summaryrefslogtreecommitdiff
path: root/sys/kern/kern_synch.c
diff options
context:
space:
mode:
authorTed Unangst <tedu@cvs.openbsd.org>2004-07-29 06:25:46 +0000
committerTed Unangst <tedu@cvs.openbsd.org>2004-07-29 06:25:46 +0000
commit3d5db7fb8218bfddd4dba9c31df44108c1e76bd1 (patch)
treea0b6af39d0c7c7c7acbb19afc2a9d231190bad8a /sys/kern/kern_synch.c
parent411e952b31a297e8e1b889cc358521c17d628c7b (diff)
put the scheduler in its own file. reduces clutter, and logically separates
"put this process to sleep" and "find a process to run" operations. no functional change. ok art@
Diffstat (limited to 'sys/kern/kern_synch.c')
-rw-r--r--sys/kern/kern_synch.c634
1 files changed, 1 insertions, 633 deletions
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c
index 785136cd27b..fa0ff867b3c 100644
--- a/sys/kern/kern_synch.c
+++ b/sys/kern/kern_synch.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: kern_synch.c,v 1.60 2004/07/25 20:50:51 tedu Exp $ */
+/* $OpenBSD: kern_synch.c,v 1.61 2004/07/29 06:25:45 tedu Exp $ */
/* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
/*-
@@ -52,641 +52,9 @@
#include <sys/ktrace.h>
#endif
-#include <machine/cpu.h>
-
-#ifndef __HAVE_CPUINFO
-u_char curpriority; /* usrpri of curproc */
-#endif
-int lbolt; /* once a second sleep address */
-#ifdef __HAVE_CPUINFO
-int rrticks_init; /* # of hardclock ticks per roundrobin() */
-#endif
-
-int whichqs; /* Bit mask summary of non-empty Q's. */
-struct prochd qs[NQS];
-
-struct SIMPLELOCK sched_lock;
-
-void scheduler_start(void);
-
-#ifdef __HAVE_CPUINFO
-void roundrobin(struct cpu_info *);
-#else
-void roundrobin(void *);
-#endif
-void schedcpu(void *);
void updatepri(struct proc *);
void endtsleep(void *);
-void
-scheduler_start()
-{
-#ifndef __HAVE_CPUINFO
- static struct timeout roundrobin_to;
-#endif
- static struct timeout schedcpu_to;
-
- /*
- * We avoid polluting the global namespace by keeping the scheduler
- * timeouts static in this function.
- * We setup the timeouts here and kick schedcpu and roundrobin once to
- * make them do their job.
- */
-
-#ifndef __HAVE_CPUINFO
- timeout_set(&roundrobin_to, roundrobin, &roundrobin_to);
-#endif
- timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
-
-#ifdef __HAVE_CPUINFO
- rrticks_init = hz / 10;
-#else
- roundrobin(&roundrobin_to);
-#endif
- schedcpu(&schedcpu_to);
-}
-
-/*
- * Force switch among equal priority processes every 100ms.
- */
-/* ARGSUSED */
-#ifdef __HAVE_CPUINFO
-void
-roundrobin(struct cpu_info *ci)
-{
- struct schedstate_percpu *spc = &ci->ci_schedstate;
- int s;
-
- spc->spc_rrticks = rrticks_init;
-
- if (curproc != NULL) {
- s = splstatclock();
- if (spc->spc_schedflags & SPCF_SEENRR) {
- /*
- * The process has already been through a roundrobin
- * without switching and may be hogging the CPU.
- * Indicate that the process should yield.
- */
- spc->spc_schedflags |= SPCF_SHOULDYIELD;
- } else {
- spc->spc_schedflags |= SPCF_SEENRR;
- }
- splx(s);
- }
-
- need_resched(curcpu());
-}
-#else
-void
-roundrobin(void *arg)
-{
- struct timeout *to = (struct timeout *)arg;
- struct proc *p = curproc;
- int s;
-
- if (p != NULL) {
- s = splstatclock();
- if (p->p_schedflags & PSCHED_SEENRR) {
- /*
- * The process has already been through a roundrobin
- * without switching and may be hogging the CPU.
- * Indicate that the process should yield.
- */
- p->p_schedflags |= PSCHED_SHOULDYIELD;
- } else {
- p->p_schedflags |= PSCHED_SEENRR;
- }
- splx(s);
- }
-
- need_resched(0);
- timeout_add(to, hz / 10);
-}
-#endif
-
-/*
- * Constants for digital decay and forget:
- * 90% of (p_estcpu) usage in 5 * loadav time
- * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
- * Note that, as ps(1) mentions, this can let percentages
- * total over 100% (I've seen 137.9% for 3 processes).
- *
- * Note that hardclock updates p_estcpu and p_cpticks independently.
- *
- * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
- * That is, the system wants to compute a value of decay such
- * that the following for loop:
- * for (i = 0; i < (5 * loadavg); i++)
- * p_estcpu *= decay;
- * will compute
- * p_estcpu *= 0.1;
- * for all values of loadavg:
- *
- * Mathematically this loop can be expressed by saying:
- * decay ** (5 * loadavg) ~= .1
- *
- * The system computes decay as:
- * decay = (2 * loadavg) / (2 * loadavg + 1)
- *
- * We wish to prove that the system's computation of decay
- * will always fulfill the equation:
- * decay ** (5 * loadavg) ~= .1
- *
- * If we compute b as:
- * b = 2 * loadavg
- * then
- * decay = b / (b + 1)
- *
- * We now need to prove two things:
- * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
- * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
- *
- * Facts:
- * For x close to zero, exp(x) =~ 1 + x, since
- * exp(x) = 0! + x**1/1! + x**2/2! + ... .
- * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
- * For x close to zero, ln(1+x) =~ x, since
- * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
- * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
- * ln(.1) =~ -2.30
- *
- * Proof of (1):
- * Solve (factor)**(power) =~ .1 given power (5*loadav):
- * solving for factor,
- * ln(factor) =~ (-2.30/5*loadav), or
- * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
- * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
- *
- * Proof of (2):
- * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
- * solving for power,
- * power*ln(b/(b+1)) =~ -2.30, or
- * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
- *
- * Actual power values for the implemented algorithm are as follows:
- * loadav: 1 2 3 4
- * power: 5.68 10.32 14.94 19.55
- */
-
-/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
-#define loadfactor(loadav) (2 * (loadav))
-#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
-
-/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
-fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
-
-/*
- * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
- * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
- * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
- *
- * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
- * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
- *
- * If you dont want to bother with the faster/more-accurate formula, you
- * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
- * (more general) method of calculating the %age of CPU used by a process.
- */
-#define CCPU_SHIFT 11
-
-/*
- * Recompute process priorities, every hz ticks.
- */
-/* ARGSUSED */
-void
-schedcpu(arg)
- void *arg;
-{
- struct timeout *to = (struct timeout *)arg;
- fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
- struct proc *p;
- int s;
- unsigned int newcpu;
- int phz;
-
- /*
- * If we have a statistics clock, use that to calculate CPU
- * time, otherwise revert to using the profiling clock (which,
- * in turn, defaults to hz if there is no separate profiling
- * clock available)
- */
- phz = stathz ? stathz : profhz;
- KASSERT(phz);
-
- for (p = LIST_FIRST(&allproc); p != 0; p = LIST_NEXT(p, p_list)) {
- /*
- * Increment time in/out of memory and sleep time
- * (if sleeping). We ignore overflow; with 16-bit int's
- * (remember them?) overflow takes 45 days.
- */
- p->p_swtime++;
- if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
- p->p_slptime++;
- p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
- /*
- * If the process has slept the entire second,
- * stop recalculating its priority until it wakes up.
- */
- if (p->p_slptime > 1)
- continue;
- s = splstatclock(); /* prevent state changes */
- /*
- * p_pctcpu is only for ps.
- */
-#if (FSHIFT >= CCPU_SHIFT)
- p->p_pctcpu += (phz == 100)?
- ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
- 100 * (((fixpt_t) p->p_cpticks)
- << (FSHIFT - CCPU_SHIFT)) / phz;
-#else
- p->p_pctcpu += ((FSCALE - ccpu) *
- (p->p_cpticks * FSCALE / phz)) >> FSHIFT;
-#endif
- p->p_cpticks = 0;
- newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
- p->p_estcpu = newcpu;
- splx(s);
- SCHED_LOCK(s);
- resetpriority(p);
- if (p->p_priority >= PUSER) {
- if ((p != curproc) &&
- p->p_stat == SRUN &&
- (p->p_flag & P_INMEM) &&
- (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
- remrunqueue(p);
- p->p_priority = p->p_usrpri;
- setrunqueue(p);
- } else
- p->p_priority = p->p_usrpri;
- }
- SCHED_UNLOCK(s);
- }
- uvm_meter();
- wakeup((caddr_t)&lbolt);
- timeout_add(to, hz);
-}
-
-/*
- * Recalculate the priority of a process after it has slept for a while.
- * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
- * least six times the loadfactor will decay p_estcpu to zero.
- */
-void
-updatepri(p)
- register struct proc *p;
-{
- register unsigned int newcpu = p->p_estcpu;
- register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
-
- SCHED_ASSERT_LOCKED();
-
- if (p->p_slptime > 5 * loadfac)
- p->p_estcpu = 0;
- else {
- p->p_slptime--; /* the first time was done in schedcpu */
- while (newcpu && --p->p_slptime)
- newcpu = (int) decay_cpu(loadfac, newcpu);
- p->p_estcpu = newcpu;
- }
- resetpriority(p);
-}
-
-#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
-void
-sched_unlock_idle(void)
-{
- SIMPLE_UNLOCK(&sched_lock);
-}
-
-void
-sched_lock_idle(void)
-{
- SIMPLE_LOCK(&sched_lock);
-}
-#endif /* MULTIPROCESSOR || LOCKDEBUG */
-
-/*
- * General yield call. Puts the current process back on its run queue and
- * performs a voluntary context switch.
- */
-void
-yield()
-{
- struct proc *p = curproc;
- int s;
-
- SCHED_LOCK(s);
- p->p_priority = p->p_usrpri;
- setrunqueue(p);
- p->p_stats->p_ru.ru_nvcsw++;
- mi_switch();
- SCHED_ASSERT_UNLOCKED();
- splx(s);
-}
-
-/*
- * General preemption call. Puts the current process back on its run queue
- * and performs an involuntary context switch. If a process is supplied,
- * we switch to that process. Otherwise, we use the normal process selection
- * criteria.
- */
-void
-preempt(newp)
- struct proc *newp;
-{
- struct proc *p = curproc;
- int s;
-
- /*
- * XXX Switching to a specific process is not supported yet.
- */
- if (newp != NULL)
- panic("preempt: cpu_preempt not yet implemented");
-
- SCHED_LOCK(s);
- p->p_priority = p->p_usrpri;
- p->p_stat = SRUN;
- setrunqueue(p);
- p->p_stats->p_ru.ru_nivcsw++;
- mi_switch();
- SCHED_ASSERT_UNLOCKED();
- splx(s);
-}
-
-
-/*
- * Must be called at splstatclock() or higher.
- */
-void
-mi_switch()
-{
- struct proc *p = curproc; /* XXX */
- struct rlimit *rlim;
- struct timeval tv;
-#if defined(MULTIPROCESSOR)
- int hold_count;
-#endif
-#ifdef __HAVE_CPUINFO
- struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate;
-#endif
-
- SCHED_ASSERT_LOCKED();
-
-#if defined(MULTIPROCESSOR)
- /*
- * Release the kernel_lock, as we are about to yield the CPU.
- * The scheduler lock is still held until cpu_switch()
- * selects a new process and removes it from the run queue.
- */
- if (p->p_flag & P_BIGLOCK)
-#ifdef notyet
- hold_count = spinlock_release_all(&kernel_lock);
-#else
- hold_count = __mp_release_all(&kernel_lock);
-#endif
-#endif
-
- /*
- * Compute the amount of time during which the current
- * process was running, and add that to its total so far.
- * XXX - use microuptime here to avoid strangeness.
- */
- microuptime(&tv);
-#ifdef __HAVE_CPUINFO
- if (timercmp(&tv, &spc->spc_runtime, <)) {
-#if 0
- printf("uptime is not monotonic! "
- "tv=%lu.%06lu, runtime=%lu.%06lu\n",
- tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec,
- spc->spc_runtime.tv_usec);
-#endif
- } else {
- timersub(&tv, &spc->spc_runtime, &tv);
- timeradd(&p->p_rtime, &tv, &p->p_rtime);
- }
-#else
- if (timercmp(&tv, &runtime, <)) {
-#if 0
- printf("uptime is not monotonic! "
- "tv=%lu.%06lu, runtime=%lu.%06lu\n",
- tv.tv_sec, tv.tv_usec, runtime.tv_sec, runtime.tv_usec);
-#endif
- } else {
- timersub(&tv, &runtime, &tv);
- timeradd(&p->p_rtime, &tv, &p->p_rtime);
- }
-#endif
-
- /*
- * Check if the process exceeds its cpu resource allocation.
- * If over max, kill it.
- */
- rlim = &p->p_rlimit[RLIMIT_CPU];
- if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) {
- if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) {
- psignal(p, SIGKILL);
- } else {
- psignal(p, SIGXCPU);
- if (rlim->rlim_cur < rlim->rlim_max)
- rlim->rlim_cur += 5;
- }
- }
-
- /*
- * Process is about to yield the CPU; clear the appropriate
- * scheduling flags.
- */
-#ifdef __HAVE_CPUINFO
- spc->spc_schedflags &= ~SPCF_SWITCHCLEAR;
-#else
- p->p_schedflags &= ~PSCHED_SWITCHCLEAR;
-#endif
-
- /*
- * Pick a new current process and record its start time.
- */
- uvmexp.swtch++;
- cpu_switch(p);
-
- /*
- * Make sure that MD code released the scheduler lock before
- * resuming us.
- */
- SCHED_ASSERT_UNLOCKED();
-
- /*
- * We're running again; record our new start time. We might
- * be running on a new CPU now, so don't use the cache'd
- * schedstate_percpu pointer.
- */
-#ifdef __HAVE_CPUINFO
- KDASSERT(p->p_cpu != NULL);
- KDASSERT(p->p_cpu == curcpu());
- microuptime(&p->p_cpu->ci_schedstate.spc_runtime);
-#else
- microuptime(&runtime);
-#endif
-
-#if defined(MULTIPROCESSOR)
- /*
- * Reacquire the kernel_lock now. We do this after we've
- * released the scheduler lock to avoid deadlock, and before
- * we reacquire the interlock.
- */
- if (p->p_flag & P_BIGLOCK)
-#ifdef notyet
- spinlock_acquire_count(&kernel_lock, hold_count);
-#else
- __mp_acquire_count(&kernel_lock, hold_count);
-#endif
-#endif
-}
-
-/*
- * Initialize the (doubly-linked) run queues
- * to be empty.
- */
-void
-rqinit()
-{
- register int i;
-
- for (i = 0; i < NQS; i++)
- qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
- SIMPLE_LOCK_INIT(&sched_lock);
-}
-
-static __inline void
-resched_proc(struct proc *p, u_char pri)
-{
-#ifdef __HAVE_CPUINFO
- struct cpu_info *ci;
-#endif
-
- /*
- * XXXSMP
- * Since p->p_cpu persists across a context switch,
- * this gives us *very weak* processor affinity, in
- * that we notify the CPU on which the process last
- * ran that it should try to switch.
- *
- * This does not guarantee that the process will run on
- * that processor next, because another processor might
- * grab it the next time it performs a context switch.
- *
- * This also does not handle the case where its last
- * CPU is running a higher-priority process, but every
- * other CPU is running a lower-priority process. There
- * are ways to handle this situation, but they're not
- * currently very pretty, and we also need to weigh the
- * cost of moving a process from one CPU to another.
- *
- * XXXSMP
- * There is also the issue of locking the other CPU's
- * sched state, which we currently do not do.
- */
-#ifdef __HAVE_CPUINFO
- ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu();
- if (pri < ci->ci_schedstate.spc_curpriority)
- need_resched(ci);
-#else
- if (pri < curpriority)
- need_resched(0);
-#endif
-}
-
-/*
- * Change process state to be runnable,
- * placing it on the run queue if it is in memory,
- * and awakening the swapper if it isn't in memory.
- */
-void
-setrunnable(p)
- register struct proc *p;
-{
- SCHED_ASSERT_LOCKED();
-
- switch (p->p_stat) {
- case 0:
- case SRUN:
- case SONPROC:
- case SZOMB:
- case SDEAD:
- default:
- panic("setrunnable");
- case SSTOP:
- /*
- * If we're being traced (possibly because someone attached us
- * while we were stopped), check for a signal from the debugger.
- */
- if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
- p->p_siglist |= sigmask(p->p_xstat);
- case SSLEEP:
- unsleep(p); /* e.g. when sending signals */
- break;
- case SIDL:
- break;
- }
- p->p_stat = SRUN;
- if (p->p_flag & P_INMEM)
- setrunqueue(p);
- if (p->p_slptime > 1)
- updatepri(p);
- p->p_slptime = 0;
- if ((p->p_flag & P_INMEM) == 0)
- wakeup((caddr_t)&proc0);
- else
- resched_proc(p, p->p_priority);
-}
-
-/*
- * Compute the priority of a process when running in user mode.
- * Arrange to reschedule if the resulting priority is better
- * than that of the current process.
- */
-void
-resetpriority(p)
- register struct proc *p;
-{
- register unsigned int newpriority;
-
- SCHED_ASSERT_LOCKED();
-
- newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
- newpriority = min(newpriority, MAXPRI);
- p->p_usrpri = newpriority;
- resched_proc(p, p->p_usrpri);
-}
-
-/*
- * We adjust the priority of the current process. The priority of a process
- * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
- * is increased here. The formula for computing priorities (in kern_synch.c)
- * will compute a different value each time p_estcpu increases. This can
- * cause a switch, but unless the priority crosses a PPQ boundary the actual
- * queue will not change. The cpu usage estimator ramps up quite quickly
- * when the process is running (linearly), and decays away exponentially, at
- * a rate which is proportionally slower when the system is busy. The basic
- * principle is that the system will 90% forget that the process used a lot
- * of CPU time in 5 * loadav seconds. This causes the system to favor
- * processes which haven't run much recently, and to round-robin among other
- * processes.
- */
-
-void
-schedclock(p)
- struct proc *p;
-{
- int s;
-
- p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
- SCHED_LOCK(s);
- resetpriority(p);
- SCHED_UNLOCK(s);
- if (p->p_priority >= PUSER)
- p->p_priority = p->p_usrpri;
-}
-
/*
* We're only looking at 7 bits of the address; everything is