summaryrefslogtreecommitdiff
path: root/sys/dev/pci/if_em_hw.c
diff options
context:
space:
mode:
authorBrad Smith <brad@cvs.openbsd.org>2006-07-05 01:15:31 +0000
committerBrad Smith <brad@cvs.openbsd.org>2006-07-05 01:15:31 +0000
commit9772abdd787e434bf5b65d9da0b30b172394b3a6 (patch)
tree234bad276b8f65c089d937c71fb33db4d82505f1 /sys/dev/pci/if_em_hw.c
parentb4f4dbd1a4117f82b85e0839304c69086588d8c1 (diff)
revert back to the older driver as this causes some breakage.
Diffstat (limited to 'sys/dev/pci/if_em_hw.c')
-rw-r--r--sys/dev/pci/if_em_hw.c2840
1 files changed, 658 insertions, 2182 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c
index a782cf30f18..f6b1105d0fa 100644
--- a/sys/dev/pci/if_em_hw.c
+++ b/sys/dev/pci/if_em_hw.c
@@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
-/* $OpenBSD: if_em_hw.c,v 1.19 2006/07/03 20:55:55 brad Exp $ */
+/* $OpenBSD: if_em_hw.c,v 1.20 2006/07/05 01:15:30 brad Exp $ */
/* if_em_hw.c
* Shared functions for accessing and configuring the MAC
@@ -41,7 +41,7 @@ POSSIBILITY OF SUCH DAMAGE.
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
#endif
-
+
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
@@ -64,7 +64,7 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
#endif
#include <uvm/uvm_extern.h>
-
+
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
@@ -107,9 +107,8 @@ static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
static int32_t em_set_phy_mode(struct em_hw *hw);
static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
- uint16_t duplex);
-static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
+static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex);
+static int32_t em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex);
/* IGP cable length table */
static const
@@ -144,10 +143,10 @@ em_set_phy_type(struct em_hw *hw)
{
DEBUGFUNC("em_set_phy_type");
- if (hw->mac_type == em_undefined)
+ if(hw->mac_type == em_undefined)
return -E1000_ERR_PHY_TYPE;
- switch (hw->phy_id) {
+ switch(hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
@@ -155,21 +154,13 @@ em_set_phy_type(struct em_hw *hw)
hw->phy_type = em_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
+ if(hw->mac_type == em_82541 ||
+ hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547 ||
+ hw->mac_type == em_82547_rev_2) {
hw->phy_type = em_phy_igp;
break;
}
- case IGP03E1000_E_PHY_ID:
- hw->phy_type = em_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- hw->phy_type = em_phy_ife;
- break;
case GG82563_E_PHY_ID:
if (hw->mac_type == em_80003es2lan) {
hw->phy_type = em_phy_gg82563;
@@ -198,7 +189,7 @@ em_phy_init_script(struct em_hw *hw)
DEBUGFUNC("em_phy_init_script");
- if (hw->phy_init_script) {
+ if(hw->phy_init_script) {
msec_delay(20);
/* Save off the current value of register 0x2F5B to be restored at
@@ -214,7 +205,7 @@ em_phy_init_script(struct em_hw *hw)
msec_delay(5);
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82541:
case em_82547:
em_write_phy_reg(hw, 0x1F95, 0x0001);
@@ -251,22 +242,22 @@ em_phy_init_script(struct em_hw *hw)
/* Now enable the transmitter */
em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (hw->mac_type == em_82547) {
+ if(hw->mac_type == em_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
@@ -346,8 +337,8 @@ em_set_mac_type(struct em_hw *hw)
hw->mac_type = em_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
+ case E1000_DEV_ID_82541EI_MOBILE:
hw->mac_type = em_82541;
break;
case E1000_DEV_ID_82541ER:
@@ -386,29 +377,16 @@ em_set_mac_type(struct em_hw *hw)
case E1000_DEV_ID_82573V_PM:
hw->mac_type = em_82573;
break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = em_80003es2lan;
break;
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IGP_M:
- hw->mac_type = em_ich8lan;
- break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
- switch (hw->mac_type) {
- case em_ich8lan:
- hw->swfwhw_semaphore_present = TRUE;
- hw->asf_firmware_present = TRUE;
- break;
+ switch(hw->mac_type) {
case em_80003es2lan:
hw->swfw_sync_present = TRUE;
/* FALLTHROUGH */
@@ -442,7 +420,7 @@ em_set_media_type(struct em_hw *hw)
DEBUGFUNC("em_set_media_type");
- if (hw->mac_type != em_82543) {
+ if(hw->mac_type != em_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
@@ -461,7 +439,6 @@ em_set_media_type(struct em_hw *hw)
case em_82542_rev2_1:
hw->media_type = em_media_type_fiber;
break;
- case em_ich8lan:
case em_82573:
/* The STATUS_TBIMODE bit is reserved or reused for the this
* device.
@@ -502,16 +479,16 @@ em_reset_hw(struct em_hw *hw)
DEBUGFUNC("em_reset_hw");
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == em_82542_rev2_0) {
+ if(hw->mac_type == em_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
em_pci_clear_mwi(hw);
}
- if (hw->bus_type == em_bus_type_pci_express) {
+ if(hw->bus_type == em_bus_type_pci_express) {
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
- if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
+ if(em_disable_pciex_master(hw) != E1000_SUCCESS) {
DEBUGOUT("PCI-E Master disable polling has failed.\n");
}
}
@@ -539,14 +516,14 @@ em_reset_hw(struct em_hw *hw)
ctrl = E1000_READ_REG(hw, CTRL);
/* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
msec_delay(5);
}
/* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset. */
- if (hw->mac_type == em_82573) {
+ if(hw->mac_type == em_82573) {
timeout = 10;
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
@@ -556,22 +533,14 @@ em_reset_hw(struct em_hw *hw)
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
else
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
msec_delay(2);
timeout--;
- } while (timeout);
- }
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac_type == em_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
+ } while(timeout);
}
/* Issue a global reset to the MAC. This will reset the chip's
@@ -581,7 +550,7 @@ em_reset_hw(struct em_hw *hw)
*/
DEBUGOUT("Issuing a global reset to MAC\n");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82544:
case em_82540:
case em_82545:
@@ -597,20 +566,6 @@ em_reset_hw(struct em_hw *hw)
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
- case em_ich8lan:
- if (!hw->phy_reset_disable &&
- em_check_phy_reset_block(hw) == E1000_SUCCESS) {
- /* em_ich8lan PHY HW reset requires MAC CORE reset
- * at the same time to make sure the interface between
- * MAC and the external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
- }
-
- em_get_software_flag(hw);
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- msec_delay(5);
- break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
@@ -620,7 +575,7 @@ em_reset_hw(struct em_hw *hw)
* device. Later controllers reload the EEPROM automatically, so just wait
* for reload to complete.
*/
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -652,10 +607,9 @@ em_reset_hw(struct em_hw *hw)
/* FALLTHROUGH */
case em_82571:
case em_82572:
- case em_ich8lan:
case em_80003es2lan:
ret_val = em_get_auto_rd_done(hw);
- if (ret_val)
+ if(ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
break;
@@ -666,13 +620,13 @@ em_reset_hw(struct em_hw *hw)
}
/* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
+ if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
em_phy_init_script(hw);
/* Configure activity LED after PHY reset */
@@ -690,17 +644,11 @@ em_reset_hw(struct em_hw *hw)
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == em_82542_rev2_0) {
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
em_pci_set_mwi(hw);
}
- if (hw->mac_type == em_ich8lan) {
- uint32_t kab = E1000_READ_REG(hw, KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- E1000_WRITE_REG(hw, KABGTXD, kab);
- }
-
return E1000_SUCCESS;
}
@@ -733,7 +681,7 @@ em_init_hw(struct em_hw *hw)
/* Initialize Identification LED */
ret_val = em_id_led_init(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Initializing Identification LED\n");
return ret_val;
}
@@ -743,15 +691,12 @@ em_init_hw(struct em_hw *hw)
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
- /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
- if (hw->mac_type != em_ich8lan) {
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
- }
+ if (hw->mac_type < em_82545_rev_3)
+ E1000_WRITE_REG(hw, VET, 0);
+ em_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == em_82542_rev2_0) {
+ if(hw->mac_type == em_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
em_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
@@ -765,43 +710,37 @@ em_init_hw(struct em_hw *hw)
em_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == em_82542_rev2_0) {
+ if(hw->mac_type == em_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
msec_delay(1);
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
em_pci_set_mwi(hw);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
- if (hw->mac_type == em_ich8lan)
- mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
- for (i = 0; i < mta_size; i++) {
+ for(i = 0; i < mta_size; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occuring when accessing our register space */
- E1000_WRITE_FLUSH(hw);
- }
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives. Valid only on
* 82542 and 82543 silicon.
*/
- if (hw->dma_fairness && hw->mac_type <= em_82543) {
+ if(hw->dma_fairness && hw->mac_type <= em_82543) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if (hw->bus_type == em_bus_type_pcix) {
+ if(hw->bus_type == em_bus_type_pcix) {
em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
@@ -809,9 +748,9 @@ em_init_hw(struct em_hw *hw)
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
- if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if (cmd_mmrbc > stat_mmrbc) {
+ if(cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
@@ -821,15 +760,11 @@ em_init_hw(struct em_hw *hw)
break;
}
- /* More time needed for PHY to initialize */
- if (hw->mac_type == em_ich8lan)
- msec_delay(15);
-
/* Call a subroutine to configure the link and setup flow control. */
ret_val = em_setup_link(hw);
/* Set the transmit descriptor write-back policy */
- if (hw->mac_type > em_82544) {
+ if(hw->mac_type > em_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
switch (hw->mac_type) {
@@ -838,7 +773,6 @@ em_init_hw(struct em_hw *hw)
case em_82571:
case em_82572:
case em_82573:
- case em_ich8lan:
case em_80003es2lan:
ctrl |= E1000_TXDCTL_COUNT_DESC;
break;
@@ -847,7 +781,7 @@ em_init_hw(struct em_hw *hw)
}
if (hw->mac_type == em_82573) {
- em_enable_tx_pkt_filtering(hw);
+ em_enable_tx_pkt_filtering(hw);
}
switch (hw->mac_type) {
@@ -877,10 +811,9 @@ em_init_hw(struct em_hw *hw)
/* FALLTHROUGH */
case em_82571:
case em_82572:
- case em_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- if (hw->mac_type >= em_82571)
+ if(hw->mac_type >= em_82571)
ctrl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
@@ -899,11 +832,6 @@ em_init_hw(struct em_hw *hw)
*/
em_clear_hw_cntrs(hw);
- /* ICH8/Nahum No-snoop bits are opposite polarity.
- * Set to snoop by default after reset. */
- if (hw->mac_type == em_ich8lan)
- em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
@@ -929,10 +857,10 @@ em_adjust_serdes_amplitude(struct em_hw *hw)
DEBUGFUNC("em_adjust_serdes_amplitude");
- if (hw->media_type != em_media_type_internal_serdes)
+ if(hw->media_type != em_media_type_internal_serdes)
return E1000_SUCCESS;
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
@@ -945,11 +873,11 @@ em_adjust_serdes_amplitude(struct em_hw *hw)
return ret_val;
}
- if (eeprom_data != EEPROM_RESERVED_WORD) {
+ if(eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
@@ -991,7 +919,6 @@ em_setup_link(struct em_hw *hw)
*/
if (hw->fc == em_fc_default) {
switch (hw->mac_type) {
- case em_ich8lan:
case em_82573:
hw->fc = em_fc_full;
break;
@@ -1017,10 +944,10 @@ em_setup_link(struct em_hw *hw)
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
- if (hw->mac_type == em_82542_rev2_0)
+ if(hw->mac_type == em_82542_rev2_0)
hw->fc &= (~em_fc_tx_pause);
- if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
+ if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
hw->fc &= (~em_fc_rx_pause);
hw->original_fc = hw->fc;
@@ -1034,13 +961,7 @@ em_setup_link(struct em_hw *hw)
* signal detection. So this should be done before em_setup_pcs_link()
* or em_phy_setup() is called.
*/
- if (hw->mac_type == em_82543) {
- ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
+ if(hw->mac_type == em_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
@@ -1058,12 +979,9 @@ em_setup_link(struct em_hw *hw)
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
- /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
- if (hw->mac_type != em_ich8lan) {
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- }
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
@@ -1073,14 +991,14 @@ em_setup_link(struct em_hw *hw)
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
- if (!(hw->fc & em_fc_tx_pause)) {
+ if(!(hw->fc & em_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
- if (hw->fc_send_xon) {
+ if(hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
@@ -1127,11 +1045,11 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
- if (hw->media_type == em_media_type_fiber)
+ if(hw->media_type == em_media_type_fiber)
signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
ret_val = em_adjust_serdes_amplitude(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Take the link out of reset */
@@ -1139,7 +1057,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
/* Adjust VCO speed to improve BER performance */
ret_val = em_set_vco_speed(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
em_config_collision_dist(hw);
@@ -1210,15 +1128,15 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* less than 500 milliseconds even if the other end is doing it in SW).
* For internal serdes, we just assume a signal is present, then poll.
*/
- if (hw->media_type == em_media_type_internal_serdes ||
+ if(hw->media_type == em_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msec_delay(10);
status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_LU) break;
+ if(status & E1000_STATUS_LU) break;
}
- if (i == (LINK_UP_TIMEOUT / 10)) {
+ if(i == (LINK_UP_TIMEOUT / 10)) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
@@ -1227,7 +1145,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* non-autonegotiating link partners.
*/
ret_val = em_check_for_link(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
@@ -1261,7 +1179,7 @@ em_copper_link_preconfig(struct em_hw *hw)
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
- if (hw->mac_type > em_82543) {
+ if(hw->mac_type > em_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
@@ -1269,13 +1187,13 @@ em_copper_link_preconfig(struct em_hw *hw)
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = em_phy_hw_reset(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = em_detect_gig_phy(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
@@ -1283,19 +1201,19 @@ em_copper_link_preconfig(struct em_hw *hw)
/* Set PHY to class A mode (if necessary) */
ret_val = em_set_phy_mode(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if ((hw->mac_type == em_82545_rev_3) ||
+ if((hw->mac_type == em_82545_rev_3) ||
(hw->mac_type == em_82546_rev_3)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
- if (hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
+ if(hw->mac_type <= em_82543 ||
+ hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
+ hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
hw->phy_reset_disable = FALSE;
return E1000_SUCCESS;
@@ -1318,22 +1236,21 @@ em_copper_link_igp_setup(struct em_hw *hw)
if (hw->phy_reset_disable)
return E1000_SUCCESS;
-
+
ret_val = em_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
+ /* Wait 10ms for MAC to configure PHY from eeprom settings */
msec_delay(15);
- if (hw->mac_type != em_ich8lan) {
+
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
/* disable lplu d3 during driver init */
ret_val = em_set_d3_lplu_state(hw, FALSE);
@@ -1377,45 +1294,45 @@ em_copper_link_igp_setup(struct em_hw *hw)
}
}
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* set auto-master slave resolution settings */
- if (hw->autoneg) {
+ if(hw->autoneg) {
em_ms_type phy_ms_setting = hw->master_slave;
- if (hw->ffe_config_state == em_ffe_config_active)
+ if(hw->ffe_config_state == em_ffe_config_active)
hw->ffe_config_state = em_ffe_config_enabled;
- if (hw->dsp_config_state == em_dsp_config_activated)
+ if(hw->dsp_config_state == em_dsp_config_activated)
hw->dsp_config_state = em_dsp_config_enabled;
/* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* load defaults for future use */
@@ -1440,7 +1357,7 @@ em_copper_link_igp_setup(struct em_hw *hw)
break;
}
ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
@@ -1461,12 +1378,12 @@ em_copper_link_ggp_setup(struct em_hw *hw)
DEBUGFUNC("em_copper_link_ggp_setup");
- if (!hw->phy_reset_disable) {
-
+ if(!hw->phy_reset_disable) {
+
/* Enable CRS on TX for half-duplex operation. */
ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
@@ -1475,7 +1392,7 @@ em_copper_link_ggp_setup(struct em_hw *hw)
ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Options:
@@ -1486,7 +1403,7 @@ em_copper_link_ggp_setup(struct em_hw *hw)
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
@@ -1511,11 +1428,11 @@ em_copper_link_ggp_setup(struct em_hw *hw)
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (hw->disable_polarity_correction == 1)
+ if(hw->disable_polarity_correction == 1)
phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
@@ -1570,10 +1487,11 @@ em_copper_link_ggp_setup(struct em_hw *hw)
if (ret_val)
return ret_val;
+ /* Disable Pass False Carrier on the PHY */
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
phy_data);
-
if (ret_val)
return ret_val;
}
@@ -1608,12 +1526,12 @@ em_copper_link_mgp_setup(struct em_hw *hw)
DEBUGFUNC("em_copper_link_mgp_setup");
- if (hw->phy_reset_disable)
+ if(hw->phy_reset_disable)
return E1000_SUCCESS;
-
+
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
@@ -1650,47 +1568,35 @@ em_copper_link_mgp_setup(struct em_hw *hw)
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
+ if(hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
return ret_val;
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if (hw->phy_revision < M88E1011_I_REV_4) {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
+ ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
}
/* SW Reset the PHY so all changes take effect */
ret_val = em_phy_reset(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
@@ -1720,16 +1626,12 @@ em_copper_link_autoneg(struct em_hw *hw)
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
- if (hw->autoneg_advertised == 0)
+ if(hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- /* IFE phy only supports 10/100 */
- if (hw->phy_type == em_phy_ife)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = em_phy_setup_autoneg(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
@@ -1739,20 +1641,20 @@ em_copper_link_autoneg(struct em_hw *hw)
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
- if (hw->wait_autoneg_complete) {
+ if(hw->wait_autoneg_complete) {
ret_val = em_wait_autoneg(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
@@ -1763,18 +1665,6 @@ em_copper_link_autoneg(struct em_hw *hw)
return E1000_SUCCESS;
}
-/********************************************************************
-* Copper link setup for em_phy_ife (Fast Ethernet PHY) series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_ife_setup(struct em_hw *hw)
-{
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
- return E1000_SUCCESS;
-}
/******************************************************************************
* Config the MAC and the PHY after link is up.
@@ -1784,7 +1674,7 @@ em_copper_link_ife_setup(struct em_hw *hw)
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
@@ -1793,31 +1683,31 @@ em_copper_link_postconfig(struct em_hw *hw)
{
int32_t ret_val;
DEBUGFUNC("em_copper_link_postconfig");
-
- if (hw->mac_type >= em_82544) {
+
+ if(hw->mac_type >= em_82544) {
em_config_collision_dist(hw);
} else {
ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
/* Config DSP to improve Giga link quality */
- if (hw->phy_type == em_phy_igp) {
+ if(hw->phy_type == em_phy_igp) {
ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Configuring DSP after link up\n");
return ret_val;
}
}
-
+
return E1000_SUCCESS;
}
@@ -1838,7 +1728,6 @@ em_setup_copper_link(struct em_hw *hw)
switch (hw->mac_type) {
case em_80003es2lan:
- case em_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
@@ -1858,13 +1747,15 @@ em_setup_copper_link(struct em_hw *hw)
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = em_copper_link_preconfig(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
switch (hw->mac_type) {
case em_80003es2lan:
- /* Kumeran registers are written-only */
- reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+ ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
+ &reg_data);
+ if (ret_val)
+ return ret_val;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
reg_data);
@@ -1876,37 +1767,32 @@ em_setup_copper_link(struct em_hw *hw)
}
if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) {
ret_val = em_copper_link_igp_setup(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else if (hw->phy_type == em_phy_m88) {
ret_val = em_copper_link_mgp_setup(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else if (hw->phy_type == em_phy_gg82563) {
ret_val = em_copper_link_ggp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_ife) {
- ret_val = em_copper_link_ife_setup(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
+ if(hw->autoneg) {
+ /* Setup autoneg and flow control advertisement
+ * and perform autonegotiation */
ret_val = em_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
+ if(ret_val)
+ return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H,or 100F
* depending on value from forced_speed_duplex. */
DEBUGOUT("Forcing speed and duplex\n");
ret_val = em_phy_force_speed_duplex(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
@@ -1915,20 +1801,20 @@ em_setup_copper_link(struct em_hw *hw)
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
- for (i = 0; i < 10; i++) {
+ for(i = 0; i < 10; i++) {
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (phy_data & MII_SR_LINK_STATUS) {
+ if(phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = em_copper_link_postconfig(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
-
+
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
@@ -1965,23 +1851,26 @@ em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data);
if (ret_val)
return ret_val;
+ /* Enable pass false carrier when in half duplex mode. */
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ reg_data);
+
return ret_val;
}
static int32_t
-em_configure_kmrn_for_1000(struct em_hw *hw)
+em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex)
{
int32_t ret_val = E1000_SUCCESS;
uint16_t reg_data;
@@ -2001,14 +1890,18 @@ em_configure_kmrn_for_1000(struct em_hw *hw)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data);
if (ret_val)
return ret_val;
+ /* Disable Pass False Carrier on the PHY */
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ reg_data);
+
return ret_val;
}
@@ -2028,16 +1921,13 @@ em_phy_setup_autoneg(struct em_hw *hw)
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (hw->phy_type != em_phy_ife) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- } else
- mii_1000t_ctrl_reg=0;
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if(ret_val)
+ return ret_val;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
@@ -2056,41 +1946,38 @@ em_phy_setup_autoneg(struct em_hw *hw)
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- if (hw->phy_type == em_phy_ife) {
- DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
- }
}
/* Check for a software override of the flow control settings, and
@@ -2147,16 +2034,14 @@ em_phy_setup_autoneg(struct em_hw *hw)
}
ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- if (hw->phy_type != em_phy_ife) {
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
+ ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ if(ret_val)
+ return ret_val;
return E1000_SUCCESS;
}
@@ -2195,7 +2080,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
/* Read the MII Control Register. */
ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* We need to disable autoneg in order to force link and duplex. */
@@ -2203,8 +2088,8 @@ em_phy_force_speed_duplex(struct em_hw *hw)
mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
/* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
+ if(hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_10_full) {
/* We want to force full duplex so we SET the full duplex bits in the
* Device and MII Control Registers.
*/
@@ -2221,7 +2106,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
}
/* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == em_100_full ||
+ if(hw->forced_speed_duplex == em_100_full ||
hw->forced_speed_duplex == em_100_half) {
/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
ctrl |= E1000_CTRL_SPD_100;
@@ -2244,7 +2129,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
if ((hw->phy_type == em_phy_m88) ||
(hw->phy_type == em_phy_gg82563)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
@@ -2252,44 +2137,32 @@ em_phy_force_speed_duplex(struct em_hw *hw)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
- /* Disable MDI-X support for 10/100 */
- } else if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PMC_AUTO_MDIX;
- phy_data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
*/
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
/* Write back the modified PHY MII control register. */
ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
usec_delay(1);
@@ -2301,50 +2174,50 @@ em_phy_force_speed_duplex(struct em_hw *hw)
* only if the user has set wait_autoneg_complete to 1, which is
* the default.
*/
- if (hw->wait_autoneg_complete) {
+ if(hw->wait_autoneg_complete) {
/* We will wait for autoneg to complete. */
DEBUGOUT("Waiting for forced speed/duplex link.\n");
mii_status_reg = 0;
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
}
- if ((i == 0) &&
+ if((i == 0) &&
((hw->phy_type == em_phy_m88) ||
(hw->phy_type == em_phy_gg82563))) {
/* We didn't get link. Reset the DSP and wait again for link. */
ret_val = em_phy_reset_dsp(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error Resetting PHY DSP\n");
return ret_val;
}
}
/* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
}
@@ -2355,31 +2228,32 @@ em_phy_force_speed_duplex(struct em_hw *hw)
* defaults back to a 2.5MHz clock when the PHY is reset.
*/
ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* In addition, because of the s/w reset above, we need to enable CRS on
* TX. This must be set for both full and half duplex operation.
*/
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
+ if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
ret_val = em_polarity_reversal_workaround(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
} else if (hw->phy_type == em_phy_gg82563) {
@@ -2454,7 +2328,7 @@ em_config_mac_to_phy(struct em_hw *hw)
DEBUGFUNC("em_config_mac_to_phy");
- /* 82544 or newer MAC, Auto Speed Detection takes care of
+ /* 82544 or newer MAC, Auto Speed Detection takes care of
* MAC speed/duplex configuration.*/
if (hw->mac_type >= em_82544)
return E1000_SUCCESS;
@@ -2470,12 +2344,12 @@ em_config_mac_to_phy(struct em_hw *hw)
* registers depending on negotiated values.
*/
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (phy_data & M88E1000_PSSR_DPLX)
+ if(phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
- else
+ else
ctrl &= ~E1000_CTRL_FD;
em_config_collision_dist(hw);
@@ -2483,9 +2357,9 @@ em_config_mac_to_phy(struct em_hw *hw)
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
@@ -2553,7 +2427,7 @@ em_force_mac_fc(struct em_hw *hw)
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == em_82542_rev2_0)
+ if(hw->mac_type == em_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
@@ -2587,12 +2461,11 @@ em_config_fc_after_link_up(struct em_hw *hw)
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
- if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
+ if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
ret_val = em_force_mac_fc(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
@@ -2603,19 +2476,19 @@ em_config_fc_after_link_up(struct em_hw *hw)
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
- if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
+ if((hw->media_type == em_media_type_copper) && hw->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
@@ -2624,11 +2497,11 @@ em_config_fc_after_link_up(struct em_hw *hw)
*/
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
@@ -2665,15 +2538,15 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 1 | DC | 1 | DC | em_fc_full
*
*/
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
- if (hw->original_fc == em_fc_full) {
+ if(hw->original_fc == em_fc_full) {
hw->fc = em_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
@@ -2689,10 +2562,10 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 0 | 1 | 1 | 1 | em_fc_tx_pause
*
*/
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = em_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
}
@@ -2704,10 +2577,10 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 1 | 1 | 0 | 1 | em_fc_rx_pause
*
*/
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = em_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
@@ -2731,9 +2604,9 @@ em_config_fc_after_link_up(struct em_hw *hw)
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
- else if ((hw->original_fc == em_fc_none ||
- hw->original_fc == em_fc_tx_pause) ||
- hw->fc_strict_ieee) {
+ else if((hw->original_fc == em_fc_none ||
+ hw->original_fc == em_fc_tx_pause) ||
+ hw->fc_strict_ieee) {
hw->fc = em_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
} else {
@@ -2746,19 +2619,19 @@ em_config_fc_after_link_up(struct em_hw *hw)
* enabled per IEEE 802.3 spec.
*/
ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if (duplex == HALF_DUPLEX)
+ if(duplex == HALF_DUPLEX)
hw->fc = em_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = em_force_mac_fc(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
@@ -2797,13 +2670,13 @@ em_check_for_link(struct em_hw *hw)
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
- if ((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
+ if((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) {
rxcw = E1000_READ_REG(hw, RXCW);
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
+ if(status & E1000_STATUS_LU)
hw->get_link_status = FALSE;
}
}
@@ -2814,20 +2687,20 @@ em_check_for_link(struct em_hw *hw)
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
- if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
+ if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (phy_data & MII_SR_LINK_STATUS) {
+ if(phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = FALSE;
/* Check if there was DownShift, must be checked immediately after
* link-up */
@@ -2841,10 +2714,10 @@ em_check_for_link(struct em_hw *hw)
* happen due to the execution of this workaround.
*/
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
+ if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff);
ret_val = em_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR);
@@ -2861,7 +2734,7 @@ em_check_for_link(struct em_hw *hw)
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
- if (!hw->autoneg) return -E1000_ERR_CONFIG;
+ if(!hw->autoneg) return -E1000_ERR_CONFIG;
/* optimize the dsp settings for the igp phy */
em_config_dsp_after_link_change(hw, TRUE);
@@ -2874,11 +2747,11 @@ em_check_for_link(struct em_hw *hw)
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
- if (hw->mac_type >= em_82544)
+ if(hw->mac_type >= em_82544)
em_config_collision_dist(hw);
else {
ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
@@ -2889,7 +2762,7 @@ em_check_for_link(struct em_hw *hw)
* have had to re-autoneg with a different link partner.
*/
ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
@@ -2901,18 +2774,14 @@ em_check_for_link(struct em_hw *hw)
* at gigabit speed, then TBI compatibility is not needed. If we are
* at gigabit speed, we turn on TBI compatibility.
*/
- if (hw->tbi_compatibility_en) {
+ if(hw->tbi_compatibility_en) {
uint16_t speed, duplex;
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
+ em_get_speed_and_duplex(hw, &speed, &duplex);
+ if(speed != SPEED_1000) {
/* If link speed is not set to gigabit speed, we do not need
* to enable TBI compatibility.
*/
- if (hw->tbi_compatibility_on) {
+ if(hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
@@ -2925,7 +2794,7 @@ em_check_for_link(struct em_hw *hw)
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
- if (!hw->tbi_compatibility_on) {
+ if(!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
@@ -2941,12 +2810,12 @@ em_check_for_link(struct em_hw *hw)
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
- else if ((((hw->media_type == em_media_type_fiber) &&
+ else if((((hw->media_type == em_media_type_fiber) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if(hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
@@ -2962,7 +2831,7 @@ em_check_for_link(struct em_hw *hw)
/* Configure Flow Control after forcing link up. */
ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
@@ -2972,9 +2841,9 @@ em_check_for_link(struct em_hw *hw)
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
- else if (((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ else if(((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
@@ -2984,12 +2853,12 @@ em_check_for_link(struct em_hw *hw)
/* If we force link for non-auto-negotiation switch, check link status
* based on MAC synchronization for internal serdes media type.
*/
- else if ((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ else if((hw->media_type == em_media_type_internal_serdes) &&
+ !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
/* SYNCH bit and IV bit are sticky. */
usec_delay(10);
- if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if (!(rxcw & E1000_RXCW_IV)) {
+ if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+ if(!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = FALSE;
DEBUGOUT("SERDES: Link is up.\n");
}
@@ -2998,8 +2867,8 @@ em_check_for_link(struct em_hw *hw)
DEBUGOUT("SERDES: Link is down.\n");
}
}
- if ((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ if((hw->media_type == em_media_type_internal_serdes) &&
+ (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
}
return E1000_SUCCESS;
@@ -3023,12 +2892,12 @@ em_get_speed_and_duplex(struct em_hw *hw,
DEBUGFUNC("em_get_speed_and_duplex");
- if (hw->mac_type >= em_82543) {
+ if(hw->mac_type >= em_82543) {
status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
+ if(status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
+ } else if(status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
@@ -3036,7 +2905,7 @@ em_get_speed_and_duplex(struct em_hw *hw,
DEBUGOUT("10 Mbs, ");
}
- if (status & E1000_STATUS_FD) {
+ if(status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
@@ -3053,39 +2922,33 @@ em_get_speed_and_duplex(struct em_hw *hw,
* if it is operating at half duplex. Here we set the duplex settings to
* match the duplex in the link partner's capabilities.
*/
- if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
+ if(hw->phy_type == em_phy_igp && hw->speed_downgraded) {
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+ if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
(*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
- if ((hw->mac_type == em_80003es2lan) &&
+ if ((hw->mac_type == em_80003es2lan) &&
(hw->media_type == em_media_type_copper)) {
if (*speed == SPEED_1000)
- ret_val = em_configure_kmrn_for_1000(hw);
+ ret_val = em_configure_kmrn_for_1000(hw, *duplex);
else
ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
- if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
- ret_val = em_kumeran_lock_loss_workaround(hw);
- if (ret_val)
- return ret_val;
- }
-
return E1000_SUCCESS;
}
@@ -3105,17 +2968,17 @@ em_wait_autoneg(struct em_hw *hw)
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+ if(phy_data & MII_SR_AUTONEG_COMPLETE) {
return E1000_SUCCESS;
}
msec_delay(100);
@@ -3188,16 +3051,14 @@ em_shift_out_mdi_bits(struct em_hw *hw,
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
- while (mask) {
+ while(mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
+ if(data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
@@ -3248,13 +3109,12 @@ em_shift_in_mdi_bits(struct em_hw *hw)
em_raise_mdi_clk(hw, &ctrl);
em_lower_mdi_clk(hw, &ctrl);
- for (data = 0, i = 0; i < 16; i++) {
+ for(data = 0, i = 0; i < 16; i++) {
data = data << 1;
em_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
+ if(ctrl & E1000_CTRL_MDIO) data |= 1;
em_lower_mdi_clk(hw, &ctrl);
}
@@ -3274,13 +3134,10 @@ em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
DEBUGFUNC("em_swfw_sync_acquire");
- if (hw->swfwhw_semaphore_present)
- return em_get_software_flag(hw);
-
if (!hw->swfw_sync_present)
return em_get_hw_eeprom_semaphore(hw);
- while (timeout) {
+ while(timeout) {
if (em_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
@@ -3316,11 +3173,6 @@ em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
DEBUGFUNC("em_swfw_sync_release");
- if (hw->swfwhw_semaphore_present) {
- em_release_software_flag(hw);
- return;
- }
-
if (!hw->swfw_sync_present) {
em_put_hw_eeprom_semaphore(hw);
return;
@@ -3363,13 +3215,12 @@ em_read_phy_reg(struct em_hw *hw,
if (em_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
+ if((hw->phy_type == em_phy_igp ||
hw->phy_type == em_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if (ret_val) {
+ if(ret_val) {
em_swfw_sync_release(hw, swfw);
return ret_val;
}
@@ -3414,12 +3265,12 @@ em_read_phy_reg_ex(struct em_hw *hw,
DEBUGFUNC("em_read_phy_reg_ex");
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if (hw->mac_type > em_82543) {
+ if(hw->mac_type > em_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
@@ -3431,16 +3282,16 @@ em_read_phy_reg_ex(struct em_hw *hw,
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
+ for(i = 0; i < 64; i++) {
usec_delay(50);
mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
+ if(mdic & E1000_MDIC_READY) break;
}
- if (!(mdic & E1000_MDIC_READY)) {
+ if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
- if (mdic & E1000_MDIC_ERROR) {
+ if(mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
@@ -3503,13 +3354,12 @@ em_write_phy_reg(struct em_hw *hw,
if (em_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
+ if((hw->phy_type == em_phy_igp ||
hw->phy_type == em_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if (ret_val) {
+ if(ret_val) {
em_swfw_sync_release(hw, swfw);
return ret_val;
}
@@ -3554,12 +3404,12 @@ em_write_phy_reg_ex(struct em_hw *hw,
DEBUGFUNC("em_write_phy_reg_ex");
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if (hw->mac_type > em_82543) {
+ if(hw->mac_type > em_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
@@ -3572,12 +3422,12 @@ em_write_phy_reg_ex(struct em_hw *hw,
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 641; i++) {
+ for(i = 0; i < 641; i++) {
usec_delay(5);
mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
+ if(mdic & E1000_MDIC_READY) break;
}
- if (!(mdic & E1000_MDIC_READY)) {
+ if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
@@ -3689,7 +3539,7 @@ em_phy_hw_reset(struct em_hw *hw)
DEBUGOUT("Resetting Phy...\n");
- if (hw->mac_type > em_82543) {
+ if(hw->mac_type > em_82543) {
if ((hw->mac_type == em_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM;
@@ -3702,24 +3552,24 @@ em_phy_hw_reset(struct em_hw *hw)
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
- * For pre-em_82571 hardware, we delay for 10ms between the assert
+ * For pre-em_82571 hardware, we delay for 10ms between the assert
* and deassert. For em_82571 hardware and later, we instead delay
* for 50us between and 10ms after the deassertion.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type < em_82571)
+
+ if (hw->mac_type < em_82571)
msec_delay(10);
else
usec_delay(100);
-
+
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
-
+
if (hw->mac_type >= em_82571)
- msec_delay_irq(10);
+ msec_delay(10);
em_swfw_sync_release(hw, swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
@@ -3737,7 +3587,7 @@ em_phy_hw_reset(struct em_hw *hw)
}
usec_delay(150);
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
@@ -3749,12 +3599,6 @@ em_phy_hw_reset(struct em_hw *hw)
ret_val = em_get_phy_cfg_done(hw);
em_release_software_semaphore(hw);
- if ((hw->mac_type == em_ich8lan) &&
- (hw->phy_type == em_phy_igp_3)) {
- ret_val = em_init_lcd_from_nvm(hw);
- if (ret_val)
- return ret_val;
- }
return ret_val;
}
@@ -3783,142 +3627,31 @@ em_phy_reset(struct em_hw *hw)
case em_82541_rev_2:
case em_82571:
case em_82572:
- case em_ich8lan:
ret_val = em_phy_hw_reset(hw);
- if (ret_val)
+ if(ret_val)
return ret_val;
-
break;
default:
ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
usec_delay(1);
break;
}
- if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
+ if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
em_phy_init_script(hw);
return E1000_SUCCESS;
}
/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void
-em_phy_powerdown_workaround(struct em_hw *hw)
-{
- int32_t reg;
- uint16_t phy_data;
- int32_t retry = 0;
-
- DEBUGFUNC("em_phy_powerdown_workaround");
-
- if (hw->phy_type != em_phy_igp_3)
- return;
-
- do {
- /* Disable link */
- reg = E1000_READ_REG(hw, PHY_CTRL);
- E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* Write VR power-down enable */
- em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
- IGP3_VR_CTRL_MODE_SHUT);
-
- /* Read it back and test */
- em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
- break;
-
- /* Issue PHY reset and repeat at most one more time */
- reg = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
-
- return;
-
-}
-
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_kumeran_lock_loss_workaround(struct em_hw *hw)
-{
- int32_t ret_val;
- int32_t reg;
- int32_t cnt;
- uint16_t phy_data;
-
- if (hw->kmrn_lock_loss_workaround_disabled)
- return E1000_SUCCESS;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouls up link
- * stability */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
- if (phy_data & MII_SR_LINK_STATUS) {
- for (cnt = 0; cnt < 10; cnt++) {
- /* read once to clear */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return E1000_SUCCESS;
-
- /* Issue PHY reset */
- em_phy_hw_reset(hw);
- msec_delay_irq(5);
- }
- /* Disable GigE link negotiation */
- reg = E1000_READ_REG(hw, PHY_CTRL);
- E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* unable to acquire PCS lock */
- return E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
@@ -3935,8 +3668,8 @@ em_detect_gig_phy(struct em_hw *hw)
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
- if (hw->mac_type == em_82571 ||
- hw->mac_type == em_82572) {
+ if(hw->mac_type == em_82571 ||
+ hw->mac_type == em_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = em_phy_igp_2;
return E1000_SUCCESS;
@@ -3953,50 +3686,44 @@ em_detect_gig_phy(struct em_hw *hw)
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
usec_delay(20);
ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
break;
case em_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
break;
case em_82540:
case em_82545:
case em_82545_rev_3:
case em_82546:
case em_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
break;
case em_82541:
case em_82541_rev_2:
case em_82547:
case em_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
+ if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
case em_82573:
- if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
+ if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
break;
case em_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
break;
- case em_ich8lan:
- if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
- break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
@@ -4025,14 +3752,14 @@ em_phy_reset_dsp(struct em_hw *hw)
do {
if (hw->phy_type != em_phy_gg82563) {
ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if (ret_val) break;
+ if(ret_val) break;
}
ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val) break;
+ if(ret_val) break;
ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if (ret_val) break;
+ if(ret_val) break;
ret_val = E1000_SUCCESS;
- } while (0);
+ } while(0);
return ret_val;
}
@@ -4064,23 +3791,23 @@ em_phy_igp_get_info(struct em_hw *hw,
/* Check polarity status */
ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
IGP01E1000_PSSR_MDIX_SHIFT;
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Local/Remote Receiver Information are only valid at 1000 Mbps */
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
@@ -4090,19 +3817,19 @@ em_phy_igp_get_info(struct em_hw *hw,
/* Get cable length */
ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Translate to old method */
average = (max_length + min_length) / 2;
- if (average <= em_igp_cable_length_50)
+ if(average <= em_igp_cable_length_50)
phy_info->cable_length = em_cable_length_50;
- else if (average <= em_igp_cable_length_80)
+ else if(average <= em_igp_cable_length_80)
phy_info->cable_length = em_cable_length_50_80;
- else if (average <= em_igp_cable_length_110)
+ else if(average <= em_igp_cable_length_110)
phy_info->cable_length = em_cable_length_80_110;
- else if (average <= em_igp_cable_length_140)
+ else if(average <= em_igp_cable_length_140)
phy_info->cable_length = em_cable_length_110_140;
else
phy_info->cable_length = em_cable_length_140;
@@ -4112,53 +3839,6 @@ em_phy_igp_get_info(struct em_hw *hw,
}
/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_ife_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity;
-
- DEBUGFUNC("em_phy_ife_get_info");
-
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->polarity_correction =
- (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
- IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
-
- if (phy_info->polarity_correction == em_polarity_reversal_enabled) {
- ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- } else {
- /* Polarity is forced. */
- polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
- IFE_PSC_FORCE_POLARITY_SHIFT;
- }
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode =
- (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
- IFE_PMC_MDIX_MODE_SHIFT;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
@@ -4178,7 +3858,7 @@ em_phy_m88_get_info(struct em_hw *hw,
phy_info->downshift = (em_downshift)hw->speed_downgraded;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->extended_10bt_distance =
@@ -4190,12 +3870,12 @@ em_phy_m88_get_info(struct em_hw *hw,
/* Check polarity status */
ret_val = em_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
+ if(ret_val)
+ return ret_val;
phy_info->cable_polarity = polarity;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
@@ -4218,7 +3898,7 @@ em_phy_m88_get_info(struct em_hw *hw,
}
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
@@ -4255,30 +3935,27 @@ em_phy_get_info(struct em_hw *hw,
phy_info->local_rx = em_1000t_rx_status_undefined;
phy_info->remote_rx = em_1000t_rx_status_undefined;
- if (hw->media_type != em_media_type_copper) {
+ if(hw->media_type != em_media_type_copper) {
DEBUGOUT("PHY info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
DEBUGOUT("PHY info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
+ if(hw->phy_type == em_phy_igp ||
hw->phy_type == em_phy_igp_2)
return em_phy_igp_get_info(hw, phy_info);
- else if (hw->phy_type == em_phy_ife)
- return em_phy_ife_get_info(hw, phy_info);
else
return em_phy_m88_get_info(hw, phy_info);
}
@@ -4288,7 +3965,7 @@ em_validate_mdi_setting(struct em_hw *hw)
{
DEBUGFUNC("em_validate_mdi_settings");
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->mdix = 1;
return -E1000_ERR_CONFIG;
@@ -4335,7 +4012,7 @@ em_init_eeprom_params(struct em_hw *hw)
eeprom->type = em_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
+ if(eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
@@ -4403,7 +4080,7 @@ em_init_eeprom_params(struct em_hw *hw)
}
eeprom->use_eerd = TRUE;
eeprom->use_eewr = TRUE;
- if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
+ if(em_is_onboard_nvm_eeprom(hw) == FALSE) {
eeprom->type = em_eeprom_flash;
eeprom->word_size = 2048;
@@ -4427,35 +4104,6 @@ em_init_eeprom_params(struct em_hw *hw)
eeprom->use_eerd = TRUE;
eeprom->use_eewr = FALSE;
break;
- case em_ich8lan:
- {
- int32_t i = 0;
- uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
-
- eeprom->type = em_eeprom_ich8;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
- /* Zero the shadow RAM structure. But don't load it from NVM
- * so as to save time for driver init */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
- ICH8_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
- hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
- hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
- hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
- break;
- }
default:
break;
}
@@ -4464,17 +4112,17 @@ em_init_eeprom_params(struct em_hw *hw)
/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
- if (hw->mac_type <= em_82547_rev_2) {
+ if(hw->mac_type <= em_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
+ if(ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier hardware, so we
* bump eeprom_size up one to ensure that "1" (which maps to 256B)
* is never the result used in the shifting logic below. */
- if (eeprom_size)
+ if(eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
@@ -4559,7 +4207,7 @@ em_shift_out_ee_bits(struct em_hw *hw,
*/
eecd &= ~E1000_EECD_DI;
- if (data & mask)
+ if(data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
@@ -4572,7 +4220,7 @@ em_shift_out_ee_bits(struct em_hw *hw,
mask = mask >> 1;
- } while (mask);
+ } while(mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
@@ -4604,14 +4252,14 @@ em_shift_in_ee_bits(struct em_hw *hw,
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
- for (i = 0; i < count; i++) {
+ for(i = 0; i < count; i++) {
data = data << 1;
em_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
+ if(eecd & E1000_EECD_DO)
data |= 1;
em_lower_ee_clk(hw, &eecd);
@@ -4642,17 +4290,17 @@ em_acquire_eeprom(struct em_hw *hw)
if (hw->mac_type != em_82573) {
/* Request EEPROM Access */
- if (hw->mac_type > em_82544) {
+ if(hw->mac_type > em_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
+ while((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
usec_delay(5);
eecd = E1000_READ_REG(hw, EECD);
}
- if (!(eecd & E1000_EECD_GNT)) {
+ if(!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
@@ -4695,7 +4343,7 @@ em_standby_eeprom(struct em_hw *hw)
eecd = E1000_READ_REG(hw, EECD);
- if (eeprom->type == em_eeprom_microwire) {
+ if(eeprom->type == em_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
@@ -4718,7 +4366,7 @@ em_standby_eeprom(struct em_hw *hw)
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(eeprom->delay_usec);
- } else if (eeprom->type == em_eeprom_spi) {
+ } else if(eeprom->type == em_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
@@ -4752,7 +4400,7 @@ em_release_eeprom(struct em_hw *hw)
E1000_WRITE_REG(hw, EECD, eecd);
usec_delay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == em_eeprom_microwire) {
+ } else if(hw->eeprom.type == em_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
@@ -4774,7 +4422,7 @@ em_release_eeprom(struct em_hw *hw)
}
/* Stop requesting EEPROM access */
- if (hw->mac_type > em_82544) {
+ if(hw->mac_type > em_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
@@ -4812,12 +4460,12 @@ em_spi_eeprom_ready(struct em_hw *hw)
retry_count += 5;
em_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
+ } while(retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+ if(retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
@@ -4848,7 +4496,7 @@ em_read_eeprom(struct em_hw *hw,
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
@@ -4856,7 +4504,7 @@ em_read_eeprom(struct em_hw *hw,
/* FLASH reads without acquiring the semaphore are safe */
if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
- hw->eeprom.use_eerd == FALSE) {
+ hw->eeprom.use_eerd == FALSE) {
switch (hw->mac_type) {
case em_80003es2lan:
break;
@@ -4876,14 +4524,11 @@ em_read_eeprom(struct em_hw *hw,
return ret_val;
}
- if (eeprom->type == em_eeprom_ich8)
- return em_read_eeprom_ich8(hw, offset, words, data);
-
- if (eeprom->type == em_eeprom_spi) {
+ if(eeprom->type == em_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
- if (em_spi_eeprom_ready(hw)) {
+ if(em_spi_eeprom_ready(hw)) {
em_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
@@ -4891,7 +4536,7 @@ em_read_eeprom(struct em_hw *hw,
em_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
+ if((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
@@ -4907,7 +4552,7 @@ em_read_eeprom(struct em_hw *hw,
word_in = em_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
- } else if (eeprom->type == em_eeprom_microwire) {
+ } else if(eeprom->type == em_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
@@ -4951,14 +4596,14 @@ em_read_eeprom_eerd(struct em_hw *hw,
E1000_WRITE_REG(hw, EERD, eerd);
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if (error) {
+
+ if(error) {
break;
}
data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
+
}
-
+
return error;
}
@@ -4984,24 +4629,24 @@ em_write_eeprom_eewr(struct em_hw *hw,
return -E1000_ERR_SWFW_SYNC;
for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
+ register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
+ ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
E1000_EEPROM_RW_REG_START;
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if (error) {
+ if(error) {
break;
- }
+ }
E1000_WRITE_REG(hw, EEWR, register_value);
-
+
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if (error) {
+
+ if(error) {
break;
- }
+ }
}
-
+
em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
return error;
}
@@ -5018,13 +4663,13 @@ em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
- for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ)
+ for(i = 0; i < attempts; i++) {
+ if(eerd == E1000_EEPROM_POLL_READ)
reg = E1000_READ_REG(hw, EERD);
- else
+ else
reg = E1000_READ_REG(hw, EEWR);
- if (reg & E1000_EEPROM_RW_REG_DONE) {
+ if(reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
@@ -5046,17 +4691,14 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw)
DEBUGFUNC("em_is_onboard_nvm_eeprom");
- if (hw->mac_type == em_ich8lan)
- return FALSE;
-
- if (hw->mac_type == em_82573) {
+ if(hw->mac_type == em_82573) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
- if (eecd == 0x03) {
+ if(eecd == 0x03) {
return FALSE;
}
}
@@ -5099,29 +4741,15 @@ em_validate_eeprom_checksum(struct em_hw *hw)
}
}
- if (hw->mac_type == em_ich8lan) {
- /* Drivers must allocate the shadow ram structure for the
- * EEPROM checksum to be updated. Otherwise, this bit as well
- * as the checksum must both be set correctly for this
- * validation to pass.
- */
- em_read_eeprom(hw, 0x19, 1, &eeprom_data);
- if ((eeprom_data & 0x40) == 0) {
- eeprom_data |= 0x40;
- em_write_eeprom(hw, 0x19, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
-
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
- if (checksum == (uint16_t) EEPROM_SUM)
+ if(checksum == (uint16_t) EEPROM_SUM)
return E1000_SUCCESS;
else {
DEBUGOUT("EEPROM Checksum Invalid\n");
@@ -5140,33 +4768,24 @@ em_validate_eeprom_checksum(struct em_hw *hw)
int32_t
em_update_eeprom_checksum(struct em_hw *hw)
{
- uint32_t ctrl_ext;
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC("em_update_eeprom_checksum");
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
checksum = (uint16_t) EEPROM_SUM - checksum;
- if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
DEBUGOUT("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
} else if (hw->eeprom.type == em_eeprom_flash) {
em_commit_shadow_ram(hw);
- } else if (hw->eeprom.type == em_eeprom_ich8) {
- em_commit_shadow_ram(hw);
- /* Reload the EEPROM, or else modifications will not appear
- * until after next adapter reset. */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- msec_delay(10);
}
return E1000_SUCCESS;
}
@@ -5196,24 +4815,21 @@ em_write_eeprom(struct em_hw *hw,
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* 82573 writes only through eewr */
- if (eeprom->use_eewr == TRUE)
+ if(eeprom->use_eewr == TRUE)
return em_write_eeprom_eewr(hw, offset, words, data);
- if (eeprom->type == em_eeprom_ich8)
- return em_write_eeprom_ich8(hw, offset, words, data);
-
/* Prepare the EEPROM for writing */
if (em_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
- if (eeprom->type == em_eeprom_microwire) {
+ if(eeprom->type == em_eeprom_microwire) {
status = em_write_eeprom_microwire(hw, offset, words, data);
} else {
status = em_write_eeprom_spi(hw, offset, words, data);
@@ -5249,7 +4865,7 @@ em_write_eeprom_spi(struct em_hw *hw,
while (widx < words) {
uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
- if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+ if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
em_standby_eeprom(hw);
@@ -5260,7 +4876,7 @@ em_write_eeprom_spi(struct em_hw *hw,
em_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
+ if((eeprom->address_bits == 8) && (offset >= 128))
write_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
@@ -5282,7 +4898,7 @@ em_write_eeprom_spi(struct em_hw *hw,
* operation, while the smaller eeproms are capable of an 8-byte
* PAGE WRITE operation. Break the inner loop to pass new address
*/
- if ((((offset + widx)*2) % eeprom->page_size) == 0) {
+ if((((offset + widx)*2) % eeprom->page_size) == 0) {
em_standby_eeprom(hw);
break;
}
@@ -5348,12 +4964,12 @@ em_write_eeprom_microwire(struct em_hw *hw,
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
- for (i = 0; i < 200; i++) {
+ for(i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD);
- if (eecd & E1000_EECD_DO) break;
+ if(eecd & E1000_EECD_DO) break;
usec_delay(50);
}
- if (i == 200) {
+ if(i == 200) {
DEBUGOUT("EEPROM Write did not complete\n");
return -E1000_ERR_EEPROM;
}
@@ -5396,17 +5012,11 @@ em_commit_shadow_ram(struct em_hw *hw)
uint32_t flop = 0;
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
- uint32_t old_bank_offset = 0;
- uint32_t new_bank_offset = 0;
- uint32_t sector_retries = 0;
- uint8_t low_byte = 0;
- uint8_t high_byte = 0;
- uint8_t temp_byte = 0;
- boolean_t sector_write_failed = FALSE;
+
+ /* The flop register will be used to determine if flash type is STM */
+ flop = E1000_READ_REG(hw, FLOP);
if (hw->mac_type == em_82573) {
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) {
@@ -5440,106 +5050,6 @@ em_commit_shadow_ram(struct em_hw *hw)
}
}
- if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written */
- if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
- new_bank_offset = hw->flash_bank_size * 2;
- old_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 1);
- } else {
- old_bank_offset = hw->flash_bank_size * 2;
- new_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 0);
- }
-
- do {
- sector_write_failed = FALSE;
- /* Loop for every byte in the shadow RAM,
- * which is in units of words. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (hw->eeprom_shadow_ram[i].modified == TRUE) {
- low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &temp_byte);
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset,
- low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- high_byte =
- (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &temp_byte);
- usec_delay(100);
- } else {
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &low_byte);
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &high_byte);
- }
-
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress */
- if (i == E1000_ICH8_NVM_SIG_WORD)
- high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
-
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset + 1, high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
-
- if (sector_write_failed == FALSE) {
- /* Clear the now not used entry in the cache */
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (sector_write_failed == FALSE) {
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- em_read_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- &high_byte);
- high_byte &= 0xBF;
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
-
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
- 0);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- }
- } while (++sector_retries < 10 && sector_write_failed == TRUE);
- }
-
return error;
}
@@ -5559,7 +5069,7 @@ em_read_part_num(struct em_hw *hw,
DEBUGFUNC("em_read_part_num");
/* Get word 0 from EEPROM */
- if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5567,7 +5077,7 @@ em_read_part_num(struct em_hw *hw,
*part_num = (uint32_t) (eeprom_data << 16);
/* Get word 1 from EEPROM */
- if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+ if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5591,9 +5101,9 @@ em_read_mac_addr(struct em_hw * hw)
DEBUGFUNC("em_read_mac_addr");
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
- if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5608,12 +5118,12 @@ em_read_mac_addr(struct em_hw * hw)
case em_82546_rev_3:
case em_82571:
case em_80003es2lan:
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01;
break;
}
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+ for(i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return E1000_SUCCESS;
}
@@ -5647,16 +5157,11 @@ em_init_rx_addrs(struct em_hw *hw)
* the other port. */
if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
rar_num -= 1;
- if (hw->mac_type == em_ich8lan)
- rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
+ for(i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
}
}
@@ -5685,7 +5190,7 @@ em_mc_addr_list_update(struct em_hw *hw,
uint32_t i;
uint32_t num_rar_entry;
uint32_t num_mta_entry;
-
+
DEBUGFUNC("em_mc_addr_list_update");
/* Set the new number of MC addresses that we are being requested to use. */
@@ -5694,33 +5199,26 @@ em_mc_addr_list_update(struct em_hw *hw,
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
num_rar_entry = E1000_RAR_ENTRIES;
- if (hw->mac_type == em_ich8lan)
- num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
/* Reserve a spot for the Locally Administered Address to work around
* an 82571 issue in which a reset on one port will reload the MAC on
* the other port. */
if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
num_rar_entry -= 1;
- for (i = rar_used_count; i < num_rar_entry; i++) {
+ for(i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
num_mta_entry = E1000_NUM_MTA_REGISTERS;
- if (hw->mac_type == em_ich8lan)
- num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
- for (i = 0; i < num_mta_entry; i++) {
+ for(i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- E1000_WRITE_FLUSH(hw);
}
/* Add the new addresses */
- for (i = 0; i < mc_addr_count; i++) {
+ for(i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
@@ -5772,46 +5270,24 @@ em_hash_mc_addr(struct em_hw *hw,
* LSB MSB
*/
case 0:
- if (hw->mac_type == em_ich8lan) {
- /* [47:38] i.e. 0x158 for above example address */
- hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
- } else {
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- }
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
break;
case 1:
- if (hw->mac_type == em_ich8lan) {
- /* [46:37] i.e. 0x2B1 for above example address */
- hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
- } else {
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
- }
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
break;
case 2:
- if (hw->mac_type == em_ich8lan) {
- /*[45:36] i.e. 0x163 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- } else {
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- }
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
break;
case 3:
- if (hw->mac_type == em_ich8lan) {
- /* [43:34] i.e. 0x18D for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- } else {
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
- }
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
break;
}
hash_value &= 0xFFF;
- if (hw->mac_type == em_ich8lan)
- hash_value &= 0x3FF;
return hash_value;
}
@@ -5839,8 +5315,6 @@ em_mta_set(struct em_hw *hw,
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 5) & 0x7F;
- if (hw->mac_type == em_ich8lan)
- hash_reg &= 0x1F;
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
@@ -5851,15 +5325,12 @@ em_mta_set(struct em_hw *hw,
* in the MTA, save off the previous entry before writing and
* restore the old value after writing.
*/
- if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
+ if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
- E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
}
}
@@ -5916,9 +5387,7 @@ em_rar_set(struct em_hw *hw,
}
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
@@ -5935,18 +5404,12 @@ em_write_vfta(struct em_hw *hw,
{
uint32_t temp;
- if (hw->mac_type == em_ich8lan)
- return;
-
- if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
+ if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
}
}
@@ -5963,9 +5426,6 @@ em_clear_vfta(struct em_hw *hw)
uint32_t vfta_offset = 0;
uint32_t vfta_bit_in_reg = 0;
- if (hw->mac_type == em_ich8lan)
- return;
-
if (hw->mac_type == em_82573) {
if (hw->mng_cookie.vlan_id != 0) {
/* The VFTA is a 4096b bit-field, each identifying a single VLAN
@@ -5985,7 +5445,6 @@ em_clear_vfta(struct em_hw *hw)
* manageability unit */
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH(hw);
}
}
@@ -6001,7 +5460,7 @@ em_id_led_init(struct em_hw * hw)
DEBUGFUNC("em_id_led_init");
- if (hw->mac_type < em_82540) {
+ if(hw->mac_type < em_82540) {
/* Nothing to do */
return E1000_SUCCESS;
}
@@ -6011,24 +5470,15 @@ em_id_led_init(struct em_hw * hw)
hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default;
- if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
-
- if ((hw->mac_type == em_82573) &&
- (eeprom_data == ID_LED_RESERVED_82573))
- eeprom_data = ID_LED_DEFAULT_82573;
- else if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- if (hw->mac_type == em_ich8lan)
- eeprom_data = ID_LED_DEFAULT_ICH8LAN;
- else
- eeprom_data = ID_LED_DEFAULT;
- }
- for (i = 0; i < 4; i++) {
+ if((eeprom_data== ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
+ for(i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
+ switch(temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
@@ -6045,7 +5495,7 @@ em_id_led_init(struct em_hw * hw)
/* Do nothing */
break;
}
- switch (temp) {
+ switch(temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
@@ -6079,7 +5529,7 @@ em_setup_led(struct em_hw *hw)
DEBUGFUNC("em_setup_led");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -6093,16 +5543,16 @@ em_setup_led(struct em_hw *hw)
/* Turn off PHY Smart Power Down (if enabled) */
ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&hw->phy_spd_default);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
(uint16_t)(hw->phy_spd_default &
~IGP01E1000_GMII_SPD));
- if (ret_val)
+ if(ret_val)
return ret_val;
- /* FALLTHROUGH */
+ /* Fall Through */
default:
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
ledctl = E1000_READ_REG(hw, LEDCTL);
/* Save current LEDCTL settings */
hw->ledctl_default = ledctl;
@@ -6113,7 +5563,7 @@ em_setup_led(struct em_hw *hw)
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if (hw->media_type == em_media_type_copper)
+ } else if(hw->media_type == em_media_type_copper)
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
break;
}
@@ -6121,45 +5571,6 @@ em_setup_led(struct em_hw *hw)
return E1000_SUCCESS;
}
-
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * em_id_led_init()
- * Call em_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_blink_led_start(struct em_hw *hw)
-{
- int16_t i;
- uint32_t ledctl_blink = 0;
-
- DEBUGFUNC("em_id_led_blink_on");
-
- if (hw->mac_type < em_82571) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
- if (hw->media_type == em_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
- ledctl_blink = hw->ledctl_mode2;
- for (i=0; i < 4; i++)
- if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
- }
-
- E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
-}
-
/******************************************************************************
* Restores the saved state of the SW controlable LED.
*
@@ -6172,7 +5583,7 @@ em_cleanup_led(struct em_hw *hw)
DEBUGFUNC("em_cleanup_led");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -6186,14 +5597,10 @@ em_cleanup_led(struct em_hw *hw)
/* Turn on PHY Smart Power Down (if previously enabled) */
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
hw->phy_spd_default);
- if (ret_val)
+ if(ret_val)
return ret_val;
- /* FALLTHROUGH */
+ /* Fall Through */
default:
- if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
- break;
- }
/* Restore LEDCTL settings */
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
break;
@@ -6214,7 +5621,7 @@ em_led_on(struct em_hw *hw)
DEBUGFUNC("em_led_on");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -6223,7 +5630,7 @@ em_led_on(struct em_hw *hw)
ctrl |= E1000_CTRL_SWDPIO0;
break;
case em_82544:
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
@@ -6234,14 +5641,11 @@ em_led_on(struct em_hw *hw)
}
break;
default:
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
- } else if (hw->media_type == em_media_type_copper) {
+ } else if(hw->media_type == em_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS;
}
@@ -6265,7 +5669,7 @@ em_led_off(struct em_hw *hw)
DEBUGFUNC("em_led_off");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -6274,7 +5678,7 @@ em_led_off(struct em_hw *hw)
ctrl |= E1000_CTRL_SWDPIO0;
break;
case em_82544:
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
@@ -6285,14 +5689,11 @@ em_led_off(struct em_hw *hw)
}
break;
default:
- if (hw->media_type == em_media_type_fiber) {
+ if(hw->media_type == em_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == em_phy_ife) {
- em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
- } else if (hw->media_type == em_media_type_copper) {
+ } else if(hw->media_type == em_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS;
}
@@ -6330,16 +5731,12 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, XOFFRXC);
temp = E1000_READ_REG(hw, XOFFTXC);
temp = E1000_READ_REG(hw, FCRUC);
-
- if (hw->mac_type != em_ich8lan) {
temp = E1000_READ_REG(hw, PRC64);
temp = E1000_READ_REG(hw, PRC127);
temp = E1000_READ_REG(hw, PRC255);
temp = E1000_READ_REG(hw, PRC511);
temp = E1000_READ_REG(hw, PRC1023);
temp = E1000_READ_REG(hw, PRC1522);
- }
-
temp = E1000_READ_REG(hw, GPRC);
temp = E1000_READ_REG(hw, BPRC);
temp = E1000_READ_REG(hw, MPRC);
@@ -6359,20 +5756,16 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, TOTH);
temp = E1000_READ_REG(hw, TPR);
temp = E1000_READ_REG(hw, TPT);
-
- if (hw->mac_type != em_ich8lan) {
temp = E1000_READ_REG(hw, PTC64);
temp = E1000_READ_REG(hw, PTC127);
temp = E1000_READ_REG(hw, PTC255);
temp = E1000_READ_REG(hw, PTC511);
temp = E1000_READ_REG(hw, PTC1023);
temp = E1000_READ_REG(hw, PTC1522);
- }
-
temp = E1000_READ_REG(hw, MPTC);
temp = E1000_READ_REG(hw, BPTC);
- if (hw->mac_type < em_82543) return;
+ if(hw->mac_type < em_82543) return;
temp = E1000_READ_REG(hw, ALGNERRC);
temp = E1000_READ_REG(hw, RXERRC);
@@ -6381,19 +5774,16 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, TSCTC);
temp = E1000_READ_REG(hw, TSCTFC);
- if (hw->mac_type <= em_82544) return;
+ if(hw->mac_type <= em_82544) return;
temp = E1000_READ_REG(hw, MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC);
- if (hw->mac_type <= em_82547_rev_2) return;
+ if(hw->mac_type <= em_82547_rev_2) return;
temp = E1000_READ_REG(hw, IAC);
temp = E1000_READ_REG(hw, ICRXOC);
-
- if (hw->mac_type == em_ich8lan) return;
-
temp = E1000_READ_REG(hw, ICRXPTC);
temp = E1000_READ_REG(hw, ICRXATC);
temp = E1000_READ_REG(hw, ICTXPTC);
@@ -6418,8 +5808,8 @@ em_reset_adaptive(struct em_hw *hw)
{
DEBUGFUNC("em_reset_adaptive");
- if (hw->adaptive_ifs) {
- if (!hw->ifs_params_forced) {
+ if(hw->adaptive_ifs) {
+ if(!hw->ifs_params_forced) {
hw->current_ifs_val = 0;
hw->ifs_min_val = IFS_MIN;
hw->ifs_max_val = IFS_MAX;
@@ -6446,12 +5836,12 @@ em_update_adaptive(struct em_hw *hw)
{
DEBUGFUNC("em_update_adaptive");
- if (hw->adaptive_ifs) {
- if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+ if(hw->adaptive_ifs) {
+ if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
+ if(hw->tx_packet_delta > MIN_NUM_XMITS) {
hw->in_ifs_mode = TRUE;
- if (hw->current_ifs_val < hw->ifs_max_val) {
- if (hw->current_ifs_val == 0)
+ if(hw->current_ifs_val < hw->ifs_max_val) {
+ if(hw->current_ifs_val == 0)
hw->current_ifs_val = hw->ifs_min_val;
else
hw->current_ifs_val += hw->ifs_step_size;
@@ -6459,7 +5849,7 @@ em_update_adaptive(struct em_hw *hw)
}
}
} else {
- if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0;
hw->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, AIT, 0);
@@ -6506,46 +5896,46 @@ em_tbi_adjust_stats(struct em_hw *hw,
* This could be simplified if all environments supported
* 64-bit integers.
*/
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
stats->gorch++;
/* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
- if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
/* Broadcast packet */
stats->bprc++;
- else if (*mac_addr & 0x01)
+ else if(*mac_addr & 0x01)
/* Multicast packet */
stats->mprc++;
- if (frame_len == hw->max_frame_size) {
+ if(frame_len == hw->max_frame_size) {
/* In this case, the hardware has overcounted the number of
* oversize frames.
*/
- if (stats->roc > 0)
+ if(stats->roc > 0)
stats->roc--;
}
/* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
- if (frame_len == 64) {
+ if(frame_len == 64) {
stats->prc64++;
stats->prc127--;
- } else if (frame_len == 127) {
+ } else if(frame_len == 127) {
stats->prc127++;
stats->prc255--;
- } else if (frame_len == 255) {
+ } else if(frame_len == 255) {
stats->prc255++;
stats->prc511--;
- } else if (frame_len == 511) {
+ } else if(frame_len == 511) {
stats->prc511++;
stats->prc1023--;
- } else if (frame_len == 1023) {
+ } else if(frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
- } else if (frame_len == 1522) {
+ } else if(frame_len == 1522) {
stats->prc1522++;
}
}
@@ -6574,7 +5964,6 @@ em_get_bus_info(struct em_hw *hw)
hw->bus_width = em_bus_width_pciex_1;
break;
case em_82571:
- case em_ich8lan:
case em_80003es2lan:
hw->bus_type = em_bus_type_pci_express;
hw->bus_speed = em_bus_speed_2500;
@@ -6585,10 +5974,10 @@ em_get_bus_info(struct em_hw *hw)
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
em_bus_type_pcix : em_bus_type_pci;
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
em_bus_speed_66 : em_bus_speed_120;
- } else if (hw->bus_type == em_bus_type_pci) {
+ } else if(hw->bus_type == em_bus_type_pci) {
hw->bus_speed = (status & E1000_STATUS_PCI66) ?
em_bus_speed_66 : em_bus_speed_33;
} else {
@@ -6673,6 +6062,8 @@ em_get_cable_length(struct em_hw *hw,
{
int32_t ret_val;
uint16_t agc_value = 0;
+ uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1;
+ uint16_t max_agc = 0;
uint16_t i, phy_data;
uint16_t cable_length;
@@ -6681,11 +6072,11 @@ em_get_cable_length(struct em_hw *hw,
*min_length = *max_length = 0;
/* Use old method for Phy older than IGP */
- if (hw->phy_type == em_phy_m88) {
+ if(hw->phy_type == em_phy_m88) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
@@ -6744,38 +6135,36 @@ em_get_cable_length(struct em_hw *hw,
return -E1000_ERR_PHY;
break;
}
- } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
- uint16_t cur_agc_value;
- uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
{IGP01E1000_PHY_AGC_A,
IGP01E1000_PHY_AGC_B,
IGP01E1000_PHY_AGC_C,
IGP01E1000_PHY_AGC_D};
/* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+ cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
- /* Value bound check. */
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0))
+ /* Array bound check. */
+ if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc == 0))
return -E1000_ERR_PHY;
- agc_value += cur_agc_value;
+ agc_value += cur_agc;
/* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
+ if(min_agc > cur_agc)
+ min_agc = cur_agc;
}
/* Remove the minimal AGC result for length < 50m */
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc_value;
+ if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
+ agc_value -= min_agc;
/* Get the average length of the remaining 3 channels */
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
@@ -6791,10 +6180,7 @@ em_get_cable_length(struct em_hw *hw,
IGP01E1000_AGC_RANGE) : 0;
*max_length = em_igp_cable_length_table[agc_value] +
IGP01E1000_AGC_RANGE;
- } else if (hw->phy_type == em_phy_igp_2 ||
- hw->phy_type == em_phy_igp_3) {
- uint16_t cur_agc_index, max_agc_index = 0;
- uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
+ } else if (hw->phy_type == em_phy_igp_2) {
uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
{IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
@@ -6806,30 +6192,22 @@ em_get_cable_length(struct em_hw *hw,
if (ret_val)
return ret_val;
- /* Getting bits 15:9, which represent the combination of course and
+ /* Getting bits 15:9, which represent the combination of course and
* fine gain values. The result is a number that can be put into
* the lookup table to obtain the approximate cable length. */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
+ cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
/* Remove min & max AGC values from calculation. */
- if (em_igp_2_cable_length_table[min_agc_index] >
- em_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (em_igp_2_cable_length_table[max_agc_index] <
- em_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += em_igp_2_cable_length_table[cur_agc_index];
+ if (em_igp_2_cable_length_table[min_agc] > em_igp_2_cable_length_table[cur_agc])
+ min_agc = cur_agc;
+ if (em_igp_2_cable_length_table[max_agc] < em_igp_2_cable_length_table[cur_agc])
+ max_agc = cur_agc;
+
+ agc_value += em_igp_2_cable_length_table[cur_agc];
}
- agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
- em_igp_2_cable_length_table[max_agc_index]);
+ agc_value -= (em_igp_2_cable_length_table[min_agc] + em_igp_2_cable_length_table[max_agc]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
@@ -6871,28 +6249,27 @@ em_check_polarity(struct em_hw *hw,
/* return the Polarity bit in the Status register. */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
+ } else if(hw->phy_type == em_phy_igp ||
hw->phy_type == em_phy_igp_2) {
/* Read the Status register to check the speed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
* find the polarity status */
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Read the GIG initialization PCS register (0x00B4) */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Check the polarity bits */
@@ -6902,13 +6279,6 @@ em_check_polarity(struct em_hw *hw,
* 100 Mbps this bit is always 0) */
*polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
}
- } else if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
- IFE_PESC_POLARITY_REVERSED_SHIFT;
}
return E1000_SUCCESS;
}
@@ -6921,7 +6291,7 @@ em_check_polarity(struct em_hw *hw,
* 1 - Downshift ocured.
*
* returns: - E1000_ERR_XXX
- * E1000_SUCCESS
+ * E1000_SUCCESS
*
* For phy's older then IGP, this function reads the Downshift bit in the Phy
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
@@ -6936,12 +6306,11 @@ em_check_downshift(struct em_hw *hw)
DEBUGFUNC("em_check_downshift");
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
+ if(hw->phy_type == em_phy_igp ||
hw->phy_type == em_phy_igp_2) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
@@ -6949,14 +6318,11 @@ em_check_downshift(struct em_hw *hw)
(hw->phy_type == em_phy_gg82563)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
- } else if (hw->phy_type == em_phy_ife) {
- /* em_phy_ife supports 10/100 speed only */
- hw->speed_downgraded = FALSE;
}
return E1000_SUCCESS;
@@ -6989,42 +6355,40 @@ em_config_dsp_after_link_change(struct em_hw *hw,
DEBUGFUNC("em_config_dsp_after_link_change");
- if (hw->phy_type != em_phy_igp)
+ if(hw->phy_type != em_phy_igp)
return E1000_SUCCESS;
- if (link_up) {
+ if(link_up) {
ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
+ if(ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if (speed == SPEED_1000) {
+ if(speed == SPEED_1000) {
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
+ em_get_cable_length(hw, &min_length, &max_length);
- if ((hw->dsp_config_state == em_dsp_config_enabled) &&
+ if((hw->dsp_config_state == em_dsp_config_enabled) &&
min_length >= em_igp_cable_length_50) {
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
hw->dsp_config_state = em_dsp_config_activated;
}
- if ((hw->ffe_config_state == em_ffe_config_enabled) &&
+ if((hw->ffe_config_state == em_ffe_config_enabled) &&
(min_length < em_igp_cable_length_50)) {
uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
@@ -7033,70 +6397,70 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* clear previous idle error counts */
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- for (i = 0; i < ffe_idle_err_timeout; i++) {
+ for(i = 0; i < ffe_idle_err_timeout; i++) {
usec_delay(1000);
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
hw->ffe_config_state = em_ffe_config_active;
ret_val = em_write_phy_reg(hw,
IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
+ if(ret_val)
return ret_val;
break;
}
- if (idle_errs)
+ if(idle_errs)
ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
}
}
}
} else {
- if (hw->dsp_config_state == em_dsp_config_activated) {
+ if(hw->dsp_config_state == em_dsp_config_activated) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
+ if(ret_val)
return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(20);
@@ -7104,40 +6468,40 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* Now enable the transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->dsp_config_state = em_dsp_config_enabled;
}
- if (hw->ffe_config_state == em_ffe_config_active) {
+ if(hw->ffe_config_state == em_ffe_config_active) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(20);
@@ -7145,7 +6509,7 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* Now enable the transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->ffe_config_state = em_ffe_config_enabled;
@@ -7170,20 +6534,20 @@ em_set_phy_mode(struct em_hw *hw)
DEBUGFUNC("em_set_phy_mode");
- if ((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
+ if((hw->mac_type == em_82545_rev_3) &&
+ (hw->media_type == em_media_type_copper)) {
ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if (ret_val) {
+ if(ret_val) {
return ret_val;
}
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ if((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if (ret_val)
+ if(ret_val)
return ret_val;
hw->phy_reset_disable = FALSE;
@@ -7211,51 +6575,39 @@ int32_t
em_set_d3_lplu_state(struct em_hw *hw,
boolean_t active)
{
- uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("em_set_d3_lplu_state");
- if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
- && hw->phy_type != em_phy_igp_3)
+ if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used for
* Dx transitions and states */
- if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
+ if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- } else if (hw->mac_type == em_ich8lan) {
- /* MAC writes into PHY register based on the state transition
- * and start auto-negotiation. SW driver can overwrite the settings
- * in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
- if (!active) {
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
+ if(!active) {
+ if(hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
- }
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
@@ -7265,13 +6617,13 @@ em_set_d3_lplu_state(struct em_hw *hw,
if (hw->smart_speed == em_smart_speed_on) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else if (hw->smart_speed == em_smart_speed_off) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
@@ -7282,41 +6634,36 @@ em_set_d3_lplu_state(struct em_hw *hw,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+ } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
+ if(hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
- }
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
@@ -7341,32 +6688,22 @@ int32_t
em_set_d0_lplu_state(struct em_hw *hw,
boolean_t active)
{
- uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("em_set_d0_lplu_state");
- if (hw->mac_type <= em_82547_rev_2)
+ if(hw->mac_type <= em_82547_rev_2)
return E1000_SUCCESS;
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
- }
if (!active) {
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
- }
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
@@ -7375,13 +6712,13 @@ em_set_d0_lplu_state(struct em_hw *hw,
if (hw->smart_speed == em_smart_speed_on) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
} else if (hw->smart_speed == em_smart_speed_off) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
@@ -7392,31 +6729,26 @@ em_set_d0_lplu_state(struct em_hw *hw,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
} else {
-
- if (hw->mac_type == em_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D0_LPLU;
+
+ phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
- }
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
}
@@ -7437,7 +6769,7 @@ em_set_vco_speed(struct em_hw *hw)
DEBUGFUNC("em_set_vco_speed");
- switch (hw->mac_type) {
+ switch(hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
@@ -7448,39 +6780,39 @@ em_set_vco_speed(struct em_hw *hw)
/* Set PHY register 30, page 5, bit 8 to 0 */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* Set PHY register 30, page 4, bit 11 to 1 */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
phy_data |= M88E1000_PHY_VCO_REG_BIT11;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
+ if(ret_val)
return ret_val;
return E1000_SUCCESS;
@@ -7496,7 +6828,7 @@ int32_t
em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
{
uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
+ uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
length = (length >> 2);
@@ -7515,7 +6847,7 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
* and also checks whether the previous command is completed.
* It busy waits in case of previous command is not completed.
*
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
+ * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
* timeout
* - E1000_SUCCESS for success.
****************************************************************************/
@@ -7539,7 +6871,7 @@ em_mng_enable_host_if(struct em_hw * hw)
msec_delay_irq(1);
}
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
DEBUGOUT("Previous command timeout failed .\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
@@ -7559,7 +6891,7 @@ em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
{
uint8_t *tmp;
uint8_t *bufptr = buffer;
- uint32_t data = 0;
+ uint32_t data;
uint16_t remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
@@ -7639,17 +6971,15 @@ em_mng_write_cmd_header(struct em_hw * hw,
buffer = (uint8_t *) hdr;
i = length;
- while (i--)
+ while(i--)
sum += buffer[i];
hdr->checksum = 0 - sum;
length >>= 2;
/* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
+ for (i = 0; i < length; i++)
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
- E1000_WRITE_FLUSH(hw);
- }
return E1000_SUCCESS;
}
@@ -7662,7 +6992,8 @@ em_mng_write_cmd_header(struct em_hw * hw,
* returns - E1000_SUCCESS for success.
****************************************************************************/
int32_t
-em_mng_write_commit(struct em_hw * hw)
+em_mng_write_commit(
+ struct em_hw * hw)
{
uint32_t hicr;
@@ -7680,18 +7011,15 @@ em_mng_write_commit(struct em_hw * hw)
* returns - TRUE when the mode is IAMT or FALSE.
****************************************************************************/
boolean_t
-em_check_mng_mode(struct em_hw *hw)
+em_check_mng_mode(
+ struct em_hw *hw)
{
uint32_t fwsm;
fwsm = E1000_READ_REG(hw, FWSM);
- if (hw->mac_type == em_ich8lan) {
- if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
- } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ if((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return TRUE;
return FALSE;
@@ -7834,31 +7162,31 @@ em_polarity_reversal_workaround(struct em_hw *hw)
/* Disable the transmitter on the PHY */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
+ if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
msec_delay_irq(100);
}
@@ -7868,40 +7196,40 @@ em_polarity_reversal_workaround(struct em_hw *hw)
/* Now we will re-enable the transmitter on the PHY */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
+ if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
+ if(ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
+ if(ret_val)
return ret_val;
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay_irq(100);
}
return E1000_SUCCESS;
@@ -7978,15 +7306,15 @@ em_disable_pciex_master(struct em_hw *hw)
em_set_pci_express_master_disable(hw);
- while (timeout) {
- if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
+ while(timeout) {
+ if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break;
else
usec_delay(100);
timeout--;
}
- if (!timeout) {
+ if(!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
@@ -8019,15 +7347,13 @@ em_get_auto_rd_done(struct em_hw *hw)
case em_82572:
case em_82573:
case em_80003es2lan:
- case em_ich8lan:
- while (timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
- break;
+ while(timeout) {
+ if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
else msec_delay(1);
timeout--;
}
- if (!timeout) {
+ if(!timeout) {
DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
return -E1000_ERR_RESET;
}
@@ -8062,13 +7388,13 @@ em_get_phy_cfg_done(struct em_hw *hw)
switch (hw->mac_type) {
default:
- msec_delay_irq(10);
+ msec_delay(10);
break;
case em_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* FALLTHROUGH */
+ /* Fall Through */
case em_82571:
case em_82572:
while (timeout) {
@@ -8108,7 +7434,7 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw)
DEBUGFUNC("em_get_hw_eeprom_semaphore");
- if (!hw->eeprom_semaphore_present)
+ if(!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
if (hw->mac_type == em_80003es2lan) {
@@ -8119,20 +7445,20 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw)
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
- while (timeout) {
+ while(timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
- if (swsm & E1000_SWSM_SWESMBI)
+ if(swsm & E1000_SWSM_SWESMBI)
break;
usec_delay(50);
timeout--;
}
- if (!timeout) {
+ if(!timeout) {
/* Release semaphores */
em_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
@@ -8157,7 +7483,7 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw)
DEBUGFUNC("em_put_hw_eeprom_semaphore");
- if (!hw->eeprom_semaphore_present)
+ if(!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
@@ -8190,16 +7516,16 @@ em_get_software_semaphore(struct em_hw *hw)
if (hw->mac_type != em_80003es2lan)
return E1000_SUCCESS;
- while (timeout) {
+ while(timeout) {
swsm = E1000_READ_REG(hw, SWSM);
/* If SMBI bit cleared, it is now set and we hold the semaphore */
- if (!(swsm & E1000_SWSM_SMBI))
+ if(!(swsm & E1000_SWSM_SMBI))
break;
msec_delay_irq(1);
timeout--;
}
- if (!timeout) {
+ if(!timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
@@ -8245,13 +7571,6 @@ int32_t
em_check_phy_reset_block(struct em_hw *hw)
{
uint32_t manc = 0;
- uint32_t fwsm = 0;
-
- if (hw->mac_type == em_ich8lan) {
- fwsm = E1000_READ_REG(hw, FWSM);
- return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
- : E1000_BLK_PHY_RESET;
- }
if (hw->mac_type > em_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
@@ -8275,854 +7594,11 @@ em_arc_subsystem_valid(struct em_hw *hw)
case em_82573:
case em_80003es2lan:
fwsm = E1000_READ_REG(hw, FWSM);
- if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
+ if((fwsm & E1000_FWSM_MODE_MASK) != 0)
return TRUE;
break;
- case em_ich8lan:
- return TRUE;
default:
break;
}
return FALSE;
}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
-{
- uint32_t gcr_reg = 0;
-
- DEBUGFUNC("em_set_pci_ex_no_snoop");
-
- if (hw->bus_type == em_bus_type_unknown)
- em_get_bus_info(hw);
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- if (no_snoop) {
- gcr_reg = E1000_READ_REG(hw, GCR);
- gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
- gcr_reg |= no_snoop;
- E1000_WRITE_REG(hw, GCR, gcr_reg);
- }
- if (hw->mac_type == em_ich8lan) {
- uint32_t ctrl_ext;
-
- E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
-
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_get_software_flag(struct em_hw *hw)
-{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_get_software_flag");
-
- if (hw->mac_type == em_ich8lan) {
- while (timeout) {
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("FW or HW locks the resource too long.\n");
- return -E1000_ERR_CONFIG;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-void
-em_release_software_flag(struct em_hw *hw)
-{
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_release_software_flag");
-
- if (hw->mac_type == em_ich8lan) {
- extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- }
-
- return;
-}
-
-/***************************************************************************
- *
- * Disable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_disable_dynamic_power_down(struct em_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_ife_disable_dynamic_power_down");
-
- if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-
-/***************************************************************************
- *
- * Enable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-int32_t
-em_ife_enable_dynamic_power_down(struct em_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_ife_enable_dynamic_power_down");
-
- if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
-{
- int32_t error = E1000_SUCCESS;
- uint32_t flash_bank = 0;
- uint32_t act_offset = 0;
- uint32_t bank_offset = 0;
- uint16_t word = 0;
- uint16_t i = 0;
-
- /* We need to know which is the valid flash bank. In the event
- * that we didn't allocate eeprom_shadow_ram, we may not be
- * managing flash_bank. So it cannot be trusted and needs
- * to be updated with each read.
- */
- /* Value of bit 22 corresponds to the flash bank we're on. */
- flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
- /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
- bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- for (i = 0; i < words; i++) {
- if (hw->eeprom_shadow_ram != NULL &&
- hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
- data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
- } else {
- /* The NVM part needs a byte offset, hence * 2 */
- act_offset = bank_offset + ((offset + i) * 2);
- error = em_read_ich8_word(hw, act_offset, &word);
- if (error != E1000_SUCCESS)
- break;
- data[i] = word;
- }
- }
-
- em_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register. Actually, writes are written to the shadow ram cache in the hw
- * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-int32_t
-em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
-{
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- /* A driver can write to the NVM only if it has eeprom_shadow_ram
- * allocated. Subsequent reads to the modified words are read from
- * this cached structure as well. Writes will only go into this
- * cached structure unless it's followed by a call to
- * em_update_eeprom_checksum() where it will commit the changes
- * and clear the "modified" field.
- */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < words; i++) {
- if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
- hw->eeprom_shadow_ram[offset+i].modified = TRUE;
- hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
- } else {
- error = -E1000_ERR_EEPROM;
- break;
- }
- }
- } else {
- /* Drivers have the option to not allocate eeprom_shadow_ram as long
- * as they don't perform any NVM writes. An attempt in doing so
- * will result in this error.
- */
- error = -E1000_ERR_EEPROM;
- }
-
- em_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_cycle_init(struct em_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- int32_t i = 0;
-
- DEBUGFUNC("em_ich8_cycle_init");
-
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
- /* May be check the Flash Des Valid bit in Hw status */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
- return error;
- }
-
- /* Clear FCERR in Hw status by writing 1 */
- /* Clear DAEL in Hw status by writing a 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress bit to check
- * against, in order to start a new cycle or FDONE bit should be changed
- * in the hardware so that it is 1 after harware reset, which can then be
- * used as an indication whether a cycle is in progress or has been
- * completed .. we should also have some software semaphore mechanism to
- * guard FDONE or the cycle in progress bit so that two threads access to
- * those bits can be sequentiallized or a way so that 2 threads dont
- * start the cycle at the same time */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /* There is no cycle running at present, so we can start a cycle */
- /* Begin by setting Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
- error = E1000_SUCCESS;
- } else {
- /* otherwise poll for sometime so the current cycle has a chance
- * to end before giving up. */
- for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- error = E1000_SUCCESS;
- break;
- }
- usec_delay(1);
- }
- if (error == E1000_SUCCESS) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
- } else {
- DEBUGOUT("Flash controller busy, cannot get access");
- }
- }
- return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-int32_t
-em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- uint32_t i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- usec_delay(1);
- i++;
- } while (i < timeout);
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
- error = E1000_SUCCESS;
- }
- return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_data(struct em_hw *hw, uint32_t index,
- uint32_t size, uint16_t* data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_read_ich8_data");
-
- if (size < 1 || size > 2 || data == 0x0 ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- /* TODO: TBD maybe check the index against the size of flash */
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
- * sequence a few more times, else read in (shift in) the Flash Data0,
- * the order is least significant byte first msb to lsb */
- if (error == E1000_SUCCESS) {
- flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
- if (size == 1) {
- *data = (uint8_t)(flash_data & 0x000000FF);
- } else if (size == 2) {
- *data = (uint16_t)(flash_data & 0x0000FFFF);
- }
- break;
- } else {
- /* If we've gotten here, then things are probably completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
- uint16_t data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_write_ich8_data");
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- if (size == 1)
- flash_data = (uint32_t)data & 0x00FF;
- else
- flash_data = (uint32_t)data;
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
- * sequence a few more times else done */
- error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
- if (error == E1000_SUCCESS) {
- break;
- } else {
- /* If we're here, then things are most likely completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
-{
- int32_t status = E1000_SUCCESS;
- uint16_t word = 0;
-
- status = em_read_ich8_data(hw, index, 1, &word);
- if (status == E1000_SUCCESS) {
- *data = (uint8_t)word;
- }
-
- return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
-{
- int32_t error = E1000_SUCCESS;
- int32_t program_retries;
- uint8_t temp_byte;
-
- em_write_ich8_byte(hw, index, byte);
- usec_delay(100);
-
- for (program_retries = 0; program_retries < 100; program_retries++) {
- em_read_ich8_byte(hw, index, &temp_byte);
- if (temp_byte == byte)
- break;
- usec_delay(10);
- em_write_ich8_byte(hw, index, byte);
- usec_delay(100);
- }
- if (program_retries == 100)
- error = E1000_ERR_EEPROM;
-
- return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
-{
- int32_t status = E1000_SUCCESS;
- uint16_t word = (uint16_t)data;
-
- status = em_write_ich8_data(hw, index, 1, word);
-
- return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-int32_t
-em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
-{
- int32_t status = E1000_SUCCESS;
- status = em_read_ich8_data(hw, index, 2, data);
- return status;
-}
-
-/******************************************************************************
- * Writes a word to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to em_hw structure
- * index - The starting byte index of the word to read.
- * data - The word to write to the NVM.
- *****************************************************************************/
-int32_t
-em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data)
-{
- int32_t status = E1000_SUCCESS;
- status = em_write_ich8_data(hw, index, 2, data);
- return status;
-}
-
-/******************************************************************************
- * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
- * segment N is 4096 * N + flash_reg_addr.
- *
- * hw - pointer to em_hw structure
- * segment - 0 for first segment, 1 for second segment, etc.
- *****************************************************************************/
-int32_t
-em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- int32_t count = 0;
- int32_t error = E1000_ERR_EEPROM;
- int32_t iteration, seg_size;
- int32_t sector_size;
- int32_t j = 0;
- int32_t error_flag = 0;
-
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
- /* 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector can be
- * calculated as = segment * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as = segment * 4096
- * 10: Error condition
- * 11: The Hw sector size is much bigger than the size asked to
- * erase...error condition */
- if (hsfsts.hsf_status.berasesz == 0x0) {
- /* Hw sector size 256 */
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
- iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
- } else if (hsfsts.hsf_status.berasesz == 0x1) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
- iteration = 1;
- } else if (hsfsts.hsf_status.berasesz == 0x3) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
- iteration = 1;
- } else {
- return error;
- }
-
- for (j = 0; j < iteration ; j++) {
- do {
- count++;
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS) {
- error_flag = 1;
- break;
- }
-
- /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
- * Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of an index within the block into Flash
- * Linear address field in Flash Address. This probably needs to
- * be calculated here based off the on-chip segment size and the
- * software segment size assumed (4K) */
- /* TBD */
- flash_linear_address = segment * sector_size + j * seg_size;
- flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
- flash_linear_address += hw->flash_base_addr;
-
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, 1000000);
- /* Check if FCERR is set to 1. If 1, clear it and try the whole
- * sequence a few more times else Done */
- if (error == E1000_SUCCESS) {
- break;
- } else {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* repeat for some time before giving up */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- error_flag = 1;
- break;
- }
- }
- } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
- if (error_flag == 1)
- break;
- }
- if (error_flag != 1)
- error = E1000_SUCCESS;
- return error;
-}
-
-/******************************************************************************
- *
- * Reverse duplex setting without breaking the link.
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-int32_t
-em_duplex_reversal(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- if (hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data ^= MII_CR_FULL_DUPLEX;
-
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
- ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_init_lcd_from_nvm_config_region(struct em_hw *hw,
- uint32_t cnf_base_addr, uint32_t cnf_size)
-{
- uint32_t ret_val = E1000_SUCCESS;
- uint16_t word_addr, reg_data, reg_addr;
- uint16_t i;
-
- /* cnf_base_addr is in DWORD */
- word_addr = (uint16_t)(cnf_base_addr << 1);
-
- /* cnf_size is returned in size of dwords */
- for (i = 0; i < cnf_size; i++) {
- ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
- if (ret_val)
- return ret_val;
-
- ret_val = em_get_software_flag(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
-
- ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
- em_release_software_flag(hw);
- }
-
- return ret_val;
-}
-
-int32_t
-em_init_lcd_from_nvm(struct em_hw *hw)
-{
- uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
- if (hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Check if SW needs configure the PHY */
- reg_data = E1000_READ_REG(hw, FEXTNVM);
- if (!(reg_data & FEXTNVM_SW_CONFIG))
- return E1000_SUCCESS;
-
- /* Wait for basic configuration completes before proceeding*/
- loop = 0;
- do {
- reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
- usec_delay(100);
- loop++;
- } while ((!reg_data) && (loop < 50));
-
- /* Clear the Init Done bit for the next init event */
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
- E1000_WRITE_REG(hw, STATUS, reg_data);
-
- /* Make sure HW does not configure LCD from PHY extended configuration
- before SW configuration */
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
- reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
- cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
- cnf_size >>= 16;
- if (cnf_size) {
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
- /* cnf_base_addr is in DWORD */
- cnf_base_addr >>= 16;
-
- /* Configure LCD from extended configuration region. */
- ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
- cnf_size);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}