diff options
author | Ted Unangst <tedu@cvs.openbsd.org> | 2004-07-29 06:25:46 +0000 |
---|---|---|
committer | Ted Unangst <tedu@cvs.openbsd.org> | 2004-07-29 06:25:46 +0000 |
commit | 3d5db7fb8218bfddd4dba9c31df44108c1e76bd1 (patch) | |
tree | a0b6af39d0c7c7c7acbb19afc2a9d231190bad8a /sys/kern/kern_synch.c | |
parent | 411e952b31a297e8e1b889cc358521c17d628c7b (diff) |
put the scheduler in its own file. reduces clutter, and logically separates
"put this process to sleep" and "find a process to run" operations.
no functional change. ok art@
Diffstat (limited to 'sys/kern/kern_synch.c')
-rw-r--r-- | sys/kern/kern_synch.c | 634 |
1 files changed, 1 insertions, 633 deletions
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c index 785136cd27b..fa0ff867b3c 100644 --- a/sys/kern/kern_synch.c +++ b/sys/kern/kern_synch.c @@ -1,4 +1,4 @@ -/* $OpenBSD: kern_synch.c,v 1.60 2004/07/25 20:50:51 tedu Exp $ */ +/* $OpenBSD: kern_synch.c,v 1.61 2004/07/29 06:25:45 tedu Exp $ */ /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ /*- @@ -52,641 +52,9 @@ #include <sys/ktrace.h> #endif -#include <machine/cpu.h> - -#ifndef __HAVE_CPUINFO -u_char curpriority; /* usrpri of curproc */ -#endif -int lbolt; /* once a second sleep address */ -#ifdef __HAVE_CPUINFO -int rrticks_init; /* # of hardclock ticks per roundrobin() */ -#endif - -int whichqs; /* Bit mask summary of non-empty Q's. */ -struct prochd qs[NQS]; - -struct SIMPLELOCK sched_lock; - -void scheduler_start(void); - -#ifdef __HAVE_CPUINFO -void roundrobin(struct cpu_info *); -#else -void roundrobin(void *); -#endif -void schedcpu(void *); void updatepri(struct proc *); void endtsleep(void *); -void -scheduler_start() -{ -#ifndef __HAVE_CPUINFO - static struct timeout roundrobin_to; -#endif - static struct timeout schedcpu_to; - - /* - * We avoid polluting the global namespace by keeping the scheduler - * timeouts static in this function. - * We setup the timeouts here and kick schedcpu and roundrobin once to - * make them do their job. - */ - -#ifndef __HAVE_CPUINFO - timeout_set(&roundrobin_to, roundrobin, &roundrobin_to); -#endif - timeout_set(&schedcpu_to, schedcpu, &schedcpu_to); - -#ifdef __HAVE_CPUINFO - rrticks_init = hz / 10; -#else - roundrobin(&roundrobin_to); -#endif - schedcpu(&schedcpu_to); -} - -/* - * Force switch among equal priority processes every 100ms. - */ -/* ARGSUSED */ -#ifdef __HAVE_CPUINFO -void -roundrobin(struct cpu_info *ci) -{ - struct schedstate_percpu *spc = &ci->ci_schedstate; - int s; - - spc->spc_rrticks = rrticks_init; - - if (curproc != NULL) { - s = splstatclock(); - if (spc->spc_schedflags & SPCF_SEENRR) { - /* - * The process has already been through a roundrobin - * without switching and may be hogging the CPU. - * Indicate that the process should yield. - */ - spc->spc_schedflags |= SPCF_SHOULDYIELD; - } else { - spc->spc_schedflags |= SPCF_SEENRR; - } - splx(s); - } - - need_resched(curcpu()); -} -#else -void -roundrobin(void *arg) -{ - struct timeout *to = (struct timeout *)arg; - struct proc *p = curproc; - int s; - - if (p != NULL) { - s = splstatclock(); - if (p->p_schedflags & PSCHED_SEENRR) { - /* - * The process has already been through a roundrobin - * without switching and may be hogging the CPU. - * Indicate that the process should yield. - */ - p->p_schedflags |= PSCHED_SHOULDYIELD; - } else { - p->p_schedflags |= PSCHED_SEENRR; - } - splx(s); - } - - need_resched(0); - timeout_add(to, hz / 10); -} -#endif - -/* - * Constants for digital decay and forget: - * 90% of (p_estcpu) usage in 5 * loadav time - * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) - * Note that, as ps(1) mentions, this can let percentages - * total over 100% (I've seen 137.9% for 3 processes). - * - * Note that hardclock updates p_estcpu and p_cpticks independently. - * - * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. - * That is, the system wants to compute a value of decay such - * that the following for loop: - * for (i = 0; i < (5 * loadavg); i++) - * p_estcpu *= decay; - * will compute - * p_estcpu *= 0.1; - * for all values of loadavg: - * - * Mathematically this loop can be expressed by saying: - * decay ** (5 * loadavg) ~= .1 - * - * The system computes decay as: - * decay = (2 * loadavg) / (2 * loadavg + 1) - * - * We wish to prove that the system's computation of decay - * will always fulfill the equation: - * decay ** (5 * loadavg) ~= .1 - * - * If we compute b as: - * b = 2 * loadavg - * then - * decay = b / (b + 1) - * - * We now need to prove two things: - * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) - * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) - * - * Facts: - * For x close to zero, exp(x) =~ 1 + x, since - * exp(x) = 0! + x**1/1! + x**2/2! + ... . - * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. - * For x close to zero, ln(1+x) =~ x, since - * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 - * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). - * ln(.1) =~ -2.30 - * - * Proof of (1): - * Solve (factor)**(power) =~ .1 given power (5*loadav): - * solving for factor, - * ln(factor) =~ (-2.30/5*loadav), or - * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = - * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED - * - * Proof of (2): - * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): - * solving for power, - * power*ln(b/(b+1)) =~ -2.30, or - * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED - * - * Actual power values for the implemented algorithm are as follows: - * loadav: 1 2 3 4 - * power: 5.68 10.32 14.94 19.55 - */ - -/* calculations for digital decay to forget 90% of usage in 5*loadav sec */ -#define loadfactor(loadav) (2 * (loadav)) -#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) - -/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ -fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ - -/* - * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the - * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below - * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). - * - * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: - * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). - * - * If you dont want to bother with the faster/more-accurate formula, you - * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate - * (more general) method of calculating the %age of CPU used by a process. - */ -#define CCPU_SHIFT 11 - -/* - * Recompute process priorities, every hz ticks. - */ -/* ARGSUSED */ -void -schedcpu(arg) - void *arg; -{ - struct timeout *to = (struct timeout *)arg; - fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); - struct proc *p; - int s; - unsigned int newcpu; - int phz; - - /* - * If we have a statistics clock, use that to calculate CPU - * time, otherwise revert to using the profiling clock (which, - * in turn, defaults to hz if there is no separate profiling - * clock available) - */ - phz = stathz ? stathz : profhz; - KASSERT(phz); - - for (p = LIST_FIRST(&allproc); p != 0; p = LIST_NEXT(p, p_list)) { - /* - * Increment time in/out of memory and sleep time - * (if sleeping). We ignore overflow; with 16-bit int's - * (remember them?) overflow takes 45 days. - */ - p->p_swtime++; - if (p->p_stat == SSLEEP || p->p_stat == SSTOP) - p->p_slptime++; - p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; - /* - * If the process has slept the entire second, - * stop recalculating its priority until it wakes up. - */ - if (p->p_slptime > 1) - continue; - s = splstatclock(); /* prevent state changes */ - /* - * p_pctcpu is only for ps. - */ -#if (FSHIFT >= CCPU_SHIFT) - p->p_pctcpu += (phz == 100)? - ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): - 100 * (((fixpt_t) p->p_cpticks) - << (FSHIFT - CCPU_SHIFT)) / phz; -#else - p->p_pctcpu += ((FSCALE - ccpu) * - (p->p_cpticks * FSCALE / phz)) >> FSHIFT; -#endif - p->p_cpticks = 0; - newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu); - p->p_estcpu = newcpu; - splx(s); - SCHED_LOCK(s); - resetpriority(p); - if (p->p_priority >= PUSER) { - if ((p != curproc) && - p->p_stat == SRUN && - (p->p_flag & P_INMEM) && - (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { - remrunqueue(p); - p->p_priority = p->p_usrpri; - setrunqueue(p); - } else - p->p_priority = p->p_usrpri; - } - SCHED_UNLOCK(s); - } - uvm_meter(); - wakeup((caddr_t)&lbolt); - timeout_add(to, hz); -} - -/* - * Recalculate the priority of a process after it has slept for a while. - * For all load averages >= 1 and max p_estcpu of 255, sleeping for at - * least six times the loadfactor will decay p_estcpu to zero. - */ -void -updatepri(p) - register struct proc *p; -{ - register unsigned int newcpu = p->p_estcpu; - register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); - - SCHED_ASSERT_LOCKED(); - - if (p->p_slptime > 5 * loadfac) - p->p_estcpu = 0; - else { - p->p_slptime--; /* the first time was done in schedcpu */ - while (newcpu && --p->p_slptime) - newcpu = (int) decay_cpu(loadfac, newcpu); - p->p_estcpu = newcpu; - } - resetpriority(p); -} - -#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG) -void -sched_unlock_idle(void) -{ - SIMPLE_UNLOCK(&sched_lock); -} - -void -sched_lock_idle(void) -{ - SIMPLE_LOCK(&sched_lock); -} -#endif /* MULTIPROCESSOR || LOCKDEBUG */ - -/* - * General yield call. Puts the current process back on its run queue and - * performs a voluntary context switch. - */ -void -yield() -{ - struct proc *p = curproc; - int s; - - SCHED_LOCK(s); - p->p_priority = p->p_usrpri; - setrunqueue(p); - p->p_stats->p_ru.ru_nvcsw++; - mi_switch(); - SCHED_ASSERT_UNLOCKED(); - splx(s); -} - -/* - * General preemption call. Puts the current process back on its run queue - * and performs an involuntary context switch. If a process is supplied, - * we switch to that process. Otherwise, we use the normal process selection - * criteria. - */ -void -preempt(newp) - struct proc *newp; -{ - struct proc *p = curproc; - int s; - - /* - * XXX Switching to a specific process is not supported yet. - */ - if (newp != NULL) - panic("preempt: cpu_preempt not yet implemented"); - - SCHED_LOCK(s); - p->p_priority = p->p_usrpri; - p->p_stat = SRUN; - setrunqueue(p); - p->p_stats->p_ru.ru_nivcsw++; - mi_switch(); - SCHED_ASSERT_UNLOCKED(); - splx(s); -} - - -/* - * Must be called at splstatclock() or higher. - */ -void -mi_switch() -{ - struct proc *p = curproc; /* XXX */ - struct rlimit *rlim; - struct timeval tv; -#if defined(MULTIPROCESSOR) - int hold_count; -#endif -#ifdef __HAVE_CPUINFO - struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate; -#endif - - SCHED_ASSERT_LOCKED(); - -#if defined(MULTIPROCESSOR) - /* - * Release the kernel_lock, as we are about to yield the CPU. - * The scheduler lock is still held until cpu_switch() - * selects a new process and removes it from the run queue. - */ - if (p->p_flag & P_BIGLOCK) -#ifdef notyet - hold_count = spinlock_release_all(&kernel_lock); -#else - hold_count = __mp_release_all(&kernel_lock); -#endif -#endif - - /* - * Compute the amount of time during which the current - * process was running, and add that to its total so far. - * XXX - use microuptime here to avoid strangeness. - */ - microuptime(&tv); -#ifdef __HAVE_CPUINFO - if (timercmp(&tv, &spc->spc_runtime, <)) { -#if 0 - printf("uptime is not monotonic! " - "tv=%lu.%06lu, runtime=%lu.%06lu\n", - tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec, - spc->spc_runtime.tv_usec); -#endif - } else { - timersub(&tv, &spc->spc_runtime, &tv); - timeradd(&p->p_rtime, &tv, &p->p_rtime); - } -#else - if (timercmp(&tv, &runtime, <)) { -#if 0 - printf("uptime is not monotonic! " - "tv=%lu.%06lu, runtime=%lu.%06lu\n", - tv.tv_sec, tv.tv_usec, runtime.tv_sec, runtime.tv_usec); -#endif - } else { - timersub(&tv, &runtime, &tv); - timeradd(&p->p_rtime, &tv, &p->p_rtime); - } -#endif - - /* - * Check if the process exceeds its cpu resource allocation. - * If over max, kill it. - */ - rlim = &p->p_rlimit[RLIMIT_CPU]; - if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) { - if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) { - psignal(p, SIGKILL); - } else { - psignal(p, SIGXCPU); - if (rlim->rlim_cur < rlim->rlim_max) - rlim->rlim_cur += 5; - } - } - - /* - * Process is about to yield the CPU; clear the appropriate - * scheduling flags. - */ -#ifdef __HAVE_CPUINFO - spc->spc_schedflags &= ~SPCF_SWITCHCLEAR; -#else - p->p_schedflags &= ~PSCHED_SWITCHCLEAR; -#endif - - /* - * Pick a new current process and record its start time. - */ - uvmexp.swtch++; - cpu_switch(p); - - /* - * Make sure that MD code released the scheduler lock before - * resuming us. - */ - SCHED_ASSERT_UNLOCKED(); - - /* - * We're running again; record our new start time. We might - * be running on a new CPU now, so don't use the cache'd - * schedstate_percpu pointer. - */ -#ifdef __HAVE_CPUINFO - KDASSERT(p->p_cpu != NULL); - KDASSERT(p->p_cpu == curcpu()); - microuptime(&p->p_cpu->ci_schedstate.spc_runtime); -#else - microuptime(&runtime); -#endif - -#if defined(MULTIPROCESSOR) - /* - * Reacquire the kernel_lock now. We do this after we've - * released the scheduler lock to avoid deadlock, and before - * we reacquire the interlock. - */ - if (p->p_flag & P_BIGLOCK) -#ifdef notyet - spinlock_acquire_count(&kernel_lock, hold_count); -#else - __mp_acquire_count(&kernel_lock, hold_count); -#endif -#endif -} - -/* - * Initialize the (doubly-linked) run queues - * to be empty. - */ -void -rqinit() -{ - register int i; - - for (i = 0; i < NQS; i++) - qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; - SIMPLE_LOCK_INIT(&sched_lock); -} - -static __inline void -resched_proc(struct proc *p, u_char pri) -{ -#ifdef __HAVE_CPUINFO - struct cpu_info *ci; -#endif - - /* - * XXXSMP - * Since p->p_cpu persists across a context switch, - * this gives us *very weak* processor affinity, in - * that we notify the CPU on which the process last - * ran that it should try to switch. - * - * This does not guarantee that the process will run on - * that processor next, because another processor might - * grab it the next time it performs a context switch. - * - * This also does not handle the case where its last - * CPU is running a higher-priority process, but every - * other CPU is running a lower-priority process. There - * are ways to handle this situation, but they're not - * currently very pretty, and we also need to weigh the - * cost of moving a process from one CPU to another. - * - * XXXSMP - * There is also the issue of locking the other CPU's - * sched state, which we currently do not do. - */ -#ifdef __HAVE_CPUINFO - ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu(); - if (pri < ci->ci_schedstate.spc_curpriority) - need_resched(ci); -#else - if (pri < curpriority) - need_resched(0); -#endif -} - -/* - * Change process state to be runnable, - * placing it on the run queue if it is in memory, - * and awakening the swapper if it isn't in memory. - */ -void -setrunnable(p) - register struct proc *p; -{ - SCHED_ASSERT_LOCKED(); - - switch (p->p_stat) { - case 0: - case SRUN: - case SONPROC: - case SZOMB: - case SDEAD: - default: - panic("setrunnable"); - case SSTOP: - /* - * If we're being traced (possibly because someone attached us - * while we were stopped), check for a signal from the debugger. - */ - if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) - p->p_siglist |= sigmask(p->p_xstat); - case SSLEEP: - unsleep(p); /* e.g. when sending signals */ - break; - case SIDL: - break; - } - p->p_stat = SRUN; - if (p->p_flag & P_INMEM) - setrunqueue(p); - if (p->p_slptime > 1) - updatepri(p); - p->p_slptime = 0; - if ((p->p_flag & P_INMEM) == 0) - wakeup((caddr_t)&proc0); - else - resched_proc(p, p->p_priority); -} - -/* - * Compute the priority of a process when running in user mode. - * Arrange to reschedule if the resulting priority is better - * than that of the current process. - */ -void -resetpriority(p) - register struct proc *p; -{ - register unsigned int newpriority; - - SCHED_ASSERT_LOCKED(); - - newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO); - newpriority = min(newpriority, MAXPRI); - p->p_usrpri = newpriority; - resched_proc(p, p->p_usrpri); -} - -/* - * We adjust the priority of the current process. The priority of a process - * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu) - * is increased here. The formula for computing priorities (in kern_synch.c) - * will compute a different value each time p_estcpu increases. This can - * cause a switch, but unless the priority crosses a PPQ boundary the actual - * queue will not change. The cpu usage estimator ramps up quite quickly - * when the process is running (linearly), and decays away exponentially, at - * a rate which is proportionally slower when the system is busy. The basic - * principle is that the system will 90% forget that the process used a lot - * of CPU time in 5 * loadav seconds. This causes the system to favor - * processes which haven't run much recently, and to round-robin among other - * processes. - */ - -void -schedclock(p) - struct proc *p; -{ - int s; - - p->p_estcpu = ESTCPULIM(p->p_estcpu + 1); - SCHED_LOCK(s); - resetpriority(p); - SCHED_UNLOCK(s); - if (p->p_priority >= PUSER) - p->p_priority = p->p_usrpri; -} - /* * We're only looking at 7 bits of the address; everything is |