hw->mac_type == em_80003es2lan) && (hw->media_type == em_media_type_copper)) { if (*speed == SPEED_1000) - ret_val = em_configure_kmrn_for_1000(hw); + ret_val = em_configure_kmrn_for_1000(hw, *duplex); else ret_val = em_configure_kmrn_for_10_100(hw, *duplex); if (ret_val) return ret_val; } - if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) { - ret_val = em_kumeran_lock_loss_workaround(hw); - if (ret_val) - return ret_val; - } - return E1000_SUCCESS; } @@ -3105,17 +2968,17 @@ em_wait_autoneg(struct em_hw *hw) DEBUGOUT("Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if (phy_data & MII_SR_AUTONEG_COMPLETE) { + if(phy_data & MII_SR_AUTONEG_COMPLETE) { return E1000_SUCCESS; } msec_delay(100); @@ -3188,16 +3051,14 @@ em_shift_out_mdi_bits(struct em_hw *hw, /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - while (mask) { + while(mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and * then raising and lowering the Management Data Clock. A "0" is * shifted out to the PHY by setting the MDIO bit to "0" and then * raising and lowering the clock. */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; + if(data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); @@ -3248,13 +3109,12 @@ em_shift_in_mdi_bits(struct em_hw *hw) em_raise_mdi_clk(hw, &ctrl); em_lower_mdi_clk(hw, &ctrl); - for (data = 0, i = 0; i < 16; i++) { + for(data = 0, i = 0; i < 16; i++) { data = data << 1; em_raise_mdi_clk(hw, &ctrl); ctrl = E1000_READ_REG(hw, CTRL); /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; + if(ctrl & E1000_CTRL_MDIO) data |= 1; em_lower_mdi_clk(hw, &ctrl); } @@ -3274,13 +3134,10 @@ em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) DEBUGFUNC("em_swfw_sync_acquire"); - if (hw->swfwhw_semaphore_present) - return em_get_software_flag(hw); - if (!hw->swfw_sync_present) return em_get_hw_eeprom_semaphore(hw); - while (timeout) { + while(timeout) { if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; @@ -3316,11 +3173,6 @@ em_swfw_sync_release(struct em_hw *hw, uint16_t mask) DEBUGFUNC("em_swfw_sync_release"); - if (hw->swfwhw_semaphore_present) { - em_release_software_flag(hw); - return; - } - if (!hw->swfw_sync_present) { em_put_hw_eeprom_semaphore(hw); return; @@ -3363,13 +3215,12 @@ em_read_phy_reg(struct em_hw *hw, if (em_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if ((hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || + if((hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if (ret_val) { + if(ret_val) { em_swfw_sync_release(hw, swfw); return ret_val; } @@ -3414,12 +3265,12 @@ em_read_phy_reg_ex(struct em_hw *hw, DEBUGFUNC("em_read_phy_reg_ex"); - if (reg_addr > MAX_PHY_REG_ADDRESS) { + if(reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if (hw->mac_type > em_82543) { + if(hw->mac_type > em_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. @@ -3431,16 +3282,16 @@ em_read_phy_reg_ex(struct em_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { + for(i = 0; i < 64; i++) { usec_delay(50); mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; + if(mdic & E1000_MDIC_READY) break; } - if (!(mdic & E1000_MDIC_READY)) { + if(!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); return -E1000_ERR_PHY; } - if (mdic & E1000_MDIC_ERROR) { + if(mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } @@ -3503,13 +3354,12 @@ em_write_phy_reg(struct em_hw *hw, if (em_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if ((hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || + if((hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if (ret_val) { + if(ret_val) { em_swfw_sync_release(hw, swfw); return ret_val; } @@ -3554,12 +3404,12 @@ em_write_phy_reg_ex(struct em_hw *hw, DEBUGFUNC("em_write_phy_reg_ex"); - if (reg_addr > MAX_PHY_REG_ADDRESS) { + if(reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if (hw->mac_type > em_82543) { + if(hw->mac_type > em_82543) { /* Set up Op-code, Phy Address, register address, and data intended * for the PHY register in the MDI Control register. The MAC will take * care of interfacing with the PHY to send the desired data. @@ -3572,12 +3422,12 @@ em_write_phy_reg_ex(struct em_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 641; i++) { + for(i = 0; i < 641; i++) { usec_delay(5); mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; + if(mdic & E1000_MDIC_READY) break; } - if (!(mdic & E1000_MDIC_READY)) { + if(!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); return -E1000_ERR_PHY; } @@ -3689,7 +3539,7 @@ em_phy_hw_reset(struct em_hw *hw) DEBUGOUT("Resetting Phy...\n"); - if (hw->mac_type > em_82543) { + if(hw->mac_type > em_82543) { if ((hw->mac_type == em_80003es2lan) && (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { swfw = E1000_SWFW_PHY1_SM; @@ -3702,24 +3552,24 @@ em_phy_hw_reset(struct em_hw *hw) } /* Read the device control register and assert the E1000_CTRL_PHY_RST * bit. Then, take it out of reset. - * For pre-em_82571 hardware, we delay for 10ms between the assert + * For pre-em_82571 hardware, we delay for 10ms between the assert * and deassert. For em_82571 hardware and later, we instead delay * for 50us between and 10ms after the deassertion. */ ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); - - if (hw->mac_type < em_82571) + + if (hw->mac_type < em_82571) msec_delay(10); else usec_delay(100); - + E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); - + if (hw->mac_type >= em_82571) - msec_delay_irq(10); + msec_delay(10); em_swfw_sync_release(hw, swfw); } else { /* Read the Extended Device Control Register, assert the PHY_RESET_DIR @@ -3737,7 +3587,7 @@ em_phy_hw_reset(struct em_hw *hw) } usec_delay(150); - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; @@ -3749,12 +3599,6 @@ em_phy_hw_reset(struct em_hw *hw) ret_val = em_get_phy_cfg_done(hw); em_release_software_semaphore(hw); - if ((hw->mac_type == em_ich8lan) && - (hw->phy_type == em_phy_igp_3)) { - ret_val = em_init_lcd_from_nvm(hw); - if (ret_val) - return ret_val; - } return ret_val; } @@ -3783,142 +3627,31 @@ em_phy_reset(struct em_hw *hw) case em_82541_rev_2: case em_82571: case em_82572: - case em_ich8lan: ret_val = em_phy_hw_reset(hw); - if (ret_val) + if(ret_val) return ret_val; - break; default: ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= MII_CR_RESET; ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) + if(ret_val) return ret_val; usec_delay(1); break; } - if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) + if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) em_phy_init_script(hw); return E1000_SUCCESS; } /****************************************************************************** -* Work-around for 82566 power-down: on D3 entry- -* 1) disable gigabit link -* 2) write VR power-down enable -* 3) read it back -* if successful continue, else issue LCD reset and repeat -* -* hw - struct containing variables accessed by shared code -******************************************************************************/ -void -em_phy_powerdown_workaround(struct em_hw *hw) -{ - int32_t reg; - uint16_t phy_data; - int32_t retry = 0; - - DEBUGFUNC("em_phy_powerdown_workaround"); - - if (hw->phy_type != em_phy_igp_3) - return; - - do { - /* Disable link */ - reg = E1000_READ_REG(hw, PHY_CTRL); - E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - - /* Write VR power-down enable */ - em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); - em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | - IGP3_VR_CTRL_MODE_SHUT); - - /* Read it back and test */ - em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); - if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) - break; - - /* Issue PHY reset and repeat at most one more time */ - reg = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); - retry++; - } while (retry); - - return; - -} - -/****************************************************************************** -* Work-around for 82566 Kumeran PCS lock loss: -* On link status change (i.e. PCI reset, speed change) and link is up and -* speed is gigabit- -* 0) if workaround is optionally disabled do nothing -* 1) wait 1ms for Kumeran link to come up -* 2) check Kumeran Diagnostic register PCS lock loss bit -* 3) if not set the link is locked (all is good), otherwise... -* 4) reset the PHY -* 5) repeat up to 10 times -* Note: this is only called for IGP3 copper when speed is 1gb. -* -* hw - struct containing variables accessed by shared code -******************************************************************************/ -int32_t -em_kumeran_lock_loss_workaround(struct em_hw *hw) -{ - int32_t ret_val; - int32_t reg; - int32_t cnt; - uint16_t phy_data; - - if (hw->kmrn_lock_loss_workaround_disabled) - return E1000_SUCCESS; - - /* Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouls up link - * stability */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - - if (phy_data & MII_SR_LINK_STATUS) { - for (cnt = 0; cnt < 10; cnt++) { - /* read once to clear */ - ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - /* and again to get new status */ - ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - - /* check for PCS lock */ - if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) - return E1000_SUCCESS; - - /* Issue PHY reset */ - em_phy_hw_reset(hw); - msec_delay_irq(5); - } - /* Disable GigE link negotiation */ - reg = E1000_READ_REG(hw, PHY_CTRL); - E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - - /* unable to acquire PCS lock */ - return E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code @@ -3935,8 +3668,8 @@ em_detect_gig_phy(struct em_hw *hw) /* The 82571 firmware may still be configuring the PHY. In this * case, we cannot access the PHY until the configuration is done. So * we explicitly set the PHY values. */ - if (hw->mac_type == em_82571 || - hw->mac_type == em_82572) { + if(hw->mac_type == em_82571 || + hw->mac_type == em_82572) { hw->phy_id = IGP01E1000_I_PHY_ID; hw->phy_type = em_phy_igp_2; return E1000_SUCCESS; @@ -3953,50 +3686,44 @@ em_detect_gig_phy(struct em_hw *hw) /* Read the PHY ID Registers to identify which PHY is onboard. */ ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) + if(ret_val) return ret_val; hw->phy_id = (uint32_t) (phy_id_high << 16); usec_delay(20); ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) + if(ret_val) return ret_val; hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; break; case em_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; break; case em_82540: case em_82545: case em_82545_rev_3: case em_82546: case em_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; break; case em_82541: case em_82541_rev_2: case em_82547: case em_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; + if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; break; case em_82573: - if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; + if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; break; case em_80003es2lan: if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; break; - case em_ich8lan: - if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; - break; default: DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; @@ -4025,14 +3752,14 @@ em_phy_reset_dsp(struct em_hw *hw) do { if (hw->phy_type != em_phy_gg82563) { ret_val = em_write_phy_reg(hw, 29, 0x001d); - if (ret_val) break; + if(ret_val) break; } ret_val = em_write_phy_reg(hw, 30, 0x00c1); - if (ret_val) break; + if(ret_val) break; ret_val = em_write_phy_reg(hw, 30, 0x0000); - if (ret_val) break; + if(ret_val) break; ret_val = E1000_SUCCESS; - } while (0); + } while(0); return ret_val; } @@ -4064,23 +3791,23 @@ em_phy_igp_get_info(struct em_hw *hw, /* Check polarity status */ ret_val = em_check_polarity(hw, &polarity); - if (ret_val) + if(ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> IGP01E1000_PSSR_MDIX_SHIFT; - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Local/Remote Receiver Information are only valid at 1000 Mbps */ ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -4090,19 +3817,19 @@ em_phy_igp_get_info(struct em_hw *hw, /* Get cable length */ ret_val = em_get_cable_length(hw, &min_length, &max_length); - if (ret_val) + if(ret_val) return ret_val; /* Translate to old method */ average = (max_length + min_length) / 2; - if (average <= em_igp_cable_length_50) + if(average <= em_igp_cable_length_50) phy_info->cable_length = em_cable_length_50; - else if (average <= em_igp_cable_length_80) + else if(average <= em_igp_cable_length_80) phy_info->cable_length = em_cable_length_50_80; - else if (average <= em_igp_cable_length_110) + else if(average <= em_igp_cable_length_110) phy_info->cable_length = em_cable_length_80_110; - else if (average <= em_igp_cable_length_140) + else if(average <= em_igp_cable_length_140) phy_info->cable_length = em_cable_length_110_140; else phy_info->cable_length = em_cable_length_140; @@ -4112,53 +3839,6 @@ em_phy_igp_get_info(struct em_hw *hw, } /****************************************************************************** -* Get PHY information from various PHY registers for ife PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ -int32_t -em_phy_ife_get_info(struct em_hw *hw, - struct em_phy_info *phy_info) -{ - int32_t ret_val; - uint16_t phy_data, polarity; - - DEBUGFUNC("em_phy_ife_get_info"); - - phy_info->downshift = (em_downshift)hw->speed_downgraded; - phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal; - - ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); - if (ret_val) - return ret_val; - phy_info->polarity_correction = - (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> - IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; - - if (phy_info->polarity_correction == em_polarity_reversal_enabled) { - ret_val = em_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - } else { - /* Polarity is forced. */ - polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> - IFE_PSC_FORCE_POLARITY_SHIFT; - } - phy_info->cable_polarity = polarity; - - ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = - (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> - IFE_PMC_MDIX_MODE_SHIFT; - - return E1000_SUCCESS; -} - -/****************************************************************************** * Get PHY information from various PHY registers fot m88 PHY only. * * hw - Struct containing variables accessed by shared code @@ -4178,7 +3858,7 @@ em_phy_m88_get_info(struct em_hw *hw, phy_info->downshift = (em_downshift)hw->speed_downgraded; ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_info->extended_10bt_distance = @@ -4190,12 +3870,12 @@ em_phy_m88_get_info(struct em_hw *hw, /* Check polarity status */ ret_val = em_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; + if(ret_val) + return ret_val; phy_info->cable_polarity = polarity; ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> @@ -4218,7 +3898,7 @@ em_phy_m88_get_info(struct em_hw *hw, } ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -4255,30 +3935,27 @@ em_phy_get_info(struct em_hw *hw, phy_info->local_rx = em_1000t_rx_status_undefined; phy_info->remote_rx = em_1000t_rx_status_undefined; - if (hw->media_type != em_media_type_copper) { + if(hw->media_type != em_media_type_copper) { DEBUGOUT("PHY info is only valid for copper media\n"); return -E1000_ERR_CONFIG; } ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { DEBUGOUT("PHY info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } - if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || + if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) return em_phy_igp_get_info(hw, phy_info); - else if (hw->phy_type == em_phy_ife) - return em_phy_ife_get_info(hw, phy_info); else return em_phy_m88_get_info(hw, phy_info); } @@ -4288,7 +3965,7 @@ em_validate_mdi_setting(struct em_hw *hw) { DEBUGFUNC("em_validate_mdi_settings"); - if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { DEBUGOUT("Invalid MDI setting detected\n"); hw->mdix = 1; return -E1000_ERR_CONFIG; @@ -4335,7 +4012,7 @@ em_init_eeprom_params(struct em_hw *hw) eeprom->type = em_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { + if(eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { @@ -4403,7 +4080,7 @@ em_init_eeprom_params(struct em_hw *hw) } eeprom->use_eerd = TRUE; eeprom->use_eewr = TRUE; - if (em_is_onboard_nvm_eeprom(hw) == FALSE) { + if(em_is_onboard_nvm_eeprom(hw) == FALSE) { eeprom->type = em_eeprom_flash; eeprom->word_size = 2048; @@ -4427,35 +4104,6 @@ em_init_eeprom_params(struct em_hw *hw) eeprom->use_eerd = TRUE; eeprom->use_eewr = FALSE; break; - case em_ich8lan: - { - int32_t i = 0; - uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); - - eeprom->type = em_eeprom_ich8; - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - eeprom->word_size = E1000_SHADOW_RAM_WORDS; - - /* Zero the shadow RAM structure. But don't load it from NVM - * so as to save time for driver init */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - - hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * - ICH8_FLASH_SECTOR_SIZE; - - hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; - hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); - hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; - hw->flash_bank_size /= 2 * sizeof(uint16_t); - - break; - } default: break; } @@ -4464,17 +4112,17 @@ em_init_eeprom_params(struct em_hw *hw) /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to * 32KB (incremented by powers of 2). */ - if (hw->mac_type <= em_82547_rev_2) { + if(hw->mac_type <= em_82547_rev_2) { /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if (ret_val) + if(ret_val) return ret_val; eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier hardware, so we * bump eeprom_size up one to ensure that "1" (which maps to 256B) * is never the result used in the shifting logic below. */ - if (eeprom_size) + if(eeprom_size) eeprom_size++; } else { eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> @@ -4559,7 +4207,7 @@ em_shift_out_ee_bits(struct em_hw *hw, */ eecd &= ~E1000_EECD_DI; - if (data & mask) + if(data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); @@ -4572,7 +4220,7 @@ em_shift_out_ee_bits(struct em_hw *hw, mask = mask >> 1; - } while (mask); + } while(mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; @@ -4604,14 +4252,14 @@ em_shift_in_ee_bits(struct em_hw *hw, eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; - for (i = 0; i < count; i++) { + for(i = 0; i < count; i++) { data = data << 1; em_raise_ee_clk(hw, &eecd); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) + if(eecd & E1000_EECD_DO) data |= 1; em_lower_ee_clk(hw, &eecd); @@ -4642,17 +4290,17 @@ em_acquire_eeprom(struct em_hw *hw) if (hw->mac_type != em_82573) { /* Request EEPROM Access */ - if (hw->mac_type > em_82544) { + if(hw->mac_type > em_82544) { eecd |= E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); eecd = E1000_READ_REG(hw, EECD); - while ((!(eecd & E1000_EECD_GNT)) && + while((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; usec_delay(5); eecd = E1000_READ_REG(hw, EECD); } - if (!(eecd & E1000_EECD_GNT)) { + if(!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); DEBUGOUT("Could not acquire EEPROM grant\n"); @@ -4695,7 +4343,7 @@ em_standby_eeprom(struct em_hw *hw) eecd = E1000_READ_REG(hw, EECD); - if (eeprom->type == em_eeprom_microwire) { + if(eeprom->type == em_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); @@ -4718,7 +4366,7 @@ em_standby_eeprom(struct em_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(eeprom->delay_usec); - } else if (eeprom->type == em_eeprom_spi) { + } else if(eeprom->type == em_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); @@ -4752,7 +4400,7 @@ em_release_eeprom(struct em_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); usec_delay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == em_eeprom_microwire) { + } else if(hw->eeprom.type == em_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ @@ -4774,7 +4422,7 @@ em_release_eeprom(struct em_hw *hw) } /* Stop requesting EEPROM access */ - if (hw->mac_type > em_82544) { + if(hw->mac_type > em_82544) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); } @@ -4812,12 +4460,12 @@ em_spi_eeprom_ready(struct em_hw *hw) retry_count += 5; em_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); + } while(retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { + if(retry_count >= EEPROM_MAX_RETRY_SPI) { DEBUGOUT("SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } @@ -4848,7 +4496,7 @@ em_read_eeprom(struct em_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; @@ -4856,7 +4504,7 @@ em_read_eeprom(struct em_hw *hw, /* FLASH reads without acquiring the semaphore are safe */ if (em_is_onboard_nvm_eeprom(hw) == TRUE && - hw->eeprom.use_eerd == FALSE) { + hw->eeprom.use_eerd == FALSE) { switch (hw->mac_type) { case em_80003es2lan: break; @@ -4876,14 +4524,11 @@ em_read_eeprom(struct em_hw *hw, return ret_val; } - if (eeprom->type == em_eeprom_ich8) - return em_read_eeprom_ich8(hw, offset, words, data); - - if (eeprom->type == em_eeprom_spi) { + if(eeprom->type == em_eeprom_spi) { uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - if (em_spi_eeprom_ready(hw)) { + if(em_spi_eeprom_ready(hw)) { em_release_eeprom(hw); return -E1000_ERR_EEPROM; } @@ -4891,7 +4536,7 @@ em_read_eeprom(struct em_hw *hw, em_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) + if((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ @@ -4907,7 +4552,7 @@ em_read_eeprom(struct em_hw *hw, word_in = em_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } - } else if (eeprom->type == em_eeprom_microwire) { + } else if(eeprom->type == em_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, @@ -4951,14 +4596,14 @@ em_read_eeprom_eerd(struct em_hw *hw, E1000_WRITE_REG(hw, EERD, eerd); error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - - if (error) { + + if(error) { break; } data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); - + } - + return error; } @@ -4984,24 +4629,24 @@ em_write_eeprom_eewr(struct em_hw *hw, return -E1000_ERR_SWFW_SYNC; for (i = 0; i < words; i++) { - register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | - ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | + register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | + ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | E1000_EEPROM_RW_REG_START; error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if (error) { + if(error) { break; - } + } E1000_WRITE_REG(hw, EEWR, register_value); - + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - - if (error) { + + if(error) { break; - } + } } - + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); return error; } @@ -5018,13 +4663,13 @@ em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) uint32_t i, reg = 0; int32_t done = E1000_ERR_EEPROM; - for (i = 0; i < attempts; i++) { - if (eerd == E1000_EEPROM_POLL_READ) + for(i = 0; i < attempts; i++) { + if(eerd == E1000_EEPROM_POLL_READ) reg = E1000_READ_REG(hw, EERD); - else + else reg = E1000_READ_REG(hw, EEWR); - if (reg & E1000_EEPROM_RW_REG_DONE) { + if(reg & E1000_EEPROM_RW_REG_DONE) { done = E1000_SUCCESS; break; } @@ -5046,17 +4691,14 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw) DEBUGFUNC("em_is_onboard_nvm_eeprom"); - if (hw->mac_type == em_ich8lan) - return FALSE; - - if (hw->mac_type == em_82573) { + if(hw->mac_type == em_82573) { eecd = E1000_READ_REG(hw, EECD); /* Isolate bits 15 & 16 */ eecd = ((eecd >> 15) & 0x03); /* If both bits are set, device is Flash type */ - if (eecd == 0x03) { + if(eecd == 0x03) { return FALSE; } } @@ -5099,29 +4741,15 @@ em_validate_eeprom_checksum(struct em_hw *hw) } } - if (hw->mac_type == em_ich8lan) { - /* Drivers must allocate the shadow ram structure for the - * EEPROM checksum to be updated. Otherwise, this bit as well - * as the checksum must both be set correctly for this - * validation to pass. - */ - em_read_eeprom(hw, 0x19, 1, &eeprom_data); - if ((eeprom_data & 0x40) == 0) { - eeprom_data |= 0x40; - em_write_eeprom(hw, 0x19, 1, &eeprom_data); - em_update_eeprom_checksum(hw); - } - } - - for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } - if (checksum == (uint16_t) EEPROM_SUM) + if(checksum == (uint16_t) EEPROM_SUM) return E1000_SUCCESS; else { DEBUGOUT("EEPROM Checksum Invalid\n"); @@ -5140,33 +4768,24 @@ em_validate_eeprom_checksum(struct em_hw *hw) int32_t em_update_eeprom_checksum(struct em_hw *hw) { - uint32_t ctrl_ext; uint16_t checksum = 0; uint16_t i, eeprom_data; DEBUGFUNC("em_update_eeprom_checksum"); - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } checksum = (uint16_t) EEPROM_SUM - checksum; - if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { DEBUGOUT("EEPROM Write Error\n"); return -E1000_ERR_EEPROM; } else if (hw->eeprom.type == em_eeprom_flash) { em_commit_shadow_ram(hw); - } else if (hw->eeprom.type == em_eeprom_ich8) { - em_commit_shadow_ram(hw); - /* Reload the EEPROM, or else modifications will not appear - * until after next adapter reset. */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - msec_delay(10); } return E1000_SUCCESS; } @@ -5196,24 +4815,21 @@ em_write_eeprom(struct em_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; } /* 82573 writes only through eewr */ - if (eeprom->use_eewr == TRUE) + if(eeprom->use_eewr == TRUE) return em_write_eeprom_eewr(hw, offset, words, data); - if (eeprom->type == em_eeprom_ich8) - return em_write_eeprom_ich8(hw, offset, words, data); - /* Prepare the EEPROM for writing */ if (em_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; - if (eeprom->type == em_eeprom_microwire) { + if(eeprom->type == em_eeprom_microwire) { status = em_write_eeprom_microwire(hw, offset, words, data); } else { status = em_write_eeprom_spi(hw, offset, words, data); @@ -5249,7 +4865,7 @@ em_write_eeprom_spi(struct em_hw *hw, while (widx < words) { uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; - if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; em_standby_eeprom(hw); @@ -5260,7 +4876,7 @@ em_write_eeprom_spi(struct em_hw *hw, em_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) + if((eeprom->address_bits == 8) && (offset >= 128)) write_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ @@ -5282,7 +4898,7 @@ em_write_eeprom_spi(struct em_hw *hw, * operation, while the smaller eeproms are capable of an 8-byte * PAGE WRITE operation. Break the inner loop to pass new address */ - if ((((offset + widx)*2) % eeprom->page_size) == 0) { + if((((offset + widx)*2) % eeprom->page_size) == 0) { em_standby_eeprom(hw); break; } @@ -5348,12 +4964,12 @@ em_write_eeprom_microwire(struct em_hw *hw, * signal that the command has been completed by raising the DO signal. * If DO does not go high in 10 milliseconds, then error out. */ - for (i = 0; i < 200; i++) { + for(i = 0; i < 200; i++) { eecd = E1000_READ_REG(hw, EECD); - if (eecd & E1000_EECD_DO) break; + if(eecd & E1000_EECD_DO) break; usec_delay(50); } - if (i == 200) { + if(i == 200) { DEBUGOUT("EEPROM Write did not complete\n"); return -E1000_ERR_EEPROM; } @@ -5396,17 +5012,11 @@ em_commit_shadow_ram(struct em_hw *hw) uint32_t flop = 0; uint32_t i = 0; int32_t error = E1000_SUCCESS; - uint32_t old_bank_offset = 0; - uint32_t new_bank_offset = 0; - uint32_t sector_retries = 0; - uint8_t low_byte = 0; - uint8_t high_byte = 0; - uint8_t temp_byte = 0; - boolean_t sector_write_failed = FALSE; + + /* The flop register will be used to determine if flash type is STM */ + flop = E1000_READ_REG(hw, FLOP); if (hw->mac_type == em_82573) { - /* The flop register will be used to determine if flash type is STM */ - flop = E1000_READ_REG(hw, FLOP); for (i=0; i < attempts; i++) { eecd = E1000_READ_REG(hw, EECD); if ((eecd & E1000_EECD_FLUPD) == 0) { @@ -5440,106 +5050,6 @@ em_commit_shadow_ram(struct em_hw *hw) } } - if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) { - /* We're writing to the opposite bank so if we're on bank 1, - * write to bank 0 etc. We also need to erase the segment that - * is going to be written */ - if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { - new_bank_offset = hw->flash_bank_size * 2; - old_bank_offset = 0; - em_erase_ich8_4k_segment(hw, 1); - } else { - old_bank_offset = hw->flash_bank_size * 2; - new_bank_offset = 0; - em_erase_ich8_4k_segment(hw, 0); - } - - do { - sector_write_failed = FALSE; - /* Loop for every byte in the shadow RAM, - * which is in units of words. */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - /* Determine whether to write the value stored - * in the other NVM bank or a modified value stored - * in the shadow RAM */ - if (hw->eeprom_shadow_ram[i].modified == TRUE) { - low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; - em_read_ich8_byte(hw, (i << 1) + old_bank_offset, - &temp_byte); - usec_delay(100); - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, - low_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - high_byte = - (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); - em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, - &temp_byte); - usec_delay(100); - } else { - em_read_ich8_byte(hw, (i << 1) + old_bank_offset, - &low_byte); - usec_delay(100); - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, low_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, - &high_byte); - } - - /* If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. - * This will allow us to write 10b which indicates the - * signature is valid. We want to do this after the write - * has completed so that we don't mark the segment valid - * while the write is still in progress */ - if (i == E1000_ICH8_NVM_SIG_WORD) - high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; - - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset + 1, high_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - - if (sector_write_failed == FALSE) { - /* Clear the now not used entry in the cache */ - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - - /* Don't bother writing the segment valid bits if sector - * programming failed. */ - if (sector_write_failed == FALSE) { - /* Finally validate the new segment by setting bit 15:14 - * to 10b in word 0x13 , this can be done without an - * erase as well since these bits are 11 to start with - * and we need to change bit 14 to 0b */ - em_read_ich8_byte(hw, - E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, - &high_byte); - high_byte &= 0xBF; - error = em_verify_write_ich8_byte(hw, - E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, - high_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - - /* And invalidate the previously valid segment by setting - * its signature word (0x13) high_byte to 0b. This can be - * done without an erase because flash erase sets all bits - * to 1's. We can write 1's to 0's without an erase */ - error = em_verify_write_ich8_byte(hw, - E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, - 0); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - } - } while (++sector_retries < 10 && sector_write_failed == TRUE); - } - return error; } @@ -5559,7 +5069,7 @@ em_read_part_num(struct em_hw *hw, DEBUGFUNC("em_read_part_num"); /* Get word 0 from EEPROM */ - if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5567,7 +5077,7 @@ em_read_part_num(struct em_hw *hw, *part_num = (uint32_t) (eeprom_data << 16); /* Get word 1 from EEPROM */ - if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5591,9 +5101,9 @@ em_read_mac_addr(struct em_hw * hw) DEBUGFUNC("em_read_mac_addr"); - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { offset = i >> 1; - if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5608,12 +5118,12 @@ em_read_mac_addr(struct em_hw * hw) case em_82546_rev_3: case em_82571: case em_80003es2lan: - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) hw->perm_mac_addr[5] ^= 0x01; break; } - for (i = 0; i < NODE_ADDRESS_SIZE; i++) + for(i = 0; i < NODE_ADDRESS_SIZE; i++) hw->mac_addr[i] = hw->perm_mac_addr[i]; return E1000_SUCCESS; } @@ -5647,16 +5157,11 @@ em_init_rx_addrs(struct em_hw *hw) * the other port. */ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) rar_num -= 1; - if (hw->mac_type == em_ich8lan) - rar_num = E1000_RAR_ENTRIES_ICH8LAN; - /* Zero out the other 15 receive addresses. */ DEBUGOUT("Clearing RAR[1-15]\n"); - for (i = 1; i < rar_num; i++) { + for(i = 1; i < rar_num; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(hw); } } @@ -5685,7 +5190,7 @@ em_mc_addr_list_update(struct em_hw *hw, uint32_t i; uint32_t num_rar_entry; uint32_t num_mta_entry; - + DEBUGFUNC("em_mc_addr_list_update"); /* Set the new number of MC addresses that we are being requested to use. */ @@ -5694,33 +5199,26 @@ em_mc_addr_list_update(struct em_hw *hw, /* Clear RAR[1-15] */ DEBUGOUT(" Clearing RAR[1-15]\n"); num_rar_entry = E1000_RAR_ENTRIES; - if (hw->mac_type == em_ich8lan) - num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; /* Reserve a spot for the Locally Administered Address to work around * an 82571 issue in which a reset on one port will reload the MAC on * the other port. */ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) num_rar_entry -= 1; - for (i = rar_used_count; i < num_rar_entry; i++) { + for(i = rar_used_count; i < num_rar_entry; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(hw); } /* Clear the MTA */ DEBUGOUT(" Clearing MTA\n"); num_mta_entry = E1000_NUM_MTA_REGISTERS; - if (hw->mac_type == em_ich8lan) - num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; - for (i = 0; i < num_mta_entry; i++) { + for(i = 0; i < num_mta_entry; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - E1000_WRITE_FLUSH(hw); } /* Add the new addresses */ - for (i = 0; i < mc_addr_count; i++) { + for(i = 0; i < mc_addr_count; i++) { DEBUGOUT(" Adding the multicast addresses:\n"); DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], @@ -5772,46 +5270,24 @@ em_hash_mc_addr(struct em_hw *hw, * LSB MSB */ case 0: - if (hw->mac_type == em_ich8lan) { - /* [47:38] i.e. 0x158 for above example address */ - hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); - } else { - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); break; case 1: - if (hw->mac_type == em_ich8lan) { - /* [46:37] i.e. 0x2B1 for above example address */ - hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); - } else { - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); - } + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); break; case 2: - if (hw->mac_type == em_ich8lan) { - /*[45:36] i.e. 0x163 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } else { - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); break; case 3: - if (hw->mac_type == em_ich8lan) { - /* [43:34] i.e. 0x18D for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } else { - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); - } + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); break; } hash_value &= 0xFFF; - if (hw->mac_type == em_ich8lan) - hash_value &= 0x3FF; return hash_value; } @@ -5839,8 +5315,6 @@ em_mta_set(struct em_hw *hw, * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 5) & 0x7F; - if (hw->mac_type == em_ich8lan) - hash_reg &= 0x1F; hash_bit = hash_value & 0x1F; mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); @@ -5851,15 +5325,12 @@ em_mta_set(struct em_hw *hw, * in the MTA, save off the previous entry before writing and * restore the old value after writing. */ - if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { + if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); - E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); } } @@ -5916,9 +5387,7 @@ em_rar_set(struct em_hw *hw, } E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); - E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); - E1000_WRITE_FLUSH(hw); } /****************************************************************************** @@ -5935,18 +5404,12 @@ em_write_vfta(struct em_hw *hw, { uint32_t temp; - if (hw->mac_type == em_ich8lan) - return; - - if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { + if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); - E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(hw); } } @@ -5963,9 +5426,6 @@ em_clear_vfta(struct em_hw *hw) uint32_t vfta_offset = 0; uint32_t vfta_bit_in_reg = 0; - if (hw->mac_type == em_ich8lan) - return; - if (hw->mac_type == em_82573) { if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying a single VLAN @@ -5985,7 +5445,6 @@ em_clear_vfta(struct em_hw *hw) * manageability unit */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(hw); } } @@ -6001,7 +5460,7 @@ em_id_led_init(struct em_hw * hw) DEBUGFUNC("em_id_led_init"); - if (hw->mac_type < em_82540) { + if(hw->mac_type < em_82540) { /* Nothing to do */ return E1000_SUCCESS; } @@ -6011,24 +5470,15 @@ em_id_led_init(struct em_hw * hw) hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; - if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } - - if ((hw->mac_type == em_82573) && - (eeprom_data == ID_LED_RESERVED_82573)) - eeprom_data = ID_LED_DEFAULT_82573; - else if ((eeprom_data == ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) { - if (hw->mac_type == em_ich8lan) - eeprom_data = ID_LED_DEFAULT_ICH8LAN; - else - eeprom_data = ID_LED_DEFAULT; - } - for (i = 0; i < 4; i++) { + if((eeprom_data== ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; + for(i = 0; i < 4; i++) { temp = (eeprom_data >> (i << 2)) & led_mask; - switch (temp) { + switch(temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: @@ -6045,7 +5495,7 @@ em_id_led_init(struct em_hw * hw) /* Do nothing */ break; } - switch (temp) { + switch(temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: @@ -6079,7 +5529,7 @@ em_setup_led(struct em_hw *hw) DEBUGFUNC("em_setup_led"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -6093,16 +5543,16 @@ em_setup_led(struct em_hw *hw) /* Turn off PHY Smart Power Down (if enabled) */ ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &hw->phy_spd_default); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, (uint16_t)(hw->phy_spd_default & ~IGP01E1000_GMII_SPD)); - if (ret_val) + if(ret_val) return ret_val; - /* FALLTHROUGH */ + /* Fall Through */ default: - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { ledctl = E1000_READ_REG(hw, LEDCTL); /* Save current LEDCTL settings */ hw->ledctl_default = ledctl; @@ -6113,7 +5563,7 @@ em_setup_led(struct em_hw *hw) ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); E1000_WRITE_REG(hw, LEDCTL, ledctl); - } else if (hw->media_type == em_media_type_copper) + } else if(hw->media_type == em_media_type_copper) E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); break; } @@ -6121,45 +5571,6 @@ em_setup_led(struct em_hw *hw) return E1000_SUCCESS; } - -/****************************************************************************** - * Used on 82571 and later Si that has LED blink bits. - * Callers must use their own timer and should have already called - * em_id_led_init() - * Call em_cleanup led() to stop blinking - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -int32_t -em_blink_led_start(struct em_hw *hw) -{ - int16_t i; - uint32_t ledctl_blink = 0; - - DEBUGFUNC("em_id_led_blink_on"); - - if (hw->mac_type < em_82571) { - /* Nothing to do */ - return E1000_SUCCESS; - } - if (hw->media_type == em_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ - ledctl_blink = hw->ledctl_mode2; - for (i=0; i < 4; i++) - if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); - } - - E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); - - return E1000_SUCCESS; -} - /****************************************************************************** * Restores the saved state of the SW controlable LED. * @@ -6172,7 +5583,7 @@ em_cleanup_led(struct em_hw *hw) DEBUGFUNC("em_cleanup_led"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -6186,14 +5597,10 @@ em_cleanup_led(struct em_hw *hw) /* Turn on PHY Smart Power Down (if previously enabled) */ ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, hw->phy_spd_default); - if (ret_val) + if(ret_val) return ret_val; - /* FALLTHROUGH */ + /* Fall Through */ default: - if (hw->phy_type == em_phy_ife) { - em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); - break; - } /* Restore LEDCTL settings */ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); break; @@ -6214,7 +5621,7 @@ em_led_on(struct em_hw *hw) DEBUGFUNC("em_led_on"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -6223,7 +5630,7 @@ em_led_on(struct em_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case em_82544: - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { /* Set SW Defineable Pin 0 to turn on the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6234,14 +5641,11 @@ em_led_on(struct em_hw *hw) } break; default: - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->phy_type == em_phy_ife) { - em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); - } else if (hw->media_type == em_media_type_copper) { + } else if(hw->media_type == em_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); return E1000_SUCCESS; } @@ -6265,7 +5669,7 @@ em_led_off(struct em_hw *hw) DEBUGFUNC("em_led_off"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -6274,7 +5678,7 @@ em_led_off(struct em_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case em_82544: - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn off the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6285,14 +5689,11 @@ em_led_off(struct em_hw *hw) } break; default: - if (hw->media_type == em_media_type_fiber) { + if(hw->media_type == em_media_type_fiber) { /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->phy_type == em_phy_ife) { - em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); - } else if (hw->media_type == em_media_type_copper) { + } else if(hw->media_type == em_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); return E1000_SUCCESS; } @@ -6330,16 +5731,12 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, XOFFRXC); temp = E1000_READ_REG(hw, XOFFTXC); temp = E1000_READ_REG(hw, FCRUC); - - if (hw->mac_type != em_ich8lan) { temp = E1000_READ_REG(hw, PRC64); temp = E1000_READ_REG(hw, PRC127); temp = E1000_READ_REG(hw, PRC255); temp = E1000_READ_REG(hw, PRC511); temp = E1000_READ_REG(hw, PRC1023); temp = E1000_READ_REG(hw, PRC1522); - } - temp = E1000_READ_REG(hw, GPRC); temp = E1000_READ_REG(hw, BPRC); temp = E1000_READ_REG(hw, MPRC); @@ -6359,20 +5756,16 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, TOTH); temp = E1000_READ_REG(hw, TPR); temp = E1000_READ_REG(hw, TPT); - - if (hw->mac_type != em_ich8lan) { temp = E1000_READ_REG(hw, PTC64); temp = E1000_READ_REG(hw, PTC127); temp = E1000_READ_REG(hw, PTC255); temp = E1000_READ_REG(hw, PTC511); temp = E1000_READ_REG(hw, PTC1023); temp = E1000_READ_REG(hw, PTC1522); - } - temp = E1000_READ_REG(hw, MPTC); temp = E1000_READ_REG(hw, BPTC); - if (hw->mac_type < em_82543) return; + if(hw->mac_type < em_82543) return; temp = E1000_READ_REG(hw, ALGNERRC); temp = E1000_READ_REG(hw, RXERRC); @@ -6381,19 +5774,16 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, TSCTC); temp = E1000_READ_REG(hw, TSCTFC); - if (hw->mac_type <= em_82544) return; + if(hw->mac_type <= em_82544) return; temp = E1000_READ_REG(hw, MGTPRC); temp = E1000_READ_REG(hw, MGTPDC); temp = E1000_READ_REG(hw, MGTPTC); - if (hw->mac_type <= em_82547_rev_2) return; + if(hw->mac_type <= em_82547_rev_2) return; temp = E1000_READ_REG(hw, IAC); temp = E1000_READ_REG(hw, ICRXOC); - - if (hw->mac_type == em_ich8lan) return; - temp = E1000_READ_REG(hw, ICRXPTC); temp = E1000_READ_REG(hw, ICRXATC); temp = E1000_READ_REG(hw, ICTXPTC); @@ -6418,8 +5808,8 @@ em_reset_adaptive(struct em_hw *hw) { DEBUGFUNC("em_reset_adaptive"); - if (hw->adaptive_ifs) { - if (!hw->ifs_params_forced) { + if(hw->adaptive_ifs) { + if(!hw->ifs_params_forced) { hw->current_ifs_val = 0; hw->ifs_min_val = IFS_MIN; hw->ifs_max_val = IFS_MAX; @@ -6446,12 +5836,12 @@ em_update_adaptive(struct em_hw *hw) { DEBUGFUNC("em_update_adaptive"); - if (hw->adaptive_ifs) { - if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { - if (hw->tx_packet_delta > MIN_NUM_XMITS) { + if(hw->adaptive_ifs) { + if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { + if(hw->tx_packet_delta > MIN_NUM_XMITS) { hw->in_ifs_mode = TRUE; - if (hw->current_ifs_val < hw->ifs_max_val) { - if (hw->current_ifs_val == 0) + if(hw->current_ifs_val < hw->ifs_max_val) { + if(hw->current_ifs_val == 0) hw->current_ifs_val = hw->ifs_min_val; else hw->current_ifs_val += hw->ifs_step_size; @@ -6459,7 +5849,7 @@ em_update_adaptive(struct em_hw *hw) } } } else { - if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { hw->current_ifs_val = 0; hw->in_ifs_mode = FALSE; E1000_WRITE_REG(hw, AIT, 0); @@ -6506,46 +5896,46 @@ em_tbi_adjust_stats(struct em_hw *hw, * This could be simplified if all environments supported * 64-bit integers. */ - if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) + if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) stats->gorch++; /* Is this a broadcast or multicast? Check broadcast first, * since the test for a multicast frame will test positive on * a broadcast frame. */ - if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) /* Broadcast packet */ stats->bprc++; - else if (*mac_addr & 0x01) + else if(*mac_addr & 0x01) /* Multicast packet */ stats->mprc++; - if (frame_len == hw->max_frame_size) { + if(frame_len == hw->max_frame_size) { /* In this case, the hardware has overcounted the number of * oversize frames. */ - if (stats->roc > 0) + if(stats->roc > 0) stats->roc--; } /* Adjust the bin counters when the extra byte put the frame in the * wrong bin. Remember that the frame_len was adjusted above. */ - if (frame_len == 64) { + if(frame_len == 64) { stats->prc64++; stats->prc127--; - } else if (frame_len == 127) { + } else if(frame_len == 127) { stats->prc127++; stats->prc255--; - } else if (frame_len == 255) { + } else if(frame_len == 255) { stats->prc255++; stats->prc511--; - } else if (frame_len == 511) { + } else if(frame_len == 511) { stats->prc511++; stats->prc1023--; - } else if (frame_len == 1023) { + } else if(frame_len == 1023) { stats->prc1023++; stats->prc1522--; - } else if (frame_len == 1522) { + } else if(frame_len == 1522) { stats->prc1522++; } } @@ -6574,7 +5964,6 @@ em_get_bus_info(struct em_hw *hw) hw->bus_width = em_bus_width_pciex_1; break; case em_82571: - case em_ich8lan: case em_80003es2lan: hw->bus_type = em_bus_type_pci_express; hw->bus_speed = em_bus_speed_2500; @@ -6585,10 +5974,10 @@ em_get_bus_info(struct em_hw *hw) hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? em_bus_type_pcix : em_bus_type_pci; - if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? em_bus_speed_66 : em_bus_speed_120; - } else if (hw->bus_type == em_bus_type_pci) { + } else if(hw->bus_type == em_bus_type_pci) { hw->bus_speed = (status & E1000_STATUS_PCI66) ? em_bus_speed_66 : em_bus_speed_33; } else { @@ -6673,6 +6062,8 @@ em_get_cable_length(struct em_hw *hw, { int32_t ret_val; uint16_t agc_value = 0; + uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1; + uint16_t max_agc = 0; uint16_t i, phy_data; uint16_t cable_length; @@ -6681,11 +6072,11 @@ em_get_cable_length(struct em_hw *hw, *min_length = *max_length = 0; /* Use old method for Phy older than IGP */ - if (hw->phy_type == em_phy_m88) { + if(hw->phy_type == em_phy_m88) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; @@ -6744,38 +6135,36 @@ em_get_cable_length(struct em_hw *hw, return -E1000_ERR_PHY; break; } - } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ - uint16_t cur_agc_value; - uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */ uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D}; /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) + if(ret_val) return ret_val; - cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - /* Value bound check. */ - if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc_value == 0)) + /* Array bound check. */ + if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc == 0)) return -E1000_ERR_PHY; - agc_value += cur_agc_value; + agc_value += cur_agc; /* Update minimal AGC value. */ - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; + if(min_agc > cur_agc) + min_agc = cur_agc; } /* Remove the minimal AGC result for length < 50m */ - if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { - agc_value -= min_agc_value; + if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { + agc_value -= min_agc; /* Get the average length of the remaining 3 channels */ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); @@ -6791,10 +6180,7 @@ em_get_cable_length(struct em_hw *hw, IGP01E1000_AGC_RANGE) : 0; *max_length = em_igp_cable_length_table[agc_value] + IGP01E1000_AGC_RANGE; - } else if (hw->phy_type == em_phy_igp_2 || - hw->phy_type == em_phy_igp_3) { - uint16_t cur_agc_index, max_agc_index = 0; - uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; + } else if (hw->phy_type == em_phy_igp_2) { uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, @@ -6806,30 +6192,22 @@ em_get_cable_length(struct em_hw *hw, if (ret_val) return ret_val; - /* Getting bits 15:9, which represent the combination of course and + /* Getting bits 15:9, which represent the combination of course and * fine gain values. The result is a number that can be put into * the lookup table to obtain the approximate cable length. */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; + cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; /* Remove min & max AGC values from calculation. */ - if (em_igp_2_cable_length_table[min_agc_index] > - em_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (em_igp_2_cable_length_table[max_agc_index] < - em_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += em_igp_2_cable_length_table[cur_agc_index]; + if (em_igp_2_cable_length_table[min_agc] > em_igp_2_cable_length_table[cur_agc]) + min_agc = cur_agc; + if (em_igp_2_cable_length_table[max_agc] < em_igp_2_cable_length_table[cur_agc]) + max_agc = cur_agc; + + agc_value += em_igp_2_cable_length_table[cur_agc]; } - agc_value -= (em_igp_2_cable_length_table[min_agc_index] + - em_igp_2_cable_length_table[max_agc_index]); + agc_value -= (em_igp_2_cable_length_table[min_agc] + em_igp_2_cable_length_table[max_agc]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ @@ -6871,28 +6249,27 @@ em_check_polarity(struct em_hw *hw, /* return the Polarity bit in the Status register. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> M88E1000_PSSR_REV_POLARITY_SHIFT; - } else if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || + } else if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) { /* Read the Status register to check the speed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to * find the polarity status */ - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Read the GIG initialization PCS register (0x00B4) */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, &phy_data); - if (ret_val) + if(ret_val) return ret_val; /* Check the polarity bits */ @@ -6902,13 +6279,6 @@ em_check_polarity(struct em_hw *hw, * 100 Mbps this bit is always 0) */ *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; } - } else if (hw->phy_type == em_phy_ife) { - ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, - &phy_data); - if (ret_val) - return ret_val; - *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> - IFE_PESC_POLARITY_REVERSED_SHIFT; } return E1000_SUCCESS; } @@ -6921,7 +6291,7 @@ em_check_polarity(struct em_hw *hw, * 1 - Downshift ocured. * * returns: - E1000_ERR_XXX - * E1000_SUCCESS + * E1000_SUCCESS * * For phy's older then IGP, this function reads the Downshift bit in the Phy * Specific Status register. For IGP phy's, it reads the Downgrade bit in the @@ -6936,12 +6306,11 @@ em_check_downshift(struct em_hw *hw) DEBUGFUNC("em_check_downshift"); - if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || + if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data); - if (ret_val) + if(ret_val) return ret_val; hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; @@ -6949,14 +6318,11 @@ em_check_downshift(struct em_hw *hw) (hw->phy_type == em_phy_gg82563)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> M88E1000_PSSR_DOWNSHIFT_SHIFT; - } else if (hw->phy_type == em_phy_ife) { - /* em_phy_ife supports 10/100 speed only */ - hw->speed_downgraded = FALSE; } return E1000_SUCCESS; @@ -6989,42 +6355,40 @@ em_config_dsp_after_link_change(struct em_hw *hw, DEBUGFUNC("em_config_dsp_after_link_change"); - if (hw->phy_type != em_phy_igp) + if(hw->phy_type != em_phy_igp) return E1000_SUCCESS; - if (link_up) { + if(link_up) { ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { + if(ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if (speed == SPEED_1000) { + if(speed == SPEED_1000) { - ret_val = em_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; + em_get_cable_length(hw, &min_length, &max_length); - if ((hw->dsp_config_state == em_dsp_config_enabled) && + if((hw->dsp_config_state == em_dsp_config_enabled) && min_length >= em_igp_cable_length_50) { - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = em_write_phy_reg(hw, dsp_reg_array[i], phy_data); - if (ret_val) + if(ret_val) return ret_val; } hw->dsp_config_state = em_dsp_config_activated; } - if ((hw->ffe_config_state == em_ffe_config_enabled) && + if((hw->ffe_config_state == em_ffe_config_enabled) && (min_length < em_igp_cable_length_50)) { uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; @@ -7033,70 +6397,70 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* clear previous idle error counts */ ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - for (i = 0; i < ffe_idle_err_timeout; i++) { + for(i = 0; i < ffe_idle_err_timeout; i++) { usec_delay(1000); ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) + if(ret_val) return ret_val; idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { hw->ffe_config_state = em_ffe_config_active; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) + if(ret_val) return ret_val; break; } - if (idle_errs) + if(idle_errs) ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } } } else { - if (hw->dsp_config_state == em_dsp_config_activated) { + if(hw->dsp_config_state == em_dsp_config_activated) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if (ret_val) + if(ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(20); ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) + if(ret_val) return ret_val; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if (ret_val) + if(ret_val) return ret_val; } ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(20); @@ -7104,40 +6468,40 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* Now enable the transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if (ret_val) + if(ret_val) return ret_val; hw->dsp_config_state = em_dsp_config_enabled; } - if (hw->ffe_config_state == em_ffe_config_active) { + if(hw->ffe_config_state == em_ffe_config_active) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if (ret_val) + if(ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(20); ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(20); @@ -7145,7 +6509,7 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* Now enable the transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if (ret_val) + if(ret_val) return ret_val; hw->ffe_config_state = em_ffe_config_enabled; @@ -7170,20 +6534,20 @@ em_set_phy_mode(struct em_hw *hw) DEBUGFUNC("em_set_phy_mode"); - if ((hw->mac_type == em_82545_rev_3) && - (hw->media_type == em_media_type_copper)) { + if((hw->mac_type == em_82545_rev_3) && + (hw->media_type == em_media_type_copper)) { ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if (ret_val) { + if(ret_val) { return ret_val; } - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { + if((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if (ret_val) + if(ret_val) return ret_val; hw->phy_reset_disable = FALSE; @@ -7211,51 +6575,39 @@ int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active) { - uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("em_set_d3_lplu_state"); - if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 - && hw->phy_type != em_phy_igp_3) + if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2) return E1000_SUCCESS; /* During driver activity LPLU should not be used or it will attain link * from the lowest speeds starting from 10Mbps. The capability is used for * Dx transitions and states */ - if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { + if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - } else if (hw->mac_type == em_ich8lan) { - /* MAC writes into PHY register based on the state transition - * and start auto-negotiation. SW driver can overwrite the settings - * in CSR PHY power control E1000_PHY_CTRL register. */ - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) + if(ret_val) return ret_val; } - if (!active) { - if (hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { + if(!active) { + if(hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { phy_data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) + if(ret_val) return ret_val; } else { - if (hw->mac_type == em_ich8lan) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { phy_data &= ~IGP02E1000_PM_D3_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; - } } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during @@ -7265,13 +6617,13 @@ em_set_d3_lplu_state(struct em_hw *hw, if (hw->smart_speed == em_smart_speed_on) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } else if (hw->smart_speed == em_smart_speed_off) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -7282,41 +6634,36 @@ em_set_d3_lplu_state(struct em_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } - } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - if (hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { + if(hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { phy_data |= IGP01E1000_GMII_FLEX_SPD; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) + if(ret_val) return ret_val; } else { - if (hw->mac_type == em_ich8lan) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { phy_data |= IGP02E1000_PM_D3_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; - } } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } @@ -7341,32 +6688,22 @@ int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active) { - uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("em_set_d0_lplu_state"); - if (hw->mac_type <= em_82547_rev_2) + if(hw->mac_type <= em_82547_rev_2) return E1000_SUCCESS; - if (hw->mac_type == em_ich8lan) { - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) + if(ret_val) return ret_val; - } if (!active) { - if (hw->mac_type == em_ich8lan) { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { phy_data &= ~IGP02E1000_PM_D0_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; - } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during * Dx states where the power conservation is most important. During @@ -7375,13 +6712,13 @@ em_set_d0_lplu_state(struct em_hw *hw, if (hw->smart_speed == em_smart_speed_on) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } else if (hw->smart_speed == em_smart_speed_off) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -7392,31 +6729,26 @@ em_set_d0_lplu_state(struct em_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } } else { - - if (hw->mac_type == em_ich8lan) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data |= IGP02E1000_PM_D0_LPLU; + + phy_data |= IGP02E1000_PM_D0_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; - } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) + if(ret_val) return ret_val; } @@ -7437,7 +6769,7 @@ em_set_vco_speed(struct em_hw *hw) DEBUGFUNC("em_set_vco_speed"); - switch (hw->mac_type) { + switch(hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; @@ -7448,39 +6780,39 @@ em_set_vco_speed(struct em_hw *hw) /* Set PHY register 30, page 5, bit 8 to 0 */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) + if(ret_val) return ret_val; /* Set PHY register 30, page 4, bit 11 to 1 */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) + if(ret_val) return ret_val; phy_data |= M88E1000_PHY_VCO_REG_BIT11; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if (ret_val) + if(ret_val) return ret_val; return E1000_SUCCESS; @@ -7496,7 +6828,7 @@ int32_t em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) { uint8_t i; - uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; + uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; length = (length >> 2); @@ -7515,7 +6847,7 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) * and also checks whether the previous command is completed. * It busy waits in case of previous command is not completed. * - * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or + * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or * timeout * - E1000_SUCCESS for success. ****************************************************************************/ @@ -7539,7 +6871,7 @@ em_mng_enable_host_if(struct em_hw * hw) msec_delay_irq(1); } - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { DEBUGOUT("Previous command timeout failed .\n"); return -E1000_ERR_HOST_INTERFACE_COMMAND; } @@ -7559,7 +6891,7 @@ em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer, { uint8_t *tmp; uint8_t *bufptr = buffer; - uint32_t data = 0; + uint32_t data; uint16_t remaining, i, j, prev_bytes; /* sum = only sum of the data and it is not checksum */ @@ -7639,17 +6971,15 @@ em_mng_write_cmd_header(struct em_hw * hw, buffer = (uint8_t *) hdr; i = length; - while (i--) + while(i--) sum += buffer[i]; hdr->checksum = 0 - sum; length >>= 2; /* The device driver writes the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { + for (i = 0; i < length; i++) E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); - E1000_WRITE_FLUSH(hw); - } return E1000_SUCCESS; } @@ -7662,7 +6992,8 @@ em_mng_write_cmd_header(struct em_hw * hw, * returns - E1000_SUCCESS for success. ****************************************************************************/ int32_t -em_mng_write_commit(struct em_hw * hw) +em_mng_write_commit( + struct em_hw * hw) { uint32_t hicr; @@ -7680,18 +7011,15 @@ em_mng_write_commit(struct em_hw * hw) * returns - TRUE when the mode is IAMT or FALSE. ****************************************************************************/ boolean_t -em_check_mng_mode(struct em_hw *hw) +em_check_mng_mode( + struct em_hw *hw) { uint32_t fwsm; fwsm = E1000_READ_REG(hw, FWSM); - if (hw->mac_type == em_ich8lan) { - if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return TRUE; - } else if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + if((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) return TRUE; return FALSE; @@ -7834,31 +7162,31 @@ em_polarity_reversal_workaround(struct em_hw *hw) /* Disable the transmitter on the PHY */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) + if(ret_val) return ret_val; /* This loop will early-out if the NO link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { + for(i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be clear. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; - if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; + if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; msec_delay_irq(100); } @@ -7868,40 +7196,40 @@ em_polarity_reversal_workaround(struct em_hw *hw) /* Now we will re-enable the transmitter on the PHY */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) + if(ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) + if(ret_val) return ret_val; /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { + for(i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) + if(ret_val) return ret_val; - if (mii_status_reg & MII_SR_LINK_STATUS) break; + if(mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay_irq(100); } return E1000_SUCCESS; @@ -7978,15 +7306,15 @@ em_disable_pciex_master(struct em_hw *hw) em_set_pci_express_master_disable(hw); - while (timeout) { - if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + while(timeout) { + if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; else usec_delay(100); timeout--; } - if (!timeout) { + if(!timeout) { DEBUGOUT("Master requests are pending.\n"); return -E1000_ERR_MASTER_REQUESTS_PENDING; } @@ -8019,15 +7347,13 @@ em_get_auto_rd_done(struct em_hw *hw) case em_82572: case em_82573: case em_80003es2lan: - case em_ich8lan: - while (timeout) { - if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) - break; + while(timeout) { + if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; else msec_delay(1); timeout--; } - if (!timeout) { + if(!timeout) { DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); return -E1000_ERR_RESET; } @@ -8062,13 +7388,13 @@ em_get_phy_cfg_done(struct em_hw *hw) switch (hw->mac_type) { default: - msec_delay_irq(10); + msec_delay(10); break; case em_80003es2lan: /* Separate *_CFG_DONE_* bit for each port */ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; - /* FALLTHROUGH */ + /* Fall Through */ case em_82571: case em_82572: while (timeout) { @@ -8108,7 +7434,7 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw) DEBUGFUNC("em_get_hw_eeprom_semaphore"); - if (!hw->eeprom_semaphore_present) + if(!hw->eeprom_semaphore_present) return E1000_SUCCESS; if (hw->mac_type == em_80003es2lan) { @@ -8119,20 +7445,20 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw) /* Get the FW semaphore. */ timeout = hw->eeprom.word_size + 1; - while (timeout) { + while(timeout) { swsm = E1000_READ_REG(hw, SWSM); swsm |= E1000_SWSM_SWESMBI; E1000_WRITE_REG(hw, SWSM, swsm); /* if we managed to set the bit we got the semaphore. */ swsm = E1000_READ_REG(hw, SWSM); - if (swsm & E1000_SWSM_SWESMBI) + if(swsm & E1000_SWSM_SWESMBI) break; usec_delay(50); timeout--; } - if (!timeout) { + if(!timeout) { /* Release semaphores */ em_put_hw_eeprom_semaphore(hw); DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); @@ -8157,7 +7483,7 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw) DEBUGFUNC("em_put_hw_eeprom_semaphore"); - if (!hw->eeprom_semaphore_present) + if(!hw->eeprom_semaphore_present) return; swsm = E1000_READ_REG(hw, SWSM); @@ -8190,16 +7516,16 @@ em_get_software_semaphore(struct em_hw *hw) if (hw->mac_type != em_80003es2lan) return E1000_SUCCESS; - while (timeout) { + while(timeout) { swsm = E1000_READ_REG(hw, SWSM); /* If SMBI bit cleared, it is now set and we hold the semaphore */ - if (!(swsm & E1000_SWSM_SMBI)) + if(!(swsm & E1000_SWSM_SMBI)) break; msec_delay_irq(1); timeout--; } - if (!timeout) { + if(!timeout) { DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_RESET; } @@ -8245,13 +7571,6 @@ int32_t em_check_phy_reset_block(struct em_hw *hw) { uint32_t manc = 0; - uint32_t fwsm = 0; - - if (hw->mac_type == em_ich8lan) { - fwsm = E1000_READ_REG(hw, FWSM); - return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS - : E1000_BLK_PHY_RESET; - } if (hw->mac_type > em_82547_rev_2) manc = E1000_READ_REG(hw, MANC); @@ -8275,854 +7594,11 @@ em_arc_subsystem_valid(struct em_hw *hw) case em_82573: case em_80003es2lan: fwsm = E1000_READ_REG(hw, FWSM); - if ((fwsm & E1000_FWSM_MODE_MASK) != 0) + if((fwsm & E1000_FWSM_MODE_MASK) != 0) return TRUE; break; - case em_ich8lan: - return TRUE; default: break; } return FALSE; } - - -/****************************************************************************** - * Configure PCI-Ex no-snoop - * - * hw - Struct containing variables accessed by shared code. - * no_snoop - Bitmap of no-snoop events. - * - * returns: E1000_SUCCESS - * - *****************************************************************************/ -int32_t -em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) -{ - uint32_t gcr_reg = 0; - - DEBUGFUNC("em_set_pci_ex_no_snoop"); - - if (hw->bus_type == em_bus_type_unknown) - em_get_bus_info(hw); - - if (hw->bus_type != em_bus_type_pci_express) - return E1000_SUCCESS; - - if (no_snoop) { - gcr_reg = E1000_READ_REG(hw, GCR); - gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); - gcr_reg |= no_snoop; - E1000_WRITE_REG(hw, GCR, gcr_reg); - } - if (hw->mac_type == em_ich8lan) { - uint32_t ctrl_ext; - - E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); - - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Get software semaphore FLAG bit (SWFLAG). - * SWFLAG is used to synchronize the access to all shared resource between - * SW, FW and HW. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -int32_t -em_get_software_flag(struct em_hw *hw) -{ - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t extcnf_ctrl; - - DEBUGFUNC("em_get_software_flag"); - - if (hw->mac_type == em_ich8lan) { - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("FW or HW locks the resource too long.\n"); - return -E1000_ERR_CONFIG; - } - } - - return E1000_SUCCESS; -} - -/*************************************************************************** - * - * Release software semaphore FLAG bit (SWFLAG). - * SWFLAG is used to synchronize the access to all shared resource between - * SW, FW and HW. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -void -em_release_software_flag(struct em_hw *hw) -{ - uint32_t extcnf_ctrl; - - DEBUGFUNC("em_release_software_flag"); - - if (hw->mac_type == em_ich8lan) { - extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - } - - return; -} - -/*************************************************************************** - * - * Disable dynamic power down mode in ife PHY. - * It can be used to workaround band-gap problem. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -int32_t -em_ife_disable_dynamic_power_down(struct em_hw *hw) -{ - uint16_t phy_data; - int32_t ret_val = E1000_SUCCESS; - - DEBUGFUNC("em_ife_disable_dynamic_power_down"); - - if (hw->phy_type == em_phy_ife) { - ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; - ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); - } - - return ret_val; -} - -/*************************************************************************** - * - * Enable dynamic power down mode in ife PHY. - * It can be used to workaround band-gap problem. - * - * hw: Struct containing variables accessed by shared code - * - ***************************************************************************/ -int32_t -em_ife_enable_dynamic_power_down(struct em_hw *hw) -{ - uint16_t phy_data; - int32_t ret_val = E1000_SUCCESS; - - DEBUGFUNC("em_ife_enable_dynamic_power_down"); - - if (hw->phy_type == em_phy_ife) { - ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; - ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); - } - - return ret_val; -} - -/****************************************************************************** - * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access - * register. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ -int32_t -em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) -{ - int32_t error = E1000_SUCCESS; - uint32_t flash_bank = 0; - uint32_t act_offset = 0; - uint32_t bank_offset = 0; - uint16_t word = 0; - uint16_t i = 0; - - /* We need to know which is the valid flash bank. In the event - * that we didn't allocate eeprom_shadow_ram, we may not be - * managing flash_bank. So it cannot be trusted and needs - * to be updated with each read. - */ - /* Value of bit 22 corresponds to the flash bank we're on. */ - flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; - - /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ - bank_offset = flash_bank * (hw->flash_bank_size * 2); - - error = em_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - for (i = 0; i < words; i++) { - if (hw->eeprom_shadow_ram != NULL && - hw->eeprom_shadow_ram[offset+i].modified == TRUE) { - data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; - } else { - /* The NVM part needs a byte offset, hence * 2 */ - act_offset = bank_offset + ((offset + i) * 2); - error = em_read_ich8_word(hw, act_offset, &word); - if (error != E1000_SUCCESS) - break; - data[i] = word; - } - } - - em_release_software_flag(hw); - - return error; -} - -/****************************************************************************** - * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access - * register. Actually, writes are written to the shadow ram cache in the hw - * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to - * the NVM, which occurs when the NVM checksum is updated. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to write - * words - number of words to write - * data - words to write to the EEPROM - *****************************************************************************/ -int32_t -em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) -{ - uint32_t i = 0; - int32_t error = E1000_SUCCESS; - - error = em_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - /* A driver can write to the NVM only if it has eeprom_shadow_ram - * allocated. Subsequent reads to the modified words are read from - * this cached structure as well. Writes will only go into this - * cached structure unless it's followed by a call to - * em_update_eeprom_checksum() where it will commit the changes - * and clear the "modified" field. - */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < words; i++) { - if ((offset + i) < E1000_SHADOW_RAM_WORDS) { - hw->eeprom_shadow_ram[offset+i].modified = TRUE; - hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; - } else { - error = -E1000_ERR_EEPROM; - break; - } - } - } else { - /* Drivers have the option to not allocate eeprom_shadow_ram as long - * as they don't perform any NVM writes. An attempt in doing so - * will result in this error. - */ - error = -E1000_ERR_EEPROM; - } - - em_release_software_flag(hw); - - return error; -} - -/****************************************************************************** - * This function does initial flash setup so that a new read/write/erase cycle - * can be started. - * - * hw - The pointer to the hw structure - ****************************************************************************/ -int32_t -em_ich8_cycle_init(struct em_hw *hw) -{ - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - int32_t i = 0; - - DEBUGFUNC("em_ich8_cycle_init"); - - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - - /* May be check the Flash Des Valid bit in Hw status */ - if (hsfsts.hsf_status.fldesvalid == 0) { - DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); - return error; - } - - /* Clear FCERR in Hw status by writing 1 */ - /* Clear DAEL in Hw status by writing a 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); - - /* Either we should have a hardware SPI cycle in progress bit to check - * against, in order to start a new cycle or FDONE bit should be changed - * in the hardware so that it is 1 after harware reset, which can then be - * used as an indication whether a cycle is in progress or has been - * completed .. we should also have some software semaphore mechanism to - * guard FDONE or the cycle in progress bit so that two threads access to - * those bits can be sequentiallized or a way so that 2 threads dont - * start the cycle at the same time */ - - if (hsfsts.hsf_status.flcinprog == 0) { - /* There is no cycle running at present, so we can start a cycle */ - /* Begin by setting Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); - error = E1000_SUCCESS; - } else { - /* otherwise poll for sometime so the current cycle has a chance - * to end before giving up. */ - for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcinprog == 0) { - error = E1000_SUCCESS; - break; - } - usec_delay(1); - } - if (error == E1000_SUCCESS) { - /* Successful in waiting for previous cycle to timeout, - * now set the Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); - } else { - DEBUGOUT("Flash controller busy, cannot get access"); - } - } - return error; -} - -/****************************************************************************** - * This function starts a flash cycle and waits for its completion - * - * hw - The pointer to the hw structure - ****************************************************************************/ -int32_t -em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) -{ - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - uint32_t i = 0; - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone == 1) - break; - usec_delay(1); - i++; - } while (i < timeout); - if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { - error = E1000_SUCCESS; - } - return error; -} - -/****************************************************************************** - * Reads a byte or word from the NVM using the ICH8 flash access registers. - * - * hw - The pointer to the hw structure - * index - The index of the byte or word to read. - * size - Size of data to read, 1=byte 2=word - * data - Pointer to the word to store the value read. - *****************************************************************************/ -int32_t -em_read_ich8_data(struct em_hw *hw, uint32_t index, - uint32_t size, uint16_t* data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("em_read_ich8_data"); - - if (size < 1 || size > 2 || data == 0x0 || - index > ICH8_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - /* TODO: TBD maybe check the index against the size of flash */ - - E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); - - error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); - - /* Check if FCERR is set to 1, if set to 1, clear it and try the whole - * sequence a few more times, else read in (shift in) the Flash Data0, - * the order is least significant byte first msb to lsb */ - if (error == E1000_SUCCESS) { - flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); - if (size == 1) { - *data = (uint8_t)(flash_data & 0x000000FF); - } else if (size == 2) { - *data = (uint16_t)(flash_data & 0x0000FFFF); - } - break; - } else { - /* If we've gotten here, then things are probably completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); - - return error; -} - -/****************************************************************************** - * Writes One /two bytes to the NVM using the ICH8 flash access registers. - * - * hw - The pointer to the hw structure - * index - The index of the byte/word to read. - * size - Size of data to read, 1=byte 2=word - * data - The byte(s) to write to the NVM. - *****************************************************************************/ -int32_t -em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, - uint16_t data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("em_write_ich8_data"); - - if (size < 1 || size > 2 || data > size * 0xff || - index > ICH8_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size -1; - hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); - - if (size == 1) - flash_data = (uint32_t)data & 0x00FF; - else - flash_data = (uint32_t)data; - - E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); - - /* check if FCERR is set to 1 , if set to 1, clear it and try the whole - * sequence a few more times else done */ - error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); - if (error == E1000_SUCCESS) { - break; - } else { - /* If we're here, then things are most likely completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); - - return error; -} - -/****************************************************************************** - * Reads a single byte from the NVM using the ICH8 flash access registers. - * - * hw - pointer to em_hw structure - * index - The index of the byte to read. - * data - Pointer to a byte to store the value read. - *****************************************************************************/ -int32_t -em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data) -{ - int32_t status = E1000_SUCCESS; - uint16_t word = 0; - - status = em_read_ich8_data(hw, index, 1, &word); - if (status == E1000_SUCCESS) { - *data = (uint8_t)word; - } - - return status; -} - -/****************************************************************************** - * Writes a single byte to the NVM using the ICH8 flash access registers. - * Performs verification by reading back the value and then going through - * a retry algorithm before giving up. - * - * hw - pointer to em_hw structure - * index - The index of the byte to write. - * byte - The byte to write to the NVM. - *****************************************************************************/ -int32_t -em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) -{ - int32_t error = E1000_SUCCESS; - int32_t program_retries; - uint8_t temp_byte; - - em_write_ich8_byte(hw, index, byte); - usec_delay(100); - - for (program_retries = 0; program_retries < 100; program_retries++) { - em_read_ich8_byte(hw, index, &temp_byte); - if (temp_byte == byte) - break; - usec_delay(10); - em_write_ich8_byte(hw, index, byte); - usec_delay(100); - } - if (program_retries == 100) - error = E1000_ERR_EEPROM; - - return error; -} - -/****************************************************************************** - * Writes a single byte to the NVM using the ICH8 flash access registers. - * - * hw - pointer to em_hw structure - * index - The index of the byte to read. - * data - The byte to write to the NVM. - *****************************************************************************/ -int32_t -em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) -{ - int32_t status = E1000_SUCCESS; - uint16_t word = (uint16_t)data; - - status = em_write_ich8_data(hw, index, 1, word); - - return status; -} - -/****************************************************************************** - * Reads a word from the NVM using the ICH8 flash access registers. - * - * hw - pointer to em_hw structure - * index - The starting byte index of the word to read. - * data - Pointer to a word to store the value read. - *****************************************************************************/ -int32_t -em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) -{ - int32_t status = E1000_SUCCESS; - status = em_read_ich8_data(hw, index, 2, data); - return status; -} - -/****************************************************************************** - * Writes a word to the NVM using the ICH8 flash access registers. - * - * hw - pointer to em_hw structure - * index - The starting byte index of the word to read. - * data - The word to write to the NVM. - *****************************************************************************/ -int32_t -em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data) -{ - int32_t status = E1000_SUCCESS; - status = em_write_ich8_data(hw, index, 2, data); - return status; -} - -/****************************************************************************** - * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. - * segment N is 4096 * N + flash_reg_addr. - * - * hw - pointer to em_hw structure - * segment - 0 for first segment, 1 for second segment, etc. - *****************************************************************************/ -int32_t -em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - int32_t count = 0; - int32_t error = E1000_ERR_EEPROM; - int32_t iteration, seg_size; - int32_t sector_size; - int32_t j = 0; - int32_t error_flag = 0; - - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - - /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ - /* 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector can be - * calculated as = segment * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as = segment * 4096 - * 10: Error condition - * 11: The Hw sector size is much bigger than the size asked to - * erase...error condition */ - if (hsfsts.hsf_status.berasesz == 0x0) { - /* Hw sector size 256 */ - sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; - iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; - } else if (hsfsts.hsf_status.berasesz == 0x1) { - sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; - iteration = 1; - } else if (hsfsts.hsf_status.berasesz == 0x3) { - sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; - iteration = 1; - } else { - return error; - } - - for (j = 0; j < iteration ; j++) { - do { - count++; - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) { - error_flag = 1; - break; - } - - /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash - * Control */ - hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; - E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of an index within the block into Flash - * Linear address field in Flash Address. This probably needs to - * be calculated here based off the on-chip segment size and the - * software segment size assumed (4K) */ - /* TBD */ - flash_linear_address = segment * sector_size + j * seg_size; - flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; - flash_linear_address += hw->flash_base_addr; - - E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); - - error = em_ich8_flash_cycle(hw, 1000000); - /* Check if FCERR is set to 1. If 1, clear it and try the whole - * sequence a few more times else Done */ - if (error == E1000_SUCCESS) { - break; - } else { - hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* repeat for some time before giving up */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - error_flag = 1; - break; - } - } - } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); - if (error_flag == 1) - break; - } - if (error_flag != 1) - error = E1000_SUCCESS; - return error; -} - -/****************************************************************************** - * - * Reverse duplex setting without breaking the link. - * - * hw: Struct containing variables accessed by shared code - * - *****************************************************************************/ -int32_t -em_duplex_reversal(struct em_hw *hw) -{ - int32_t ret_val; - uint16_t phy_data; - - if (hw->phy_type != em_phy_igp_3) - return E1000_SUCCESS; - - ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data ^= MII_CR_FULL_DUPLEX; - - ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; - ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); - - return ret_val; -} - -int32_t -em_init_lcd_from_nvm_config_region(struct em_hw *hw, - uint32_t cnf_base_addr, uint32_t cnf_size) -{ - uint32_t ret_val = E1000_SUCCESS; - uint16_t word_addr, reg_data, reg_addr; - uint16_t i; - - /* cnf_base_addr is in DWORD */ - word_addr = (uint16_t)(cnf_base_addr << 1); - - /* cnf_size is returned in size of dwords */ - for (i = 0; i < cnf_size; i++) { - ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, ®_data); - if (ret_val) - return ret_val; - - ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); - if (ret_val) - return ret_val; - - ret_val = em_get_software_flag(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - - ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); - - em_release_software_flag(hw); - } - - return ret_val; -} - -int32_t -em_init_lcd_from_nvm(struct em_hw *hw) -{ - uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; - - if (hw->phy_type != em_phy_igp_3) - return E1000_SUCCESS; - - /* Check if SW needs configure the PHY */ - reg_data = E1000_READ_REG(hw, FEXTNVM); - if (!(reg_data & FEXTNVM_SW_CONFIG)) - return E1000_SUCCESS; - - /* Wait for basic configuration completes before proceeding*/ - loop = 0; - do { - reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; - usec_delay(100); - loop++; - } while ((!reg_data) && (loop < 50)); - - /* Clear the Init Done bit for the next init event */ - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~E1000_STATUS_LAN_INIT_DONE; - E1000_WRITE_REG(hw, STATUS, reg_data); - - /* Make sure HW does not configure LCD from PHY extended configuration - before SW configuration */ - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { - reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); - cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; - cnf_size >>= 16; - if (cnf_size) { - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; - /* cnf_base_addr is in DWORD */ - cnf_base_addr >>= 16; - - /* Configure LCD from extended configuration region. */ - ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr, - cnf_size); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} |