summaryrefslogtreecommitdiff
path: root/sys
diff options
context:
space:
mode:
authorBrad Smith <brad@cvs.openbsd.org>2006-07-03 20:55:56 +0000
committerBrad Smith <brad@cvs.openbsd.org>2006-07-03 20:55:56 +0000
commit12fb0dfbbd42495bd79b8697eeb9d16287e00c17 (patch)
treeca5b1886650c6a15d773344029c49e26994382a6 /sys
parentb3b1b954b1ec77de5b3db7d74d2816b07cf30277 (diff)
Sync up to Intel's latest FreeBSD em driver (6.0.5). Adds support
for new chipset revisions embedded in the ESB2 and ICH8 core logic chipsets. From: Intel's web-site
Diffstat (limited to 'sys')
-rw-r--r--sys/dev/pci/if_em.c161
-rw-r--r--sys/dev/pci/if_em.h24
-rw-r--r--sys/dev/pci/if_em_hw.c2840
-rw-r--r--sys/dev/pci/if_em_hw.h421
-rw-r--r--sys/dev/pci/if_em_osdep.h96
5 files changed, 2762 insertions, 780 deletions
diff --git a/sys/dev/pci/if_em.c b/sys/dev/pci/if_em.c
index 4e68e57c30b..936272dfdc6 100644
--- a/sys/dev/pci/if_em.c
+++ b/sys/dev/pci/if_em.c
@@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
-/* $OpenBSD: if_em.c,v 1.133 2006/06/28 02:46:54 brad Exp $ */
+/* $OpenBSD: if_em.c,v 1.134 2006/07/03 20:55:55 brad Exp $ */
/* $FreeBSD: if_em.c,v 1.46 2004/09/29 18:28:28 mlaier Exp $ */
#include <dev/pci/if_em.h>
@@ -45,7 +45,7 @@ int em_display_debug_stats = 0;
* Driver version
*********************************************************************/
-char em_driver_version[] = "5.1.5";
+char em_driver_version[] = "6.0.5";
/*********************************************************************
* PCI Device ID Table
@@ -53,6 +53,8 @@ char em_driver_version[] = "5.1.5";
const struct pci_matchid em_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_CPR_DPT },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_SDS_DPT },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_CPR_SPT },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80003ES2LAN_SDS_SPT },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP },
@@ -106,7 +108,12 @@ const struct pci_matchid em_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L_PL_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L_PL_2 },
- { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573V_PM }
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573V_PM },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_M_AMT },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_AMT },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_C },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IFE },
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_ICH8_IGP_M }
};
/*********************************************************************
@@ -182,6 +189,8 @@ struct cfdriver em_cd = {
0, "em", DV_IFNET
};
+static int em_smart_pwr_down = FALSE;
+
/*********************************************************************
* Device identification routine
*
@@ -290,6 +299,10 @@ em_attach(struct device *parent, struct device *self, void *aux)
case em_80003es2lan: /* Limit Jumbo Frame size */
sc->hw.max_frame_size = 9234;
break;
+ case em_ich8lan:
+ /* ICH8 does not support jumbo frames */
+ sc->hw.max_frame_size = ETHER_MAX_LEN;
+ break;
default:
sc->hw.max_frame_size =
MAX_JUMBO_FRAME_SIZE;
@@ -300,10 +313,10 @@ em_attach(struct device *parent, struct device *self, void *aux)
if (sc->hw.mac_type >= em_82544)
tsize = EM_ROUNDUP(sc->num_tx_desc * sizeof(struct em_tx_desc),
- EM_MAX_TXD_82544 * sizeof(struct em_tx_desc));
+ EM_MAX_TXD * sizeof(struct em_tx_desc));
else
tsize = EM_ROUNDUP(sc->num_tx_desc * sizeof(struct em_tx_desc),
- EM_MAX_TXD * sizeof(struct em_tx_desc));
+ EM_MAX_TXD_82543 * sizeof(struct em_tx_desc));
tsize = EM_ROUNDUP(tsize, PAGE_SIZE);
/* Allocate Transmit Descriptor ring */
@@ -602,9 +615,9 @@ em_init(void *arg)
if (ifp->if_flags & IFF_UP) {
if (sc->hw.mac_type >= em_82544)
- sc->num_tx_desc = EM_MAX_TXD_82544;
- else
sc->num_tx_desc = EM_MAX_TXD;
+ else
+ sc->num_tx_desc = EM_MAX_TXD_82543;
sc->num_rx_desc = EM_MAX_RXD;
} else {
sc->num_tx_desc = EM_MIN_TXD;
@@ -615,6 +628,12 @@ em_init(void *arg)
/* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
+ *
+ * Devices before the 82547 had a Packet Buffer of 64K.
+ * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
+ * After the 82547 the buffer was reduced to 40K.
+ * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
+ * Note: default does not leave enough room for Jumbo Frame >10k.
*/
switch (sc->hw.mac_type) {
case em_82547:
@@ -636,6 +655,9 @@ em_init(void *arg)
/* Jumbo frames not supported */
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
break;
+ case em_ich8lan:
+ pba = E1000_PBA_8K;
+ break;
default:
/* Devices before 82547 had a Packet Buffer of 64K. */
if (sc->hw.max_frame_size > EM_RXBUFFER_8192)
@@ -1246,6 +1268,8 @@ em_local_timer(void *arg)
splx(s);
}
+#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+
void
em_update_link_status(struct em_softc *sc)
{
@@ -1256,6 +1280,15 @@ em_update_link_status(struct em_softc *sc)
em_get_speed_and_duplex(&sc->hw,
&sc->link_speed,
&sc->link_duplex);
+ /* Check if we may set SPEED_MODE bit on PCI-E */
+ if ((sc->link_speed == SPEED_1000) &&
+ ((sc->hw.mac_type == em_82571) ||
+ (sc->hw.mac_type == em_82572))) {
+ int tarc0;
+ tarc0 = E1000_READ_REG(&sc->hw, TARC0);
+ tarc0 |= SPEED_MODE_BIT;
+ E1000_WRITE_REG(&sc->hw, TARC0, tarc0);
+ }
sc->link_active = 1;
sc->smartspeed = 0;
ifp->if_baudrate = sc->link_speed * 1000000;
@@ -1371,18 +1404,33 @@ em_allocate_pci_resources(struct em_softc *sc)
PCI_MAPREG_MEM_TYPE_64BIT)
rid += 4; /* skip high bits, too */
}
+
if (pci_mapreg_map(pa, rid, PCI_MAPREG_TYPE_IO, 0,
- &sc->osdep.em_iobtag,
- &sc->osdep.em_iobhandle,
- &sc->osdep.em_iobase,
- &sc->osdep.em_iosize, 0)) {
+ &sc->osdep.io_bus_space_tag, &sc->osdep.io_bus_space_handle,
+ &sc->osdep.em_iobase, &sc->osdep.em_iosize, 0)) {
printf(": can't find io space\n");
return (ENXIO);
}
- sc->hw.io_base = 0;
+ sc->hw.io_base = sc->osdep.em_iobase;
}
+ /* for ICH8 we need to find the flash memory */
+ if (sc->hw.mac_type == em_ich8lan) {
+ val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_FLASH);
+ if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) {
+ printf(": flash isn't memory");
+ return (ENXIO);
+ }
+
+ if (pci_mapreg_map(pa, EM_FLASH, PCI_MAPREG_MEM_TYPE(val), 0,
+ &sc->osdep.flash_bus_space_tag, &sc->osdep.flash_bus_space_handle,
+ &sc->osdep.em_flashbase, &sc->osdep.em_flashsize, 0)) {
+ printf(": can't find mem space\n");
+ return (ENXIO);
+ }
+ }
+
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
return (ENXIO);
@@ -1411,16 +1459,21 @@ em_free_pci_resources(struct em_softc *sc)
struct pci_attach_args *pa = &sc->osdep.em_pa;
pci_chipset_tag_t pc = pa->pa_pc;
- if(sc->sc_intrhand)
+ if (sc->sc_intrhand)
pci_intr_disestablish(pc, sc->sc_intrhand);
sc->sc_intrhand = 0;
- if(sc->osdep.em_iobase)
- bus_space_unmap(sc->osdep.em_iobtag, sc->osdep.em_iobhandle,
+ if (sc->osdep.em_flashbase)
+ bus_space_unmap(sc->osdep.flash_bus_space_tag, sc->osdep.flash_bus_space_handle,
+ sc->osdep.em_flashsize);
+ sc->osdep.em_flashbase = 0;
+
+ if (sc->osdep.em_iobase)
+ bus_space_unmap(sc->osdep.io_bus_space_tag, sc->osdep.io_bus_space_handle,
sc->osdep.em_iosize);
sc->osdep.em_iobase = 0;
- if(sc->osdep.em_membase)
+ if (sc->osdep.em_membase)
bus_space_unmap(sc->osdep.mem_bus_space_tag, sc->osdep.mem_bus_space_handle,
sc->osdep.em_memsize);
sc->osdep.em_membase = 0;
@@ -1459,6 +1512,17 @@ em_hardware_init(struct em_softc *sc)
return (EIO);
}
+ /* Set up smart power down as default off on newer adapters */
+ if (!em_smart_pwr_down &&
+ (sc->hw.mac_type == em_82571 ||
+ sc->hw.mac_type == em_82572)) {
+ uint16_t phy_tmp = 0;
+ /* speed up time to link by disabling smart power down */
+ em_read_phy_reg(&sc->hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
+ phy_tmp &= ~IGP02E1000_PM_SPD;
+ em_write_phy_reg(&sc->hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
+ }
+
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
@@ -1750,22 +1814,22 @@ em_setup_transmit_structures(struct em_softc *sc)
void
em_initialize_transmit_unit(struct em_softc *sc)
{
- u_int32_t reg_tctl, tarc;
+ u_int32_t reg_tctl, reg_tarc;
u_int32_t reg_tipg = 0;
u_int64_t bus_addr;
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
/* Setup the Base and Length of the Tx Descriptor Ring */
bus_addr = sc->txdma.dma_map->dm_segs[0].ds_addr;
- E1000_WRITE_REG(&sc->hw, TDBAL, (u_int32_t)bus_addr);
- E1000_WRITE_REG(&sc->hw, TDBAH, (u_int32_t)(bus_addr >> 32));
E1000_WRITE_REG(&sc->hw, TDLEN,
sc->num_tx_desc *
sizeof(struct em_tx_desc));
+ E1000_WRITE_REG(&sc->hw, TDBAH, (u_int32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(&sc->hw, TDBAL, (u_int32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(&sc->hw, TDH, 0);
E1000_WRITE_REG(&sc->hw, TDT, 0);
+ E1000_WRITE_REG(&sc->hw, TDH, 0);
HW_DEBUGOUT2("Base = %x, Length = %x\n",
E1000_READ_REG(&sc->hw, TDBAL),
@@ -1797,6 +1861,26 @@ em_initialize_transmit_unit(struct em_softc *sc)
if(sc->hw.mac_type >= em_82540)
E1000_WRITE_REG(&sc->hw, TADV, sc->tx_abs_int_delay);
+ /* Do adapter specific tweaks before we enable the transmitter */
+ if (sc->hw.mac_type == em_82571 || sc->hw.mac_type == em_82572) {
+ reg_tarc = E1000_READ_REG(&sc->hw, TARC0);
+ reg_tarc |= (1 << 25);
+ E1000_WRITE_REG(&sc->hw, TARC0, reg_tarc);
+ reg_tarc = E1000_READ_REG(&sc->hw, TARC1);
+ reg_tarc |= (1 << 25);
+ reg_tarc &= ~(1 << 28);
+ E1000_WRITE_REG(&sc->hw, TARC1, reg_tarc);
+ } else if (sc->hw.mac_type == em_80003es2lan) {
+ reg_tarc = E1000_READ_REG(&sc->hw, TARC0);
+ reg_tarc |= 1;
+ if (sc->hw.media_type == em_media_type_internal_serdes)
+ reg_tarc |= (1 << 20);
+ E1000_WRITE_REG(&sc->hw, TARC0, reg_tarc);
+ reg_tarc = E1000_READ_REG(&sc->hw, TARC1);
+ reg_tarc |= 1;
+ E1000_WRITE_REG(&sc->hw, TARC1, reg_tarc);
+ }
+
/* Program the Transmit Control Register */
reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
@@ -1806,30 +1890,9 @@ em_initialize_transmit_unit(struct em_softc *sc)
reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
else
reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+ /* This write will effectively turn on the transmit unit */
E1000_WRITE_REG(&sc->hw, TCTL, reg_tctl);
- if (sc->hw.mac_type == em_82571 || sc->hw.mac_type == em_82572) {
- tarc = E1000_READ_REG(&sc->hw, TARC0);
- tarc |= ((1 << 25) | (1 << 21));
- E1000_WRITE_REG(&sc->hw, TARC0, tarc);
- tarc = E1000_READ_REG(&sc->hw, TARC1);
- tarc |= (1 << 25);
- if (reg_tctl & E1000_TCTL_MULR)
- tarc &= ~(1 << 28);
- else
- tarc |= (1 << 28);
- E1000_WRITE_REG(&sc->hw, TARC1, tarc);
- } else if (sc->hw.mac_type == em_80003es2lan) {
- tarc = E1000_READ_REG(&sc->hw, TARC0);
- tarc |= 1;
- if (sc->hw.media_type == em_media_type_internal_serdes)
- tarc |= (1 << 20);
- E1000_WRITE_REG(&sc->hw, TARC0, tarc);
- tarc = E1000_READ_REG(&sc->hw, TARC1);
- tarc |= 1;
- E1000_WRITE_REG(&sc->hw, TARC1, tarc);
- }
-
/* Setup Transmit Descriptor Settings for this adapter */
sc->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS;
@@ -2186,14 +2249,14 @@ em_initialize_receive_unit(struct em_softc *sc)
/* Setup the Base and Length of the Rx Descriptor Ring */
bus_addr = sc->rxdma.dma_map->dm_segs[0].ds_addr;
- E1000_WRITE_REG(&sc->hw, RDBAL, (u_int32_t)bus_addr);
- E1000_WRITE_REG(&sc->hw, RDBAH, (u_int32_t)(bus_addr >> 32));
E1000_WRITE_REG(&sc->hw, RDLEN, sc->num_rx_desc *
sizeof(struct em_rx_desc));
+ E1000_WRITE_REG(&sc->hw, RDBAH, (u_int32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(&sc->hw, RDBAL, (u_int32_t)bus_addr);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
- E1000_WRITE_REG(&sc->hw, RDH, 0);
E1000_WRITE_REG(&sc->hw, RDT, sc->num_rx_desc - 1);
+ E1000_WRITE_REG(&sc->hw, RDH, 0);
/* Setup the Receive Control Register */
reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
@@ -2735,7 +2798,7 @@ em_update_stats_counters(struct em_softc *sc)
sc->stats.rxerrc +
sc->stats.crcerrs +
sc->stats.algnerrc +
- sc->stats.rlec + sc->stats.rnbc +
+ sc->stats.ruc + sc->stats.roc +
sc->stats.mpc + sc->stats.cexterr +
sc->rx_overruns;
@@ -2769,8 +2832,10 @@ em_print_hw_stats(struct em_softc *sc)
(long long)sc->stats.mpc);
printf("%s: Receive No Buffers = %lld\n", unit,
(long long)sc->stats.rnbc);
- printf("%s: Receive length errors = %lld\n", unit,
- (long long)sc->stats.rlec);
+ /* RLEC is inaccurate on some hardware, calculate our own */
+ printf("%s: Receive Length Errors = %lld\n", unit,
+ ((long long)sc->stats.roc +
+ (long long)sc->stats.ruc));
printf("%s: Receive errors = %lld\n", unit,
(long long)sc->stats.rxerrc);
printf("%s: Crc errors = %lld\n", unit,
diff --git a/sys/dev/pci/if_em.h b/sys/dev/pci/if_em.h
index 9ab7672fb41..259c03274d4 100644
--- a/sys/dev/pci/if_em.h
+++ b/sys/dev/pci/if_em.h
@@ -32,7 +32,7 @@ POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
/* $FreeBSD: if_em.h,v 1.26 2004/09/01 23:22:41 pdeuskar Exp $ */
-/* $OpenBSD: if_em.h,v 1.23 2006/03/05 19:55:10 brad Exp $ */
+/* $OpenBSD: if_em.h,v 1.24 2006/07/03 20:55:55 brad Exp $ */
#ifndef _EM_H_DEFINED_
#define _EM_H_DEFINED_
@@ -83,20 +83,23 @@ POSSIBILITY OF SUCH DAMAGE.
/* Tunables */
/*
- * EM_(MIN/MAX)_TXD: Maximum number of Transmit Descriptors
+ * EM_TXD: Maximum number of Transmit Descriptors
* Valid Range: 80-256 for 82542 and 82543-based adapters
* 80-4096 for others
* Default Value: 256
* This value is the number of transmit descriptors allocated by the driver.
* Increasing this value allows the driver to queue more transmits. Each
* descriptor is 16 bytes.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
*/
#define EM_MIN_TXD 12
-#define EM_MAX_TXD 256
-#define EM_MAX_TXD_82544 512
+#define EM_MAX_TXD_82543 256
+#define EM_MAX_TXD 512
/*
- * EM_(MIN/MAX)_RXD - Maximum number of receive Descriptors
+ * EM_RXD - Maximum number of receive Descriptors
* Valid Range: 80-256 for 82542 and 82543-based adapters
* 80-4096 for others
* Default Value: 256
@@ -104,7 +107,9 @@ POSSIBILITY OF SUCH DAMAGE.
* Increasing this value allows the driver to buffer more incoming packets.
* Each descriptor is 16 bytes. A receive buffer is also allocated for each
* descriptor. The maximum MTU size is 16110.
- *
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0
*/
#define EM_MIN_RXD 12
#define EM_MAX_RXD 256
@@ -213,6 +218,7 @@ POSSIBILITY OF SUCH DAMAGE.
ADVERTISE_1000_FULL)
#define EM_MMBA 0x0010 /* Mem base address */
+#define EM_FLASH 0x0014 /* Flash memory on ICH8 */
#define EM_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))
#define EM_SMARTSPEED_DOWNSHIFT 3
@@ -303,12 +309,6 @@ struct em_softc {
void *sc_powerhook;
void *sc_shutdownhook;
-#ifdef __STRICT_ALIGNMENT
- /* Used for carrying forward alignment adjustments */
- unsigned char align_buf[ETHER_ALIGN]; /* tail of unaligned packet */
- u_int8_t align_buf_len; /* bytes in tail */
-#endif /* __STRICT_ALIGNMENT */
-
/* Info about the board itself */
u_int32_t part_num;
u_int8_t link_active;
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c
index d3af7be0295..a782cf30f18 100644
--- a/sys/dev/pci/if_em_hw.c
+++ b/sys/dev/pci/if_em_hw.c
@@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
-/* $OpenBSD: if_em_hw.c,v 1.18 2006/05/17 20:45:52 brad Exp $ */
+/* $OpenBSD: if_em_hw.c,v 1.19 2006/07/03 20:55:55 brad Exp $ */
/* if_em_hw.c
* Shared functions for accessing and configuring the MAC
@@ -41,7 +41,7 @@ POSSIBILITY OF SUCH DAMAGE.
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
#endif
-
+
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
@@ -64,7 +64,7 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
#endif
#include <uvm/uvm_extern.h>
-
+
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
@@ -107,8 +107,9 @@ static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
static int32_t em_set_phy_mode(struct em_hw *hw);
static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex);
-static int32_t em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex);
+static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
+ uint16_t duplex);
+static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
/* IGP cable length table */
static const
@@ -143,10 +144,10 @@ em_set_phy_type(struct em_hw *hw)
{
DEBUGFUNC("em_set_phy_type");
- if(hw->mac_type == em_undefined)
+ if (hw->mac_type == em_undefined)
return -E1000_ERR_PHY_TYPE;
- switch(hw->phy_id) {
+ switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
@@ -154,13 +155,21 @@ em_set_phy_type(struct em_hw *hw)
hw->phy_type = em_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
- if(hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
+ if (hw->mac_type == em_82541 ||
+ hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547 ||
+ hw->mac_type == em_82547_rev_2) {
hw->phy_type = em_phy_igp;
break;
}
+ case IGP03E1000_E_PHY_ID:
+ hw->phy_type = em_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ hw->phy_type = em_phy_ife;
+ break;
case GG82563_E_PHY_ID:
if (hw->mac_type == em_80003es2lan) {
hw->phy_type = em_phy_gg82563;
@@ -189,7 +198,7 @@ em_phy_init_script(struct em_hw *hw)
DEBUGFUNC("em_phy_init_script");
- if(hw->phy_init_script) {
+ if (hw->phy_init_script) {
msec_delay(20);
/* Save off the current value of register 0x2F5B to be restored at
@@ -205,7 +214,7 @@ em_phy_init_script(struct em_hw *hw)
msec_delay(5);
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82541:
case em_82547:
em_write_phy_reg(hw, 0x1F95, 0x0001);
@@ -242,22 +251,22 @@ em_phy_init_script(struct em_hw *hw)
/* Now enable the transmitter */
em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(hw->mac_type == em_82547) {
+ if (hw->mac_type == em_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
- if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
- if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
@@ -337,8 +346,8 @@ em_set_mac_type(struct em_hw *hw)
hw->mac_type = em_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541ER_LOM:
case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = em_82541;
break;
case E1000_DEV_ID_82541ER:
@@ -377,16 +386,29 @@ em_set_mac_type(struct em_hw *hw)
case E1000_DEV_ID_82573V_PM:
hw->mac_type = em_82573;
break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = em_80003es2lan;
break;
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ hw->mac_type = em_ich8lan;
+ break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
+ case em_ich8lan:
+ hw->swfwhw_semaphore_present = TRUE;
+ hw->asf_firmware_present = TRUE;
+ break;
case em_80003es2lan:
hw->swfw_sync_present = TRUE;
/* FALLTHROUGH */
@@ -420,7 +442,7 @@ em_set_media_type(struct em_hw *hw)
DEBUGFUNC("em_set_media_type");
- if(hw->mac_type != em_82543) {
+ if (hw->mac_type != em_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
@@ -439,6 +461,7 @@ em_set_media_type(struct em_hw *hw)
case em_82542_rev2_1:
hw->media_type = em_media_type_fiber;
break;
+ case em_ich8lan:
case em_82573:
/* The STATUS_TBIMODE bit is reserved or reused for the this
* device.
@@ -479,16 +502,16 @@ em_reset_hw(struct em_hw *hw)
DEBUGFUNC("em_reset_hw");
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if(hw->mac_type == em_82542_rev2_0) {
+ if (hw->mac_type == em_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
em_pci_clear_mwi(hw);
}
- if(hw->bus_type == em_bus_type_pci_express) {
+ if (hw->bus_type == em_bus_type_pci_express) {
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
- if(em_disable_pciex_master(hw) != E1000_SUCCESS) {
+ if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
DEBUGOUT("PCI-E Master disable polling has failed.\n");
}
}
@@ -516,14 +539,14 @@ em_reset_hw(struct em_hw *hw)
ctrl = E1000_READ_REG(hw, CTRL);
/* Must reset the PHY before resetting the MAC */
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
msec_delay(5);
}
/* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset. */
- if(hw->mac_type == em_82573) {
+ if (hw->mac_type == em_82573) {
timeout = 10;
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
@@ -533,14 +556,22 @@ em_reset_hw(struct em_hw *hw)
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
else
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
msec_delay(2);
timeout--;
- } while(timeout);
+ } while (timeout);
+ }
+
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
+ if (hw->mac_type == em_ich8lan) {
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
+ E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
+ /* Set Packet Buffer Size to 16k. */
+ E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
}
/* Issue a global reset to the MAC. This will reset the chip's
@@ -550,7 +581,7 @@ em_reset_hw(struct em_hw *hw)
*/
DEBUGOUT("Issuing a global reset to MAC\n");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82544:
case em_82540:
case em_82545:
@@ -566,6 +597,20 @@ em_reset_hw(struct em_hw *hw)
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
+ case em_ich8lan:
+ if (!hw->phy_reset_disable &&
+ em_check_phy_reset_block(hw) == E1000_SUCCESS) {
+ /* em_ich8lan PHY HW reset requires MAC CORE reset
+ * at the same time to make sure the interface between
+ * MAC and the external PHY is reset.
+ */
+ ctrl |= E1000_CTRL_PHY_RST;
+ }
+
+ em_get_software_flag(hw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ msec_delay(5);
+ break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
@@ -575,7 +620,7 @@ em_reset_hw(struct em_hw *hw)
* device. Later controllers reload the EEPROM automatically, so just wait
* for reload to complete.
*/
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -607,9 +652,10 @@ em_reset_hw(struct em_hw *hw)
/* FALLTHROUGH */
case em_82571:
case em_82572:
+ case em_ich8lan:
case em_80003es2lan:
ret_val = em_get_auto_rd_done(hw);
- if(ret_val)
+ if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
break;
@@ -620,13 +666,13 @@ em_reset_hw(struct em_hw *hw)
}
/* Disable HW ARPs on ASF enabled adapters */
- if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
+ if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
em_phy_init_script(hw);
/* Configure activity LED after PHY reset */
@@ -644,11 +690,17 @@ em_reset_hw(struct em_hw *hw)
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
- if(hw->mac_type == em_82542_rev2_0) {
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if (hw->mac_type == em_82542_rev2_0) {
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
em_pci_set_mwi(hw);
}
+ if (hw->mac_type == em_ich8lan) {
+ uint32_t kab = E1000_READ_REG(hw, KABGTXD);
+ kab |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, KABGTXD, kab);
+ }
+
return E1000_SUCCESS;
}
@@ -681,7 +733,7 @@ em_init_hw(struct em_hw *hw)
/* Initialize Identification LED */
ret_val = em_id_led_init(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Initializing Identification LED\n");
return ret_val;
}
@@ -691,12 +743,15 @@ em_init_hw(struct em_hw *hw)
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
+ /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+ if (hw->mac_type != em_ich8lan) {
+ if (hw->mac_type < em_82545_rev_3)
+ E1000_WRITE_REG(hw, VET, 0);
+ em_clear_vfta(hw);
+ }
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if(hw->mac_type == em_82542_rev2_0) {
+ if (hw->mac_type == em_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
em_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
@@ -710,37 +765,43 @@ em_init_hw(struct em_hw *hw)
em_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if(hw->mac_type == em_82542_rev2_0) {
+ if (hw->mac_type == em_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
msec_delay(1);
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
em_pci_set_mwi(hw);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
- for(i = 0; i < mta_size; i++)
+ if (hw->mac_type == em_ich8lan)
+ mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+ for (i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ /* use write flush to prevent Memory Write Block (MWB) from
+ * occuring when accessing our register space */
+ E1000_WRITE_FLUSH(hw);
+ }
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives. Valid only on
* 82542 and 82543 silicon.
*/
- if(hw->dma_fairness && hw->mac_type <= em_82543) {
+ if (hw->dma_fairness && hw->mac_type <= em_82543) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if(hw->bus_type == em_bus_type_pcix) {
+ if (hw->bus_type == em_bus_type_pcix) {
em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
@@ -748,9 +809,9 @@ em_init_hw(struct em_hw *hw)
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
- if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if(cmd_mmrbc > stat_mmrbc) {
+ if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
@@ -760,11 +821,15 @@ em_init_hw(struct em_hw *hw)
break;
}
+ /* More time needed for PHY to initialize */
+ if (hw->mac_type == em_ich8lan)
+ msec_delay(15);
+
/* Call a subroutine to configure the link and setup flow control. */
ret_val = em_setup_link(hw);
/* Set the transmit descriptor write-back policy */
- if(hw->mac_type > em_82544) {
+ if (hw->mac_type > em_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
switch (hw->mac_type) {
@@ -773,6 +838,7 @@ em_init_hw(struct em_hw *hw)
case em_82571:
case em_82572:
case em_82573:
+ case em_ich8lan:
case em_80003es2lan:
ctrl |= E1000_TXDCTL_COUNT_DESC;
break;
@@ -781,7 +847,7 @@ em_init_hw(struct em_hw *hw)
}
if (hw->mac_type == em_82573) {
- em_enable_tx_pkt_filtering(hw);
+ em_enable_tx_pkt_filtering(hw);
}
switch (hw->mac_type) {
@@ -811,9 +877,10 @@ em_init_hw(struct em_hw *hw)
/* FALLTHROUGH */
case em_82571:
case em_82572:
+ case em_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- if(hw->mac_type >= em_82571)
+ if (hw->mac_type >= em_82571)
ctrl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
@@ -832,6 +899,11 @@ em_init_hw(struct em_hw *hw)
*/
em_clear_hw_cntrs(hw);
+ /* ICH8/Nahum No-snoop bits are opposite polarity.
+ * Set to snoop by default after reset. */
+ if (hw->mac_type == em_ich8lan)
+ em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
+
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
@@ -857,10 +929,10 @@ em_adjust_serdes_amplitude(struct em_hw *hw)
DEBUGFUNC("em_adjust_serdes_amplitude");
- if(hw->media_type != em_media_type_internal_serdes)
+ if (hw->media_type != em_media_type_internal_serdes)
return E1000_SUCCESS;
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
@@ -873,11 +945,11 @@ em_adjust_serdes_amplitude(struct em_hw *hw)
return ret_val;
}
- if(eeprom_data != EEPROM_RESERVED_WORD) {
+ if (eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
@@ -919,6 +991,7 @@ em_setup_link(struct em_hw *hw)
*/
if (hw->fc == em_fc_default) {
switch (hw->mac_type) {
+ case em_ich8lan:
case em_82573:
hw->fc = em_fc_full;
break;
@@ -944,10 +1017,10 @@ em_setup_link(struct em_hw *hw)
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
- if(hw->mac_type == em_82542_rev2_0)
+ if (hw->mac_type == em_82542_rev2_0)
hw->fc &= (~em_fc_tx_pause);
- if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
+ if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
hw->fc &= (~em_fc_rx_pause);
hw->original_fc = hw->fc;
@@ -961,7 +1034,13 @@ em_setup_link(struct em_hw *hw)
* signal detection. So this should be done before em_setup_pcs_link()
* or em_phy_setup() is called.
*/
- if(hw->mac_type == em_82543) {
+ if (hw->mac_type == em_82543) {
+ ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+ 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
@@ -979,9 +1058,12 @@ em_setup_link(struct em_hw *hw)
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
+ if (hw->mac_type != em_ich8lan) {
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ }
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
@@ -991,14 +1073,14 @@ em_setup_link(struct em_hw *hw)
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
- if(!(hw->fc & em_fc_tx_pause)) {
+ if (!(hw->fc & em_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
- if(hw->fc_send_xon) {
+ if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
@@ -1045,11 +1127,11 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
- if(hw->media_type == em_media_type_fiber)
+ if (hw->media_type == em_media_type_fiber)
signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
ret_val = em_adjust_serdes_amplitude(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Take the link out of reset */
@@ -1057,7 +1139,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
/* Adjust VCO speed to improve BER performance */
ret_val = em_set_vco_speed(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
em_config_collision_dist(hw);
@@ -1128,15 +1210,15 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* less than 500 milliseconds even if the other end is doing it in SW).
* For internal serdes, we just assume a signal is present, then poll.
*/
- if(hw->media_type == em_media_type_internal_serdes ||
+ if (hw->media_type == em_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
- for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msec_delay(10);
status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_LU) break;
+ if (status & E1000_STATUS_LU) break;
}
- if(i == (LINK_UP_TIMEOUT / 10)) {
+ if (i == (LINK_UP_TIMEOUT / 10)) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
@@ -1145,7 +1227,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw)
* non-autonegotiating link partners.
*/
ret_val = em_check_for_link(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
@@ -1179,7 +1261,7 @@ em_copper_link_preconfig(struct em_hw *hw)
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
- if(hw->mac_type > em_82543) {
+ if (hw->mac_type > em_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
@@ -1187,13 +1269,13 @@ em_copper_link_preconfig(struct em_hw *hw)
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = em_phy_hw_reset(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = em_detect_gig_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
@@ -1201,19 +1283,19 @@ em_copper_link_preconfig(struct em_hw *hw)
/* Set PHY to class A mode (if necessary) */
ret_val = em_set_phy_mode(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((hw->mac_type == em_82545_rev_3) ||
+ if ((hw->mac_type == em_82545_rev_3) ||
(hw->mac_type == em_82546_rev_3)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
- if(hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
+ if (hw->mac_type <= em_82543 ||
+ hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
+ hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
hw->phy_reset_disable = FALSE;
return E1000_SUCCESS;
@@ -1236,21 +1318,22 @@ em_copper_link_igp_setup(struct em_hw *hw)
if (hw->phy_reset_disable)
return E1000_SUCCESS;
-
+
ret_val = em_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
- /* Wait 10ms for MAC to configure PHY from eeprom settings */
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
msec_delay(15);
-
+ if (hw->mac_type != em_ich8lan) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
/* disable lplu d3 during driver init */
ret_val = em_set_d3_lplu_state(hw, FALSE);
@@ -1294,45 +1377,45 @@ em_copper_link_igp_setup(struct em_hw *hw)
}
}
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
- if(hw->autoneg) {
+ if (hw->autoneg) {
em_ms_type phy_ms_setting = hw->master_slave;
- if(hw->ffe_config_state == em_ffe_config_active)
+ if (hw->ffe_config_state == em_ffe_config_active)
hw->ffe_config_state = em_ffe_config_enabled;
- if(hw->dsp_config_state == em_dsp_config_activated)
+ if (hw->dsp_config_state == em_dsp_config_activated)
hw->dsp_config_state = em_dsp_config_enabled;
/* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
- if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* load defaults for future use */
@@ -1357,7 +1440,7 @@ em_copper_link_igp_setup(struct em_hw *hw)
break;
}
ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
@@ -1378,12 +1461,12 @@ em_copper_link_ggp_setup(struct em_hw *hw)
DEBUGFUNC("em_copper_link_ggp_setup");
- if(!hw->phy_reset_disable) {
-
+ if (!hw->phy_reset_disable) {
+
/* Enable CRS on TX for half-duplex operation. */
ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
@@ -1392,7 +1475,7 @@ em_copper_link_ggp_setup(struct em_hw *hw)
ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Options:
@@ -1403,7 +1486,7 @@ em_copper_link_ggp_setup(struct em_hw *hw)
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
@@ -1428,11 +1511,11 @@ em_copper_link_ggp_setup(struct em_hw *hw)
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if(hw->disable_polarity_correction == 1)
+ if (hw->disable_polarity_correction == 1)
phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
@@ -1487,11 +1570,10 @@ em_copper_link_ggp_setup(struct em_hw *hw)
if (ret_val)
return ret_val;
- /* Disable Pass False Carrier on the PHY */
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
phy_data);
+
if (ret_val)
return ret_val;
}
@@ -1526,12 +1608,12 @@ em_copper_link_mgp_setup(struct em_hw *hw)
DEBUGFUNC("em_copper_link_mgp_setup");
- if(hw->phy_reset_disable)
+ if (hw->phy_reset_disable)
return E1000_SUCCESS;
-
+
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
@@ -1568,35 +1650,47 @@ em_copper_link_mgp_setup(struct em_hw *hw)
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if(hw->disable_polarity_correction == 1)
+ if (hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
return ret_val;
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((hw->phy_revision == E1000_REVISION_2) &&
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
+ /* Vidalia Phy, set the downshift counter to 5x */
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
}
/* SW Reset the PHY so all changes take effect */
ret_val = em_phy_reset(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
@@ -1626,12 +1720,16 @@ em_copper_link_autoneg(struct em_hw *hw)
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
- if(hw->autoneg_advertised == 0)
+ if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ /* IFE phy only supports 10/100 */
+ if (hw->phy_type == em_phy_ife)
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = em_phy_setup_autoneg(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
@@ -1641,20 +1739,20 @@ em_copper_link_autoneg(struct em_hw *hw)
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
- if(hw->wait_autoneg_complete) {
+ if (hw->wait_autoneg_complete) {
ret_val = em_wait_autoneg(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
@@ -1665,6 +1763,18 @@ em_copper_link_autoneg(struct em_hw *hw)
return E1000_SUCCESS;
}
+/********************************************************************
+* Copper link setup for em_phy_ife (Fast Ethernet PHY) series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+em_copper_link_ife_setup(struct em_hw *hw)
+{
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+ return E1000_SUCCESS;
+}
/******************************************************************************
* Config the MAC and the PHY after link is up.
@@ -1674,7 +1784,7 @@ em_copper_link_autoneg(struct em_hw *hw)
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
@@ -1683,31 +1793,31 @@ em_copper_link_postconfig(struct em_hw *hw)
{
int32_t ret_val;
DEBUGFUNC("em_copper_link_postconfig");
-
- if(hw->mac_type >= em_82544) {
+
+ if (hw->mac_type >= em_82544) {
em_config_collision_dist(hw);
} else {
ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
/* Config DSP to improve Giga link quality */
- if(hw->phy_type == em_phy_igp) {
+ if (hw->phy_type == em_phy_igp) {
ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Configuring DSP after link up\n");
return ret_val;
}
}
-
+
return E1000_SUCCESS;
}
@@ -1728,6 +1838,7 @@ em_setup_copper_link(struct em_hw *hw)
switch (hw->mac_type) {
case em_80003es2lan:
+ case em_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
@@ -1747,15 +1858,13 @@ em_setup_copper_link(struct em_hw *hw)
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = em_copper_link_preconfig(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
switch (hw->mac_type) {
case em_80003es2lan:
- ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
- &reg_data);
- if (ret_val)
- return ret_val;
+ /* Kumeran registers are written-only */
+ reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
reg_data);
@@ -1767,32 +1876,37 @@ em_setup_copper_link(struct em_hw *hw)
}
if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) {
ret_val = em_copper_link_igp_setup(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->phy_type == em_phy_m88) {
ret_val = em_copper_link_mgp_setup(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->phy_type == em_phy_gg82563) {
ret_val = em_copper_link_ggp_setup(hw);
- if(ret_val)
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == em_phy_ife) {
+ ret_val = em_copper_link_ife_setup(hw);
+ if (ret_val)
return ret_val;
}
- if(hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
+ if (hw->autoneg) {
+ /* Setup autoneg and flow control advertisement
+ * and perform autonegotiation */
ret_val = em_copper_link_autoneg(hw);
- if(ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H,or 100F
* depending on value from forced_speed_duplex. */
DEBUGOUT("Forcing speed and duplex\n");
ret_val = em_phy_force_speed_duplex(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
@@ -1801,20 +1915,20 @@ em_setup_copper_link(struct em_hw *hw)
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
- for(i = 0; i < 10; i++) {
+ for (i = 0; i < 10; i++) {
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_LINK_STATUS) {
+ if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = em_copper_link_postconfig(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
-
+
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
@@ -1851,26 +1965,23 @@ em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data);
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
if (ret_val)
return ret_val;
- /* Enable pass false carrier when in half duplex mode. */
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- reg_data);
-
return ret_val;
}
static int32_t
-em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex)
+em_configure_kmrn_for_1000(struct em_hw *hw)
{
int32_t ret_val = E1000_SUCCESS;
uint16_t reg_data;
@@ -1890,18 +2001,14 @@ em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg);
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data);
if (ret_val)
return ret_val;
- /* Disable Pass False Carrier on the PHY */
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- reg_data);
-
return ret_val;
}
@@ -1921,13 +2028,16 @@ em_phy_setup_autoneg(struct em_hw *hw)
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
+ if (hw->phy_type != em_phy_ife) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ } else
+ mii_1000t_ctrl_reg=0;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
@@ -1946,38 +2056,41 @@ em_phy_setup_autoneg(struct em_hw *hw)
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ if (hw->phy_type == em_phy_ife) {
+ DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
+ }
}
/* Check for a software override of the flow control settings, and
@@ -2034,14 +2147,16 @@ em_phy_setup_autoneg(struct em_hw *hw)
}
ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
+ if (hw->phy_type != em_phy_ife) {
+ ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ }
return E1000_SUCCESS;
}
@@ -2080,7 +2195,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
/* Read the MII Control Register. */
ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* We need to disable autoneg in order to force link and duplex. */
@@ -2088,8 +2203,8 @@ em_phy_force_speed_duplex(struct em_hw *hw)
mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
/* Are we forcing Full or Half Duplex? */
- if(hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
+ if (hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_10_full) {
/* We want to force full duplex so we SET the full duplex bits in the
* Device and MII Control Registers.
*/
@@ -2106,7 +2221,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
}
/* Are we forcing 100Mbps??? */
- if(hw->forced_speed_duplex == em_100_full ||
+ if (hw->forced_speed_duplex == em_100_full ||
hw->forced_speed_duplex == em_100_half) {
/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
ctrl |= E1000_CTRL_SPD_100;
@@ -2129,7 +2244,7 @@ em_phy_force_speed_duplex(struct em_hw *hw)
if ((hw->phy_type == em_phy_m88) ||
(hw->phy_type == em_phy_gg82563)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
@@ -2137,32 +2252,44 @@ em_phy_force_speed_duplex(struct em_hw *hw)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
+ /* Disable MDI-X support for 10/100 */
+ } else if (hw->phy_type == em_phy_ife) {
+ ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IFE_PMC_AUTO_MDIX;
+ phy_data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
*/
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
/* Write back the modified PHY MII control register. */
ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
usec_delay(1);
@@ -2174,50 +2301,50 @@ em_phy_force_speed_duplex(struct em_hw *hw)
* only if the user has set wait_autoneg_complete to 1, which is
* the default.
*/
- if(hw->wait_autoneg_complete) {
+ if (hw->wait_autoneg_complete) {
/* We will wait for autoneg to complete. */
DEBUGOUT("Waiting for forced speed/duplex link.\n");
mii_status_reg = 0;
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
}
- if((i == 0) &&
+ if ((i == 0) &&
((hw->phy_type == em_phy_m88) ||
(hw->phy_type == em_phy_gg82563))) {
/* We didn't get link. Reset the DSP and wait again for link. */
ret_val = em_phy_reset_dsp(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Resetting PHY DSP\n");
return ret_val;
}
}
/* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
}
@@ -2228,32 +2355,31 @@ em_phy_force_speed_duplex(struct em_hw *hw)
* defaults back to a 2.5MHz clock when the PHY is reset.
*/
ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* In addition, because of the s/w reset above, we need to enable CRS on
* TX. This must be set for both full and half duplex operation.
*/
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
+ if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
+ (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
ret_val = em_polarity_reversal_workaround(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
} else if (hw->phy_type == em_phy_gg82563) {
@@ -2328,7 +2454,7 @@ em_config_mac_to_phy(struct em_hw *hw)
DEBUGFUNC("em_config_mac_to_phy");
- /* 82544 or newer MAC, Auto Speed Detection takes care of
+ /* 82544 or newer MAC, Auto Speed Detection takes care of
* MAC speed/duplex configuration.*/
if (hw->mac_type >= em_82544)
return E1000_SUCCESS;
@@ -2344,12 +2470,12 @@ em_config_mac_to_phy(struct em_hw *hw)
* registers depending on negotiated values.
*/
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & M88E1000_PSSR_DPLX)
+ if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
- else
+ else
ctrl &= ~E1000_CTRL_FD;
em_config_collision_dist(hw);
@@ -2357,9 +2483,9 @@ em_config_mac_to_phy(struct em_hw *hw)
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
- if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
@@ -2427,7 +2553,7 @@ em_force_mac_fc(struct em_hw *hw)
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
- if(hw->mac_type == em_82542_rev2_0)
+ if (hw->mac_type == em_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
@@ -2461,11 +2587,12 @@ em_config_fc_after_link_up(struct em_hw *hw)
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
- if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
+ if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_internal_serdes) &&
+ (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
ret_val = em_force_mac_fc(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
@@ -2476,19 +2603,19 @@ em_config_fc_after_link_up(struct em_hw *hw)
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
- if((hw->media_type == em_media_type_copper) && hw->autoneg) {
+ if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
@@ -2497,11 +2624,11 @@ em_config_fc_after_link_up(struct em_hw *hw)
*/
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
@@ -2538,15 +2665,15 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 1 | DC | 1 | DC | em_fc_full
*
*/
- if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
- if(hw->original_fc == em_fc_full) {
+ if (hw->original_fc == em_fc_full) {
hw->fc = em_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
@@ -2562,10 +2689,10 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 0 | 1 | 1 | 1 | em_fc_tx_pause
*
*/
- else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = em_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
}
@@ -2577,10 +2704,10 @@ em_config_fc_after_link_up(struct em_hw *hw)
* 1 | 1 | 0 | 1 | em_fc_rx_pause
*
*/
- else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = em_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
@@ -2604,9 +2731,9 @@ em_config_fc_after_link_up(struct em_hw *hw)
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
- else if((hw->original_fc == em_fc_none ||
- hw->original_fc == em_fc_tx_pause) ||
- hw->fc_strict_ieee) {
+ else if ((hw->original_fc == em_fc_none ||
+ hw->original_fc == em_fc_tx_pause) ||
+ hw->fc_strict_ieee) {
hw->fc = em_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
} else {
@@ -2619,19 +2746,19 @@ em_config_fc_after_link_up(struct em_hw *hw)
* enabled per IEEE 802.3 spec.
*/
ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if(duplex == HALF_DUPLEX)
+ if (duplex == HALF_DUPLEX)
hw->fc = em_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = em_force_mac_fc(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
@@ -2670,13 +2797,13 @@ em_check_for_link(struct em_hw *hw)
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
- if((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
+ if ((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) {
rxcw = E1000_READ_REG(hw, RXCW);
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if(status & E1000_STATUS_LU)
+ if (status & E1000_STATUS_LU)
hw->get_link_status = FALSE;
}
}
@@ -2687,20 +2814,20 @@ em_check_for_link(struct em_hw *hw)
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
- if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
+ if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_LINK_STATUS) {
+ if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = FALSE;
/* Check if there was DownShift, must be checked immediately after
* link-up */
@@ -2714,10 +2841,10 @@ em_check_for_link(struct em_hw *hw)
* happen due to the execution of this workaround.
*/
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
+ if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff);
ret_val = em_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR);
@@ -2734,7 +2861,7 @@ em_check_for_link(struct em_hw *hw)
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
- if(!hw->autoneg) return -E1000_ERR_CONFIG;
+ if (!hw->autoneg) return -E1000_ERR_CONFIG;
/* optimize the dsp settings for the igp phy */
em_config_dsp_after_link_change(hw, TRUE);
@@ -2747,11 +2874,11 @@ em_check_for_link(struct em_hw *hw)
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
- if(hw->mac_type >= em_82544)
+ if (hw->mac_type >= em_82544)
em_config_collision_dist(hw);
else {
ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
@@ -2762,7 +2889,7 @@ em_check_for_link(struct em_hw *hw)
* have had to re-autoneg with a different link partner.
*/
ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
@@ -2774,14 +2901,18 @@ em_check_for_link(struct em_hw *hw)
* at gigabit speed, then TBI compatibility is not needed. If we are
* at gigabit speed, we turn on TBI compatibility.
*/
- if(hw->tbi_compatibility_en) {
+ if (hw->tbi_compatibility_en) {
uint16_t speed, duplex;
- em_get_speed_and_duplex(hw, &speed, &duplex);
- if(speed != SPEED_1000) {
+ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
/* If link speed is not set to gigabit speed, we do not need
* to enable TBI compatibility.
*/
- if(hw->tbi_compatibility_on) {
+ if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
@@ -2794,7 +2925,7 @@ em_check_for_link(struct em_hw *hw)
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
- if(!hw->tbi_compatibility_on) {
+ if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
@@ -2810,12 +2941,12 @@ em_check_for_link(struct em_hw *hw)
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
- else if((((hw->media_type == em_media_type_fiber) &&
+ else if ((((hw->media_type == em_media_type_fiber) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if(hw->autoneg_failed == 0) {
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
@@ -2831,7 +2962,7 @@ em_check_for_link(struct em_hw *hw)
/* Configure Flow Control after forcing link up. */
ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
@@ -2841,9 +2972,9 @@ em_check_for_link(struct em_hw *hw)
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
- else if(((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ else if (((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
@@ -2853,12 +2984,12 @@ em_check_for_link(struct em_hw *hw)
/* If we force link for non-auto-negotiation switch, check link status
* based on MAC synchronization for internal serdes media type.
*/
- else if((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ else if ((hw->media_type == em_media_type_internal_serdes) &&
+ !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
/* SYNCH bit and IV bit are sticky. */
usec_delay(10);
- if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if(!(rxcw & E1000_RXCW_IV)) {
+ if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+ if (!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = FALSE;
DEBUGOUT("SERDES: Link is up.\n");
}
@@ -2867,8 +2998,8 @@ em_check_for_link(struct em_hw *hw)
DEBUGOUT("SERDES: Link is down.\n");
}
}
- if((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ if ((hw->media_type == em_media_type_internal_serdes) &&
+ (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
}
return E1000_SUCCESS;
@@ -2892,12 +3023,12 @@ em_get_speed_and_duplex(struct em_hw *hw,
DEBUGFUNC("em_get_speed_and_duplex");
- if(hw->mac_type >= em_82543) {
+ if (hw->mac_type >= em_82543) {
status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_SPEED_1000) {
+ if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
- } else if(status & E1000_STATUS_SPEED_100) {
+ } else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
@@ -2905,7 +3036,7 @@ em_get_speed_and_duplex(struct em_hw *hw,
DEBUGOUT("10 Mbs, ");
}
- if(status & E1000_STATUS_FD) {
+ if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
@@ -2922,33 +3053,39 @@ em_get_speed_and_duplex(struct em_hw *hw,
* if it is operating at half duplex. Here we set the duplex settings to
* match the duplex in the link partner's capabilities.
*/
- if(hw->phy_type == em_phy_igp && hw->speed_downgraded) {
+ if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+ if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
(*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
- if ((hw->mac_type == em_80003es2lan) &&
+ if ((hw->mac_type == em_80003es2lan) &&
(hw->media_type == em_media_type_copper)) {
if (*speed == SPEED_1000)
- ret_val = em_configure_kmrn_for_1000(hw, *duplex);
+ ret_val = em_configure_kmrn_for_1000(hw);
else
ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
+ if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
+ ret_val = em_kumeran_lock_loss_workaround(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
return E1000_SUCCESS;
}
@@ -2968,17 +3105,17 @@ em_wait_autoneg(struct em_hw *hw)
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
return E1000_SUCCESS;
}
msec_delay(100);
@@ -3051,14 +3188,16 @@ em_shift_out_mdi_bits(struct em_hw *hw,
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
- while(mask) {
+ while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
- if(data & mask) ctrl |= E1000_CTRL_MDIO;
- else ctrl &= ~E1000_CTRL_MDIO;
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
@@ -3109,12 +3248,13 @@ em_shift_in_mdi_bits(struct em_hw *hw)
em_raise_mdi_clk(hw, &ctrl);
em_lower_mdi_clk(hw, &ctrl);
- for(data = 0, i = 0; i < 16; i++) {
+ for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
em_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
- if(ctrl & E1000_CTRL_MDIO) data |= 1;
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
em_lower_mdi_clk(hw, &ctrl);
}
@@ -3134,10 +3274,13 @@ em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
DEBUGFUNC("em_swfw_sync_acquire");
+ if (hw->swfwhw_semaphore_present)
+ return em_get_software_flag(hw);
+
if (!hw->swfw_sync_present)
return em_get_hw_eeprom_semaphore(hw);
- while(timeout) {
+ while (timeout) {
if (em_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
@@ -3173,6 +3316,11 @@ em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
DEBUGFUNC("em_swfw_sync_release");
+ if (hw->swfwhw_semaphore_present) {
+ em_release_software_flag(hw);
+ return;
+ }
+
if (!hw->swfw_sync_present) {
em_put_hw_eeprom_semaphore(hw);
return;
@@ -3215,12 +3363,13 @@ em_read_phy_reg(struct em_hw *hw,
if (em_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
- if((hw->phy_type == em_phy_igp ||
+ if ((hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if(ret_val) {
+ if (ret_val) {
em_swfw_sync_release(hw, swfw);
return ret_val;
}
@@ -3265,12 +3414,12 @@ em_read_phy_reg_ex(struct em_hw *hw,
DEBUGFUNC("em_read_phy_reg_ex");
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if(hw->mac_type > em_82543) {
+ if (hw->mac_type > em_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
@@ -3282,16 +3431,16 @@ em_read_phy_reg_ex(struct em_hw *hw,
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 64; i++) {
+ for (i = 0; i < 64; i++) {
usec_delay(50);
mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
+ if (mdic & E1000_MDIC_READY) break;
}
- if(!(mdic & E1000_MDIC_READY)) {
+ if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
- if(mdic & E1000_MDIC_ERROR) {
+ if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
@@ -3354,12 +3503,13 @@ em_write_phy_reg(struct em_hw *hw,
if (em_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
- if((hw->phy_type == em_phy_igp ||
+ if ((hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if(ret_val) {
+ if (ret_val) {
em_swfw_sync_release(hw, swfw);
return ret_val;
}
@@ -3404,12 +3554,12 @@ em_write_phy_reg_ex(struct em_hw *hw,
DEBUGFUNC("em_write_phy_reg_ex");
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if(hw->mac_type > em_82543) {
+ if (hw->mac_type > em_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
@@ -3422,12 +3572,12 @@ em_write_phy_reg_ex(struct em_hw *hw,
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 641; i++) {
+ for (i = 0; i < 641; i++) {
usec_delay(5);
mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
+ if (mdic & E1000_MDIC_READY) break;
}
- if(!(mdic & E1000_MDIC_READY)) {
+ if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
@@ -3539,7 +3689,7 @@ em_phy_hw_reset(struct em_hw *hw)
DEBUGOUT("Resetting Phy...\n");
- if(hw->mac_type > em_82543) {
+ if (hw->mac_type > em_82543) {
if ((hw->mac_type == em_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM;
@@ -3552,24 +3702,24 @@ em_phy_hw_reset(struct em_hw *hw)
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
- * For pre-em_82571 hardware, we delay for 10ms between the assert
+ * For pre-em_82571 hardware, we delay for 10ms between the assert
* and deassert. For em_82571 hardware and later, we instead delay
* for 50us between and 10ms after the deassertion.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type < em_82571)
+
+ if (hw->mac_type < em_82571)
msec_delay(10);
else
usec_delay(100);
-
+
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
-
+
if (hw->mac_type >= em_82571)
- msec_delay(10);
+ msec_delay_irq(10);
em_swfw_sync_release(hw, swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
@@ -3587,7 +3737,7 @@ em_phy_hw_reset(struct em_hw *hw)
}
usec_delay(150);
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
@@ -3599,6 +3749,12 @@ em_phy_hw_reset(struct em_hw *hw)
ret_val = em_get_phy_cfg_done(hw);
em_release_software_semaphore(hw);
+ if ((hw->mac_type == em_ich8lan) &&
+ (hw->phy_type == em_phy_igp_3)) {
+ ret_val = em_init_lcd_from_nvm(hw);
+ if (ret_val)
+ return ret_val;
+ }
return ret_val;
}
@@ -3627,31 +3783,142 @@ em_phy_reset(struct em_hw *hw)
case em_82541_rev_2:
case em_82571:
case em_82572:
+ case em_ich8lan:
ret_val = em_phy_hw_reset(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
+
break;
default:
ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
usec_delay(1);
break;
}
- if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
+ if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
em_phy_init_script(hw);
return E1000_SUCCESS;
}
/******************************************************************************
+* Work-around for 82566 power-down: on D3 entry-
+* 1) disable gigabit link
+* 2) write VR power-down enable
+* 3) read it back
+* if successful continue, else issue LCD reset and repeat
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+void
+em_phy_powerdown_workaround(struct em_hw *hw)
+{
+ int32_t reg;
+ uint16_t phy_data;
+ int32_t retry = 0;
+
+ DEBUGFUNC("em_phy_powerdown_workaround");
+
+ if (hw->phy_type != em_phy_igp_3)
+ return;
+
+ do {
+ /* Disable link */
+ reg = E1000_READ_REG(hw, PHY_CTRL);
+ E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+ /* Write VR power-down enable */
+ em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+ em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
+ IGP3_VR_CTRL_MODE_SHUT);
+
+ /* Read it back and test */
+ em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+ if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
+ break;
+
+ /* Issue PHY reset and repeat at most one more time */
+ reg = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
+ retry++;
+ } while (retry);
+
+ return;
+
+}
+
+/******************************************************************************
+* Work-around for 82566 Kumeran PCS lock loss:
+* On link status change (i.e. PCI reset, speed change) and link is up and
+* speed is gigabit-
+* 0) if workaround is optionally disabled do nothing
+* 1) wait 1ms for Kumeran link to come up
+* 2) check Kumeran Diagnostic register PCS lock loss bit
+* 3) if not set the link is locked (all is good), otherwise...
+* 4) reset the PHY
+* 5) repeat up to 10 times
+* Note: this is only called for IGP3 copper when speed is 1gb.
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_kumeran_lock_loss_workaround(struct em_hw *hw)
+{
+ int32_t ret_val;
+ int32_t reg;
+ int32_t cnt;
+ uint16_t phy_data;
+
+ if (hw->kmrn_lock_loss_workaround_disabled)
+ return E1000_SUCCESS;
+
+ /* Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouls up link
+ * stability */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ for (cnt = 0; cnt < 10; cnt++) {
+ /* read once to clear */
+ ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+ if (ret_val)
+ return ret_val;
+ /* and again to get new status */
+ ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* check for PCS lock */
+ if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+ return E1000_SUCCESS;
+
+ /* Issue PHY reset */
+ em_phy_hw_reset(hw);
+ msec_delay_irq(5);
+ }
+ /* Disable GigE link negotiation */
+ reg = E1000_READ_REG(hw, PHY_CTRL);
+ E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+ /* unable to acquire PCS lock */
+ return E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
@@ -3668,8 +3935,8 @@ em_detect_gig_phy(struct em_hw *hw)
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
- if(hw->mac_type == em_82571 ||
- hw->mac_type == em_82572) {
+ if (hw->mac_type == em_82571 ||
+ hw->mac_type == em_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = em_phy_igp_2;
return E1000_SUCCESS;
@@ -3686,44 +3953,50 @@ em_detect_gig_phy(struct em_hw *hw)
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
usec_delay(20);
ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82543:
- if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
break;
case em_82544:
- if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
break;
case em_82540:
case em_82545:
case em_82545_rev_3:
case em_82546:
case em_82546_rev_3:
- if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
break;
case em_82541:
case em_82541_rev_2:
case em_82547:
case em_82547_rev_2:
- if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
case em_82573:
- if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
break;
case em_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
break;
+ case em_ich8lan:
+ if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
+ if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
+ if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
+ if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
+ break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
@@ -3752,14 +4025,14 @@ em_phy_reset_dsp(struct em_hw *hw)
do {
if (hw->phy_type != em_phy_gg82563) {
ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if(ret_val) break;
+ if (ret_val) break;
}
ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if(ret_val) break;
+ if (ret_val) break;
ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if(ret_val) break;
+ if (ret_val) break;
ret_val = E1000_SUCCESS;
- } while(0);
+ } while (0);
return ret_val;
}
@@ -3791,23 +4064,23 @@ em_phy_igp_get_info(struct em_hw *hw,
/* Check polarity status */
ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
IGP01E1000_PSSR_MDIX_SHIFT;
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Local/Remote Receiver Information are only valid at 1000 Mbps */
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
@@ -3817,19 +4090,19 @@ em_phy_igp_get_info(struct em_hw *hw,
/* Get cable length */
ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Translate to old method */
average = (max_length + min_length) / 2;
- if(average <= em_igp_cable_length_50)
+ if (average <= em_igp_cable_length_50)
phy_info->cable_length = em_cable_length_50;
- else if(average <= em_igp_cable_length_80)
+ else if (average <= em_igp_cable_length_80)
phy_info->cable_length = em_cable_length_50_80;
- else if(average <= em_igp_cable_length_110)
+ else if (average <= em_igp_cable_length_110)
phy_info->cable_length = em_cable_length_80_110;
- else if(average <= em_igp_cable_length_140)
+ else if (average <= em_igp_cable_length_140)
phy_info->cable_length = em_cable_length_110_140;
else
phy_info->cable_length = em_cable_length_140;
@@ -3839,6 +4112,53 @@ em_phy_igp_get_info(struct em_hw *hw,
}
/******************************************************************************
+* Get PHY information from various PHY registers for ife PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+em_phy_ife_get_info(struct em_hw *hw,
+ struct em_phy_info *phy_info)
+{
+ int32_t ret_val;
+ uint16_t phy_data, polarity;
+
+ DEBUGFUNC("em_phy_ife_get_info");
+
+ phy_info->downshift = (em_downshift)hw->speed_downgraded;
+ phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
+
+ ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_info->polarity_correction =
+ (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
+ IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
+
+ if (phy_info->polarity_correction == em_polarity_reversal_enabled) {
+ ret_val = em_check_polarity(hw, &polarity);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Polarity is forced. */
+ polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
+ IFE_PSC_FORCE_POLARITY_SHIFT;
+ }
+ phy_info->cable_polarity = polarity;
+
+ ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->mdix_mode =
+ (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
+ IFE_PMC_MDIX_MODE_SHIFT;
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
@@ -3858,7 +4178,7 @@ em_phy_m88_get_info(struct em_hw *hw,
phy_info->downshift = (em_downshift)hw->speed_downgraded;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->extended_10bt_distance =
@@ -3870,12 +4190,12 @@ em_phy_m88_get_info(struct em_hw *hw,
/* Check polarity status */
ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
phy_info->cable_polarity = polarity;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
@@ -3898,7 +4218,7 @@ em_phy_m88_get_info(struct em_hw *hw,
}
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
@@ -3935,27 +4255,30 @@ em_phy_get_info(struct em_hw *hw,
phy_info->local_rx = em_1000t_rx_status_undefined;
phy_info->remote_rx = em_1000t_rx_status_undefined;
- if(hw->media_type != em_media_type_copper) {
+ if (hw->media_type != em_media_type_copper) {
DEBUGOUT("PHY info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
DEBUGOUT("PHY info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
- if(hw->phy_type == em_phy_igp ||
+ if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2)
return em_phy_igp_get_info(hw, phy_info);
+ else if (hw->phy_type == em_phy_ife)
+ return em_phy_ife_get_info(hw, phy_info);
else
return em_phy_m88_get_info(hw, phy_info);
}
@@ -3965,7 +4288,7 @@ em_validate_mdi_setting(struct em_hw *hw)
{
DEBUGFUNC("em_validate_mdi_settings");
- if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->mdix = 1;
return -E1000_ERR_CONFIG;
@@ -4012,7 +4335,7 @@ em_init_eeprom_params(struct em_hw *hw)
eeprom->type = em_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
- if(eecd & E1000_EECD_SIZE) {
+ if (eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
@@ -4080,7 +4403,7 @@ em_init_eeprom_params(struct em_hw *hw)
}
eeprom->use_eerd = TRUE;
eeprom->use_eewr = TRUE;
- if(em_is_onboard_nvm_eeprom(hw) == FALSE) {
+ if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
eeprom->type = em_eeprom_flash;
eeprom->word_size = 2048;
@@ -4104,6 +4427,35 @@ em_init_eeprom_params(struct em_hw *hw)
eeprom->use_eerd = TRUE;
eeprom->use_eewr = FALSE;
break;
+ case em_ich8lan:
+ {
+ int32_t i = 0;
+ uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
+
+ eeprom->type = em_eeprom_ich8;
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+
+ /* Zero the shadow RAM structure. But don't load it from NVM
+ * so as to save time for driver init */
+ if (hw->eeprom_shadow_ram != NULL) {
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ hw->eeprom_shadow_ram[i].modified = FALSE;
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+ }
+ }
+
+ hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
+ ICH8_FLASH_SECTOR_SIZE;
+
+ hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
+ hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
+ hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
+ hw->flash_bank_size /= 2 * sizeof(uint16_t);
+
+ break;
+ }
default:
break;
}
@@ -4112,17 +4464,17 @@ em_init_eeprom_params(struct em_hw *hw)
/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
- if(hw->mac_type <= em_82547_rev_2) {
+ if (hw->mac_type <= em_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if(ret_val)
+ if (ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier hardware, so we
* bump eeprom_size up one to ensure that "1" (which maps to 256B)
* is never the result used in the shifting logic below. */
- if(eeprom_size)
+ if (eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
@@ -4207,7 +4559,7 @@ em_shift_out_ee_bits(struct em_hw *hw,
*/
eecd &= ~E1000_EECD_DI;
- if(data & mask)
+ if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
@@ -4220,7 +4572,7 @@ em_shift_out_ee_bits(struct em_hw *hw,
mask = mask >> 1;
- } while(mask);
+ } while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
@@ -4252,14 +4604,14 @@ em_shift_in_ee_bits(struct em_hw *hw,
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
- for(i = 0; i < count; i++) {
+ for (i = 0; i < count; i++) {
data = data << 1;
em_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
- if(eecd & E1000_EECD_DO)
+ if (eecd & E1000_EECD_DO)
data |= 1;
em_lower_ee_clk(hw, &eecd);
@@ -4290,17 +4642,17 @@ em_acquire_eeprom(struct em_hw *hw)
if (hw->mac_type != em_82573) {
/* Request EEPROM Access */
- if(hw->mac_type > em_82544) {
+ if (hw->mac_type > em_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
- while((!(eecd & E1000_EECD_GNT)) &&
+ while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
usec_delay(5);
eecd = E1000_READ_REG(hw, EECD);
}
- if(!(eecd & E1000_EECD_GNT)) {
+ if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
@@ -4343,7 +4695,7 @@ em_standby_eeprom(struct em_hw *hw)
eecd = E1000_READ_REG(hw, EECD);
- if(eeprom->type == em_eeprom_microwire) {
+ if (eeprom->type == em_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
@@ -4366,7 +4718,7 @@ em_standby_eeprom(struct em_hw *hw)
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(eeprom->delay_usec);
- } else if(eeprom->type == em_eeprom_spi) {
+ } else if (eeprom->type == em_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
@@ -4400,7 +4752,7 @@ em_release_eeprom(struct em_hw *hw)
E1000_WRITE_REG(hw, EECD, eecd);
usec_delay(hw->eeprom.delay_usec);
- } else if(hw->eeprom.type == em_eeprom_microwire) {
+ } else if (hw->eeprom.type == em_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
@@ -4422,7 +4774,7 @@ em_release_eeprom(struct em_hw *hw)
}
/* Stop requesting EEPROM access */
- if(hw->mac_type > em_82544) {
+ if (hw->mac_type > em_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
@@ -4460,12 +4812,12 @@ em_spi_eeprom_ready(struct em_hw *hw)
retry_count += 5;
em_standby_eeprom(hw);
- } while(retry_count < EEPROM_MAX_RETRY_SPI);
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
- if(retry_count >= EEPROM_MAX_RETRY_SPI) {
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
@@ -4496,7 +4848,7 @@ em_read_eeprom(struct em_hw *hw,
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
@@ -4504,7 +4856,7 @@ em_read_eeprom(struct em_hw *hw,
/* FLASH reads without acquiring the semaphore are safe */
if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
- hw->eeprom.use_eerd == FALSE) {
+ hw->eeprom.use_eerd == FALSE) {
switch (hw->mac_type) {
case em_80003es2lan:
break;
@@ -4524,11 +4876,14 @@ em_read_eeprom(struct em_hw *hw,
return ret_val;
}
- if(eeprom->type == em_eeprom_spi) {
+ if (eeprom->type == em_eeprom_ich8)
+ return em_read_eeprom_ich8(hw, offset, words, data);
+
+ if (eeprom->type == em_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
- if(em_spi_eeprom_ready(hw)) {
+ if (em_spi_eeprom_ready(hw)) {
em_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
@@ -4536,7 +4891,7 @@ em_read_eeprom(struct em_hw *hw,
em_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
+ if ((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
@@ -4552,7 +4907,7 @@ em_read_eeprom(struct em_hw *hw,
word_in = em_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
- } else if(eeprom->type == em_eeprom_microwire) {
+ } else if (eeprom->type == em_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
@@ -4596,14 +4951,14 @@ em_read_eeprom_eerd(struct em_hw *hw,
E1000_WRITE_REG(hw, EERD, eerd);
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if(error) {
+
+ if (error) {
break;
}
data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
+
}
-
+
return error;
}
@@ -4629,24 +4984,24 @@ em_write_eeprom_eewr(struct em_hw *hw,
return -E1000_ERR_SWFW_SYNC;
for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
+ register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
+ ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
E1000_EEPROM_RW_REG_START;
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if(error) {
+ if (error) {
break;
- }
+ }
E1000_WRITE_REG(hw, EEWR, register_value);
-
+
error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if(error) {
+
+ if (error) {
break;
- }
+ }
}
-
+
em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
return error;
}
@@ -4663,13 +5018,13 @@ em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
- for(i = 0; i < attempts; i++) {
- if(eerd == E1000_EEPROM_POLL_READ)
+ for (i = 0; i < attempts; i++) {
+ if (eerd == E1000_EEPROM_POLL_READ)
reg = E1000_READ_REG(hw, EERD);
- else
+ else
reg = E1000_READ_REG(hw, EEWR);
- if(reg & E1000_EEPROM_RW_REG_DONE) {
+ if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
@@ -4691,14 +5046,17 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw)
DEBUGFUNC("em_is_onboard_nvm_eeprom");
- if(hw->mac_type == em_82573) {
+ if (hw->mac_type == em_ich8lan)
+ return FALSE;
+
+ if (hw->mac_type == em_82573) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
- if(eecd == 0x03) {
+ if (eecd == 0x03) {
return FALSE;
}
}
@@ -4741,15 +5099,29 @@ em_validate_eeprom_checksum(struct em_hw *hw)
}
}
- for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ if (hw->mac_type == em_ich8lan) {
+ /* Drivers must allocate the shadow ram structure for the
+ * EEPROM checksum to be updated. Otherwise, this bit as well
+ * as the checksum must both be set correctly for this
+ * validation to pass.
+ */
+ em_read_eeprom(hw, 0x19, 1, &eeprom_data);
+ if ((eeprom_data & 0x40) == 0) {
+ eeprom_data |= 0x40;
+ em_write_eeprom(hw, 0x19, 1, &eeprom_data);
+ em_update_eeprom_checksum(hw);
+ }
+ }
+
+ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
- if(checksum == (uint16_t) EEPROM_SUM)
+ if (checksum == (uint16_t) EEPROM_SUM)
return E1000_SUCCESS;
else {
DEBUGOUT("EEPROM Checksum Invalid\n");
@@ -4768,24 +5140,33 @@ em_validate_eeprom_checksum(struct em_hw *hw)
int32_t
em_update_eeprom_checksum(struct em_hw *hw)
{
+ uint32_t ctrl_ext;
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC("em_update_eeprom_checksum");
- for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
checksum = (uint16_t) EEPROM_SUM - checksum;
- if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
DEBUGOUT("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
} else if (hw->eeprom.type == em_eeprom_flash) {
em_commit_shadow_ram(hw);
+ } else if (hw->eeprom.type == em_eeprom_ich8) {
+ em_commit_shadow_ram(hw);
+ /* Reload the EEPROM, or else modifications will not appear
+ * until after next adapter reset. */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ msec_delay(10);
}
return E1000_SUCCESS;
}
@@ -4815,21 +5196,24 @@ em_write_eeprom(struct em_hw *hw,
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* 82573 writes only through eewr */
- if(eeprom->use_eewr == TRUE)
+ if (eeprom->use_eewr == TRUE)
return em_write_eeprom_eewr(hw, offset, words, data);
+ if (eeprom->type == em_eeprom_ich8)
+ return em_write_eeprom_ich8(hw, offset, words, data);
+
/* Prepare the EEPROM for writing */
if (em_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
- if(eeprom->type == em_eeprom_microwire) {
+ if (eeprom->type == em_eeprom_microwire) {
status = em_write_eeprom_microwire(hw, offset, words, data);
} else {
status = em_write_eeprom_spi(hw, offset, words, data);
@@ -4865,7 +5249,7 @@ em_write_eeprom_spi(struct em_hw *hw,
while (widx < words) {
uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
- if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+ if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
em_standby_eeprom(hw);
@@ -4876,7 +5260,7 @@ em_write_eeprom_spi(struct em_hw *hw,
em_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
+ if ((eeprom->address_bits == 8) && (offset >= 128))
write_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
@@ -4898,7 +5282,7 @@ em_write_eeprom_spi(struct em_hw *hw,
* operation, while the smaller eeproms are capable of an 8-byte
* PAGE WRITE operation. Break the inner loop to pass new address
*/
- if((((offset + widx)*2) % eeprom->page_size) == 0) {
+ if ((((offset + widx)*2) % eeprom->page_size) == 0) {
em_standby_eeprom(hw);
break;
}
@@ -4964,12 +5348,12 @@ em_write_eeprom_microwire(struct em_hw *hw,
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
- for(i = 0; i < 200; i++) {
+ for (i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD);
- if(eecd & E1000_EECD_DO) break;
+ if (eecd & E1000_EECD_DO) break;
usec_delay(50);
}
- if(i == 200) {
+ if (i == 200) {
DEBUGOUT("EEPROM Write did not complete\n");
return -E1000_ERR_EEPROM;
}
@@ -5012,11 +5396,17 @@ em_commit_shadow_ram(struct em_hw *hw)
uint32_t flop = 0;
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
-
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
+ uint32_t old_bank_offset = 0;
+ uint32_t new_bank_offset = 0;
+ uint32_t sector_retries = 0;
+ uint8_t low_byte = 0;
+ uint8_t high_byte = 0;
+ uint8_t temp_byte = 0;
+ boolean_t sector_write_failed = FALSE;
if (hw->mac_type == em_82573) {
+ /* The flop register will be used to determine if flash type is STM */
+ flop = E1000_READ_REG(hw, FLOP);
for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) {
@@ -5050,6 +5440,106 @@ em_commit_shadow_ram(struct em_hw *hw)
}
}
+ if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
+ /* We're writing to the opposite bank so if we're on bank 1,
+ * write to bank 0 etc. We also need to erase the segment that
+ * is going to be written */
+ if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
+ new_bank_offset = hw->flash_bank_size * 2;
+ old_bank_offset = 0;
+ em_erase_ich8_4k_segment(hw, 1);
+ } else {
+ old_bank_offset = hw->flash_bank_size * 2;
+ new_bank_offset = 0;
+ em_erase_ich8_4k_segment(hw, 0);
+ }
+
+ do {
+ sector_write_failed = FALSE;
+ /* Loop for every byte in the shadow RAM,
+ * which is in units of words. */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /* Determine whether to write the value stored
+ * in the other NVM bank or a modified value stored
+ * in the shadow RAM */
+ if (hw->eeprom_shadow_ram[i].modified == TRUE) {
+ low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
+ em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+ &temp_byte);
+ usec_delay(100);
+ error = em_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset,
+ low_byte);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ high_byte =
+ (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
+ em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
+ &temp_byte);
+ usec_delay(100);
+ } else {
+ em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+ &low_byte);
+ usec_delay(100);
+ error = em_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset, low_byte);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
+ &high_byte);
+ }
+
+ /* If the word is 0x13, then make sure the signature bits
+ * (15:14) are 11b until the commit has completed.
+ * This will allow us to write 10b which indicates the
+ * signature is valid. We want to do this after the write
+ * has completed so that we don't mark the segment valid
+ * while the write is still in progress */
+ if (i == E1000_ICH8_NVM_SIG_WORD)
+ high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
+
+ error = em_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset + 1, high_byte);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+
+ if (sector_write_failed == FALSE) {
+ /* Clear the now not used entry in the cache */
+ hw->eeprom_shadow_ram[i].modified = FALSE;
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+ }
+ }
+
+ /* Don't bother writing the segment valid bits if sector
+ * programming failed. */
+ if (sector_write_failed == FALSE) {
+ /* Finally validate the new segment by setting bit 15:14
+ * to 10b in word 0x13 , this can be done without an
+ * erase as well since these bits are 11 to start with
+ * and we need to change bit 14 to 0b */
+ em_read_ich8_byte(hw,
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+ &high_byte);
+ high_byte &= 0xBF;
+ error = em_verify_write_ich8_byte(hw,
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+ high_byte);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+
+ /* And invalidate the previously valid segment by setting
+ * its signature word (0x13) high_byte to 0b. This can be
+ * done without an erase because flash erase sets all bits
+ * to 1's. We can write 1's to 0's without an erase */
+ error = em_verify_write_ich8_byte(hw,
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
+ 0);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ }
+ } while (++sector_retries < 10 && sector_write_failed == TRUE);
+ }
+
return error;
}
@@ -5069,7 +5559,7 @@ em_read_part_num(struct em_hw *hw,
DEBUGFUNC("em_read_part_num");
/* Get word 0 from EEPROM */
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5077,7 +5567,7 @@ em_read_part_num(struct em_hw *hw,
*part_num = (uint32_t) (eeprom_data << 16);
/* Get word 1 from EEPROM */
- if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+ if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5101,9 +5591,9 @@ em_read_mac_addr(struct em_hw * hw)
DEBUGFUNC("em_read_mac_addr");
- for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -5118,12 +5608,12 @@ em_read_mac_addr(struct em_hw * hw)
case em_82546_rev_3:
case em_82571:
case em_80003es2lan:
- if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01;
break;
}
- for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+ for (i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return E1000_SUCCESS;
}
@@ -5157,11 +5647,16 @@ em_init_rx_addrs(struct em_hw *hw)
* the other port. */
if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
rar_num -= 1;
+ if (hw->mac_type == em_ich8lan)
+ rar_num = E1000_RAR_ENTRIES_ICH8LAN;
+
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
- for(i = 1; i < rar_num; i++) {
+ for (i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
}
}
@@ -5190,7 +5685,7 @@ em_mc_addr_list_update(struct em_hw *hw,
uint32_t i;
uint32_t num_rar_entry;
uint32_t num_mta_entry;
-
+
DEBUGFUNC("em_mc_addr_list_update");
/* Set the new number of MC addresses that we are being requested to use. */
@@ -5199,26 +5694,33 @@ em_mc_addr_list_update(struct em_hw *hw,
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
num_rar_entry = E1000_RAR_ENTRIES;
+ if (hw->mac_type == em_ich8lan)
+ num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
/* Reserve a spot for the Locally Administered Address to work around
* an 82571 issue in which a reset on one port will reload the MAC on
* the other port. */
if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
num_rar_entry -= 1;
- for(i = rar_used_count; i < num_rar_entry; i++) {
+ for (i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
num_mta_entry = E1000_NUM_MTA_REGISTERS;
- for(i = 0; i < num_mta_entry; i++) {
+ if (hw->mac_type == em_ich8lan)
+ num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
+ for (i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
}
/* Add the new addresses */
- for(i = 0; i < mc_addr_count; i++) {
+ for (i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
@@ -5270,24 +5772,46 @@ em_hash_mc_addr(struct em_hw *hw,
* LSB MSB
*/
case 0:
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ if (hw->mac_type == em_ich8lan) {
+ /* [47:38] i.e. 0x158 for above example address */
+ hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
+ } else {
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ }
break;
case 1:
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+ if (hw->mac_type == em_ich8lan) {
+ /* [46:37] i.e. 0x2B1 for above example address */
+ hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
+ } else {
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+ }
break;
case 2:
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ if (hw->mac_type == em_ich8lan) {
+ /*[45:36] i.e. 0x163 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ } else {
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ }
break;
case 3:
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+ if (hw->mac_type == em_ich8lan) {
+ /* [43:34] i.e. 0x18D for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ } else {
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+ }
break;
}
hash_value &= 0xFFF;
+ if (hw->mac_type == em_ich8lan)
+ hash_value &= 0x3FF;
return hash_value;
}
@@ -5315,6 +5839,8 @@ em_mta_set(struct em_hw *hw,
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 5) & 0x7F;
+ if (hw->mac_type == em_ich8lan)
+ hash_reg &= 0x1F;
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
@@ -5325,12 +5851,15 @@ em_mta_set(struct em_hw *hw,
* in the MTA, save off the previous entry before writing and
* restore the old value after writing.
*/
- if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
+ if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+ E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
}
}
@@ -5387,7 +5916,9 @@ em_rar_set(struct em_hw *hw,
}
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+ E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
@@ -5404,12 +5935,18 @@ em_write_vfta(struct em_hw *hw,
{
uint32_t temp;
- if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
+ if (hw->mac_type == em_ich8lan)
+ return;
+
+ if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+ E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
}
}
@@ -5426,6 +5963,9 @@ em_clear_vfta(struct em_hw *hw)
uint32_t vfta_offset = 0;
uint32_t vfta_bit_in_reg = 0;
+ if (hw->mac_type == em_ich8lan)
+ return;
+
if (hw->mac_type == em_82573) {
if (hw->mng_cookie.vlan_id != 0) {
/* The VFTA is a 4096b bit-field, each identifying a single VLAN
@@ -5445,6 +5985,7 @@ em_clear_vfta(struct em_hw *hw)
* manageability unit */
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH(hw);
}
}
@@ -5460,7 +6001,7 @@ em_id_led_init(struct em_hw * hw)
DEBUGFUNC("em_id_led_init");
- if(hw->mac_type < em_82540) {
+ if (hw->mac_type < em_82540) {
/* Nothing to do */
return E1000_SUCCESS;
}
@@ -5470,15 +6011,24 @@ em_id_led_init(struct em_hw * hw)
hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default;
- if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
- if((eeprom_data== ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
- for(i = 0; i < 4; i++) {
+
+ if ((hw->mac_type == em_82573) &&
+ (eeprom_data == ID_LED_RESERVED_82573))
+ eeprom_data = ID_LED_DEFAULT_82573;
+ else if ((eeprom_data == ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) {
+ if (hw->mac_type == em_ich8lan)
+ eeprom_data = ID_LED_DEFAULT_ICH8LAN;
+ else
+ eeprom_data = ID_LED_DEFAULT;
+ }
+ for (i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
- switch(temp) {
+ switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
@@ -5495,7 +6045,7 @@ em_id_led_init(struct em_hw * hw)
/* Do nothing */
break;
}
- switch(temp) {
+ switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
@@ -5529,7 +6079,7 @@ em_setup_led(struct em_hw *hw)
DEBUGFUNC("em_setup_led");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -5543,16 +6093,16 @@ em_setup_led(struct em_hw *hw)
/* Turn off PHY Smart Power Down (if enabled) */
ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&hw->phy_spd_default);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
(uint16_t)(hw->phy_spd_default &
~IGP01E1000_GMII_SPD));
- if(ret_val)
+ if (ret_val)
return ret_val;
- /* Fall Through */
+ /* FALLTHROUGH */
default:
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
ledctl = E1000_READ_REG(hw, LEDCTL);
/* Save current LEDCTL settings */
hw->ledctl_default = ledctl;
@@ -5563,7 +6113,7 @@ em_setup_led(struct em_hw *hw)
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if(hw->media_type == em_media_type_copper)
+ } else if (hw->media_type == em_media_type_copper)
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
break;
}
@@ -5571,6 +6121,45 @@ em_setup_led(struct em_hw *hw)
return E1000_SUCCESS;
}
+
+/******************************************************************************
+ * Used on 82571 and later Si that has LED blink bits.
+ * Callers must use their own timer and should have already called
+ * em_id_led_init()
+ * Call em_cleanup led() to stop blinking
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_blink_led_start(struct em_hw *hw)
+{
+ int16_t i;
+ uint32_t ledctl_blink = 0;
+
+ DEBUGFUNC("em_id_led_blink_on");
+
+ if (hw->mac_type < em_82571) {
+ /* Nothing to do */
+ return E1000_SUCCESS;
+ }
+ if (hw->media_type == em_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
+ ledctl_blink = hw->ledctl_mode2;
+ for (i=0; i < 4; i++)
+ if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
+ }
+
+ E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
+
+ return E1000_SUCCESS;
+}
+
/******************************************************************************
* Restores the saved state of the SW controlable LED.
*
@@ -5583,7 +6172,7 @@ em_cleanup_led(struct em_hw *hw)
DEBUGFUNC("em_cleanup_led");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -5597,10 +6186,14 @@ em_cleanup_led(struct em_hw *hw)
/* Turn on PHY Smart Power Down (if previously enabled) */
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
hw->phy_spd_default);
- if(ret_val)
+ if (ret_val)
return ret_val;
- /* Fall Through */
+ /* FALLTHROUGH */
default:
+ if (hw->phy_type == em_phy_ife) {
+ em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+ break;
+ }
/* Restore LEDCTL settings */
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
break;
@@ -5621,7 +6214,7 @@ em_led_on(struct em_hw *hw)
DEBUGFUNC("em_led_on");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -5630,7 +6223,7 @@ em_led_on(struct em_hw *hw)
ctrl |= E1000_CTRL_SWDPIO0;
break;
case em_82544:
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
@@ -5641,11 +6234,14 @@ em_led_on(struct em_hw *hw)
}
break;
default:
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
+ } else if (hw->phy_type == em_phy_ife) {
+ em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+ } else if (hw->media_type == em_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS;
}
@@ -5669,7 +6265,7 @@ em_led_off(struct em_hw *hw)
DEBUGFUNC("em_led_off");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82542_rev2_0:
case em_82542_rev2_1:
case em_82543:
@@ -5678,7 +6274,7 @@ em_led_off(struct em_hw *hw)
ctrl |= E1000_CTRL_SWDPIO0;
break;
case em_82544:
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
@@ -5689,11 +6285,14 @@ em_led_off(struct em_hw *hw)
}
break;
default:
- if(hw->media_type == em_media_type_fiber) {
+ if (hw->media_type == em_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
+ } else if (hw->phy_type == em_phy_ife) {
+ em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+ } else if (hw->media_type == em_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS;
}
@@ -5731,12 +6330,16 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, XOFFRXC);
temp = E1000_READ_REG(hw, XOFFTXC);
temp = E1000_READ_REG(hw, FCRUC);
+
+ if (hw->mac_type != em_ich8lan) {
temp = E1000_READ_REG(hw, PRC64);
temp = E1000_READ_REG(hw, PRC127);
temp = E1000_READ_REG(hw, PRC255);
temp = E1000_READ_REG(hw, PRC511);
temp = E1000_READ_REG(hw, PRC1023);
temp = E1000_READ_REG(hw, PRC1522);
+ }
+
temp = E1000_READ_REG(hw, GPRC);
temp = E1000_READ_REG(hw, BPRC);
temp = E1000_READ_REG(hw, MPRC);
@@ -5756,16 +6359,20 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, TOTH);
temp = E1000_READ_REG(hw, TPR);
temp = E1000_READ_REG(hw, TPT);
+
+ if (hw->mac_type != em_ich8lan) {
temp = E1000_READ_REG(hw, PTC64);
temp = E1000_READ_REG(hw, PTC127);
temp = E1000_READ_REG(hw, PTC255);
temp = E1000_READ_REG(hw, PTC511);
temp = E1000_READ_REG(hw, PTC1023);
temp = E1000_READ_REG(hw, PTC1522);
+ }
+
temp = E1000_READ_REG(hw, MPTC);
temp = E1000_READ_REG(hw, BPTC);
- if(hw->mac_type < em_82543) return;
+ if (hw->mac_type < em_82543) return;
temp = E1000_READ_REG(hw, ALGNERRC);
temp = E1000_READ_REG(hw, RXERRC);
@@ -5774,16 +6381,19 @@ em_clear_hw_cntrs(struct em_hw *hw)
temp = E1000_READ_REG(hw, TSCTC);
temp = E1000_READ_REG(hw, TSCTFC);
- if(hw->mac_type <= em_82544) return;
+ if (hw->mac_type <= em_82544) return;
temp = E1000_READ_REG(hw, MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC);
- if(hw->mac_type <= em_82547_rev_2) return;
+ if (hw->mac_type <= em_82547_rev_2) return;
temp = E1000_READ_REG(hw, IAC);
temp = E1000_READ_REG(hw, ICRXOC);
+
+ if (hw->mac_type == em_ich8lan) return;
+
temp = E1000_READ_REG(hw, ICRXPTC);
temp = E1000_READ_REG(hw, ICRXATC);
temp = E1000_READ_REG(hw, ICTXPTC);
@@ -5808,8 +6418,8 @@ em_reset_adaptive(struct em_hw *hw)
{
DEBUGFUNC("em_reset_adaptive");
- if(hw->adaptive_ifs) {
- if(!hw->ifs_params_forced) {
+ if (hw->adaptive_ifs) {
+ if (!hw->ifs_params_forced) {
hw->current_ifs_val = 0;
hw->ifs_min_val = IFS_MIN;
hw->ifs_max_val = IFS_MAX;
@@ -5836,12 +6446,12 @@ em_update_adaptive(struct em_hw *hw)
{
DEBUGFUNC("em_update_adaptive");
- if(hw->adaptive_ifs) {
- if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+ if (hw->adaptive_ifs) {
+ if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
+ if (hw->tx_packet_delta > MIN_NUM_XMITS) {
hw->in_ifs_mode = TRUE;
- if(hw->current_ifs_val < hw->ifs_max_val) {
- if(hw->current_ifs_val == 0)
+ if (hw->current_ifs_val < hw->ifs_max_val) {
+ if (hw->current_ifs_val == 0)
hw->current_ifs_val = hw->ifs_min_val;
else
hw->current_ifs_val += hw->ifs_step_size;
@@ -5849,7 +6459,7 @@ em_update_adaptive(struct em_hw *hw)
}
}
} else {
- if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0;
hw->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, AIT, 0);
@@ -5896,46 +6506,46 @@ em_tbi_adjust_stats(struct em_hw *hw,
* This could be simplified if all environments supported
* 64-bit integers.
*/
- if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
stats->gorch++;
/* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
- if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
/* Broadcast packet */
stats->bprc++;
- else if(*mac_addr & 0x01)
+ else if (*mac_addr & 0x01)
/* Multicast packet */
stats->mprc++;
- if(frame_len == hw->max_frame_size) {
+ if (frame_len == hw->max_frame_size) {
/* In this case, the hardware has overcounted the number of
* oversize frames.
*/
- if(stats->roc > 0)
+ if (stats->roc > 0)
stats->roc--;
}
/* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
- if(frame_len == 64) {
+ if (frame_len == 64) {
stats->prc64++;
stats->prc127--;
- } else if(frame_len == 127) {
+ } else if (frame_len == 127) {
stats->prc127++;
stats->prc255--;
- } else if(frame_len == 255) {
+ } else if (frame_len == 255) {
stats->prc255++;
stats->prc511--;
- } else if(frame_len == 511) {
+ } else if (frame_len == 511) {
stats->prc511++;
stats->prc1023--;
- } else if(frame_len == 1023) {
+ } else if (frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
- } else if(frame_len == 1522) {
+ } else if (frame_len == 1522) {
stats->prc1522++;
}
}
@@ -5964,6 +6574,7 @@ em_get_bus_info(struct em_hw *hw)
hw->bus_width = em_bus_width_pciex_1;
break;
case em_82571:
+ case em_ich8lan:
case em_80003es2lan:
hw->bus_type = em_bus_type_pci_express;
hw->bus_speed = em_bus_speed_2500;
@@ -5974,10 +6585,10 @@ em_get_bus_info(struct em_hw *hw)
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
em_bus_type_pcix : em_bus_type_pci;
- if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
em_bus_speed_66 : em_bus_speed_120;
- } else if(hw->bus_type == em_bus_type_pci) {
+ } else if (hw->bus_type == em_bus_type_pci) {
hw->bus_speed = (status & E1000_STATUS_PCI66) ?
em_bus_speed_66 : em_bus_speed_33;
} else {
@@ -6062,8 +6673,6 @@ em_get_cable_length(struct em_hw *hw,
{
int32_t ret_val;
uint16_t agc_value = 0;
- uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1;
- uint16_t max_agc = 0;
uint16_t i, phy_data;
uint16_t cable_length;
@@ -6072,11 +6681,11 @@ em_get_cable_length(struct em_hw *hw,
*min_length = *max_length = 0;
/* Use old method for Phy older than IGP */
- if(hw->phy_type == em_phy_m88) {
+ if (hw->phy_type == em_phy_m88) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
@@ -6135,36 +6744,38 @@ em_get_cable_length(struct em_hw *hw,
return -E1000_ERR_PHY;
break;
}
- } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */
+ } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
+ uint16_t cur_agc_value;
+ uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
{IGP01E1000_PHY_AGC_A,
IGP01E1000_PHY_AGC_B,
IGP01E1000_PHY_AGC_C,
IGP01E1000_PHY_AGC_D};
/* Read the AGC registers for all channels */
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+ cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
- /* Array bound check. */
- if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc == 0))
+ /* Value bound check. */
+ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc_value == 0))
return -E1000_ERR_PHY;
- agc_value += cur_agc;
+ agc_value += cur_agc_value;
/* Update minimal AGC value. */
- if(min_agc > cur_agc)
- min_agc = cur_agc;
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
}
/* Remove the minimal AGC result for length < 50m */
- if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc;
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
+ agc_value -= min_agc_value;
/* Get the average length of the remaining 3 channels */
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
@@ -6180,7 +6791,10 @@ em_get_cable_length(struct em_hw *hw,
IGP01E1000_AGC_RANGE) : 0;
*max_length = em_igp_cable_length_table[agc_value] +
IGP01E1000_AGC_RANGE;
- } else if (hw->phy_type == em_phy_igp_2) {
+ } else if (hw->phy_type == em_phy_igp_2 ||
+ hw->phy_type == em_phy_igp_3) {
+ uint16_t cur_agc_index, max_agc_index = 0;
+ uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
{IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
@@ -6192,22 +6806,30 @@ em_get_cable_length(struct em_hw *hw,
if (ret_val)
return ret_val;
- /* Getting bits 15:9, which represent the combination of course and
+ /* Getting bits 15:9, which represent the combination of course and
* fine gain values. The result is a number that can be put into
* the lookup table to obtain the approximate cable length. */
- cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
- /* Remove min & max AGC values from calculation. */
- if (em_igp_2_cable_length_table[min_agc] > em_igp_2_cable_length_table[cur_agc])
- min_agc = cur_agc;
- if (em_igp_2_cable_length_table[max_agc] < em_igp_2_cable_length_table[cur_agc])
- max_agc = cur_agc;
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0))
+ return -E1000_ERR_PHY;
- agc_value += em_igp_2_cable_length_table[cur_agc];
+ /* Remove min & max AGC values from calculation. */
+ if (em_igp_2_cable_length_table[min_agc_index] >
+ em_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (em_igp_2_cable_length_table[max_agc_index] <
+ em_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += em_igp_2_cable_length_table[cur_agc_index];
}
- agc_value -= (em_igp_2_cable_length_table[min_agc] + em_igp_2_cable_length_table[max_agc]);
+ agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
+ em_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
@@ -6249,27 +6871,28 @@ em_check_polarity(struct em_hw *hw,
/* return the Polarity bit in the Status register. */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if(hw->phy_type == em_phy_igp ||
+ } else if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) {
/* Read the Status register to check the speed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
* find the polarity status */
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Read the GIG initialization PCS register (0x00B4) */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Check the polarity bits */
@@ -6279,6 +6902,13 @@ em_check_polarity(struct em_hw *hw,
* 100 Mbps this bit is always 0) */
*polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
}
+ } else if (hw->phy_type == em_phy_ife) {
+ ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
+ IFE_PESC_POLARITY_REVERSED_SHIFT;
}
return E1000_SUCCESS;
}
@@ -6291,7 +6921,7 @@ em_check_polarity(struct em_hw *hw,
* 1 - Downshift ocured.
*
* returns: - E1000_ERR_XXX
- * E1000_SUCCESS
+ * E1000_SUCCESS
*
* For phy's older then IGP, this function reads the Downshift bit in the Phy
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
@@ -6306,11 +6936,12 @@ em_check_downshift(struct em_hw *hw)
DEBUGFUNC("em_check_downshift");
- if(hw->phy_type == em_phy_igp ||
+ if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
hw->phy_type == em_phy_igp_2) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
@@ -6318,11 +6949,14 @@ em_check_downshift(struct em_hw *hw)
(hw->phy_type == em_phy_gg82563)) {
ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
+ } else if (hw->phy_type == em_phy_ife) {
+ /* em_phy_ife supports 10/100 speed only */
+ hw->speed_downgraded = FALSE;
}
return E1000_SUCCESS;
@@ -6355,40 +6989,42 @@ em_config_dsp_after_link_change(struct em_hw *hw,
DEBUGFUNC("em_config_dsp_after_link_change");
- if(hw->phy_type != em_phy_igp)
+ if (hw->phy_type != em_phy_igp)
return E1000_SUCCESS;
- if(link_up) {
+ if (link_up) {
ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if(speed == SPEED_1000) {
+ if (speed == SPEED_1000) {
- em_get_cable_length(hw, &min_length, &max_length);
+ ret_val = em_get_cable_length(hw, &min_length, &max_length);
+ if (ret_val)
+ return ret_val;
- if((hw->dsp_config_state == em_dsp_config_enabled) &&
+ if ((hw->dsp_config_state == em_dsp_config_enabled) &&
min_length >= em_igp_cable_length_50) {
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
hw->dsp_config_state = em_dsp_config_activated;
}
- if((hw->ffe_config_state == em_ffe_config_enabled) &&
+ if ((hw->ffe_config_state == em_ffe_config_enabled) &&
(min_length < em_igp_cable_length_50)) {
uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
@@ -6397,70 +7033,70 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* clear previous idle error counts */
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- for(i = 0; i < ffe_idle_err_timeout; i++) {
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
usec_delay(1000);
ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
hw->ffe_config_state = em_ffe_config_active;
ret_val = em_write_phy_reg(hw,
IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_CM_CP);
- if(ret_val)
+ if (ret_val)
return ret_val;
break;
}
- if(idle_errs)
+ if (idle_errs)
ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
}
}
}
} else {
- if(hw->dsp_config_state == em_dsp_config_activated) {
+ if (hw->dsp_config_state == em_dsp_config_activated) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
+ if (ret_val)
return ret_val;
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
@@ -6468,40 +7104,40 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* Now enable the transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->dsp_config_state = em_dsp_config_enabled;
}
- if(hw->ffe_config_state == em_ffe_config_active) {
+ if (hw->ffe_config_state == em_ffe_config_active) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
@@ -6509,7 +7145,7 @@ em_config_dsp_after_link_change(struct em_hw *hw,
/* Now enable the transmitter */
ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->ffe_config_state = em_ffe_config_enabled;
@@ -6534,20 +7170,20 @@ em_set_phy_mode(struct em_hw *hw)
DEBUGFUNC("em_set_phy_mode");
- if((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
+ if ((hw->mac_type == em_82545_rev_3) &&
+ (hw->media_type == em_media_type_copper)) {
ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if(ret_val) {
+ if (ret_val) {
return ret_val;
}
- if((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->phy_reset_disable = FALSE;
@@ -6575,39 +7211,51 @@ int32_t
em_set_d3_lplu_state(struct em_hw *hw,
boolean_t active)
{
+ uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("em_set_d3_lplu_state");
- if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2)
+ if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
+ && hw->phy_type != em_phy_igp_3)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used for
* Dx transitions and states */
- if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
+ if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
+ } else if (hw->mac_type == em_ich8lan) {
+ /* MAC writes into PHY register based on the state transition
+ * and start auto-negotiation. SW driver can overwrite the settings
+ * in CSR PHY power control E1000_PHY_CTRL register. */
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
- if(!active) {
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
+ if (!active) {
+ if (hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else {
+ if (hw->mac_type == em_ich8lan) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
+ }
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
@@ -6617,13 +7265,13 @@ em_set_d3_lplu_state(struct em_hw *hw,
if (hw->smart_speed == em_smart_speed_on) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->smart_speed == em_smart_speed_off) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
@@ -6634,36 +7282,41 @@ em_set_d3_lplu_state(struct em_hw *hw,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
- } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+ } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
+ if (hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else {
+ if (hw->mac_type == em_ich8lan) {
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
+ }
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
@@ -6688,22 +7341,32 @@ int32_t
em_set_d0_lplu_state(struct em_hw *hw,
boolean_t active)
{
+ uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("em_set_d0_lplu_state");
- if(hw->mac_type <= em_82547_rev_2)
+ if (hw->mac_type <= em_82547_rev_2)
return E1000_SUCCESS;
+ if (hw->mac_type == em_ich8lan) {
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ } else {
ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
+ }
if (!active) {
+ if (hw->mac_type == em_ich8lan) {
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
+ }
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
@@ -6712,13 +7375,13 @@ em_set_d0_lplu_state(struct em_hw *hw,
if (hw->smart_speed == em_smart_speed_on) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->smart_speed == em_smart_speed_off) {
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
@@ -6729,26 +7392,31 @@ em_set_d0_lplu_state(struct em_hw *hw,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
} else {
-
- phy_data |= IGP02E1000_PM_D0_LPLU;
+
+ if (hw->mac_type == em_ich8lan) {
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
+ }
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
@@ -6769,7 +7437,7 @@ em_set_vco_speed(struct em_hw *hw)
DEBUGFUNC("em_set_vco_speed");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case em_82545_rev_3:
case em_82546_rev_3:
break;
@@ -6780,39 +7448,39 @@ em_set_vco_speed(struct em_hw *hw)
/* Set PHY register 30, page 5, bit 8 to 0 */
ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Set PHY register 30, page 4, bit 11 to 1 */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PHY_VCO_REG_BIT11;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if(ret_val)
+ if (ret_val)
return ret_val;
return E1000_SUCCESS;
@@ -6828,7 +7496,7 @@ int32_t
em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
{
uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
+ uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
length = (length >> 2);
@@ -6847,7 +7515,7 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
* and also checks whether the previous command is completed.
* It busy waits in case of previous command is not completed.
*
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
+ * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
* timeout
* - E1000_SUCCESS for success.
****************************************************************************/
@@ -6871,7 +7539,7 @@ em_mng_enable_host_if(struct em_hw * hw)
msec_delay_irq(1);
}
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
DEBUGOUT("Previous command timeout failed .\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
@@ -6891,7 +7559,7 @@ em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
{
uint8_t *tmp;
uint8_t *bufptr = buffer;
- uint32_t data;
+ uint32_t data = 0;
uint16_t remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
@@ -6971,15 +7639,17 @@ em_mng_write_cmd_header(struct em_hw * hw,
buffer = (uint8_t *) hdr;
i = length;
- while(i--)
+ while (i--)
sum += buffer[i];
hdr->checksum = 0 - sum;
length >>= 2;
/* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++)
+ for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
return E1000_SUCCESS;
}
@@ -6992,8 +7662,7 @@ em_mng_write_cmd_header(struct em_hw * hw,
* returns - E1000_SUCCESS for success.
****************************************************************************/
int32_t
-em_mng_write_commit(
- struct em_hw * hw)
+em_mng_write_commit(struct em_hw * hw)
{
uint32_t hicr;
@@ -7011,15 +7680,18 @@ em_mng_write_commit(
* returns - TRUE when the mode is IAMT or FALSE.
****************************************************************************/
boolean_t
-em_check_mng_mode(
- struct em_hw *hw)
+em_check_mng_mode(struct em_hw *hw)
{
uint32_t fwsm;
fwsm = E1000_READ_REG(hw, FWSM);
- if((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ if (hw->mac_type == em_ich8lan) {
+ if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return TRUE;
+ } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return TRUE;
return FALSE;
@@ -7162,31 +7834,31 @@ em_polarity_reversal_workaround(struct em_hw *hw)
/* Disable the transmitter on the PHY */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
msec_delay_irq(100);
}
@@ -7196,40 +7868,40 @@ em_polarity_reversal_workaround(struct em_hw *hw)
/* Now we will re-enable the transmitter on the PHY */
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay_irq(100);
}
return E1000_SUCCESS;
@@ -7306,15 +7978,15 @@ em_disable_pciex_master(struct em_hw *hw)
em_set_pci_express_master_disable(hw);
- while(timeout) {
- if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break;
else
usec_delay(100);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
@@ -7347,13 +8019,15 @@ em_get_auto_rd_done(struct em_hw *hw)
case em_82572:
case em_82573:
case em_80003es2lan:
- while(timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
+ case em_ich8lan:
+ while (timeout) {
+ if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
+ break;
else msec_delay(1);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
return -E1000_ERR_RESET;
}
@@ -7388,13 +8062,13 @@ em_get_phy_cfg_done(struct em_hw *hw)
switch (hw->mac_type) {
default:
- msec_delay(10);
+ msec_delay_irq(10);
break;
case em_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* Fall Through */
+ /* FALLTHROUGH */
case em_82571:
case em_82572:
while (timeout) {
@@ -7434,7 +8108,7 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw)
DEBUGFUNC("em_get_hw_eeprom_semaphore");
- if(!hw->eeprom_semaphore_present)
+ if (!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
if (hw->mac_type == em_80003es2lan) {
@@ -7445,20 +8119,20 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw)
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
- while(timeout) {
+ while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
- if(swsm & E1000_SWSM_SWESMBI)
+ if (swsm & E1000_SWSM_SWESMBI)
break;
usec_delay(50);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
/* Release semaphores */
em_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
@@ -7483,7 +8157,7 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw)
DEBUGFUNC("em_put_hw_eeprom_semaphore");
- if(!hw->eeprom_semaphore_present)
+ if (!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
@@ -7516,16 +8190,16 @@ em_get_software_semaphore(struct em_hw *hw)
if (hw->mac_type != em_80003es2lan)
return E1000_SUCCESS;
- while(timeout) {
+ while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
/* If SMBI bit cleared, it is now set and we hold the semaphore */
- if(!(swsm & E1000_SWSM_SMBI))
+ if (!(swsm & E1000_SWSM_SMBI))
break;
msec_delay_irq(1);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
@@ -7571,6 +8245,13 @@ int32_t
em_check_phy_reset_block(struct em_hw *hw)
{
uint32_t manc = 0;
+ uint32_t fwsm = 0;
+
+ if (hw->mac_type == em_ich8lan) {
+ fwsm = E1000_READ_REG(hw, FWSM);
+ return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
+ : E1000_BLK_PHY_RESET;
+ }
if (hw->mac_type > em_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
@@ -7594,11 +8275,854 @@ em_arc_subsystem_valid(struct em_hw *hw)
case em_82573:
case em_80003es2lan:
fwsm = E1000_READ_REG(hw, FWSM);
- if((fwsm & E1000_FWSM_MODE_MASK) != 0)
+ if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
return TRUE;
break;
+ case em_ich8lan:
+ return TRUE;
default:
break;
}
return FALSE;
}
+
+
+/******************************************************************************
+ * Configure PCI-Ex no-snoop
+ *
+ * hw - Struct containing variables accessed by shared code.
+ * no_snoop - Bitmap of no-snoop events.
+ *
+ * returns: E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
+{
+ uint32_t gcr_reg = 0;
+
+ DEBUGFUNC("em_set_pci_ex_no_snoop");
+
+ if (hw->bus_type == em_bus_type_unknown)
+ em_get_bus_info(hw);
+
+ if (hw->bus_type != em_bus_type_pci_express)
+ return E1000_SUCCESS;
+
+ if (no_snoop) {
+ gcr_reg = E1000_READ_REG(hw, GCR);
+ gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
+ gcr_reg |= no_snoop;
+ E1000_WRITE_REG(hw, GCR, gcr_reg);
+ }
+ if (hw->mac_type == em_ich8lan) {
+ uint32_t ctrl_ext;
+
+ E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
+
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Get software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+em_get_software_flag(struct em_hw *hw)
+{
+ int32_t timeout = PHY_CFG_TIMEOUT;
+ uint32_t extcnf_ctrl;
+
+ DEBUGFUNC("em_get_software_flag");
+
+ if (hw->mac_type == em_ich8lan) {
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+ break;
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("FW or HW locks the resource too long.\n");
+ return -E1000_ERR_CONFIG;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Release software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+void
+em_release_software_flag(struct em_hw *hw)
+{
+ uint32_t extcnf_ctrl;
+
+ DEBUGFUNC("em_release_software_flag");
+
+ if (hw->mac_type == em_ich8lan) {
+ extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+ }
+
+ return;
+}
+
+/***************************************************************************
+ *
+ * Disable dynamic power down mode in ife PHY.
+ * It can be used to workaround band-gap problem.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+em_ife_disable_dynamic_power_down(struct em_hw *hw)
+{
+ uint16_t phy_data;
+ int32_t ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("em_ife_disable_dynamic_power_down");
+
+ if (hw->phy_type == em_phy_ife) {
+ ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
+ ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
+ }
+
+ return ret_val;
+}
+
+/***************************************************************************
+ *
+ * Enable dynamic power down mode in ife PHY.
+ * It can be used to workaround band-gap problem.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+em_ife_enable_dynamic_power_down(struct em_hw *hw)
+{
+ uint16_t phy_data;
+ int32_t ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("em_ife_enable_dynamic_power_down");
+
+ if (hw->phy_type == em_phy_ife) {
+ ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
+ ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
+ }
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
+ * register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
+{
+ int32_t error = E1000_SUCCESS;
+ uint32_t flash_bank = 0;
+ uint32_t act_offset = 0;
+ uint32_t bank_offset = 0;
+ uint16_t word = 0;
+ uint16_t i = 0;
+
+ /* We need to know which is the valid flash bank. In the event
+ * that we didn't allocate eeprom_shadow_ram, we may not be
+ * managing flash_bank. So it cannot be trusted and needs
+ * to be updated with each read.
+ */
+ /* Value of bit 22 corresponds to the flash bank we're on. */
+ flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
+
+ /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
+ bank_offset = flash_bank * (hw->flash_bank_size * 2);
+
+ error = em_get_software_flag(hw);
+ if (error != E1000_SUCCESS)
+ return error;
+
+ for (i = 0; i < words; i++) {
+ if (hw->eeprom_shadow_ram != NULL &&
+ hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
+ data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
+ } else {
+ /* The NVM part needs a byte offset, hence * 2 */
+ act_offset = bank_offset + ((offset + i) * 2);
+ error = em_read_ich8_word(hw, act_offset, &word);
+ if (error != E1000_SUCCESS)
+ break;
+ data[i] = word;
+ }
+ }
+
+ em_release_software_flag(hw);
+
+ return error;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
+ * register. Actually, writes are written to the shadow ram cache in the hw
+ * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to
+ * the NVM, which occurs when the NVM checksum is updated.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to write
+ * words - number of words to write
+ * data - words to write to the EEPROM
+ *****************************************************************************/
+int32_t
+em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
+{
+ uint32_t i = 0;
+ int32_t error = E1000_SUCCESS;
+
+ error = em_get_software_flag(hw);
+ if (error != E1000_SUCCESS)
+ return error;
+
+ /* A driver can write to the NVM only if it has eeprom_shadow_ram
+ * allocated. Subsequent reads to the modified words are read from
+ * this cached structure as well. Writes will only go into this
+ * cached structure unless it's followed by a call to
+ * em_update_eeprom_checksum() where it will commit the changes
+ * and clear the "modified" field.
+ */
+ if (hw->eeprom_shadow_ram != NULL) {
+ for (i = 0; i < words; i++) {
+ if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
+ hw->eeprom_shadow_ram[offset+i].modified = TRUE;
+ hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
+ } else {
+ error = -E1000_ERR_EEPROM;
+ break;
+ }
+ }
+ } else {
+ /* Drivers have the option to not allocate eeprom_shadow_ram as long
+ * as they don't perform any NVM writes. An attempt in doing so
+ * will result in this error.
+ */
+ error = -E1000_ERR_EEPROM;
+ }
+
+ em_release_software_flag(hw);
+
+ return error;
+}
+
+/******************************************************************************
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+int32_t
+em_ich8_cycle_init(struct em_hw *hw)
+{
+ union ich8_hws_flash_status hsfsts;
+ int32_t error = E1000_ERR_EEPROM;
+ int32_t i = 0;
+
+ DEBUGFUNC("em_ich8_cycle_init");
+
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+
+ /* May be check the Flash Des Valid bit in Hw status */
+ if (hsfsts.hsf_status.fldesvalid == 0) {
+ DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
+ return error;
+ }
+
+ /* Clear FCERR in Hw status by writing 1 */
+ /* Clear DAEL in Hw status by writing a 1 */
+ hsfsts.hsf_status.flcerr = 1;
+ hsfsts.hsf_status.dael = 1;
+
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+
+ /* Either we should have a hardware SPI cycle in progress bit to check
+ * against, in order to start a new cycle or FDONE bit should be changed
+ * in the hardware so that it is 1 after harware reset, which can then be
+ * used as an indication whether a cycle is in progress or has been
+ * completed .. we should also have some software semaphore mechanism to
+ * guard FDONE or the cycle in progress bit so that two threads access to
+ * those bits can be sequentiallized or a way so that 2 threads dont
+ * start the cycle at the same time */
+
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ /* There is no cycle running at present, so we can start a cycle */
+ /* Begin by setting Flash Cycle Done. */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+ error = E1000_SUCCESS;
+ } else {
+ /* otherwise poll for sometime so the current cycle has a chance
+ * to end before giving up. */
+ for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ error = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(1);
+ }
+ if (error == E1000_SUCCESS) {
+ /* Successful in waiting for previous cycle to timeout,
+ * now set the Flash Cycle Done. */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+ } else {
+ DEBUGOUT("Flash controller busy, cannot get access");
+ }
+ }
+ return error;
+}
+
+/******************************************************************************
+ * This function starts a flash cycle and waits for its completion
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+int32_t
+em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
+{
+ union ich8_hws_flash_ctrl hsflctl;
+ union ich8_hws_flash_status hsfsts;
+ int32_t error = E1000_ERR_EEPROM;
+ uint32_t i = 0;
+
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcgo = 1;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+ /* wait till FDONE bit is set to 1 */
+ do {
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcdone == 1)
+ break;
+ usec_delay(1);
+ i++;
+ } while (i < timeout);
+ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
+ error = E1000_SUCCESS;
+ }
+ return error;
+}
+
+/******************************************************************************
+ * Reads a byte or word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte or word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - Pointer to the word to store the value read.
+ *****************************************************************************/
+int32_t
+em_read_ich8_data(struct em_hw *hw, uint32_t index,
+ uint32_t size, uint16_t* data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ uint32_t flash_data = 0;
+ int32_t error = -E1000_ERR_EEPROM;
+ int32_t count = 0;
+
+ DEBUGFUNC("em_read_ich8_data");
+
+ if (size < 1 || size > 2 || data == 0x0 ||
+ index > ICH8_FLASH_LINEAR_ADDR_MASK)
+ return error;
+
+ flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+ hw->flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+ /* Write the last 24 bits of index into Flash Linear address field in
+ * Flash Address */
+ /* TODO: TBD maybe check the index against the size of flash */
+
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+ error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+
+ /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
+ * sequence a few more times, else read in (shift in) the Flash Data0,
+ * the order is least significant byte first msb to lsb */
+ if (error == E1000_SUCCESS) {
+ flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
+ if (size == 1) {
+ *data = (uint8_t)(flash_data & 0x000000FF);
+ } else if (size == 2) {
+ *data = (uint16_t)(flash_data & 0x0000FFFF);
+ }
+ break;
+ } else {
+ /* If we've gotten here, then things are probably completely hosed,
+ * but if the error condition is detected, it won't hurt to give
+ * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+
+ return error;
+}
+
+/******************************************************************************
+ * Writes One /two bytes to the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte/word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - The byte(s) to write to the NVM.
+ *****************************************************************************/
+int32_t
+em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
+ uint16_t data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ uint32_t flash_data = 0;
+ int32_t error = -E1000_ERR_EEPROM;
+ int32_t count = 0;
+
+ DEBUGFUNC("em_write_ich8_data");
+
+ if (size < 1 || size > 2 || data > size * 0xff ||
+ index > ICH8_FLASH_LINEAR_ADDR_MASK)
+ return error;
+
+ flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+ hw->flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size -1;
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+ /* Write the last 24 bits of index into Flash Linear address field in
+ * Flash Address */
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+ if (size == 1)
+ flash_data = (uint32_t)data & 0x00FF;
+ else
+ flash_data = (uint32_t)data;
+
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
+
+ /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
+ * sequence a few more times else done */
+ error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+ if (error == E1000_SUCCESS) {
+ break;
+ } else {
+ /* If we're here, then things are most likely completely hosed,
+ * but if the error condition is detected, it won't hurt to give
+ * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+
+ return error;
+}
+
+/******************************************************************************
+ * Reads a single byte from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to em_hw structure
+ * index - The index of the byte to read.
+ * data - Pointer to a byte to store the value read.
+ *****************************************************************************/
+int32_t
+em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
+{
+ int32_t status = E1000_SUCCESS;
+ uint16_t word = 0;
+
+ status = em_read_ich8_data(hw, index, 1, &word);
+ if (status == E1000_SUCCESS) {
+ *data = (uint8_t)word;
+ }
+
+ return status;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ * Performs verification by reading back the value and then going through
+ * a retry algorithm before giving up.
+ *
+ * hw - pointer to em_hw structure
+ * index - The index of the byte to write.
+ * byte - The byte to write to the NVM.
+ *****************************************************************************/
+int32_t
+em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
+{
+ int32_t error = E1000_SUCCESS;
+ int32_t program_retries;
+ uint8_t temp_byte;
+
+ em_write_ich8_byte(hw, index, byte);
+ usec_delay(100);
+
+ for (program_retries = 0; program_retries < 100; program_retries++) {
+ em_read_ich8_byte(hw, index, &temp_byte);
+ if (temp_byte == byte)
+ break;
+ usec_delay(10);
+ em_write_ich8_byte(hw, index, byte);
+ usec_delay(100);
+ }
+ if (program_retries == 100)
+ error = E1000_ERR_EEPROM;
+
+ return error;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to em_hw structure
+ * index - The index of the byte to read.
+ * data - The byte to write to the NVM.
+ *****************************************************************************/
+int32_t
+em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
+{
+ int32_t status = E1000_SUCCESS;
+ uint16_t word = (uint16_t)data;
+
+ status = em_write_ich8_data(hw, index, 1, word);
+
+ return status;
+}
+
+/******************************************************************************
+ * Reads a word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to em_hw structure
+ * index - The starting byte index of the word to read.
+ * data - Pointer to a word to store the value read.
+ *****************************************************************************/
+int32_t
+em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
+{
+ int32_t status = E1000_SUCCESS;
+ status = em_read_ich8_data(hw, index, 2, data);
+ return status;
+}
+
+/******************************************************************************
+ * Writes a word to the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to em_hw structure
+ * index - The starting byte index of the word to read.
+ * data - The word to write to the NVM.
+ *****************************************************************************/
+int32_t
+em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data)
+{
+ int32_t status = E1000_SUCCESS;
+ status = em_write_ich8_data(hw, index, 2, data);
+ return status;
+}
+
+/******************************************************************************
+ * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
+ * segment N is 4096 * N + flash_reg_addr.
+ *
+ * hw - pointer to em_hw structure
+ * segment - 0 for first segment, 1 for second segment, etc.
+ *****************************************************************************/
+int32_t
+em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ int32_t count = 0;
+ int32_t error = E1000_ERR_EEPROM;
+ int32_t iteration, seg_size;
+ int32_t sector_size;
+ int32_t j = 0;
+ int32_t error_flag = 0;
+
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+
+ /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
+ /* 00: The Hw sector is 256 bytes, hence we need to erase 16
+ * consecutive sectors. The start index for the nth Hw sector can be
+ * calculated as = segment * 4096 + n * 256
+ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+ * The start index for the nth Hw sector can be calculated
+ * as = segment * 4096
+ * 10: Error condition
+ * 11: The Hw sector size is much bigger than the size asked to
+ * erase...error condition */
+ if (hsfsts.hsf_status.berasesz == 0x0) {
+ /* Hw sector size 256 */
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
+ iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
+ } else if (hsfsts.hsf_status.berasesz == 0x1) {
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
+ iteration = 1;
+ } else if (hsfsts.hsf_status.berasesz == 0x3) {
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
+ iteration = 1;
+ } else {
+ return error;
+ }
+
+ for (j = 0; j < iteration ; j++) {
+ do {
+ count++;
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS) {
+ error_flag = 1;
+ break;
+ }
+
+ /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
+ * Control */
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+ /* Write the last 24 bits of an index within the block into Flash
+ * Linear address field in Flash Address. This probably needs to
+ * be calculated here based off the on-chip segment size and the
+ * software segment size assumed (4K) */
+ /* TBD */
+ flash_linear_address = segment * sector_size + j * seg_size;
+ flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
+ flash_linear_address += hw->flash_base_addr;
+
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+ error = em_ich8_flash_cycle(hw, 1000000);
+ /* Check if FCERR is set to 1. If 1, clear it and try the whole
+ * sequence a few more times else Done */
+ if (error == E1000_SUCCESS) {
+ break;
+ } else {
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* repeat for some time before giving up */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ error_flag = 1;
+ break;
+ }
+ }
+ } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
+ if (error_flag == 1)
+ break;
+ }
+ if (error_flag != 1)
+ error = E1000_SUCCESS;
+ return error;
+}
+
+/******************************************************************************
+ *
+ * Reverse duplex setting without breaking the link.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ *****************************************************************************/
+int32_t
+em_duplex_reversal(struct em_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ if (hw->phy_type != em_phy_igp_3)
+ return E1000_SUCCESS;
+
+ ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data ^= MII_CR_FULL_DUPLEX;
+
+ ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
+ ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
+
+ return ret_val;
+}
+
+int32_t
+em_init_lcd_from_nvm_config_region(struct em_hw *hw,
+ uint32_t cnf_base_addr, uint32_t cnf_size)
+{
+ uint32_t ret_val = E1000_SUCCESS;
+ uint16_t word_addr, reg_data, reg_addr;
+ uint16_t i;
+
+ /* cnf_base_addr is in DWORD */
+ word_addr = (uint16_t)(cnf_base_addr << 1);
+
+ /* cnf_size is returned in size of dwords */
+ for (i = 0; i < cnf_size; i++) {
+ ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_get_software_flag(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
+
+ ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
+
+ em_release_software_flag(hw);
+ }
+
+ return ret_val;
+}
+
+int32_t
+em_init_lcd_from_nvm(struct em_hw *hw)
+{
+ uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
+
+ if (hw->phy_type != em_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* Check if SW needs configure the PHY */
+ reg_data = E1000_READ_REG(hw, FEXTNVM);
+ if (!(reg_data & FEXTNVM_SW_CONFIG))
+ return E1000_SUCCESS;
+
+ /* Wait for basic configuration completes before proceeding*/
+ loop = 0;
+ do {
+ reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
+ usec_delay(100);
+ loop++;
+ } while ((!reg_data) && (loop < 50));
+
+ /* Clear the Init Done bit for the next init event */
+ reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
+ E1000_WRITE_REG(hw, STATUS, reg_data);
+
+ /* Make sure HW does not configure LCD from PHY extended configuration
+ before SW configuration */
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+ if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
+ reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
+ cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
+ cnf_size >>= 16;
+ if (cnf_size) {
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+ cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
+ /* cnf_base_addr is in DWORD */
+ cnf_base_addr >>= 16;
+
+ /* Configure LCD from extended configuration region. */
+ ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
+ cnf_size);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
diff --git a/sys/dev/pci/if_em_hw.h b/sys/dev/pci/if_em_hw.h
index 3a12fdc86bc..d293bfe79b6 100644
--- a/sys/dev/pci/if_em_hw.h
+++ b/sys/dev/pci/if_em_hw.h
@@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
-/* $OpenBSD: if_em_hw.h,v 1.14 2006/04/19 07:17:49 brad Exp $ */
+/* $OpenBSD: if_em_hw.h,v 1.15 2006/07/03 20:55:55 brad Exp $ */
/* $FreeBSD: if_em_hw.h,v 1.15 2005/05/26 23:32:02 tackerman Exp $ */
/* if_em_hw.h
@@ -68,6 +68,7 @@ typedef enum {
em_82572,
em_82573,
em_80003es2lan,
+ em_ich8lan,
em_num_macs
} em_mac_type;
@@ -76,6 +77,7 @@ typedef enum {
em_eeprom_spi,
em_eeprom_microwire,
em_eeprom_flash,
+ em_eeprom_ich8,
em_eeprom_none, /* No NVM support */
em_num_eeprom_types
} em_eeprom_type;
@@ -104,6 +106,11 @@ typedef enum {
em_fc_default = 0xFF
} em_fc_type;
+struct em_shadow_ram {
+ uint16_t eeprom_word;
+ boolean_t modified;
+};
+
/* PCI bus types */
typedef enum {
em_bus_type_unknown = 0,
@@ -224,6 +231,8 @@ typedef enum {
em_phy_igp,
em_phy_igp_2,
em_phy_gg82563,
+ em_phy_igp_3,
+ em_phy_ife,
em_phy_undefined = 0xFF
} em_phy_type;
@@ -320,6 +329,11 @@ int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data)
int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
int32_t em_phy_hw_reset(struct em_hw *hw);
int32_t em_phy_reset(struct em_hw *hw);
+void em_phy_powerdown_workaround(struct em_hw *hw);
+int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
+int32_t em_duplex_reversal(struct em_hw *hw);
+int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
+int32_t em_init_lcd_from_nvm(struct em_hw *hw);
int32_t em_detect_gig_phy(struct em_hw *hw);
int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
int32_t em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
@@ -330,7 +344,6 @@ int32_t em_check_downshift(struct em_hw *hw);
int32_t em_validate_mdi_setting(struct em_hw *hw);
int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-int32_t em_duplex_reversal(struct em_hw *hw);
/* EEPROM Functions */
int32_t em_init_eeprom_params(struct em_hw *hw);
@@ -346,9 +359,10 @@ uint32_t em_enable_mng_pass_thru(struct em_hw *hw);
#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
-#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_ICH_IAMT_MODE 0x2
#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
@@ -380,15 +394,15 @@ struct em_host_mng_dhcp_cookie{
uint8_t checksum;
};
-int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer,
- uint16_t length);
+int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer,
+ uint16_t length);
boolean_t em_check_mng_mode(struct em_hw *hw);
boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw);
int32_t em_mng_enable_host_if(struct em_hw *hw);
int32_t em_mng_host_if_write(struct em_hw *hw, uint8_t *buffer,
uint16_t length, uint16_t offset, uint8_t *sum);
-int32_t em_mng_write_cmd_header(struct em_hw* hw,
- struct em_host_mng_command_header* hdr);
+int32_t em_mng_write_cmd_header(struct em_hw *hw,
+ struct em_host_mng_command_header *hdr);
int32_t em_mng_write_commit(struct em_hw *hw);
@@ -397,16 +411,19 @@ int32_t em_validate_eeprom_checksum(struct em_hw *hw);
int32_t em_update_eeprom_checksum(struct em_hw *hw);
int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num);
-int32_t em_read_mac_addr(struct em_hw * hw);
+int32_t em_read_mac_addr(struct em_hw *hw);
int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
+void em_release_software_flag(struct em_hw *hw);
+int32_t em_get_software_flag(struct em_hw *hw);
/* Filters (multicast, vlan, receive) */
void em_init_rx_addrs(struct em_hw *hw);
-void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
-uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr);
+void em_mc_addr_list_update(struct em_hw *hw, uint8_t *mc_addr_list, uint32_t mc_addr_count,
+ uint32_t pad, uint32_t rar_used_count);
+uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t *mc_addr);
void em_mta_set(struct em_hw *hw, uint32_t hash_value);
-void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
+void em_rar_set(struct em_hw *hw, uint8_t *mc_addr, uint32_t rar_index);
void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value);
void em_clear_vfta(struct em_hw *hw);
@@ -415,6 +432,7 @@ int32_t em_setup_led(struct em_hw *hw);
int32_t em_cleanup_led(struct em_hw *hw);
int32_t em_led_on(struct em_hw *hw);
int32_t em_led_off(struct em_hw *hw);
+int32_t em_blink_led_start(struct em_hw *hw);
/* Adaptive IFS Functions */
@@ -422,12 +440,12 @@ int32_t em_led_off(struct em_hw *hw);
void em_clear_hw_cntrs(struct em_hw *hw);
void em_reset_adaptive(struct em_hw *hw);
void em_update_adaptive(struct em_hw *hw);
-void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
+void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t *mac_addr);
void em_get_bus_info(struct em_hw *hw);
void em_pci_set_mwi(struct em_hw *hw);
void em_pci_clear_mwi(struct em_hw *hw);
-void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
+void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value);
+void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value);
/* Port I/O is only supported on 82544 and newer */
uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset);
void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
@@ -448,6 +466,32 @@ int32_t em_commit_shadow_ram(struct em_hw *hw);
uint8_t em_arc_subsystem_valid(struct em_hw *hw);
int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
+int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index,
+ uint8_t *data);
+int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index,
+ uint8_t byte);
+int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index,
+ uint8_t byte);
+int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index,
+ uint16_t *data);
+int32_t em_write_ich8_word(struct em_hw *hw, uint32_t index,
+ uint16_t word);
+int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index,
+ uint32_t size, uint16_t *data);
+int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index,
+ uint32_t size, uint16_t data);
+int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment);
+int32_t em_ich8_cycle_init(struct em_hw *hw);
+int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
+int32_t em_phy_ife_get_info(struct em_hw *hw,
+ struct em_phy_info *phy_info);
+int32_t em_ife_disable_dynamic_power_down(struct em_hw *hw);
+int32_t em_ife_enable_dynamic_power_down(struct em_hw *hw);
+
#ifndef E1000_READ_REG_IO
#define E1000_READ_REG_IO(a, reg) \
em_read_reg_io((a), E1000_##reg)
@@ -464,7 +508,6 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
#define E1000_DEV_ID_82544GC_COPPER 0x100C
#define E1000_DEV_ID_82544GC_LOM 0x100D
#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82541ER_LOM 0x1014
#define E1000_DEV_ID_82540EM_LOM 0x1015
#define E1000_DEV_ID_82540EP_LOM 0x1016
#define E1000_DEV_ID_82540EP 0x1017
@@ -479,6 +522,7 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
#define E1000_DEV_ID_82541EI 0x1013
#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
#define E1000_DEV_ID_82541ER 0x1078
#define E1000_DEV_ID_82547GI 0x1075
#define E1000_DEV_ID_82541GI 0x1076
@@ -512,6 +556,14 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
#define NODE_ADDRESS_SIZE 6
#define ETH_LENGTH_OF_ADDRESS 6
@@ -545,7 +597,7 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
#define MAX_JUMBO_FRAME_SIZE 0x3F00
/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
/* Ethertype field values */
#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
@@ -571,6 +623,7 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
* o TXDW = Transmit Descriptor Written Back
* o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
* o RXSEQ = Receive Sequence Error
+ * o RXO = Receive Overrun
* o LSC = Link Status Change
*/
#define IMS_ENABLE_MASK ( \
@@ -581,12 +634,22 @@ int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
E1000_IMS_RXO | \
E1000_IMS_LSC)
+/* Additional interrupts need to be handled for em_ich8lan:
+ DSW = The FW changed the status of the DISSW bit in FWSM
+ PHYINT = The LAN connected device generates an interrupt
+ EPRST = Manageability reset event */
+#define IMS_ICH8LAN_ENABLE_MASK (\
+ E1000_IMS_DSW | \
+ E1000_IMS_PHYINT | \
+ E1000_IMS_EPRST)
+
/* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We
* reserve one of these spots for our directed address, allowing us room for
* E1000_RAR_ENTRIES - 1 multicast addresses.
*/
#define E1000_RAR_ENTRIES 15
+#define E1000_RAR_ENTRIES_ICH8LAN 7
#define MIN_NUMBER_OF_DESCRIPTORS 8
#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
@@ -807,6 +870,9 @@ struct em_data_desc {
#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+#define E1000_NUM_UNICAST_ICH8LAN 7
+#define E1000_MC_TBL_SIZE_ICH8LAN 32
+
/* Receive Address Register */
struct em_rar {
volatile uint32_t low; /* receive address low */
@@ -815,6 +881,7 @@ struct em_rar {
/* Number of entries in the Multicast Table Array (MTA). */
#define E1000_NUM_MTA_REGISTERS 128
+#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
/* IPv4 Address Table Entry */
struct em_ipv4_at_entry {
@@ -825,6 +892,7 @@ struct em_ipv4_at_entry {
/* Four wakeup IP addresses are supported */
#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP4AT_SIZE_ICH8LAN 3
#define E1000_IP6AT_SIZE 1
/* IPv6 Address Table Entry */
@@ -883,6 +951,7 @@ struct em_ffvt_entry {
#define E1000_FLA 0x0001C /* Flash Access - RW */
#define E1000_MDIC 0x00020 /* MDI Control - RW */
#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
#define E1000_FCT 0x00030 /* Flow Control Type - RW */
@@ -911,6 +980,8 @@ struct em_ffvt_entry {
#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG 0x0001
#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
#define E1000_PBS 0x01008 /* Packet Buffer Size */
#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
@@ -938,11 +1009,13 @@ struct em_ffvt_entry {
#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
+#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
@@ -1089,6 +1162,7 @@ struct em_ffvt_entry {
#define E1000_82542_FLA E1000_FLA
#define E1000_82542_MDIC E1000_MDIC
#define E1000_82542_SCTL E1000_SCTL
+#define E1000_82542_FEXTNVM E1000_FEXTNVM
#define E1000_82542_FCAL E1000_FCAL
#define E1000_82542_FCAH E1000_FCAH
#define E1000_82542_FCT E1000_FCT
@@ -1112,6 +1186,19 @@ struct em_ffvt_entry {
#define E1000_82542_RDLEN0 E1000_82542_RDLEN
#define E1000_82542_RDH0 E1000_82542_RDH
#define E1000_82542_RDT0 E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
+ * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
#define E1000_82542_RDTR1 0x00130
#define E1000_82542_RDBAL1 0x00138
#define E1000_82542_RDBAH1 0x0013C
@@ -1149,11 +1236,14 @@ struct em_ffvt_entry {
#define E1000_82542_FLOP E1000_FLOP
#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
#define E1000_82542_ERT E1000_ERT
#define E1000_82542_RXDCTL E1000_RXDCTL
+#define E1000_82542_RXDCTL1 E1000_RXDCTL1
#define E1000_82542_RADV E1000_RADV
#define E1000_82542_RSRPD E1000_RSRPD
#define E1000_82542_TXDMAC E1000_TXDMAC
+#define E1000_82542_KABGTXD E1000_KABGTXD
#define E1000_82542_TDFHS E1000_TDFHS
#define E1000_82542_TDFTS E1000_TDFTS
#define E1000_82542_TDFPC E1000_TDFPC
@@ -1356,6 +1446,9 @@ struct em_hw {
uint32_t phy_init_script;
em_media_type media_type;
void *back;
+ struct em_shadow_ram *eeprom_shadow_ram;
+ uint32_t flash_bank_size;
+ uint32_t flash_base_addr;
em_fc_type fc;
em_bus_speed bus_speed;
em_bus_width bus_width;
@@ -1367,6 +1460,7 @@ struct em_hw {
uint32_t asf_firmware_present;
uint32_t eeprom_semaphore_present;
uint32_t swfw_sync_present;
+ uint32_t swfwhw_semaphore_present;
unsigned long io_base;
uint32_t phy_id;
uint32_t phy_revision;
@@ -1426,6 +1520,7 @@ struct em_hw {
boolean_t in_ifs_mode;
boolean_t mng_reg_access_disabled;
boolean_t leave_av_bit_off;
+ boolean_t kmrn_lock_loss_workaround_disabled;
};
#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
@@ -1473,6 +1568,7 @@ struct em_hw {
#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
/* Device Status */
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
@@ -1487,6 +1583,8 @@ struct em_hw {
#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
+ by EEPROM/Flash */
#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
@@ -1544,6 +1642,10 @@ struct em_hw {
#define E1000_STM_OPCODE 0xDB00
#define E1000_HICR_FW_RESET 0xC0
+#define E1000_SHADOW_RAM_WORDS 2048
+#define E1000_ICH8_NVM_SIG_WORD 0x13
+#define E1000_ICH8_NVM_SIG_MASK 0xC0
+
/* EEPROM Read */
#define E1000_EERD_START 0x00000001 /* Start Read */
#define E1000_EERD_DONE 0x00000010 /* Read Done */
@@ -1589,7 +1691,6 @@ struct em_hw {
#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
@@ -1629,12 +1730,31 @@ struct em_hw {
#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
/* Half-Duplex Control */
#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+#define E1000_PHY_CTRL_B2B_EN 0x00000080
+
/* LED Control */
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0
@@ -1704,6 +1824,9 @@ struct em_hw {
#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
/* Interrupt Cause Set */
#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1730,6 +1853,9 @@ struct em_hw {
#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW E1000_ICR_DSW
+#define E1000_ICS_PHYINT E1000_ICR_PHYINT
+#define E1000_ICS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1756,6 +1882,9 @@ struct em_hw {
#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW E1000_ICR_DSW
+#define E1000_IMS_PHYINT E1000_ICR_PHYINT
+#define E1000_IMS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Clear */
#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1782,6 +1911,9 @@ struct em_hw {
#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW E1000_ICR_DSW
+#define E1000_IMC_PHYINT E1000_ICR_PHYINT
+#define E1000_IMC_EPRST E1000_ICR_EPRST
/* Receive Control */
#define E1000_RCTL_RST 0x00000001 /* Software reset */
@@ -1840,7 +1972,7 @@ struct em_hw {
* value2 = [0..64512], default=4096
* value3 = [0..64512], default=0
*/
-
+
#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
@@ -1956,9 +2088,10 @@ struct em_hw {
#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
@@ -2026,7 +2159,7 @@ struct em_hw {
#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
* filtering */
#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
@@ -2048,6 +2181,15 @@ struct em_hw {
#define E1000_FWSM_MODE_SHIFT 1
#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
+#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT 29
+#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
+
/* FFLT Debug Register */
#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
@@ -2120,6 +2262,8 @@ struct em_host_command_info {
E1000_GCR_TXDSCW_NO_SNOOP | \
E1000_GCR_TXDSCR_NO_SNOOP)
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
/* Function Active and Power State to MNG */
#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
@@ -2153,7 +2297,7 @@ struct em_host_command_info {
#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
@@ -2178,8 +2322,10 @@ struct em_host_command_info {
#define EEPROM_PHY_CLASS_WORD 0x0007
#define EEPROM_INIT_CONTROL1_REG 0x000A
#define EEPROM_INIT_CONTROL2_REG 0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
#define EEPROM_INIT_3GIO_3 0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
#define EEPROM_CFG 0x0012
#define EEPROM_FLASH_VERSION 0x0032
@@ -2191,10 +2337,16 @@ struct em_host_command_info {
/* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_RESERVED_82573 0xF746
+#define ID_LED_DEFAULT_82573 0x1811
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
+#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_OFF2 << 8) | \
+ (ID_LED_DEF1_ON2 << 4) | \
+ (ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3
@@ -2228,6 +2380,11 @@ struct em_host_command_info {
#define EEPROM_WORD0F_ASM_DIR 0x2000
#define EEPROM_WORD0F_ANE 0x0800
#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU 0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
/* Mask bits for fields in Word 0x1a of the EEPROM */
#define EEPROM_WORD1A_ASPM_MASK 0x000C
@@ -2302,23 +2459,29 @@ struct em_host_command_info {
#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
/* PBA constants */
+#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
#define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018
#define E1000_PBA_30K 0x001E
#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
#define E1000_PBA_38K 0x0026
#define E1000_PBA_40K 0x0028
#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
+#define E1000_PBS_16K E1000_PBA_16K
+
/* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
@@ -2371,7 +2534,7 @@ struct em_host_command_info {
/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
#define AUTO_READ_DONE_TIMEOUT 10
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 40
+#define PHY_CFG_TIMEOUT 100
#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
@@ -2798,6 +2961,17 @@ struct em_host_command_info {
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
/* IGP01E1000 Specific Port Config Register - R/W */
#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
#define IGP01E1000_PSCFR_PRE_EN 0x0020
@@ -2977,10 +3151,10 @@ struct em_host_command_info {
/* DSP Distance Register (Page 5, Register 26) */
#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M;
- 1 = 50-80M;
- 2 = 80-110M;
- 3 = 110-140M;
- 4 = >140M */
+ 1 = 50-80M;
+ 2 = 80-110M;
+ 3 = 110-140M;
+ 4 = >140M */
/* Kumeran Mode Control Register (Page 193, Register 16) */
#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */
@@ -3023,6 +3197,193 @@ struct em_host_command_info {
#define L1LXT971A_PHY_ID 0x001378E0
#define GG82563_E_PHY_ID 0x01410CA0
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) \
+ (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL \
+ PHY_REG(769, 17) /* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+ PHY_REG(769, 25) /* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+ PHY_REG(770, 16) /* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+ PHY_REG(770, 17) /* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+ PHY_REG(770, 18) /* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+ PHY_REG(770, 19) /* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+ PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+ PHY_REG(776, 18) /* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
+
+#define IGP3_CAPABILITY \
+ PHY_REG(776, 19) /* IGP3 Capability Register */
+
+/* Capabilities for SKU Control */
+#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
+#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
+#define IGP3_CAP_ASF 0x0004 /* Support ASF */
+#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS 0x0080 /* Support RSS */
+#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN 0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND 0x0080
+
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
+#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT 5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
+
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT 6
+#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
+#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
+#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+#define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */
+#define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */
+#define ICH8_FLASH_SEG_SIZE_256 256
+#define ICH8_FLASH_SEG_SIZE_4K 4096
+#define ICH8_FLASH_SEG_SIZE_64K 65536
+
+#define ICH8_CYCLE_READ 0x0
+#define ICH8_CYCLE_RESERVED 0x1
+#define ICH8_CYCLE_WRITE 0x2
+#define ICH8_CYCLE_ERASE 0x3
+
+#define ICH8_FLASH_GFPREG 0x0000
+#define ICH8_FLASH_HSFSTS 0x0004
+#define ICH8_FLASH_HSFCTL 0x0006
+#define ICH8_FLASH_FADDR 0x0008
+#define ICH8_FLASH_FDATA0 0x0010
+#define ICH8_FLASH_FRACC 0x0050
+#define ICH8_FLASH_FREG0 0x0054
+#define ICH8_FLASH_FREG1 0x0058
+#define ICH8_FLASH_FREG2 0x005C
+#define ICH8_FLASH_FREG3 0x0060
+#define ICH8_FLASH_FPR0 0x0074
+#define ICH8_FLASH_FPR1 0x0078
+#define ICH8_FLASH_SSFSTS 0x0090
+#define ICH8_FLASH_SSFCTL 0x0092
+#define ICH8_FLASH_PREOP 0x0094
+#define ICH8_FLASH_OPTYPE 0x0096
+#define ICH8_FLASH_OPMENU 0x0098
+
+#define ICH8_FLASH_REG_MAPSIZE 0x00A0
+#define ICH8_FLASH_SECTOR_SIZE 4096
+#define ICH8_GFPREG_BASE_MASK 0x1FFF
+#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+ struct ich8_hsfsts {
+ uint16_t flcdone :1; /* bit 0 Flash Cycle Done */
+ uint16_t flcerr :1; /* bit 1 Flash Cycle Error */
+ uint16_t dael :1; /* bit 2 Direct Access error Log */
+ uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */
+ uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */
+ uint16_t reserved1 :2; /* bit 13:6 Reserved */
+ uint16_t reserved2 :6; /* bit 13:6 Reserved */
+ uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+ uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */
+ } hsf_status;
+ uint16_t regval;
+};
+
+/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+ struct ich8_hsflctl {
+ uint16_t flcgo :1; /* 0 Flash Cycle Go */
+ uint16_t flcycle :2; /* 2:1 Flash Cycle */
+ uint16_t reserved :5; /* 7:3 Reserved */
+ uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */
+ uint16_t flockdn :6; /* 15:10 Reserved */
+ } hsf_ctrl;
+ uint16_t regval;
+};
+
+/* ICH8 Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+ struct ich8_flracc {
+ uint32_t grra :8; /* 0:7 GbE region Read Access */
+ uint32_t grwa :8; /* 8:15 GbE region Write Access */
+ uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */
+ uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */
+ } hsf_flregacc;
+ uint16_t regval;
+};
+
/* Miscellaneous PHY bit definitions. */
#define PHY_PREAMBLE 0xFFFFFFFF
#define PHY_SOF 0x01
diff --git a/sys/dev/pci/if_em_osdep.h b/sys/dev/pci/if_em_osdep.h
index f6920e78829..5644ede4806 100644
--- a/sys/dev/pci/if_em_osdep.h
+++ b/sys/dev/pci/if_em_osdep.h
@@ -1,6 +1,6 @@
/**************************************************************************
-Copyright (c) 2001-2003, Intel Corporation
+Copyright (c) 2001-2006, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
-/* $OpenBSD: if_em_osdep.h,v 1.6 2006/03/05 19:55:10 brad Exp $ */
+/* $OpenBSD: if_em_osdep.h,v 1.7 2006/07/03 20:55:55 brad Exp $ */
/* $FreeBSD: if_em_osdep.h,v 1.11 2003/05/02 21:17:08 pdeuskar Exp $ */
#ifndef _EM_OPENBSD_OS_H_
@@ -65,74 +65,106 @@ struct em_osdep
{
bus_space_tag_t mem_bus_space_tag;
bus_space_handle_t mem_bus_space_handle;
+ bus_space_tag_t io_bus_space_tag;
+ bus_space_handle_t io_bus_space_handle;
+ bus_space_tag_t flash_bus_space_tag;
+ bus_space_handle_t flash_bus_space_handle;
struct device *dev;
struct pci_attach_args em_pa;
bus_size_t em_memsize;
bus_addr_t em_membase;
-
- bus_space_handle_t em_iobhandle;
- bus_space_tag_t em_iobtag;
bus_size_t em_iosize;
bus_addr_t em_iobase;
+ bus_size_t em_flashsize;
+ bus_addr_t em_flashbase;
};
#define E1000_WRITE_FLUSH(hw) E1000_READ_REG(hw, STATUS)
/* Read from an absolute offset in the adapter's memory space */
#define E1000_READ_OFFSET(hw, offset) \
- bus_space_read_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- offset)
+ bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ offset)
/* Write to an absolute offset in the adapter's memory space */
#define E1000_WRITE_OFFSET(hw, offset, value) \
- bus_space_write_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- offset, value)
+ bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ offset, value)
/* Convert a register name to its offset in the adapter's memory space */
#define E1000_REG_OFFSET(hw, reg) \
((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg)
+/* Register READ/WRITE macros */
+
#define E1000_READ_REG(hw, reg) \
- E1000_READ_OFFSET(hw, E1000_REG_OFFSET(hw, reg))
+ bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg))
#define E1000_WRITE_REG(hw, reg, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg), value)
+ bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg), \
+ value)
#define E1000_READ_REG_ARRAY(hw, reg, index) \
- E1000_READ_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+ bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg) \
+ + ((index) << 2))
#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2), value)
+ bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg) \
+ + ((index) << 2), value)
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
- bus_space_write_1( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- E1000_REG_OFFSET(hw, reg) + (index), \
- value)
+ bus_space_write_1(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg \
+ + index), value)
#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
- bus_space_write_2( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- E1000_REG_OFFSET(hw, reg) + (index), \
- value)
+ bus_space_write_2(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
+ ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg \
+ + (index << 1)), value)
+
+#define E1000_READ_ICH8_REG(hw, reg) \
+ bus_space_read_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_READ_ICH8_REG16(hw, reg) \
+ bus_space_read_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_WRITE_ICH8_REG(hw, reg, value) \
+ bus_space_write_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, \
+ reg, value)
-#define E1000_WRITE_REG_ARRAY_DWORD(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2), value)
+#define E1000_WRITE_ICH8_REG16(hw, reg, value) \
+ bus_space_write_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, \
+ reg, value)
#define em_io_read(hw, port) \
- bus_space_read_4(((struct em_osdep *)(hw)->back)->em_iobtag, \
- ((struct em_osdep *)(hw)->back)->em_iobhandle, (port))
+ bus_space_read_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->io_bus_space_handle, (port))
#define em_io_write(hw, port, value) \
- bus_space_write_4(((struct em_osdep *)(hw)->back)->em_iobtag, \
- ((struct em_osdep *)(hw)->back)->em_iobhandle, \
- (port), (value))
+ bus_space_write_4(((struct em_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct em_osdep *)(hw)->back)->io_bus_space_handle, \
+ (port), (value))
#ifdef DEBUG
#define EM_KASSERT(exp,msg) do { if (!(exp)) panic msg; } while (0)