summaryrefslogtreecommitdiff
path: root/sys/dev/raidframe/rf_dagdegwr.c
diff options
context:
space:
mode:
authorNiklas Hallqvist <niklas@cvs.openbsd.org>1999-02-16 00:03:34 +0000
committerNiklas Hallqvist <niklas@cvs.openbsd.org>1999-02-16 00:03:34 +0000
commit086450a69044f3ede65845d9a616116db9a6d006 (patch)
treea91a7d8f967737b7eed23cb127849d08e3af4d63 /sys/dev/raidframe/rf_dagdegwr.c
parent41fb84abc5659cc1a368cd59d7929ddf756c3297 (diff)
Merge from NetBSD, mostly indentation
Diffstat (limited to 'sys/dev/raidframe/rf_dagdegwr.c')
-rw-r--r--sys/dev/raidframe/rf_dagdegwr.c1502
1 files changed, 689 insertions, 813 deletions
diff --git a/sys/dev/raidframe/rf_dagdegwr.c b/sys/dev/raidframe/rf_dagdegwr.c
index a712dd1e83b..407e69cdac6 100644
--- a/sys/dev/raidframe/rf_dagdegwr.c
+++ b/sys/dev/raidframe/rf_dagdegwr.c
@@ -1,5 +1,5 @@
-/* $OpenBSD: rf_dagdegwr.c,v 1.1 1999/01/11 14:29:07 niklas Exp $ */
-/* $NetBSD: rf_dagdegwr.c,v 1.1 1998/11/13 04:20:27 oster Exp $ */
+/* $OpenBSD: rf_dagdegwr.c,v 1.2 1999/02/16 00:02:29 niklas Exp $ */
+/* $NetBSD: rf_dagdegwr.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@@ -32,108 +32,6 @@
*
* code for creating degraded write DAGs
*
- * :
- * Log: rf_dagdegwr.c,v
- * Revision 1.23 1996/11/05 21:10:40 jimz
- * failed pda generalization
- *
- * Revision 1.22 1996/08/23 14:49:48 jimz
- * remove bogus assert from small write double deg DAG generator
- *
- * Revision 1.21 1996/08/21 05:09:44 jimz
- * get rid of bogus fakery in DoubleDegSmallWrite
- *
- * Revision 1.20 1996/08/21 04:14:35 jimz
- * cleanup doubledegsmallwrite
- * NOTE: we need doubledeglargewrite
- *
- * Revision 1.19 1996/08/19 21:39:38 jimz
- * CommonCreateSimpleDegradedWriteDAG() was unable to correctly create DAGs for
- * complete stripe overwrite accesses- it assumed the necessity to read old
- * data. Rather than do the "right" thing, and risk breaking a critical DAG so
- * close to release, I made a no-op read node to stick in and link up in this
- * case. Seems to work.
- *
- * Revision 1.18 1996/07/31 15:35:34 jimz
- * evenodd changes; bugfixes for double-degraded archs, generalize
- * some formerly PQ-only functions
- *
- * Revision 1.17 1996/07/28 20:31:39 jimz
- * i386netbsd port
- * true/false fixup
- *
- * Revision 1.16 1996/07/27 23:36:08 jimz
- * Solaris port of simulator
- *
- * Revision 1.15 1996/07/27 16:30:19 jimz
- * cleanup sweep
- *
- * Revision 1.14 1996/07/22 19:52:16 jimz
- * switched node params to RF_DagParam_t, a union of
- * a 64-bit int and a void *, for better portability
- * attempted hpux port, but failed partway through for
- * lack of a single C compiler capable of compiling all
- * source files
- *
- * Revision 1.13 1996/06/09 02:36:46 jimz
- * lots of little crufty cleanup- fixup whitespace
- * issues, comment #ifdefs, improve typing in some
- * places (esp size-related)
- *
- * Revision 1.12 1996/06/07 22:26:27 jimz
- * type-ify which_ru (RF_ReconUnitNum_t)
- *
- * Revision 1.11 1996/06/07 21:33:04 jimz
- * begin using consistent types for sector numbers,
- * stripe numbers, row+col numbers, recon unit numbers
- *
- * Revision 1.10 1996/05/31 22:26:54 jimz
- * fix a lot of mapping problems, memory allocation problems
- * found some weird lock issues, fixed 'em
- * more code cleanup
- *
- * Revision 1.9 1996/05/30 11:29:41 jimz
- * Numerous bug fixes. Stripe lock release code disagreed with the taking code
- * about when stripes should be locked (I made it consistent: no parity, no lock)
- * There was a lot of extra serialization of I/Os which I've removed- a lot of
- * it was to calculate values for the cache code, which is no longer with us.
- * More types, function, macro cleanup. Added code to properly quiesce the array
- * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
- * before. Fixed memory allocation, freeing bugs.
- *
- * Revision 1.8 1996/05/27 18:56:37 jimz
- * more code cleanup
- * better typing
- * compiles in all 3 environments
- *
- * Revision 1.7 1996/05/24 22:17:04 jimz
- * continue code + namespace cleanup
- * typed a bunch of flags
- *
- * Revision 1.6 1996/05/24 04:28:55 jimz
- * release cleanup ckpt
- *
- * Revision 1.5 1996/05/23 21:46:35 jimz
- * checkpoint in code cleanup (release prep)
- * lots of types, function names have been fixed
- *
- * Revision 1.4 1996/05/23 00:33:23 jimz
- * code cleanup: move all debug decls to rf_options.c, all extern
- * debug decls to rf_options.h, all debug vars preceded by rf_
- *
- * Revision 1.3 1996/05/18 19:51:34 jimz
- * major code cleanup- fix syntax, make some types consistent,
- * add prototypes, clean out dead code, et cetera
- *
- * Revision 1.2 1996/05/08 21:01:24 jimz
- * fixed up enum type names that were conflicting with other
- * enums and function names (ie, "panic")
- * future naming trends will be towards RF_ and rf_ for
- * everything raidframe-related
- *
- * Revision 1.1 1996/05/03 19:21:50 wvcii
- * Initial revision
- *
*/
#include "rf_types.h"
@@ -152,7 +50,7 @@
/******************************************************************************
*
* General comments on DAG creation:
- *
+ *
* All DAGs in this file use roll-away error recovery. Each DAG has a single
* commit node, usually called "Cmt." If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
@@ -176,37 +74,39 @@
* the DAG creation routines to be replaced at this single point.
*/
-static RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
+static
+RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
{
- rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
- flags, allocList,1, rf_RecoveryXorFunc, RF_TRUE);
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
+ flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
}
-void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
- RF_Raid_t *raidPtr;
- RF_AccessStripeMap_t *asmap;
- RF_DagHeader_t *dag_h;
- void *bp;
- RF_RaidAccessFlags_t flags;
- RF_AllocListElem_t *allocList;
+void
+rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+ RF_DagHeader_t *dag_h;
+ void *bp;
+ RF_RaidAccessFlags_t flags;
+ RF_AllocListElem_t *allocList;
{
- RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
- RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
-
- RF_ASSERT( asmap->numDataFailed == 1 );
- dag_h->creator = "DegradedWriteDAG";
-
- /* if the access writes only a portion of the failed unit, and also writes
- * some portion of at least one surviving unit, we create two DAGs, one for
- * the failed component and one for the non-failed component, and do them
- * sequentially. Note that the fact that we're accessing only a portion of
- * the failed unit indicates that the access either starts or ends in the
- * failed unit, and hence we need create only two dags. This is inefficient
- * in that the same data or parity can get read and written twice using this
- * structure. I need to fix this to do the access all at once.
- */
- RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
- rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "DegradedWriteDAG";
+
+ /* if the access writes only a portion of the failed unit, and also
+ * writes some portion of at least one surviving unit, we create two
+ * DAGs, one for the failed component and one for the non-failed
+ * component, and do them sequentially. Note that the fact that we're
+ * accessing only a portion of the failed unit indicates that the
+ * access either starts or ends in the failed unit, and hence we need
+ * create only two dags. This is inefficient in that the same data or
+ * parity can get read and written twice using this structure. I need
+ * to fix this to do the access all at once. */
+ RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
+ rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
}
@@ -250,363 +150,364 @@ void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
* is used.
*****************************************************************************/
-void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
- allocList, nfaults, redFunc, allowBufferRecycle)
- RF_Raid_t *raidPtr;
- RF_AccessStripeMap_t *asmap;
- RF_DagHeader_t *dag_h;
- void *bp;
- RF_RaidAccessFlags_t flags;
- RF_AllocListElem_t *allocList;
- int nfaults;
- int (*redFunc)(RF_DagNode_t *);
- int allowBufferRecycle;
+void
+rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, nfaults, redFunc, allowBufferRecycle)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+ RF_DagHeader_t *dag_h;
+ void *bp;
+ RF_RaidAccessFlags_t flags;
+ RF_AllocListElem_t *allocList;
+ int nfaults;
+ int (*redFunc) (RF_DagNode_t *);
+ int allowBufferRecycle;
{
- int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, rdnodesFaked;
- RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
- RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
- RF_SectorCount_t sectorsPerSU;
- RF_ReconUnitNum_t which_ru;
- char *xorTargetBuf = NULL; /* the target buffer for the XOR operation */
- char *overlappingPDAs; /* a temporary array of flags */
- RF_AccessStripeMapHeader_t *new_asm_h[2];
- RF_PhysDiskAddr_t *pda, *parityPDA;
- RF_StripeNum_t parityStripeID;
- RF_PhysDiskAddr_t *failedPDA;
- RF_RaidLayout_t *layoutPtr;
-
- layoutPtr = &(raidPtr->Layout);
- parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
- &which_ru);
- sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
- /* failedPDA points to the pda within the asm that targets the failed disk */
- failedPDA = asmap->failedPDAs[0];
-
- if (rf_dagDebug)
- printf("[Creating degraded-write DAG]\n");
-
- RF_ASSERT( asmap->numDataFailed == 1 );
- dag_h->creator = "SimpleDegradedWriteDAG";
-
- /*
- * Generate two ASMs identifying the surviving data
- * we need in order to recover the lost data.
- */
- /* overlappingPDAs array must be zero'd */
- RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
- rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
- &nXorBufs, NULL, overlappingPDAs, allocList);
-
- /* create all the nodes at once */
- nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is generated
- * for the failed pda */
-
- nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
- ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
- /*
- * XXX
- *
- * There's a bug with a complete stripe overwrite- that means 0 reads
- * of old data, and the rest of the DAG generation code doesn't like
- * that. A release is coming, and I don't wanna risk breaking a critical
- * DAG generator, so here's what I'm gonna do- if there's no read nodes,
- * I'm gonna fake there being a read node, and I'm gonna swap in a
- * no-op node in its place (to make all the link-up code happy).
- * This should be fixed at some point. --jimz
- */
- if (nRrdNodes == 0) {
- nRrdNodes = 1;
- rdnodesFaked = 1;
- }
- else {
- rdnodesFaked = 0;
- }
- /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
- nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
- RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
- (RF_DagNode_t *), allocList);
- i = 0;
- blockNode = &nodes[i]; i += 1;
- commitNode = &nodes[i]; i += 1;
- unblockNode = &nodes[i]; i += 1;
- termNode = &nodes[i]; i += 1;
- xorNode = &nodes[i]; i += 1;
- wnpNode = &nodes[i]; i += 1;
- wndNodes = &nodes[i]; i += nWndNodes;
- rrdNodes = &nodes[i]; i += nRrdNodes;
- if (nfaults == 2) {
- wnqNode = &nodes[i]; i += 1;
- }
- else {
- wnqNode = NULL;
- }
- RF_ASSERT(i == nNodes);
-
- /* this dag can not commit until all rrd and xor Nodes have completed */
- dag_h->numCommitNodes = 1;
- dag_h->numCommits = 0;
- dag_h->numSuccedents = 1;
-
- RF_ASSERT( nRrdNodes > 0 );
- rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
- NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
- rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
- NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
- rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
- NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
- rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
- NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
- rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
- nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList);
-
- /*
- * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
- * the failed buffer, save a pointer to it so we can use it as the target
- * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
- * a buffer is the same size as the failed buffer, it must also be at the
- * same alignment within the SU.
- */
- i = 0;
- if (new_asm_h[0]) {
- for (i=0, pda=new_asm_h[0]->stripeMap->physInfo;
- i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
- i++, pda=pda->next)
- {
- rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
- rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
- RF_ASSERT(pda);
- rrdNodes[i].params[0].p = pda;
- rrdNodes[i].params[1].p = pda->bufPtr;
- rrdNodes[i].params[2].v = parityStripeID;
- rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
- }
- }
- /* i now equals the number of stripe units accessed in new_asm_h[0] */
- if (new_asm_h[1]) {
- for (j=0,pda=new_asm_h[1]->stripeMap->physInfo;
- j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
- j++, pda=pda->next)
- {
- rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
- rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
- RF_ASSERT(pda);
- rrdNodes[i+j].params[0].p = pda;
- rrdNodes[i+j].params[1].p = pda->bufPtr;
- rrdNodes[i+j].params[2].v = parityStripeID;
- rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
- if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
- xorTargetBuf = pda->bufPtr;
- }
- }
- if (rdnodesFaked) {
- /*
- * This is where we'll init that fake noop read node
- * (XXX should the wakeup func be different?)
- */
- rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
- NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
- }
-
- /*
- * Make a PDA for the parity unit. The parity PDA should start at
- * the same offset into the SU as the failed PDA.
- */
- /*
- * Danner comment:
- * I don't think this copy is really necessary.
- * We are in one of two cases here.
- * (1) The entire failed unit is written. Then asmap->parityInfo will
- * describe the entire parity.
- * (2) We are only writing a subset of the failed unit and nothing
- * else. Then the asmap->parityInfo describes the failed unit and
- * the copy can also be avoided.
- */
-
- RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
- parityPDA->row = asmap->parityInfo->row;
- parityPDA->col = asmap->parityInfo->col;
- parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
- * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
- parityPDA->numSector = failedPDA->numSector;
-
- if (!xorTargetBuf) {
- RF_CallocAndAdd(xorTargetBuf, 1,
- rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
- }
-
- /* init the Wnp node */
- rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
- rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
- wnpNode->params[0].p = parityPDA;
- wnpNode->params[1].p = xorTargetBuf;
- wnpNode->params[2].v = parityStripeID;
- wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
-
- /* fill in the Wnq Node */
- if (nfaults == 2) {
- {
- RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
- (RF_PhysDiskAddr_t *), allocList);
- parityPDA->row = asmap->qInfo->row;
- parityPDA->col = asmap->qInfo->col;
- parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
- * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
- parityPDA->numSector = failedPDA->numSector;
-
- rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
- rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
- wnqNode->params[0].p = parityPDA;
- RF_CallocAndAdd(xorNode->results[1], 1,
- rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
- wnqNode->params[1].p = xorNode->results[1];
- wnqNode->params[2].v = parityStripeID;
- wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
- }
- }
-
- /* fill in the Wnd nodes */
- for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) {
- if (pda == failedPDA) {
- i--;
- continue;
- }
- rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
- rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
- RF_ASSERT(pda);
- wndNodes[i].params[0].p = pda;
- wndNodes[i].params[1].p = pda->bufPtr;
- wndNodes[i].params[2].v = parityStripeID;
- wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
- }
-
- /* fill in the results of the xor node */
- xorNode->results[0] = xorTargetBuf;
-
- /* fill in the params of the xor node */
-
- paramNum=0;
- if (rdnodesFaked == 0) {
- for (i=0; i<nRrdNodes; i++) {
- /* all the Rrd nodes need to be xored together */
- xorNode->params[paramNum++] = rrdNodes[i].params[0];
- xorNode->params[paramNum++] = rrdNodes[i].params[1];
- }
- }
- for (i=0; i < nWndNodes; i++) {
- /* any Wnd nodes that overlap the failed access need to be xored in */
- if (overlappingPDAs[i]) {
- RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
- bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t));
- rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
- xorNode->params[paramNum++].p = pda;
- xorNode->params[paramNum++].p = pda->bufPtr;
- }
- }
- RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
-
- /*
- * Install the failed PDA into the xor param list so that the
- * new data gets xor'd in.
- */
- xorNode->params[paramNum++].p = failedPDA;
- xorNode->params[paramNum++].p = failedPDA->bufPtr;
-
- /*
- * The last 2 params to the recovery xor node are always the failed
- * PDA and the raidPtr. install the failedPDA even though we have just
- * done so above. This allows us to use the same XOR function for both
- * degraded reads and degraded writes.
- */
- xorNode->params[paramNum++].p = failedPDA;
- xorNode->params[paramNum++].p = raidPtr;
- RF_ASSERT( paramNum == 2*nXorBufs+2 );
-
- /*
- * Code to link nodes begins here
- */
-
- /* link header to block node */
- RF_ASSERT(blockNode->numAntecedents == 0);
- dag_h->succedents[0] = blockNode;
-
- /* link block node to rd nodes */
- RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
- for (i = 0; i < nRrdNodes; i++) {
- RF_ASSERT(rrdNodes[i].numAntecedents == 1);
- blockNode->succedents[i] = &rrdNodes[i];
- rrdNodes[i].antecedents[0] = blockNode;
- rrdNodes[i].antType[0] = rf_control;
- }
-
- /* link read nodes to xor node*/
- RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
- for (i = 0; i < nRrdNodes; i++) {
- RF_ASSERT(rrdNodes[i].numSuccedents == 1);
- rrdNodes[i].succedents[0] = xorNode;
- xorNode->antecedents[i] = &rrdNodes[i];
- xorNode->antType[i] = rf_trueData;
- }
-
- /* link xor node to commit node */
- RF_ASSERT(xorNode->numSuccedents == 1);
- RF_ASSERT(commitNode->numAntecedents == 1);
- xorNode->succedents[0] = commitNode;
- commitNode->antecedents[0] = xorNode;
- commitNode->antType[0] = rf_control;
-
- /* link commit node to wnd nodes */
- RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
- for (i = 0; i < nWndNodes; i++) {
- RF_ASSERT(wndNodes[i].numAntecedents == 1);
- commitNode->succedents[i] = &wndNodes[i];
- wndNodes[i].antecedents[0] = commitNode;
- wndNodes[i].antType[0] = rf_control;
- }
-
- /* link the commit node to wnp, wnq nodes */
- RF_ASSERT(wnpNode->numAntecedents == 1);
- commitNode->succedents[nWndNodes] = wnpNode;
- wnpNode->antecedents[0] = commitNode;
- wnpNode->antType[0] = rf_control;
- if (nfaults == 2) {
- RF_ASSERT(wnqNode->numAntecedents == 1);
- commitNode->succedents[nWndNodes + 1] = wnqNode;
- wnqNode->antecedents[0] = commitNode;
- wnqNode->antType[0] = rf_control;
- }
-
- /* link write new data nodes to unblock node */
- RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
- for(i = 0; i < nWndNodes; i++) {
- RF_ASSERT(wndNodes[i].numSuccedents == 1);
- wndNodes[i].succedents[0] = unblockNode;
- unblockNode->antecedents[i] = &wndNodes[i];
- unblockNode->antType[i] = rf_control;
- }
-
- /* link write new parity node to unblock node */
- RF_ASSERT(wnpNode->numSuccedents == 1);
- wnpNode->succedents[0] = unblockNode;
- unblockNode->antecedents[nWndNodes] = wnpNode;
- unblockNode->antType[nWndNodes] = rf_control;
-
- /* link write new q node to unblock node */
- if (nfaults == 2) {
- RF_ASSERT(wnqNode->numSuccedents == 1);
- wnqNode->succedents[0] = unblockNode;
- unblockNode->antecedents[nWndNodes+1] = wnqNode;
- unblockNode->antType[nWndNodes+1] = rf_control;
- }
-
- /* link unblock node to term node */
- RF_ASSERT(unblockNode->numSuccedents == 1);
- RF_ASSERT(termNode->numAntecedents == 1);
- RF_ASSERT(termNode->numSuccedents == 0);
- unblockNode->succedents[0] = termNode;
- termNode->antecedents[0] = unblockNode;
- termNode->antType[0] = rf_control;
-}
+ int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
+ rdnodesFaked;
+ RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
+ RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
+ RF_SectorCount_t sectorsPerSU;
+ RF_ReconUnitNum_t which_ru;
+ char *xorTargetBuf = NULL; /* the target buffer for the XOR
+ * operation */
+ char *overlappingPDAs;/* a temporary array of flags */
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_PhysDiskAddr_t *pda, *parityPDA;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *failedPDA;
+ RF_RaidLayout_t *layoutPtr;
+
+ layoutPtr = &(raidPtr->Layout);
+ parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
+ &which_ru);
+ sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
+ /* failedPDA points to the pda within the asm that targets the failed
+ * disk */
+ failedPDA = asmap->failedPDAs[0];
+
+ if (rf_dagDebug)
+ printf("[Creating degraded-write DAG]\n");
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "SimpleDegradedWriteDAG";
+
+ /*
+ * Generate two ASMs identifying the surviving data
+ * we need in order to recover the lost data.
+ */
+ /* overlappingPDAs array must be zero'd */
+ RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
+ rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
+ &nXorBufs, NULL, overlappingPDAs, allocList);
+
+ /* create all the nodes at once */
+ nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
+ * generated for the
+ * failed pda */
+
+ nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
+ ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
+ /*
+ * XXX
+ *
+ * There's a bug with a complete stripe overwrite- that means 0 reads
+ * of old data, and the rest of the DAG generation code doesn't like
+ * that. A release is coming, and I don't wanna risk breaking a critical
+ * DAG generator, so here's what I'm gonna do- if there's no read nodes,
+ * I'm gonna fake there being a read node, and I'm gonna swap in a
+ * no-op node in its place (to make all the link-up code happy).
+ * This should be fixed at some point. --jimz
+ */
+ if (nRrdNodes == 0) {
+ nRrdNodes = 1;
+ rdnodesFaked = 1;
+ } else {
+ rdnodesFaked = 0;
+ }
+ /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
+ nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ xorNode = &nodes[i];
+ i += 1;
+ wnpNode = &nodes[i];
+ i += 1;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ if (nfaults == 2) {
+ wnqNode = &nodes[i];
+ i += 1;
+ } else {
+ wnqNode = NULL;
+ }
+ RF_ASSERT(i == nNodes);
+
+ /* this dag can not commit until all rrd and xor Nodes have completed */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ RF_ASSERT(nRrdNodes > 0);
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
+ nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
+
+ /*
+ * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
+ * the failed buffer, save a pointer to it so we can use it as the target
+ * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
+ * a buffer is the same size as the failed buffer, it must also be at the
+ * same alignment within the SU.
+ */
+ i = 0;
+ if (new_asm_h[0]) {
+ for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
+ i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ i++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i].params[0].p = pda;
+ rrdNodes[i].params[1].p = pda->bufPtr;
+ rrdNodes[i].params[2].v = parityStripeID;
+ rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* i now equals the number of stripe units accessed in new_asm_h[0] */
+ if (new_asm_h[1]) {
+ for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
+ j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ j++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i + j].params[0].p = pda;
+ rrdNodes[i + j].params[1].p = pda->bufPtr;
+ rrdNodes[i + j].params[2].v = parityStripeID;
+ rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
+ xorTargetBuf = pda->bufPtr;
+ }
+ }
+ if (rdnodesFaked) {
+ /*
+ * This is where we'll init that fake noop read node
+ * (XXX should the wakeup func be different?)
+ */
+ rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
+ }
+ /*
+ * Make a PDA for the parity unit. The parity PDA should start at
+ * the same offset into the SU as the failed PDA.
+ */
+ /* Danner comment: I don't think this copy is really necessary. We are
+ * in one of two cases here. (1) The entire failed unit is written.
+ * Then asmap->parityInfo will describe the entire parity. (2) We are
+ * only writing a subset of the failed unit and nothing else. Then the
+ * asmap->parityInfo describes the failed unit and the copy can also
+ * be avoided. */
+
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->parityInfo->row;
+ parityPDA->col = asmap->parityInfo->col;
+ parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ if (!xorTargetBuf) {
+ RF_CallocAndAdd(xorTargetBuf, 1,
+ rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
+ }
+ /* init the Wnp node */
+ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
+ wnpNode->params[0].p = parityPDA;
+ wnpNode->params[1].p = xorTargetBuf;
+ wnpNode->params[2].v = parityStripeID;
+ wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ /* fill in the Wnq Node */
+ if (nfaults == 2) {
+ {
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
+ (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->qInfo->row;
+ parityPDA->col = asmap->qInfo->col;
+ parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
+ wnqNode->params[0].p = parityPDA;
+ RF_CallocAndAdd(xorNode->results[1], 1,
+ rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
+ wnqNode->params[1].p = xorNode->results[1];
+ wnqNode->params[2].v = parityStripeID;
+ wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* fill in the Wnd nodes */
+ for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ continue;
+ }
+ rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ /* fill in the results of the xor node */
+ xorNode->results[0] = xorTargetBuf;
+
+ /* fill in the params of the xor node */
+
+ paramNum = 0;
+ if (rdnodesFaked == 0) {
+ for (i = 0; i < nRrdNodes; i++) {
+ /* all the Rrd nodes need to be xored together */
+ xorNode->params[paramNum++] = rrdNodes[i].params[0];
+ xorNode->params[paramNum++] = rrdNodes[i].params[1];
+ }
+ }
+ for (i = 0; i < nWndNodes; i++) {
+ /* any Wnd nodes that overlap the failed access need to be
+ * xored in */
+ if (overlappingPDAs[i]) {
+ RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
+ xorNode->params[paramNum++].p = pda;
+ xorNode->params[paramNum++].p = pda->bufPtr;
+ }
+ }
+ RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
+
+ /*
+ * Install the failed PDA into the xor param list so that the
+ * new data gets xor'd in.
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = failedPDA->bufPtr;
+
+ /*
+ * The last 2 params to the recovery xor node are always the failed
+ * PDA and the raidPtr. install the failedPDA even though we have just
+ * done so above. This allows us to use the same XOR function for both
+ * degraded reads and degraded writes.
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = raidPtr;
+ RF_ASSERT(paramNum == 2 * nXorBufs + 2);
+
+ /*
+ * Code to link nodes begins here
+ */
+
+ /* link header to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* link block node to rd nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rrdNodes[i];
+ rrdNodes[i].antecedents[0] = blockNode;
+ rrdNodes[i].antType[0] = rf_control;
+ }
+
+ /* link read nodes to xor node */
+ RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ rrdNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[i] = &rrdNodes[i];
+ xorNode->antType[i] = rf_trueData;
+ }
+
+ /* link xor node to commit node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ xorNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = xorNode;
+ commitNode->antType[0] = rf_control;
+
+ /* link commit node to wnd nodes */
+ RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes[i].numAntecedents == 1);
+ commitNode->succedents[i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = commitNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+
+ /* link the commit node to wnp, wnq nodes */
+ RF_ASSERT(wnpNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes] = wnpNode;
+ wnpNode->antecedents[0] = commitNode;
+ wnpNode->antType[0] = rf_control;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes + 1] = wnqNode;
+ wnqNode->antecedents[0] = commitNode;
+ wnqNode->antType[0] = rf_control;
+ }
+ /* link write new data nodes to unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes[i].numSuccedents == 1);
+ wndNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+
+ /* link write new parity node to unblock node */
+ RF_ASSERT(wnpNode->numSuccedents == 1);
+ wnpNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes] = wnpNode;
+ unblockNode->antType[nWndNodes] = rf_control;
+
+ /* link write new q node to unblock node */
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numSuccedents == 1);
+ wnqNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes + 1] = wnqNode;
+ unblockNode->antType[nWndNodes + 1] = rf_control;
+ }
+ /* link unblock node to term node */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
#define CONS_PDA(if,start,num) \
pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
@@ -614,146 +515,139 @@ void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
pda_p->next = NULL; \
RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
-void rf_WriteGenerateFailedAccessASMs(
- RF_Raid_t *raidPtr,
- RF_AccessStripeMap_t *asmap,
- RF_PhysDiskAddr_t **pdap,
- int *nNodep,
- RF_PhysDiskAddr_t **pqpdap,
- int *nPQNodep,
- RF_AllocListElem_t *allocList)
+void
+rf_WriteGenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t ** pdap,
+ int *nNodep,
+ RF_PhysDiskAddr_t ** pqpdap,
+ int *nPQNodep,
+ RF_AllocListElem_t * allocList)
{
- RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
- int PDAPerDisk,i;
- RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
- int numDataCol = layoutPtr->numDataCol;
- int state;
- unsigned napdas;
- RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
- RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
- RF_PhysDiskAddr_t *pda_p;
- RF_RaidAddr_t sosAddr;
-
- /* determine how many pda's we will have to generate per unaccess stripe.
- If there is only one failed data unit, it is one; if two, possibly two,
- depending wether they overlap. */
-
- fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector);
- fone_end = fone_start + fone->numSector;
-
- if (asmap->numDataFailed==1)
- {
- PDAPerDisk = 1;
- state = 1;
- RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
- pda_p = *pqpdap;
- /* build p */
- CONS_PDA(parityInfo,fone_start,fone->numSector);
- pda_p->type = RF_PDA_TYPE_PARITY;
- pda_p++;
- /* build q */
- CONS_PDA(qInfo,fone_start,fone->numSector);
- pda_p->type = RF_PDA_TYPE_Q;
- }
- else
- {
- ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector);
- ftwo_end = ftwo_start + ftwo->numSector;
- if (fone->numSector + ftwo->numSector > secPerSU)
- {
- PDAPerDisk = 1;
- state = 2;
- RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
- pda_p = *pqpdap;
- CONS_PDA(parityInfo,0,secPerSU);
- pda_p->type = RF_PDA_TYPE_PARITY;
- pda_p++;
- CONS_PDA(qInfo,0,secPerSU);
- pda_p->type = RF_PDA_TYPE_Q;
- }
- else
- {
- PDAPerDisk = 2;
- state = 3;
- /* four of them, fone, then ftwo */
- RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
- pda_p = *pqpdap;
- CONS_PDA(parityInfo,fone_start,fone->numSector);
- pda_p->type = RF_PDA_TYPE_PARITY;
- pda_p++;
- CONS_PDA(qInfo,fone_start,fone->numSector);
- pda_p->type = RF_PDA_TYPE_Q;
- pda_p++;
- CONS_PDA(parityInfo,ftwo_start,ftwo->numSector);
- pda_p->type = RF_PDA_TYPE_PARITY;
- pda_p++;
- CONS_PDA(qInfo,ftwo_start,ftwo->numSector);
- pda_p->type = RF_PDA_TYPE_Q;
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int PDAPerDisk, i;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ int numDataCol = layoutPtr->numDataCol;
+ int state;
+ unsigned napdas;
+ RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
+ RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
+ RF_PhysDiskAddr_t *pda_p;
+ RF_RaidAddr_t sosAddr;
+
+ /* determine how many pda's we will have to generate per unaccess
+ * stripe. If there is only one failed data unit, it is one; if two,
+ * possibly two, depending wether they overlap. */
+
+ fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
+ fone_end = fone_start + fone->numSector;
+
+ if (asmap->numDataFailed == 1) {
+ PDAPerDisk = 1;
+ state = 1;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ /* build p */
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ /* build q */
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
+ ftwo_end = ftwo_start + ftwo->numSector;
+ if (fone->numSector + ftwo->numSector > secPerSU) {
+ PDAPerDisk = 1;
+ state = 2;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ PDAPerDisk = 2;
+ state = 3;
+ /* four of them, fone, then ftwo */
+ RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ pda_p++;
+ CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ }
}
- }
- /* figure out number of nonaccessed pda */
- napdas = PDAPerDisk * (numDataCol - 2);
- *nPQNodep = PDAPerDisk;
-
- *nNodep = napdas;
- if (napdas == 0) return; /* short circuit */
-
- /* allocate up our list of pda's */
-
- RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
- *pdap = pda_p;
-
- /* linkem together */
- for (i=0; i < (napdas-1); i++)
- pda_p[i].next = pda_p+(i+1);
-
- sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
- for (i=0; i < numDataCol; i++)
- {
- if ((pda_p - (*pdap)) == napdas)
- continue;
- pda_p->type = RF_PDA_TYPE_DATA;
- pda_p->raidAddress = sosAddr + (i * secPerSU);
- (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
- /* skip over dead disks */
- if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
- continue;
- switch (state)
- {
- case 1: /* fone */
- pda_p->numSector = fone->numSector;
- pda_p->raidAddress += fone_start;
- pda_p->startSector += fone_start;
- RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
- break;
- case 2: /* full stripe */
- pda_p->numSector = secPerSU;
- RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
- break;
- case 3: /* two slabs */
- pda_p->numSector = fone->numSector;
- pda_p->raidAddress += fone_start;
- pda_p->startSector += fone_start;
- RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
- pda_p++;
- pda_p->type = RF_PDA_TYPE_DATA;
- pda_p->raidAddress = sosAddr + (i * secPerSU);
- (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
- pda_p->numSector = ftwo->numSector;
- pda_p->raidAddress += ftwo_start;
- pda_p->startSector += ftwo_start;
- RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
- break;
- default:
- RF_PANIC();
+ /* figure out number of nonaccessed pda */
+ napdas = PDAPerDisk * (numDataCol - 2);
+ *nPQNodep = PDAPerDisk;
+
+ *nNodep = napdas;
+ if (napdas == 0)
+ return; /* short circuit */
+
+ /* allocate up our list of pda's */
+
+ RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ *pdap = pda_p;
+
+ /* linkem together */
+ for (i = 0; i < (napdas - 1); i++)
+ pda_p[i].next = pda_p + (i + 1);
+
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < numDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
}
- pda_p++;
- }
- RF_ASSERT (pda_p - *pdap == napdas);
- return;
+ RF_ASSERT(pda_p - *pdap == napdas);
+ return;
}
-
#define DISK_NODE_PDA(node) ((node)->params[0].p)
#define DISK_NODE_PARAMS(_node_,_p_) \
@@ -762,208 +656,190 @@ void rf_WriteGenerateFailedAccessASMs(
(_node_).params[2].v = parityStripeID; \
(_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
-void rf_DoubleDegSmallWrite(
- RF_Raid_t *raidPtr,
- RF_AccessStripeMap_t *asmap,
- RF_DagHeader_t *dag_h,
- void *bp,
- RF_RaidAccessFlags_t flags,
- RF_AllocListElem_t *allocList,
- char *redundantReadNodeName,
- char *redundantWriteNodeName,
- char *recoveryNodeName,
- int (*recovFunc)(RF_DagNode_t *))
+void
+rf_DoubleDegSmallWrite(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ char *redundantReadNodeName,
+ char *redundantWriteNodeName,
+ char *recoveryNodeName,
+ int (*recovFunc) (RF_DagNode_t *))
{
- RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
- RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes,*rqNodes, *wpNodes, *wqNodes, *termNode;
- RF_PhysDiskAddr_t *pda, *pqPDAs;
- RF_PhysDiskAddr_t *npdas;
- int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
- RF_ReconUnitNum_t which_ru;
- int nPQNodes;
- RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
-
- /* simple small write case -
- First part looks like a reconstruct-read of the failed data units.
- Then a write of all data units not failed. */
-
-
- /*
- Hdr
- |
- ------Block-
- / / \
- Rrd Rrd ... Rrd Rp Rq
- \ \ /
- -------PQ-----
- / \ \
- Wud Wp WQ
- \ | /
- --Unblock-
- |
- T
-
- Rrd = read recovery data (potentially none)
- Wud = write user data (not incl. failed disks)
- Wp = Write P (could be two)
- Wq = Write Q (could be two)
-
- */
-
- rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList);
-
- RF_ASSERT(asmap->numDataFailed == 1);
-
- nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
- nReadNodes = nRrdNodes + 2*nPQNodes;
- nWriteNodes = nWudNodes+ 2*nPQNodes;
- nNodes = 4 + nReadNodes + nWriteNodes;
-
- RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
- blockNode = nodes;
- unblockNode = blockNode+1;
- termNode = unblockNode+1;
- recoveryNode = termNode+1;
- rrdNodes = recoveryNode+1;
- rpNodes = rrdNodes + nRrdNodes;
- rqNodes = rpNodes + nPQNodes;
- wudNodes = rqNodes + nPQNodes;
- wpNodes = wudNodes + nWudNodes;
- wqNodes = wpNodes + nPQNodes;
-
- dag_h->creator = "PQ_DDSimpleSmallWrite";
- dag_h->numSuccedents = 1;
- dag_h->succedents[0] = blockNode;
- rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
- termNode->antecedents[0] = unblockNode;
- termNode->antType[0] = rf_control;
-
- /* init the block and unblock nodes */
- /* The block node has all the read nodes as successors */
- rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
- for (i=0; i < nReadNodes; i++)
- blockNode->succedents[i] = rrdNodes+i;
-
- /* The unblock node has all the writes as successors */
- rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
- for (i=0; i < nWriteNodes; i++) {
- unblockNode->antecedents[i] = wudNodes+i;
- unblockNode->antType[i] = rf_control;
- }
- unblockNode->succedents[0] = termNode;
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
+ *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
+ RF_PhysDiskAddr_t *pda, *pqPDAs;
+ RF_PhysDiskAddr_t *npdas;
+ int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ int nPQNodes;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
+
+ /* simple small write case - First part looks like a reconstruct-read
+ * of the failed data units. Then a write of all data units not
+ * failed. */
+
+
+ /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
+ * / -------PQ----- / \ \ Wud Wp WQ \ | /
+ * --Unblock- | T
+ *
+ * Rrd = read recovery data (potentially none) Wud = write user data
+ * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
+ * (could be two)
+ *
+ */
+
+ rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+
+ nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
+ nReadNodes = nRrdNodes + 2 * nPQNodes;
+ nWriteNodes = nWudNodes + 2 * nPQNodes;
+ nNodes = 4 + nReadNodes + nWriteNodes;
+
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ blockNode = nodes;
+ unblockNode = blockNode + 1;
+ termNode = unblockNode + 1;
+ recoveryNode = termNode + 1;
+ rrdNodes = recoveryNode + 1;
+ rpNodes = rrdNodes + nRrdNodes;
+ rqNodes = rpNodes + nPQNodes;
+ wudNodes = rqNodes + nPQNodes;
+ wpNodes = wudNodes + nWudNodes;
+ wqNodes = wpNodes + nPQNodes;
+
+ dag_h->creator = "PQ_DDSimpleSmallWrite";
+ dag_h->numSuccedents = 1;
+ dag_h->succedents[0] = blockNode;
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+
+ /* init the block and unblock nodes */
+ /* The block node has all the read nodes as successors */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ for (i = 0; i < nReadNodes; i++)
+ blockNode->succedents[i] = rrdNodes + i;
+
+ /* The unblock node has all the writes as successors */
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
+ for (i = 0; i < nWriteNodes; i++) {
+ unblockNode->antecedents[i] = wudNodes + i;
+ unblockNode->antType[i] = rf_control;
+ }
+ unblockNode->succedents[0] = termNode;
#define INIT_READ_NODE(node,name) \
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
(node)->succedents[0] = recoveryNode; \
(node)->antecedents[0] = blockNode; \
(node)->antType[0] = rf_control;
-
- /* build the read nodes */
- pda = npdas;
- for (i=0; i < nRrdNodes; i++, pda = pda->next) {
- INIT_READ_NODE(rrdNodes+i,"rrd");
- DISK_NODE_PARAMS(rrdNodes[i],pda);
- }
-
- /* read redundancy pdas */
- pda = pqPDAs;
- INIT_READ_NODE(rpNodes,"Rp");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(rpNodes[0],pda);
- pda++;
- INIT_READ_NODE(rqNodes, redundantReadNodeName );
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(rqNodes[0],pda);
- if (nPQNodes==2)
- {
- pda++;
- INIT_READ_NODE(rpNodes+1,"Rp");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(rpNodes[1],pda);
- pda++;
- INIT_READ_NODE(rqNodes+1,redundantReadNodeName );
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(rqNodes[1],pda);
- }
-
- /* the recovery node has all reads as precedessors and all writes as successors.
- It generates a result for every write P or write Q node.
- As parameters, it takes a pda per read and a pda per stripe of user data written.
- It also takes as the last params the raidPtr and asm.
- For results, it takes PDA for P & Q. */
-
-
- rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
- nWriteNodes, /* succesors */
- nReadNodes, /* preds */
- nReadNodes + nWudNodes + 3, /* params */
- 2 * nPQNodes, /* results */
- dag_h, recoveryNodeName, allocList);
-
-
-
- for (i=0; i < nReadNodes; i++ )
- {
- recoveryNode->antecedents[i] = rrdNodes+i;
- recoveryNode->antType[i] = rf_control;
- recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes+i);
- }
- for (i=0; i < nWudNodes; i++)
- {
- recoveryNode->succedents[i] = wudNodes+i;
- }
- recoveryNode->params[nReadNodes+nWudNodes].p = asmap->failedPDAs[0];
- recoveryNode->params[nReadNodes+nWudNodes+1].p = raidPtr;
- recoveryNode->params[nReadNodes+nWudNodes+2].p = asmap;
-
- for ( ; i < nWriteNodes; i++)
- recoveryNode->succedents[i] = wudNodes+i;
-
- pda = pqPDAs;
- recoveryNode->results[0] = pda;
- pda++;
- recoveryNode->results[1] = pda;
- if ( nPQNodes == 2)
- {
- pda++;
- recoveryNode->results[2] = pda;
- pda++;
- recoveryNode->results[3] = pda;
- }
-
- /* fill writes */
+
+ /* build the read nodes */
+ pda = npdas;
+ for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
+ INIT_READ_NODE(rrdNodes + i, "rrd");
+ DISK_NODE_PARAMS(rrdNodes[i], pda);
+ }
+
+ /* read redundancy pdas */
+ pda = pqPDAs;
+ INIT_READ_NODE(rpNodes, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[0], pda);
+ pda++;
+ INIT_READ_NODE(rqNodes, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_READ_NODE(rpNodes + 1, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[1], pda);
+ pda++;
+ INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[1], pda);
+ }
+ /* the recovery node has all reads as precedessors and all writes as
+ * successors. It generates a result for every write P or write Q
+ * node. As parameters, it takes a pda per read and a pda per stripe
+ * of user data written. It also takes as the last params the raidPtr
+ * and asm. For results, it takes PDA for P & Q. */
+
+
+ rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
+ nWriteNodes, /* succesors */
+ nReadNodes, /* preds */
+ nReadNodes + nWudNodes + 3, /* params */
+ 2 * nPQNodes, /* results */
+ dag_h, recoveryNodeName, allocList);
+
+
+
+ for (i = 0; i < nReadNodes; i++) {
+ recoveryNode->antecedents[i] = rrdNodes + i;
+ recoveryNode->antType[i] = rf_control;
+ recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
+ }
+ for (i = 0; i < nWudNodes; i++) {
+ recoveryNode->succedents[i] = wudNodes + i;
+ }
+ recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
+ recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
+ recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
+
+ for (; i < nWriteNodes; i++)
+ recoveryNode->succedents[i] = wudNodes + i;
+
+ pda = pqPDAs;
+ recoveryNode->results[0] = pda;
+ pda++;
+ recoveryNode->results[1] = pda;
+ if (nPQNodes == 2) {
+ pda++;
+ recoveryNode->results[2] = pda;
+ pda++;
+ recoveryNode->results[3] = pda;
+ }
+ /* fill writes */
#define INIT_WRITE_NODE(node,name) \
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
(node)->succedents[0] = unblockNode; \
(node)->antecedents[0] = recoveryNode; \
(node)->antType[0] = rf_control;
- pda = asmap->physInfo;
- for (i=0; i < nWudNodes; i++)
- {
- INIT_WRITE_NODE(wudNodes+i,"Wd");
- DISK_NODE_PARAMS(wudNodes[i],pda);
- recoveryNode->params[nReadNodes+i].p = DISK_NODE_PDA(wudNodes+i);
- pda = pda->next;
- }
- /* write redundancy pdas */
- pda = pqPDAs;
- INIT_WRITE_NODE(wpNodes,"Wp");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(wpNodes[0],pda);
- pda++;
- INIT_WRITE_NODE(wqNodes,"Wq");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(wqNodes[0],pda);
- if (nPQNodes==2)
- {
- pda++;
- INIT_WRITE_NODE(wpNodes+1,"Wp");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(wpNodes[1],pda);
- pda++;
- INIT_WRITE_NODE(wqNodes+1,"Wq");
- RF_ASSERT(pda);
- DISK_NODE_PARAMS(wqNodes[1],pda);
- }
+ pda = asmap->physInfo;
+ for (i = 0; i < nWudNodes; i++) {
+ INIT_WRITE_NODE(wudNodes + i, "Wd");
+ DISK_NODE_PARAMS(wudNodes[i], pda);
+ recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
+ pda = pda->next;
+ }
+ /* write redundancy pdas */
+ pda = pqPDAs;
+ INIT_WRITE_NODE(wpNodes, "Wp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wpNodes[0], pda);
+ pda++;
+ INIT_WRITE_NODE(wqNodes, "Wq");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_WRITE_NODE(wpNodes + 1, "Wp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wpNodes[1], pda);
+ pda++;
+ INIT_WRITE_NODE(wqNodes + 1, "Wq");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wqNodes[1], pda);
+ }
}