summaryrefslogtreecommitdiff
path: root/sys/dev/raidframe/rf_dagutils.c
diff options
context:
space:
mode:
authorNiklas Hallqvist <niklas@cvs.openbsd.org>1999-02-16 00:03:34 +0000
committerNiklas Hallqvist <niklas@cvs.openbsd.org>1999-02-16 00:03:34 +0000
commit086450a69044f3ede65845d9a616116db9a6d006 (patch)
treea91a7d8f967737b7eed23cb127849d08e3af4d63 /sys/dev/raidframe/rf_dagutils.c
parent41fb84abc5659cc1a368cd59d7929ddf756c3297 (diff)
Merge from NetBSD, mostly indentation
Diffstat (limited to 'sys/dev/raidframe/rf_dagutils.c')
-rw-r--r--sys/dev/raidframe/rf_dagutils.c2055
1 files changed, 969 insertions, 1086 deletions
diff --git a/sys/dev/raidframe/rf_dagutils.c b/sys/dev/raidframe/rf_dagutils.c
index b050b832af6..b0d41a7c106 100644
--- a/sys/dev/raidframe/rf_dagutils.c
+++ b/sys/dev/raidframe/rf_dagutils.c
@@ -1,5 +1,5 @@
-/* $OpenBSD: rf_dagutils.c,v 1.1 1999/01/11 14:29:11 niklas Exp $ */
-/* $NetBSD: rf_dagutils.c,v 1.1 1998/11/13 04:20:28 oster Exp $ */
+/* $OpenBSD: rf_dagutils.c,v 1.2 1999/02/16 00:02:33 niklas Exp $ */
+/* $NetBSD: rf_dagutils.c,v 1.3 1999/02/05 00:06:08 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@@ -33,157 +33,6 @@
*
*****************************************************************************/
-/*
- * :
- * Log: rf_dagutils.c,v
- * Revision 1.55 1996/08/22 14:39:47 jimz
- * reduce v/k fraction (better load balancing)
- *
- * Revision 1.54 1996/08/21 04:14:12 jimz
- * minor workload shift tweaking
- *
- * Revision 1.53 1996/08/20 23:41:16 jimz
- * fix up workload shift computation
- *
- * Revision 1.52 1996/08/20 22:34:16 jimz
- * first cut at fixing workload shift
- * needs work
- *
- * Revision 1.51 1996/08/20 16:51:16 jimz
- * comment more verbosely compute_workload_shift()
- *
- * Revision 1.50 1996/08/11 00:40:50 jimz
- * fix up broken comment
- *
- * Revision 1.49 1996/07/27 23:36:08 jimz
- * Solaris port of simulator
- *
- * Revision 1.48 1996/07/27 18:40:01 jimz
- * cleanup sweep
- *
- * Revision 1.47 1996/07/22 19:52:16 jimz
- * switched node params to RF_DagParam_t, a union of
- * a 64-bit int and a void *, for better portability
- * attempted hpux port, but failed partway through for
- * lack of a single C compiler capable of compiling all
- * source files
- *
- * Revision 1.46 1996/07/18 22:57:14 jimz
- * port simulator to AIX
- *
- * Revision 1.45 1996/06/17 03:24:59 jimz
- * include shutdown.h for define of now-macroized ShutdownCreate
- *
- * Revision 1.44 1996/06/10 12:50:57 jimz
- * Add counters to freelists to track number of allocations, frees,
- * grows, max size, etc. Adjust a couple sets of PRIME params based
- * on the results.
- *
- * Revision 1.43 1996/06/10 11:55:47 jimz
- * Straightened out some per-array/not-per-array distinctions, fixed
- * a couple bugs related to confusion. Added shutdown lists. Removed
- * layout shutdown function (now subsumed by shutdown lists).
- *
- * Revision 1.42 1996/06/07 21:33:04 jimz
- * begin using consistent types for sector numbers,
- * stripe numbers, row+col numbers, recon unit numbers
- *
- * Revision 1.41 1996/06/06 17:28:58 jimz
- * make PrintNodeInfoString aware of new mirroring funcs
- *
- * Revision 1.40 1996/06/05 18:06:02 jimz
- * Major code cleanup. The Great Renaming is now done.
- * Better modularity. Better typing. Fixed a bunch of
- * synchronization bugs. Made a lot of global stuff
- * per-desc or per-array. Removed dead code.
- *
- * Revision 1.39 1996/06/03 23:28:26 jimz
- * more bugfixes
- * check in tree to sync for IPDS runs with current bugfixes
- * there still may be a problem with threads in the script test
- * getting I/Os stuck- not trivially reproducible (runs ~50 times
- * in a row without getting stuck)
- *
- * Revision 1.38 1996/06/02 17:31:48 jimz
- * Moved a lot of global stuff into array structure, where it belongs.
- * Fixed up paritylogging, pss modules in this manner. Some general
- * code cleanup. Removed lots of dead code, some dead files.
- *
- * Revision 1.37 1996/05/31 22:26:54 jimz
- * fix a lot of mapping problems, memory allocation problems
- * found some weird lock issues, fixed 'em
- * more code cleanup
- *
- * Revision 1.36 1996/05/30 23:22:16 jimz
- * bugfixes of serialization, timing problems
- * more cleanup
- *
- * Revision 1.35 1996/05/30 11:29:41 jimz
- * Numerous bug fixes. Stripe lock release code disagreed with the taking code
- * about when stripes should be locked (I made it consistent: no parity, no lock)
- * There was a lot of extra serialization of I/Os which I've removed- a lot of
- * it was to calculate values for the cache code, which is no longer with us.
- * More types, function, macro cleanup. Added code to properly quiesce the array
- * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
- * before. Fixed memory allocation, freeing bugs.
- *
- * Revision 1.34 1996/05/27 18:56:37 jimz
- * more code cleanup
- * better typing
- * compiles in all 3 environments
- *
- * Revision 1.33 1996/05/24 22:17:04 jimz
- * continue code + namespace cleanup
- * typed a bunch of flags
- *
- * Revision 1.32 1996/05/24 04:28:55 jimz
- * release cleanup ckpt
- *
- * Revision 1.31 1996/05/23 21:46:35 jimz
- * checkpoint in code cleanup (release prep)
- * lots of types, function names have been fixed
- *
- * Revision 1.30 1996/05/23 00:33:23 jimz
- * code cleanup: move all debug decls to rf_options.c, all extern
- * debug decls to rf_options.h, all debug vars preceded by rf_
- *
- * Revision 1.29 1996/05/18 19:51:34 jimz
- * major code cleanup- fix syntax, make some types consistent,
- * add prototypes, clean out dead code, et cetera
- *
- * Revision 1.28 1996/05/16 23:05:52 jimz
- * changed InitNode() to use dag_ptrs field of node when appropriate
- * (see rf_dag.h or comments within InitNode() for details)
- *
- * Revision 1.27 1996/05/16 15:37:19 jimz
- * convert to RF_FREELIST stuff for dag headers
- *
- * Revision 1.26 1996/05/08 21:01:24 jimz
- * fixed up enum type names that were conflicting with other
- * enums and function names (ie, "panic")
- * future naming trends will be towards RF_ and rf_ for
- * everything raidframe-related
- *
- * Revision 1.25 1996/05/03 19:56:15 wvcii
- * added misc routines from old dag creation files
- *
- * Revision 1.24 1995/12/12 18:10:06 jimz
- * MIN -> RF_MIN, MAX -> RF_MAX, ASSERT -> RF_ASSERT
- * fix 80-column brain damage in comments
- *
- * Revision 1.23 1995/12/01 15:59:50 root
- * added copyright info
- *
- * Revision 1.22 1995/11/17 15:14:12 wvcii
- * PrintDAG now processes DiskReadMirrorFunc nodes
- *
- * Revision 1.21 1995/11/07 16:22:38 wvcii
- * InitNode and InitNodeFromBuf now initialize commit fields
- * beefed up ValidateDag
- * prettied up PrintDAGList
- *
- */
-
#include "rf_archs.h"
#include "rf_types.h"
#include "rf_threadstuff.h"
@@ -201,16 +50,17 @@
RF_RedFuncs_t rf_xorFuncs = {
rf_RegularXorFunc, "Reg Xr",
- rf_SimpleXorFunc, "Simple Xr"};
+rf_SimpleXorFunc, "Simple Xr"};
RF_RedFuncs_t rf_xorRecoveryFuncs = {
rf_RecoveryXorFunc, "Recovery Xr",
- rf_RecoveryXorFunc, "Recovery Xr"};
+rf_RecoveryXorFunc, "Recovery Xr"};
static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
static void rf_PrintDAG(RF_DagHeader_t *);
-static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
- RF_DagNode_t **, int );
+static int
+rf_ValidateBranch(RF_DagNode_t *, int *, int *,
+ RF_DagNode_t **, int);
static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
static void rf_ValidateVisitedBits(RF_DagHeader_t *);
@@ -222,77 +72,75 @@ static void rf_ValidateVisitedBits(RF_DagHeader_t *);
* successors array.
*
*****************************************************************************/
-void rf_InitNode(
- RF_DagNode_t *node,
- RF_NodeStatus_t initstatus,
- int commit,
- int (*doFunc)(RF_DagNode_t *node),
- int (*undoFunc)(RF_DagNode_t *node),
- int (*wakeFunc)(RF_DagNode_t *node,int status),
- int nSucc,
- int nAnte,
- int nParam,
- int nResult,
- RF_DagHeader_t *hdr,
- char *name,
- RF_AllocListElem_t *alist)
+void
+rf_InitNode(
+ RF_DagNode_t * node,
+ RF_NodeStatus_t initstatus,
+ int commit,
+ int (*doFunc) (RF_DagNode_t * node),
+ int (*undoFunc) (RF_DagNode_t * node),
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ int nSucc,
+ int nAnte,
+ int nParam,
+ int nResult,
+ RF_DagHeader_t * hdr,
+ char *name,
+ RF_AllocListElem_t * alist)
{
- void **ptrs;
- int nptrs;
-
- if (nAnte > RF_MAX_ANTECEDENTS)
- RF_PANIC();
- node->status = initstatus;
- node->commitNode = commit;
- node->doFunc = doFunc;
- node->undoFunc = undoFunc;
- node->wakeFunc = wakeFunc;
- node->numParams = nParam;
- node->numResults = nResult;
- node->numAntecedents = nAnte;
- node->numAntDone = 0;
- node->next = NULL;
- node->numSuccedents = nSucc;
- node->name = name;
- node->dagHdr = hdr;
- node->visited = 0;
-
- /* allocate all the pointers with one call to malloc */
- nptrs = nSucc+nAnte+nResult+nSucc;
-
- if (nptrs <= RF_DAG_PTRCACHESIZE) {
- /*
- * The dag_ptrs field of the node is basically some scribble
- * space to be used here. We could get rid of it, and always
- * allocate the range of pointers, but that's expensive. So,
- * we pick a "common case" size for the pointer cache. Hopefully,
- * we'll find that:
- * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
- * only a little bit (least efficient case)
- * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
- * (wasted memory)
- */
- ptrs = (void **)node->dag_ptrs;
- }
- else {
- RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
- }
- node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
- node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs+nSucc) : NULL;
- node->results = (nResult) ? (void **) (ptrs+nSucc+nAnte) : NULL;
- node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs+nSucc+nAnte+nResult) : NULL;
-
- if (nParam) {
- if (nParam <= RF_DAG_PARAMCACHESIZE) {
- node->params = (RF_DagParam_t *)node->dag_params;
- }
- else {
- RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
- }
- }
- else {
- node->params = NULL;
- }
+ void **ptrs;
+ int nptrs;
+
+ if (nAnte > RF_MAX_ANTECEDENTS)
+ RF_PANIC();
+ node->status = initstatus;
+ node->commitNode = commit;
+ node->doFunc = doFunc;
+ node->undoFunc = undoFunc;
+ node->wakeFunc = wakeFunc;
+ node->numParams = nParam;
+ node->numResults = nResult;
+ node->numAntecedents = nAnte;
+ node->numAntDone = 0;
+ node->next = NULL;
+ node->numSuccedents = nSucc;
+ node->name = name;
+ node->dagHdr = hdr;
+ node->visited = 0;
+
+ /* allocate all the pointers with one call to malloc */
+ nptrs = nSucc + nAnte + nResult + nSucc;
+
+ if (nptrs <= RF_DAG_PTRCACHESIZE) {
+ /*
+ * The dag_ptrs field of the node is basically some scribble
+ * space to be used here. We could get rid of it, and always
+ * allocate the range of pointers, but that's expensive. So,
+ * we pick a "common case" size for the pointer cache. Hopefully,
+ * we'll find that:
+ * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
+ * only a little bit (least efficient case)
+ * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
+ * (wasted memory)
+ */
+ ptrs = (void **) node->dag_ptrs;
+ } else {
+ RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
+ }
+ node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
+ node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
+ node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
+ node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
+
+ if (nParam) {
+ if (nParam <= RF_DAG_PARAMCACHESIZE) {
+ node->params = (RF_DagParam_t *) node->dag_params;
+ } else {
+ RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
+ }
+ } else {
+ node->params = NULL;
+ }
}
@@ -303,58 +151,60 @@ void rf_InitNode(
*
*****************************************************************************/
-void rf_FreeDAG(dag_h)
- RF_DagHeader_t *dag_h;
+void
+rf_FreeDAG(dag_h)
+ RF_DagHeader_t *dag_h;
{
- RF_AccessStripeMapHeader_t *asmap, *t_asmap;
- RF_DagHeader_t *nextDag;
- int i;
-
- while (dag_h) {
- nextDag = dag_h->next;
- for (i=0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
- /* release mem chunks */
- rf_ReleaseMemChunk(dag_h->memChunk[i]);
- dag_h->memChunk[i] = NULL;
- }
-
- RF_ASSERT(i == dag_h->chunkIndex);
- if (dag_h->xtraChunkCnt > 0) {
- /* free xtraMemChunks */
- for (i=0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
- rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
- dag_h->xtraMemChunk[i] = NULL;
- }
- RF_ASSERT(i == dag_h->xtraChunkIndex);
- /* free ptrs to xtraMemChunks */
- RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
- }
- rf_FreeAllocList(dag_h->allocList);
- for (asmap = dag_h->asmList; asmap;) {
- t_asmap = asmap;
- asmap = asmap->next;
- rf_FreeAccessStripeMap(t_asmap);
- }
- rf_FreeDAGHeader(dag_h);
- dag_h = nextDag;
- }
+ RF_AccessStripeMapHeader_t *asmap, *t_asmap;
+ RF_DagHeader_t *nextDag;
+ int i;
+
+ while (dag_h) {
+ nextDag = dag_h->next;
+ for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
+ /* release mem chunks */
+ rf_ReleaseMemChunk(dag_h->memChunk[i]);
+ dag_h->memChunk[i] = NULL;
+ }
+
+ RF_ASSERT(i == dag_h->chunkIndex);
+ if (dag_h->xtraChunkCnt > 0) {
+ /* free xtraMemChunks */
+ for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
+ rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
+ dag_h->xtraMemChunk[i] = NULL;
+ }
+ RF_ASSERT(i == dag_h->xtraChunkIndex);
+ /* free ptrs to xtraMemChunks */
+ RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
+ }
+ rf_FreeAllocList(dag_h->allocList);
+ for (asmap = dag_h->asmList; asmap;) {
+ t_asmap = asmap;
+ asmap = asmap->next;
+ rf_FreeAccessStripeMap(t_asmap);
+ }
+ rf_FreeDAGHeader(dag_h);
+ dag_h = nextDag;
+ }
}
-RF_PropHeader_t *rf_MakePropListEntry(
- RF_DagHeader_t *dag_h,
- int resultNum,
- int paramNum,
- RF_PropHeader_t *next,
- RF_AllocListElem_t *allocList)
+RF_PropHeader_t *
+rf_MakePropListEntry(
+ RF_DagHeader_t * dag_h,
+ int resultNum,
+ int paramNum,
+ RF_PropHeader_t * next,
+ RF_AllocListElem_t * allocList)
{
- RF_PropHeader_t *p;
-
- RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
- (RF_PropHeader_t *), allocList);
- p->resultNum = resultNum;
- p->paramNum = paramNum;
- p->next = next;
- return(p);
+ RF_PropHeader_t *p;
+
+ RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
+ (RF_PropHeader_t *), allocList);
+ p->resultNum = resultNum;
+ p->paramNum = paramNum;
+ p->next = next;
+ return (p);
}
static RF_FreeList_t *rf_dagh_freelist;
@@ -364,401 +214,409 @@ static RF_FreeList_t *rf_dagh_freelist;
#define RF_DAGH_INITIAL 32
static void rf_ShutdownDAGs(void *);
-static void rf_ShutdownDAGs(ignored)
- void *ignored;
+static void
+rf_ShutdownDAGs(ignored)
+ void *ignored;
{
- RF_FREELIST_DESTROY(rf_dagh_freelist,next,(RF_DagHeader_t *));
+ RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
}
-int rf_ConfigureDAGs(listp)
- RF_ShutdownList_t **listp;
+int
+rf_ConfigureDAGs(listp)
+ RF_ShutdownList_t **listp;
{
- int rc;
+ int rc;
RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
- RF_DAGH_INC, sizeof(RF_DagHeader_t));
+ RF_DAGH_INC, sizeof(RF_DagHeader_t));
if (rf_dagh_freelist == NULL)
- return(ENOMEM);
+ return (ENOMEM);
rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
if (rc) {
RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
- __FILE__, __LINE__, rc);
+ __FILE__, __LINE__, rc);
rf_ShutdownDAGs(NULL);
- return(rc);
+ return (rc);
}
- RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL,next,
- (RF_DagHeader_t *));
- return(0);
+ RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
+ (RF_DagHeader_t *));
+ return (0);
}
-RF_DagHeader_t *rf_AllocDAGHeader()
+RF_DagHeader_t *
+rf_AllocDAGHeader()
{
RF_DagHeader_t *dh;
- RF_FREELIST_GET(rf_dagh_freelist,dh,next,(RF_DagHeader_t *));
+ RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
if (dh) {
- bzero((char *)dh, sizeof(RF_DagHeader_t));
+ bzero((char *) dh, sizeof(RF_DagHeader_t));
}
- return(dh);
+ return (dh);
}
-void rf_FreeDAGHeader(RF_DagHeader_t *dh)
+void
+rf_FreeDAGHeader(RF_DagHeader_t * dh)
{
- RF_FREELIST_FREE(rf_dagh_freelist,dh,next);
+ RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
}
-
/* allocates a buffer big enough to hold the data described by pda */
-void *rf_AllocBuffer(
- RF_Raid_t *raidPtr,
- RF_DagHeader_t *dag_h,
- RF_PhysDiskAddr_t *pda,
- RF_AllocListElem_t *allocList)
+void *
+rf_AllocBuffer(
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t * dag_h,
+ RF_PhysDiskAddr_t * pda,
+ RF_AllocListElem_t * allocList)
{
- char *p;
+ char *p;
- RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
- (char *), allocList);
- return((void *)p);
+ RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
+ (char *), allocList);
+ return ((void *) p);
}
-
/******************************************************************************
*
* debug routines
*
*****************************************************************************/
-char *rf_NodeStatusString(RF_DagNode_t *node)
+char *
+rf_NodeStatusString(RF_DagNode_t * node)
{
- switch (node->status) {
- case rf_wait: return("wait");
- case rf_fired: return("fired");
- case rf_good: return("good");
- case rf_bad: return("bad");
- default: return("?");
- }
+ switch (node->status) {
+ case rf_wait:return ("wait");
+ case rf_fired:
+ return ("fired");
+ case rf_good:
+ return ("good");
+ case rf_bad:
+ return ("bad");
+ default:
+ return ("?");
+ }
}
-void rf_PrintNodeInfoString(RF_DagNode_t *node)
+void
+rf_PrintNodeInfoString(RF_DagNode_t * node)
{
- RF_PhysDiskAddr_t *pda;
- int (*df)(RF_DagNode_t *) = node->doFunc;
- int i, lk, unlk;
- void *bufPtr;
-
- if ((df==rf_DiskReadFunc) || (df==rf_DiskWriteFunc)
- || (df==rf_DiskReadMirrorIdleFunc)
- || (df == rf_DiskReadMirrorPartitionFunc))
- {
- pda = (RF_PhysDiskAddr_t *)node->params[0].p;
- bufPtr = (void *)node->params[1].p;
- lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
- unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
- RF_ASSERT( !(lk && unlk) );
- printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
- (long)pda->startSector, (int) pda->numSector, (long)bufPtr,
- (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
- return;
- }
-
- if (df == rf_DiskUnlockFunc) {
- pda = (RF_PhysDiskAddr_t *)node->params[0].p;
- lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
- unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
- RF_ASSERT( !(lk && unlk) );
- printf("r %d c %d %s\n", pda->row, pda->col,
- (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
- return;
- }
-
- if ((df==rf_SimpleXorFunc) || (df==rf_RegularXorFunc)
- || (df==rf_RecoveryXorFunc))
- {
- printf("result buf 0x%lx\n",(long) node->results[0]);
- for (i=0; i<node->numParams-1; i+=2) {
- pda = (RF_PhysDiskAddr_t *)node->params[i].p;
- bufPtr = (RF_PhysDiskAddr_t *)node->params[i+1].p;
- printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
- (long)bufPtr, pda->row, pda->col,
- (long)pda->startSector, (int)pda->numSector);
- }
- return;
- }
-
+ RF_PhysDiskAddr_t *pda;
+ int (*df) (RF_DagNode_t *) = node->doFunc;
+ int i, lk, unlk;
+ void *bufPtr;
+
+ if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
+ || (df == rf_DiskReadMirrorIdleFunc)
+ || (df == rf_DiskReadMirrorPartitionFunc)) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ bufPtr = (void *) node->params[1].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
+ return;
+ }
+ if (df == rf_DiskUnlockFunc) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d %s\n", pda->row, pda->col,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
+ return;
+ }
+ if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
+ || (df == rf_RecoveryXorFunc)) {
+ printf("result buf 0x%lx\n", (long) node->results[0]);
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
+ (long) bufPtr, pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector);
+ }
+ return;
+ }
#if RF_INCLUDE_PARITYLOGGING > 0
- if (df==rf_ParityLogOverwriteFunc || df==rf_ParityLogUpdateFunc) {
- for (i=0; i<node->numParams-1; i+=2) {
- pda = (RF_PhysDiskAddr_t *)node->params[i].p;
- bufPtr = (RF_PhysDiskAddr_t *)node->params[i+1].p;
- printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
- pda->row, pda->col, (long) pda->startSector,
- (int) pda->numSector, (long) bufPtr);
- }
- return;
- }
-#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
-
- if ((df==rf_TerminateFunc) || (df==rf_NullNodeFunc)) {
- printf("\n");
- return;
- }
-
- printf("?\n");
+ if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
+ pda->row, pda->col, (long) pda->startSector,
+ (int) pda->numSector, (long) bufPtr);
+ }
+ return;
+ }
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+ if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
+ printf("\n");
+ return;
+ }
+ printf("?\n");
}
-static void rf_RecurPrintDAG(node, depth, unvisited)
- RF_DagNode_t *node;
- int depth;
- int unvisited;
+static void
+rf_RecurPrintDAG(node, depth, unvisited)
+ RF_DagNode_t *node;
+ int depth;
+ int unvisited;
{
- char *anttype;
- int i;
-
- node->visited = (unvisited) ? 0 : 1;
- printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
- node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
- node->numSuccedents, node->numSuccFired, node->numSuccDone,
- node->numAntecedents, node->numAntDone, node->numParams,node->numResults);
- for (i=0; i<node->numSuccedents; i++) {
- printf("%d%s", node->succedents[i]->nodeNum,
- ((i==node->numSuccedents-1) ? "\0" : " "));
- }
- printf("} A{");
- for (i=0; i<node->numAntecedents; i++) {
- switch (node->antType[i]) {
- case rf_trueData :
- anttype = "T";
- break;
- case rf_antiData :
- anttype = "A";
- break;
- case rf_outputData :
- anttype = "O";
- break;
- case rf_control :
- anttype = "C";
- break;
- default :
- anttype = "?";
- break;
- }
- printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i==node->numAntecedents-1) ? "\0" : " ");
- }
- printf("}; ");
- rf_PrintNodeInfoString(node);
- for (i=0; i<node->numSuccedents; i++) {
- if (node->succedents[i]->visited == unvisited)
- rf_RecurPrintDAG(node->succedents[i], depth+1, unvisited);
- }
+ char *anttype;
+ int i;
+
+ node->visited = (unvisited) ? 0 : 1;
+ printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
+ node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
+ node->numSuccedents, node->numSuccFired, node->numSuccDone,
+ node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
+ for (i = 0; i < node->numSuccedents; i++) {
+ printf("%d%s", node->succedents[i]->nodeNum,
+ ((i == node->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("} A{");
+ for (i = 0; i < node->numAntecedents; i++) {
+ switch (node->antType[i]) {
+ case rf_trueData:
+ anttype = "T";
+ break;
+ case rf_antiData:
+ anttype = "A";
+ break;
+ case rf_outputData:
+ anttype = "O";
+ break;
+ case rf_control:
+ anttype = "C";
+ break;
+ default:
+ anttype = "?";
+ break;
+ }
+ printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
+ }
+ printf("}; ");
+ rf_PrintNodeInfoString(node);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
+ }
}
-static void rf_PrintDAG(dag_h)
- RF_DagHeader_t *dag_h;
+static void
+rf_PrintDAG(dag_h)
+ RF_DagHeader_t *dag_h;
{
- int unvisited, i;
- char *status;
-
- /* set dag status */
- switch (dag_h->status) {
- case rf_enable :
- status = "enable";
- break;
- case rf_rollForward :
- status = "rollForward";
- break;
- case rf_rollBackward :
- status = "rollBackward";
- break;
- default :
- status = "illegal!";
- break;
- }
- /* find out if visited bits are currently set or clear */
- unvisited = dag_h->succedents[0]->visited;
-
- printf("DAG type: %s\n", dag_h->creator);
- printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
- printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
- status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
- for (i=0; i<dag_h->numSuccedents; i++) {
- printf("%d%s", dag_h->succedents[i]->nodeNum,
- ((i==dag_h->numSuccedents-1) ? "\0" : " "));
- }
- printf("};\n");
- for (i=0; i<dag_h->numSuccedents; i++) {
- if (dag_h->succedents[i]->visited == unvisited)
- rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
- }
+ int unvisited, i;
+ char *status;
+
+ /* set dag status */
+ switch (dag_h->status) {
+ case rf_enable:
+ status = "enable";
+ break;
+ case rf_rollForward:
+ status = "rollForward";
+ break;
+ case rf_rollBackward:
+ status = "rollBackward";
+ break;
+ default:
+ status = "illegal!";
+ break;
+ }
+ /* find out if visited bits are currently set or clear */
+ unvisited = dag_h->succedents[0]->visited;
+
+ printf("DAG type: %s\n", dag_h->creator);
+ printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
+ printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
+ status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ printf("%d%s", dag_h->succedents[i]->nodeNum,
+ ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("};\n");
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if (dag_h->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
+ }
}
-
/* assigns node numbers */
-int rf_AssignNodeNums(RF_DagHeader_t *dag_h)
+int
+rf_AssignNodeNums(RF_DagHeader_t * dag_h)
{
- int unvisited, i, nnum;
- RF_DagNode_t *node;
-
- nnum = 0;
- unvisited = dag_h->succedents[0]->visited;
-
- dag_h->nodeNum = nnum++;
- for (i=0; i<dag_h->numSuccedents; i++) {
- node = dag_h->succedents[i];
- if (node->visited == unvisited) {
- nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
- }
- }
- return(nnum);
+ int unvisited, i, nnum;
+ RF_DagNode_t *node;
+
+ nnum = 0;
+ unvisited = dag_h->succedents[0]->visited;
+
+ dag_h->nodeNum = nnum++;
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ node = dag_h->succedents[i];
+ if (node->visited == unvisited) {
+ nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
+ }
+ }
+ return (nnum);
}
-int rf_RecurAssignNodeNums(node, num, unvisited)
- RF_DagNode_t *node;
- int num;
- int unvisited;
+int
+rf_RecurAssignNodeNums(node, num, unvisited)
+ RF_DagNode_t *node;
+ int num;
+ int unvisited;
{
- int i;
+ int i;
- node->visited = (unvisited) ? 0 : 1;
+ node->visited = (unvisited) ? 0 : 1;
- node->nodeNum = num++;
- for (i=0; i<node->numSuccedents; i++) {
- if (node->succedents[i]->visited == unvisited) {
- num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
- }
- }
- return(num);
+ node->nodeNum = num++;
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
+ }
+ }
+ return (num);
}
-
/* set the header pointers in each node to "newptr" */
-void rf_ResetDAGHeaderPointers(dag_h, newptr)
- RF_DagHeader_t *dag_h;
- RF_DagHeader_t *newptr;
+void
+rf_ResetDAGHeaderPointers(dag_h, newptr)
+ RF_DagHeader_t *dag_h;
+ RF_DagHeader_t *newptr;
{
- int i;
- for (i=0; i<dag_h->numSuccedents; i++)
- if (dag_h->succedents[i]->dagHdr != newptr)
- rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
+ int i;
+ for (i = 0; i < dag_h->numSuccedents; i++)
+ if (dag_h->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
}
-void rf_RecurResetDAGHeaderPointers(node, newptr)
- RF_DagNode_t *node;
- RF_DagHeader_t *newptr;
+void
+rf_RecurResetDAGHeaderPointers(node, newptr)
+ RF_DagNode_t *node;
+ RF_DagHeader_t *newptr;
{
- int i;
- node->dagHdr = newptr;
- for (i=0; i<node->numSuccedents; i++)
- if (node->succedents[i]->dagHdr != newptr)
- rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
+ int i;
+ node->dagHdr = newptr;
+ for (i = 0; i < node->numSuccedents; i++)
+ if (node->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
}
-void rf_PrintDAGList(RF_DagHeader_t *dag_h)
+void
+rf_PrintDAGList(RF_DagHeader_t * dag_h)
{
- int i=0;
+ int i = 0;
- for (; dag_h; dag_h=dag_h->next) {
- rf_AssignNodeNums(dag_h);
- printf("\n\nDAG %d IN LIST:\n",i++);
- rf_PrintDAG(dag_h);
- }
+ for (; dag_h; dag_h = dag_h->next) {
+ rf_AssignNodeNums(dag_h);
+ printf("\n\nDAG %d IN LIST:\n", i++);
+ rf_PrintDAG(dag_h);
+ }
}
-static int rf_ValidateBranch(node, scount, acount, nodes, unvisited)
- RF_DagNode_t *node;
- int *scount;
- int *acount;
- RF_DagNode_t **nodes;
- int unvisited;
+static int
+rf_ValidateBranch(node, scount, acount, nodes, unvisited)
+ RF_DagNode_t *node;
+ int *scount;
+ int *acount;
+ RF_DagNode_t **nodes;
+ int unvisited;
{
- int i, retcode = 0;
-
- /* construct an array of node pointers indexed by node num */
- node->visited = (unvisited) ? 0 : 1;
- nodes[ node->nodeNum ] = node;
-
- if (node->next != NULL) {
- printf("INVALID DAG: next pointer in node is not NULL\n");
- retcode = 1;
- }
- if (node->status != rf_wait) {
- printf("INVALID DAG: Node status is not wait\n");
- retcode = 1;
- }
- if (node->numAntDone != 0) {
- printf("INVALID DAG: numAntDone is not zero\n");
- retcode = 1;
- }
- if (node->doFunc == rf_TerminateFunc) {
- if (node->numSuccedents != 0) {
- printf("INVALID DAG: Terminator node has succedents\n");
- retcode = 1;
- }
- } else {
- if (node->numSuccedents == 0) {
- printf("INVALID DAG: Non-terminator node has no succedents\n");
- retcode = 1;
- }
- }
- for (i=0; i<node->numSuccedents; i++) {
- if (!node->succedents[i]) {
- printf("INVALID DAG: succedent %d of node %s is NULL\n",i,node->name);
- retcode = 1;
- }
- scount[ node->succedents[i]->nodeNum ]++;
- }
- for (i=0; i<node->numAntecedents; i++) {
- if (!node->antecedents[i]) {
- printf("INVALID DAG: antecedent %d of node %s is NULL\n",i,node->name);
- retcode = 1;
- }
- acount[ node->antecedents[i]->nodeNum ]++;
- }
- for (i=0; i<node->numSuccedents; i++) {
- if (node->succedents[i]->visited == unvisited) {
- if (rf_ValidateBranch(node->succedents[i], scount,
- acount, nodes, unvisited))
- {
- retcode = 1;
- }
- }
- }
- return(retcode);
+ int i, retcode = 0;
+
+ /* construct an array of node pointers indexed by node num */
+ node->visited = (unvisited) ? 0 : 1;
+ nodes[node->nodeNum] = node;
+
+ if (node->next != NULL) {
+ printf("INVALID DAG: next pointer in node is not NULL\n");
+ retcode = 1;
+ }
+ if (node->status != rf_wait) {
+ printf("INVALID DAG: Node status is not wait\n");
+ retcode = 1;
+ }
+ if (node->numAntDone != 0) {
+ printf("INVALID DAG: numAntDone is not zero\n");
+ retcode = 1;
+ }
+ if (node->doFunc == rf_TerminateFunc) {
+ if (node->numSuccedents != 0) {
+ printf("INVALID DAG: Terminator node has succedents\n");
+ retcode = 1;
+ }
+ } else {
+ if (node->numSuccedents == 0) {
+ printf("INVALID DAG: Non-terminator node has no succedents\n");
+ retcode = 1;
+ }
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (!node->succedents[i]) {
+ printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ scount[node->succedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numAntecedents; i++) {
+ if (!node->antecedents[i]) {
+ printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ acount[node->antecedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ if (rf_ValidateBranch(node->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ }
+ return (retcode);
}
-static void rf_ValidateBranchVisitedBits(node, unvisited, rl)
- RF_DagNode_t *node;
- int unvisited;
- int rl;
+static void
+rf_ValidateBranchVisitedBits(node, unvisited, rl)
+ RF_DagNode_t *node;
+ int unvisited;
+ int rl;
{
- int i;
-
- RF_ASSERT(node->visited == unvisited);
- for (i=0; i<node->numSuccedents; i++) {
- if (node->succedents[i] == NULL) {
- printf("node=%lx node->succedents[%d] is NULL\n", (long)node, i);
- RF_ASSERT(0);
- }
- rf_ValidateBranchVisitedBits(node->succedents[i],unvisited, rl+1);
- }
+ int i;
+
+ RF_ASSERT(node->visited == unvisited);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i] == NULL) {
+ printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
+ }
}
-
/* NOTE: never call this on a big dag, because it is exponential
* in execution time
*/
-static void rf_ValidateVisitedBits(dag)
- RF_DagHeader_t *dag;
+static void
+rf_ValidateVisitedBits(dag)
+ RF_DagHeader_t *dag;
{
- int i, unvisited;
+ int i, unvisited;
- unvisited = dag->succedents[0]->visited;
+ unvisited = dag->succedents[0]->visited;
- for (i=0; i<dag->numSuccedents; i++) {
- if (dag->succedents[i] == NULL) {
- printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
- RF_ASSERT(0);
- }
- rf_ValidateBranchVisitedBits(dag->succedents[i],unvisited,0);
- }
+ for (i = 0; i < dag->numSuccedents; i++) {
+ if (dag->succedents[i] == NULL) {
+ printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
+ }
}
-
/* validate a DAG. _at entry_ verify that:
* -- numNodesCompleted is zero
* -- node queue is null
@@ -775,101 +633,104 @@ static void rf_ValidateVisitedBits(dag)
* is equal to the succedent count on that node
* -- what else?
*/
-int rf_ValidateDAG(dag_h)
- RF_DagHeader_t *dag_h;
+int
+rf_ValidateDAG(dag_h)
+ RF_DagHeader_t *dag_h;
{
- int i, nodecount;
- int *scount, *acount; /* per-node successor and antecedent counts */
- RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
- int retcode = 0;
- int unvisited;
- int commitNodeCount = 0;
-
- if (rf_validateVisitedDebug)
- rf_ValidateVisitedBits(dag_h);
-
- if (dag_h->numNodesCompleted != 0) {
- printf("INVALID DAG: num nodes completed is %d, should be 0\n",dag_h->numNodesCompleted);
- retcode = 1; goto validate_dag_bad;
- }
- if (dag_h->status != rf_enable) {
- printf("INVALID DAG: not enabled\n");
- retcode = 1; goto validate_dag_bad;
- }
- if (dag_h->numCommits != 0) {
- printf("INVALID DAG: numCommits != 0 (%d)\n",dag_h->numCommits);
- retcode = 1; goto validate_dag_bad;
- }
- if (dag_h->numSuccedents != 1) {
- /* currently, all dags must have only one succedent */
- printf("INVALID DAG: numSuccedents !1 (%d)\n",dag_h->numSuccedents);
- retcode = 1; goto validate_dag_bad;
- }
- nodecount = rf_AssignNodeNums(dag_h);
-
- unvisited = dag_h->succedents[0]->visited;
-
- RF_Calloc(scount, nodecount, sizeof(int), (int *));
- RF_Calloc(acount, nodecount, sizeof(int), (int *));
- RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
- for (i=0; i<dag_h->numSuccedents; i++) {
- if ((dag_h->succedents[i]->visited == unvisited)
- && rf_ValidateBranch(dag_h->succedents[i], scount,
- acount, nodes, unvisited))
- {
- retcode = 1;
- }
- }
- /* start at 1 to skip the header node */
- for (i=1; i<nodecount; i++) {
- if ( nodes[i]->commitNode )
- commitNodeCount++;
- if ( nodes[i]->doFunc == NULL ) {
- printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
- retcode = 1;
- goto validate_dag_out;
- }
- if ( nodes[i]->undoFunc == NULL ) {
- printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
- retcode = 1;
- goto validate_dag_out;
- }
- if ( nodes[i]->numAntecedents != scount[ nodes[i]->nodeNum ] ) {
- printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
- nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
- retcode = 1;
- goto validate_dag_out;
- }
- if ( nodes[i]->numSuccedents != acount[ nodes[i]->nodeNum ] ) {
- printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
- nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
- retcode = 1;
- goto validate_dag_out;
- }
- }
-
- if ( dag_h->numCommitNodes != commitNodeCount ) {
- printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
- dag_h->numCommitNodes, commitNodeCount);
- retcode = 1;
- goto validate_dag_out;
- }
+ int i, nodecount;
+ int *scount, *acount;/* per-node successor and antecedent counts */
+ RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
+ int retcode = 0;
+ int unvisited;
+ int commitNodeCount = 0;
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ if (dag_h->numNodesCompleted != 0) {
+ printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->status != rf_enable) {
+ printf("INVALID DAG: not enabled\n");
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numCommits != 0) {
+ printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numSuccedents != 1) {
+ /* currently, all dags must have only one succedent */
+ printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ nodecount = rf_AssignNodeNums(dag_h);
+
+ unvisited = dag_h->succedents[0]->visited;
+
+ RF_Calloc(scount, nodecount, sizeof(int), (int *));
+ RF_Calloc(acount, nodecount, sizeof(int), (int *));
+ RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if ((dag_h->succedents[i]->visited == unvisited)
+ && rf_ValidateBranch(dag_h->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ /* start at 1 to skip the header node */
+ for (i = 1; i < nodecount; i++) {
+ if (nodes[i]->commitNode)
+ commitNodeCount++;
+ if (nodes[i]->doFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->undoFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
+ nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
+ nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ }
+ if (dag_h->numCommitNodes != commitNodeCount) {
+ printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
+ dag_h->numCommitNodes, commitNodeCount);
+ retcode = 1;
+ goto validate_dag_out;
+ }
validate_dag_out:
- RF_Free(scount, nodecount*sizeof(int));
- RF_Free(acount, nodecount*sizeof(int));
- RF_Free(nodes, nodecount*sizeof(RF_DagNode_t *));
- if (retcode)
- rf_PrintDAGList(dag_h);
-
- if (rf_validateVisitedDebug)
- rf_ValidateVisitedBits(dag_h);
-
- return(retcode);
+ RF_Free(scount, nodecount * sizeof(int));
+ RF_Free(acount, nodecount * sizeof(int));
+ RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
+ if (retcode)
+ rf_PrintDAGList(dag_h);
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ return (retcode);
validate_dag_bad:
- rf_PrintDAGList(dag_h);
- return(retcode);
+ rf_PrintDAGList(dag_h);
+ return (retcode);
}
@@ -879,52 +740,52 @@ validate_dag_bad:
*
*****************************************************************************/
-void rf_redirect_asm(
- RF_Raid_t *raidPtr,
- RF_AccessStripeMap_t *asmap)
+void
+rf_redirect_asm(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap)
{
- int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
- int row = asmap->physInfo->row;
- int fcol = raidPtr->reconControl[row]->fcol;
- int srow = raidPtr->reconControl[row]->spareRow;
- int scol = raidPtr->reconControl[row]->spareCol;
- RF_PhysDiskAddr_t *pda;
-
- RF_ASSERT( raidPtr->status[row] == rf_rs_reconstructing );
- for (pda = asmap->physInfo; pda; pda=pda->next) {
- if (pda->col == fcol) {
- if (rf_dagDebug) {
- if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
- pda->startSector))
- {
- RF_PANIC();
- }
- }
- /*printf("Remapped data for large write\n");*/
- if (ds) {
- raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
- &pda->row, &pda->col, &pda->startSector, RF_REMAP);
- }
- else {
- pda->row = srow; pda->col = scol;
- }
- }
- }
- for (pda = asmap->parityInfo; pda; pda=pda->next) {
- if (pda->col == fcol) {
- if (rf_dagDebug) {
- if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
- RF_PANIC();
- }
- }
- }
- if (ds) {
- (raidPtr->Layout.map->MapParity)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
- }
- else {
- pda->row = srow; pda->col = scol;
- }
- }
+ int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
+ int row = asmap->physInfo->row;
+ int fcol = raidPtr->reconControl[row]->fcol;
+ int srow = raidPtr->reconControl[row]->spareRow;
+ int scol = raidPtr->reconControl[row]->spareCol;
+ RF_PhysDiskAddr_t *pda;
+
+ RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
+ for (pda = asmap->physInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
+ pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ /* printf("Remapped data for large write\n"); */
+ if (ds) {
+ raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
+ &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
+ }
+ for (pda = asmap->parityInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ }
+ if (ds) {
+ (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
}
@@ -936,70 +797,75 @@ void rf_redirect_asm(
* contained within one stripe unit, so we RF_ASSERT against this case at the
* start.
*/
-void rf_MapUnaccessedPortionOfStripe(
- RF_Raid_t *raidPtr,
- RF_RaidLayout_t *layoutPtr, /* in: layout information */
- RF_AccessStripeMap_t *asmap, /* in: access stripe map */
- RF_DagHeader_t *dag_h, /* in: header of the dag to create */
- RF_AccessStripeMapHeader_t **new_asm_h, /* in: ptr to array of 2 headers, to be filled in */
- int *nRodNodes, /* out: num nodes to be generated to read unaccessed data */
- char **sosBuffer, /* out: pointers to newly allocated buffer */
- char **eosBuffer,
- RF_AllocListElem_t *allocList)
+void
+rf_MapUnaccessedPortionOfStripe(
+ RF_Raid_t * raidPtr,
+ RF_RaidLayout_t * layoutPtr,/* in: layout information */
+ RF_AccessStripeMap_t * asmap, /* in: access stripe map */
+ RF_DagHeader_t * dag_h, /* in: header of the dag to create */
+ RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
+ * headers, to be filled in */
+ int *nRodNodes, /* out: num nodes to be generated to read
+ * unaccessed data */
+ char **sosBuffer, /* out: pointers to newly allocated buffer */
+ char **eosBuffer,
+ RF_AllocListElem_t * allocList)
{
- RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
- RF_SectorNum_t sosNumSector, eosNumSector;
-
- RF_ASSERT( asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol/2) );
- /* generate an access map for the region of the array from start of stripe
- * to start of access */
- new_asm_h[0] = new_asm_h[1] = NULL; *nRodNodes = 0;
- if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
- sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
- sosNumSector = asmap->raidAddress - sosRaidAddress;
- RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
- new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
- new_asm_h[0]->next = dag_h->asmList;
- dag_h->asmList = new_asm_h[0];
- *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
-
- RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
- /* we're totally within one stripe here */
- if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
- rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
- }
- /* generate an access map for the region of the array from end of access
- * to end of stripe */
- if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
- eosRaidAddress = asmap->endRaidAddress;
- eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
- RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
- new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
- new_asm_h[1]->next = dag_h->asmList;
- dag_h->asmList = new_asm_h[1];
- *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
-
- RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
- /* we're totally within one stripe here */
- if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
- rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
- }
+ RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
+ RF_SectorNum_t sosNumSector, eosNumSector;
+
+ RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
+ /* generate an access map for the region of the array from start of
+ * stripe to start of access */
+ new_asm_h[0] = new_asm_h[1] = NULL;
+ *nRodNodes = 0;
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
+ sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosNumSector = asmap->raidAddress - sosRaidAddress;
+ RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
+ new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
+ }
+ /* generate an access map for the region of the array from end of
+ * access to end of stripe */
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
+ eosRaidAddress = asmap->endRaidAddress;
+ eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
+ RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
+ new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
+ }
}
/* returns non-zero if the indicated ranges of stripe unit offsets overlap */
-int rf_PDAOverlap(
- RF_RaidLayout_t *layoutPtr,
- RF_PhysDiskAddr_t *src,
- RF_PhysDiskAddr_t *dest)
+int
+rf_PDAOverlap(
+ RF_RaidLayout_t * layoutPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest)
{
- RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
- RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
- /* use -1 to be sure we stay within SU */
- RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector-1);
- RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector-1);
- return( (RF_MAX(soffs,doffs) <= RF_MIN(send,dend)) ? 1 : 0 );
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ /* use -1 to be sure we stay within SU */
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
}
@@ -1031,110 +897,132 @@ int rf_PDAOverlap(
/* out: new_asm_h - the two new ASMs */
/* out: nXorBufs - the total number of xor bufs required */
/* out: rpBufPtr - a buffer for the parity read */
-void rf_GenerateFailedAccessASMs(
- RF_Raid_t *raidPtr,
- RF_AccessStripeMap_t *asmap,
- RF_PhysDiskAddr_t *failedPDA,
- RF_DagHeader_t *dag_h,
- RF_AccessStripeMapHeader_t **new_asm_h,
- int *nXorBufs,
- char **rpBufPtr,
- char *overlappingPDAs,
- RF_AllocListElem_t *allocList)
+void
+rf_GenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t * failedPDA,
+ RF_DagHeader_t * dag_h,
+ RF_AccessStripeMapHeader_t ** new_asm_h,
+ int *nXorBufs,
+ char **rpBufPtr,
+ char *overlappingPDAs,
+ RF_AllocListElem_t * allocList)
{
- RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
-
- /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
- RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
-
- RF_SectorCount_t numSect[2], numParitySect;
- RF_PhysDiskAddr_t *pda;
- char *rdBuf, *bufP;
- int foundit, i;
-
- bufP = NULL;
- foundit = 0;
- /* first compute the following raid addresses:
- start of stripe, (sosAddr)
- MIN(start of access, start of failed SU), (sosEndAddr)
- MAX(end of access, end of failed SU), (eosStartAddr)
- end of stripe (i.e. start of next stripe) (eosAddr)
- */
- sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
- sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,failedPDA->raidAddress));
- eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
- eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
-
- /* now generate access stripe maps for each of the above regions of the
- * stripe. Use a dummy (NULL) buf ptr for now */
-
- new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr-sosAddr, NULL, RF_DONT_REMAP) : NULL;
- new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr-eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
-
- /* walk through the PDAs and range-restrict each SU to the region of the
- * SU touched on the failed PDA. also compute total data buffer space
- * requirements in this step. Ignore the parity for now. */
-
- numSect[0] = numSect[1] = 0;
- if (new_asm_h[0]) {
- new_asm_h[0]->next = dag_h->asmList; dag_h->asmList = new_asm_h[0];
- for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
- rf_RangeRestrictPDA(raidPtr,failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); numSect[0] += pda->numSector;
- }
- }
- if (new_asm_h[1]) {
- new_asm_h[1]->next = dag_h->asmList; dag_h->asmList = new_asm_h[1];
- for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
- rf_RangeRestrictPDA(raidPtr,failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); numSect[1] += pda->numSector;
- }
- }
- numParitySect = failedPDA->numSector;
-
- /* allocate buffer space for the data & parity we have to read to recover
- * from the failure */
-
- if (numSect[0]+numSect[1]+ ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity buf if not needed */
- RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr,numSect[0]+numSect[1]+numParitySect), (char *), allocList);
- bufP = rdBuf;
- if (rf_degDagDebug) printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
- (int)rf_RaidAddressToByte(raidPtr,numSect[0]+numSect[1]+numParitySect), (unsigned long) bufP);
- }
-
- /* now walk through the pdas one last time and assign buffer pointers
- * (ugh!). Again, ignore the parity. also, count nodes to find out how
- * many bufs need to be xored together */
- (*nXorBufs) = 1; /* in read case, 1 is for parity. In write case, 1 is for failed data */
- if (new_asm_h[0]) {
- for (pda=new_asm_h[0]->stripeMap->physInfo; pda; pda=pda->next) {pda->bufPtr = bufP; bufP += rf_RaidAddressToByte(raidPtr,pda->numSector);}
- *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
- }
- if (new_asm_h[1]) {
- for (pda=new_asm_h[1]->stripeMap->physInfo; pda; pda=pda->next) {pda->bufPtr = bufP; bufP += rf_RaidAddressToByte(raidPtr,pda->numSector);}
- (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
- }
- if (rpBufPtr) *rpBufPtr = bufP; /* the rest of the buffer is for parity */
-
- /* the last step is to figure out how many more distinct buffers need to
- * get xor'd to produce the missing unit. there's one for each user-data
- * read node that overlaps the portion of the failed unit being accessed */
-
- for (foundit=i=0,pda=asmap->physInfo; pda; i++,pda=pda->next) {
- if (pda == failedPDA) {i--; foundit=1; continue;}
- if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
- overlappingPDAs[i] = 1;
- (*nXorBufs)++;
- }
- }
- if (!foundit) {RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); RF_ASSERT(0);}
-
- if (rf_degDagDebug) {
- if (new_asm_h[0]) {
- printf("First asm:\n"); rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
- }
- if (new_asm_h[1]) {
- printf("Second asm:\n"); rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
- }
- }
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+
+ /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
+ RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
+
+ RF_SectorCount_t numSect[2], numParitySect;
+ RF_PhysDiskAddr_t *pda;
+ char *rdBuf, *bufP;
+ int foundit, i;
+
+ bufP = NULL;
+ foundit = 0;
+ /* first compute the following raid addresses: start of stripe,
+ * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
+ * MAX(end of access, end of failed SU), (eosStartAddr) end of
+ * stripe (i.e. start of next stripe) (eosAddr) */
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
+
+ /* now generate access stripe maps for each of the above regions of
+ * the stripe. Use a dummy (NULL) buf ptr for now */
+
+ new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
+ new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
+
+ /* walk through the PDAs and range-restrict each SU to the region of
+ * the SU touched on the failed PDA. also compute total data buffer
+ * space requirements in this step. Ignore the parity for now. */
+
+ numSect[0] = numSect[1] = 0;
+ if (new_asm_h[0]) {
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[0] += pda->numSector;
+ }
+ }
+ if (new_asm_h[1]) {
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[1] += pda->numSector;
+ }
+ }
+ numParitySect = failedPDA->numSector;
+
+ /* allocate buffer space for the data & parity we have to read to
+ * recover from the failure */
+
+ if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
+ * buf if not needed */
+ RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
+ bufP = rdBuf;
+ if (rf_degDagDebug)
+ printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
+ (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
+ }
+ /* now walk through the pdas one last time and assign buffer pointers
+ * (ugh!). Again, ignore the parity. also, count nodes to find out
+ * how many bufs need to be xored together */
+ (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
+ * case, 1 is for failed data */
+ if (new_asm_h[0]) {
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (new_asm_h[1]) {
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (rpBufPtr)
+ *rpBufPtr = bufP; /* the rest of the buffer is for
+ * parity */
+
+ /* the last step is to figure out how many more distinct buffers need
+ * to get xor'd to produce the missing unit. there's one for each
+ * user-data read node that overlaps the portion of the failed unit
+ * being accessed */
+
+ for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ foundit = 1;
+ continue;
+ }
+ if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
+ overlappingPDAs[i] = 1;
+ (*nXorBufs)++;
+ }
+ }
+ if (!foundit) {
+ RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
+ RF_ASSERT(0);
+ }
+ if (rf_degDagDebug) {
+ if (new_asm_h[0]) {
+ printf("First asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
+ }
+ if (new_asm_h[1]) {
+ printf("Second asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
+ }
+ }
}
@@ -1160,31 +1048,32 @@ void rf_GenerateFailedAccessASMs(
* | rrrrrrrrrrrrrrrr |
*
*/
-void rf_RangeRestrictPDA(
- RF_Raid_t *raidPtr,
- RF_PhysDiskAddr_t *src,
- RF_PhysDiskAddr_t *dest,
- int dobuffer,
- int doraidaddr)
+void
+rf_RangeRestrictPDA(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest,
+ int dobuffer,
+ int doraidaddr)
{
- RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
- RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
- RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
- RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector-1); /* use -1 to be sure we stay within SU */
- RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector-1);
- RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
-
- dest->startSector = subAddr + RF_MAX(soffs,doffs);
- dest->numSector = subAddr + RF_MIN(send,dend) + 1 - dest->startSector;
-
- if (dobuffer)
- dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr,soffs-doffs) : 0;
- if (doraidaddr) {
- dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
- rf_StripeUnitOffset(layoutPtr, dest->startSector);
- }
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
+ * stay within SU */
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
+
+ dest->startSector = subAddr + RF_MAX(soffs, doffs);
+ dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
+
+ if (dobuffer)
+ dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
+ if (doraidaddr) {
+ dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
+ rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ }
}
-
/*
* Want the highest of these primes to be the largest one
* less than the max expected number of columns (won't hurt
@@ -1192,93 +1081,90 @@ void rf_RangeRestrictPDA(
* --jimz
*/
#define NLOWPRIMES 8
-static int lowprimes[NLOWPRIMES] = {2,3,5,7,11,13,17,19};
-
+static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
/*****************************************************************************
* compute the workload shift factor. (chained declustering)
*
* return nonzero if access should shift to secondary, otherwise,
* access is to primary
*****************************************************************************/
-int rf_compute_workload_shift(
- RF_Raid_t *raidPtr,
- RF_PhysDiskAddr_t *pda)
+int
+rf_compute_workload_shift(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * pda)
{
- /*
- * variables:
- * d = column of disk containing primary
- * f = column of failed disk
- * n = number of disks in array
- * sd = "shift distance" (number of columns that d is to the right of f)
- * row = row of array the access is in
- * v = numerator of redirection ratio
- * k = denominator of redirection ratio
- */
- RF_RowCol_t d, f, sd, row, n;
- int k, v, ret, i;
-
- row = pda->row;
- n = raidPtr->numCol;
-
- /* assign column of primary copy to d */
- d = pda->col;
-
- /* assign column of dead disk to f */
- for(f=0;((!RF_DEAD_DISK(raidPtr->Disks[row][f].status))&&(f<n));f++);
-
- RF_ASSERT(f < n);
- RF_ASSERT(f != d);
-
- sd = (f > d) ? (n + d - f) : (d - f);
- RF_ASSERT(sd < n);
-
- /*
- * v of every k accesses should be redirected
- *
- * v/k := (n-1-sd)/(n-1)
- */
- v = (n-1-sd);
- k = (n-1);
+ /*
+ * variables:
+ * d = column of disk containing primary
+ * f = column of failed disk
+ * n = number of disks in array
+ * sd = "shift distance" (number of columns that d is to the right of f)
+ * row = row of array the access is in
+ * v = numerator of redirection ratio
+ * k = denominator of redirection ratio
+ */
+ RF_RowCol_t d, f, sd, row, n;
+ int k, v, ret, i;
+
+ row = pda->row;
+ n = raidPtr->numCol;
+
+ /* assign column of primary copy to d */
+ d = pda->col;
+
+ /* assign column of dead disk to f */
+ for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
+
+ RF_ASSERT(f < n);
+ RF_ASSERT(f != d);
+
+ sd = (f > d) ? (n + d - f) : (d - f);
+ RF_ASSERT(sd < n);
+
+ /*
+ * v of every k accesses should be redirected
+ *
+ * v/k := (n-1-sd)/(n-1)
+ */
+ v = (n - 1 - sd);
+ k = (n - 1);
#if 1
- /*
- * XXX
- * Is this worth it?
- *
- * Now reduce the fraction, by repeatedly factoring
- * out primes (just like they teach in elementary school!)
- */
- for(i=0;i<NLOWPRIMES;i++) {
- if (lowprimes[i] > v)
- break;
- while (((v%lowprimes[i])==0) && ((k%lowprimes[i])==0)) {
- v /= lowprimes[i];
- k /= lowprimes[i];
- }
- }
+ /*
+ * XXX
+ * Is this worth it?
+ *
+ * Now reduce the fraction, by repeatedly factoring
+ * out primes (just like they teach in elementary school!)
+ */
+ for (i = 0; i < NLOWPRIMES; i++) {
+ if (lowprimes[i] > v)
+ break;
+ while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
+ v /= lowprimes[i];
+ k /= lowprimes[i];
+ }
+ }
#endif
- raidPtr->hist_diskreq[row][d]++;
- if (raidPtr->hist_diskreq[row][d] > v) {
- ret = 0; /* do not redirect */
- }
- else {
- ret = 1; /* redirect */
- }
+ raidPtr->hist_diskreq[row][d]++;
+ if (raidPtr->hist_diskreq[row][d] > v) {
+ ret = 0; /* do not redirect */
+ } else {
+ ret = 1; /* redirect */
+ }
#if 0
- printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
- raidPtr->hist_diskreq[row][d]);
+ printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
+ raidPtr->hist_diskreq[row][d]);
#endif
- if (raidPtr->hist_diskreq[row][d] >= k) {
- /* reset counter */
- raidPtr->hist_diskreq[row][d] = 0;
- }
-
- return(ret);
+ if (raidPtr->hist_diskreq[row][d] >= k) {
+ /* reset counter */
+ raidPtr->hist_diskreq[row][d] = 0;
+ }
+ return (ret);
}
-
/*
* Disk selection routines
*/
@@ -1288,119 +1174,116 @@ int rf_compute_workload_shift(
* Both the disk I/Os queued in RAIDframe as well as those at the physical
* disk are counted as members of the "queue"
*/
-void rf_SelectMirrorDiskIdle(RF_DagNode_t *node)
+void
+rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
{
- RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
- RF_RowCol_t rowData, colData, rowMirror, colMirror;
- int dataQueueLength, mirrorQueueLength, usemirror;
- RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *)node->params[0].p;
- RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *)node->params[4].p;
- RF_PhysDiskAddr_t *tmp_pda;
- RF_RaidDisk_t **disks = raidPtr->Disks;
- RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
-
- /* return the [row col] of the disk with the shortest queue */
- rowData = data_pda->row;
- colData = data_pda->col;
- rowMirror = mirror_pda->row;
- colMirror = mirror_pda->col;
- dataQueue = &(dqs[rowData][colData]);
- mirrorQueue = &(dqs[rowMirror][colMirror]);
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ int dataQueueLength, mirrorQueueLength, usemirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
- RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
-#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
- dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
+ RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
- RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
- RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
-#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
- mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
+ RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+ RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
- RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
-#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
-
- usemirror = 0;
- if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
- usemirror = 0;
- }
- else if (RF_DEAD_DISK(disks[rowData][colData].status)) {
- usemirror = 1;
- }
- else if (dataQueueLength < mirrorQueueLength) {
- usemirror = 0;
- }
- else if (mirrorQueueLength < dataQueueLength) {
- usemirror = 1;
- }
- else {
- /* queues are equal length. attempt cleverness. */
- if (SNUM_DIFF(dataQueue->last_deq_sector,data_pda->startSector)
- <= SNUM_DIFF(mirrorQueue->last_deq_sector,mirror_pda->startSector))
- {
- usemirror = 0;
- }
- else {
- usemirror = 1;
- }
- }
-
- if (usemirror) {
- /* use mirror (parity) disk, swap params 0 & 4 */
- tmp_pda = data_pda;
- node->params[0].p = mirror_pda;
- node->params[4].p = tmp_pda;
- }
- else {
- /* use data disk, leave param 0 unchanged */
- }
- /* printf("dataQueueLength %d, mirrorQueueLength %d\n",dataQueueLength, mirrorQueueLength); */
+ RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (dataQueueLength < mirrorQueueLength) {
+ usemirror = 0;
+ } else
+ if (mirrorQueueLength < dataQueueLength) {
+ usemirror = 1;
+ } else {
+ /* queues are equal length. attempt
+ * cleverness. */
+ if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
+ <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
+ /* printf("dataQueueLength %d, mirrorQueueLength
+ * %d\n",dataQueueLength, mirrorQueueLength); */
}
-
/*
* Do simple partitioning. This assumes that
* the data and parity disks are laid out identically.
*/
-void rf_SelectMirrorDiskPartition(RF_DagNode_t *node)
+void
+rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
{
- RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
- RF_RowCol_t rowData, colData, rowMirror, colMirror;
- RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *)node->params[0].p;
- RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *)node->params[4].p;
- RF_PhysDiskAddr_t *tmp_pda;
- RF_RaidDisk_t **disks = raidPtr->Disks;
- RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
- int usemirror;
-
- /* return the [row col] of the disk with the shortest queue */
- rowData = data_pda->row;
- colData = data_pda->col;
- rowMirror = mirror_pda->row;
- colMirror = mirror_pda->col;
- dataQueue = &(dqs[rowData][colData]);
- mirrorQueue = &(dqs[rowMirror][colMirror]);
-
- usemirror = 0;
- if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
- usemirror = 0;
- }
- else if (RF_DEAD_DISK(disks[rowData][colData].status)) {
- usemirror = 1;
- }
- else if (data_pda->startSector < (disks[rowData][colData].numBlocks / 2)) {
- usemirror = 0;
- }
- else {
- usemirror = 1;
- }
-
- if (usemirror) {
- /* use mirror (parity) disk, swap params 0 & 4 */
- tmp_pda = data_pda;
- node->params[0].p = mirror_pda;
- node->params[4].p = tmp_pda;
- }
- else {
- /* use data disk, leave param 0 unchanged */
- }
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+ int usemirror;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (data_pda->startSector < (disks[rowData][colData].numBlocks / 2)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
}