diff options
author | Dariusz Swiderski <dms@cvs.openbsd.org> | 2010-01-09 22:56:25 +0000 |
---|---|---|
committer | Dariusz Swiderski <dms@cvs.openbsd.org> | 2010-01-09 22:56:25 +0000 |
commit | 2b1a05ccd6caade948fadc096f848b3c358d006c (patch) | |
tree | 52dc692f7e71a9986ab2ccf4795c473287c7aec6 /sys | |
parent | f8c751b234f6d4b295b93cdbefa799ac69c849f2 (diff) |
a lot of knf loving. hudge diff, no binary change.
ok claudio@
Diffstat (limited to 'sys')
-rw-r--r-- | sys/dev/pci/if_em_hw.c | 14825 |
1 files changed, 7499 insertions, 7326 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c index 777172e5490..be7a9be4104 100644 --- a/sys/dev/pci/if_em_hw.c +++ b/sys/dev/pci/if_em_hw.c @@ -1,40 +1,39 @@ /******************************************************************************* - Copyright (c) 2001-2005, Intel Corporation + Copyright (c) 2001-2005, Intel Corporation All rights reserved. - - Redistribution and use in source and binary forms, with or without + + Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, + + 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from this software without specific prior written permission. - + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ -/* $OpenBSD: if_em_hw.c,v 1.44 2009/12/27 13:12:58 fkr Exp $ */ - -/* if_em_hw.c - * Shared functions for accessing and configuring the MAC +/* $OpenBSD: if_em_hw.c,v 1.45 2010/01/09 22:56:24 dms Exp $ */ +/* + * if_em_hw.c Shared functions for accessing and configuring the MAC */ #if 0 @@ -74,117 +73,120 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $"); #define STATIC -static int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask); -static void em_swfw_sync_release(struct em_hw *hw, uint16_t mask); -static int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data); -static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data); -static int32_t em_get_software_semaphore(struct em_hw *hw); -static void em_release_software_semaphore(struct em_hw *hw); - -static int32_t em_check_downshift(struct em_hw *hw); -static void em_clear_vfta(struct em_hw *hw); -static int32_t em_commit_shadow_ram(struct em_hw *hw); -static int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up); -static int32_t em_config_fc_after_link_up(struct em_hw *hw); -static int32_t em_match_gig_phy(struct em_hw *hw); -static int32_t em_detect_gig_phy(struct em_hw *hw); -static int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank); -static int32_t em_get_auto_rd_done(struct em_hw *hw); -static int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length); -static int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw); -static int32_t em_get_phy_cfg_done(struct em_hw *hw); -static int32_t em_get_software_flag(struct em_hw *hw); -static int32_t em_ich8_cycle_init(struct em_hw *hw); -static int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout); -static int32_t em_id_led_init(struct em_hw *hw); -static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); -static int32_t em_init_lcd_from_nvm(struct em_hw *hw); -static void em_init_rx_addrs(struct em_hw *hw); -static void em_initialize_hardware_bits(struct em_hw *hw); -static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw); -static int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw); -static int32_t em_mng_enable_host_if(struct em_hw *hw); -static int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd); -static void em_put_hw_eeprom_semaphore(struct em_hw *hw); -static int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data); -static int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte); -static int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte); -static int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data); -static int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t *data); -static int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t data); -static int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); -static void em_release_software_flag(struct em_hw *hw); -static int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active); -static int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active); -static int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop); -static void em_set_pci_express_master_disable(struct em_hw *hw); -static int32_t em_wait_autoneg(struct em_hw *hw); -static void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value); -static int32_t em_set_phy_type(struct em_hw *hw); -static void em_phy_init_script(struct em_hw *hw); -static int32_t em_setup_copper_link(struct em_hw *hw); -static int32_t em_setup_fiber_serdes_link(struct em_hw *hw); -static int32_t em_adjust_serdes_amplitude(struct em_hw *hw); -static int32_t em_phy_force_speed_duplex(struct em_hw *hw); -static int32_t em_config_mac_to_phy(struct em_hw *hw); -static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl); -static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl); -static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, - uint16_t count); -static uint16_t em_shift_in_mdi_bits(struct em_hw *hw); -static int32_t em_phy_reset_dsp(struct em_hw *hw); -static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, - uint16_t words, uint16_t *data); -static int32_t em_write_eeprom_microwire(struct em_hw *hw, - uint16_t offset, uint16_t words, - uint16_t *data); -static int32_t em_spi_eeprom_ready(struct em_hw *hw); -static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd); -static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd); -static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, - uint16_t count); -static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, - uint16_t phy_data); -static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr, - uint16_t *phy_data); -static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count); -static int32_t em_acquire_eeprom(struct em_hw *hw); -static void em_release_eeprom(struct em_hw *hw); -static void em_standby_eeprom(struct em_hw *hw); -static int32_t em_set_vco_speed(struct em_hw *hw); -static int32_t em_polarity_reversal_workaround(struct em_hw *hw); -static int32_t em_set_phy_mode(struct em_hw *hw); -static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer); -static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length); -static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, - uint16_t duplex); -static int32_t em_configure_kmrn_for_1000(struct em_hw *hw); +static int32_t em_swfw_sync_acquire(struct em_hw *, uint16_t); +static void em_swfw_sync_release(struct em_hw *, uint16_t); +static int32_t em_read_kmrn_reg(struct em_hw *, uint32_t, uint16_t *); +static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t, uint16_t); +static int32_t em_get_software_semaphore(struct em_hw *); +static void em_release_software_semaphore(struct em_hw *); + +static int32_t em_check_downshift(struct em_hw *); +static void em_clear_vfta(struct em_hw *); +static int32_t em_commit_shadow_ram(struct em_hw *); +static int32_t em_config_dsp_after_link_change(struct em_hw *, boolean_t); +static int32_t em_config_fc_after_link_up(struct em_hw *); +static int32_t em_match_gig_phy(struct em_hw *); +static int32_t em_detect_gig_phy(struct em_hw *); +static int32_t em_erase_ich8_4k_segment(struct em_hw *, uint32_t); +static int32_t em_get_auto_rd_done(struct em_hw *); +static int32_t em_get_cable_length(struct em_hw *, uint16_t *, uint16_t *); +static int32_t em_get_hw_eeprom_semaphore(struct em_hw *); +static int32_t em_get_phy_cfg_done(struct em_hw *); +static int32_t em_get_software_flag(struct em_hw *); +static int32_t em_ich8_cycle_init(struct em_hw *); +static int32_t em_ich8_flash_cycle(struct em_hw *, uint32_t); +static int32_t em_id_led_init(struct em_hw *); +static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *, uint32_t, + uint32_t); +static int32_t em_init_lcd_from_nvm(struct em_hw *); +static void em_init_rx_addrs(struct em_hw *); +static void em_initialize_hardware_bits(struct em_hw *); +static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *); +static int32_t em_kumeran_lock_loss_workaround(struct em_hw *); +static int32_t em_mng_enable_host_if(struct em_hw *); +static int32_t em_read_eeprom_eerd(struct em_hw *, uint16_t, uint16_t, + uint16_t *); +static int32_t em_write_eeprom_eewr(struct em_hw *, uint16_t, uint16_t, + uint16_t *data); +static int32_t em_poll_eerd_eewr_done(struct em_hw *, int); +static void em_put_hw_eeprom_semaphore(struct em_hw *); +static int32_t em_read_ich8_byte(struct em_hw *, uint32_t, uint8_t *); +static int32_t em_verify_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); +static int32_t em_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); +static int32_t em_read_ich8_word(struct em_hw *, uint32_t, uint16_t *); +static int32_t em_read_ich8_data(struct em_hw *, uint32_t, uint32_t, + uint16_t *); +static int32_t em_write_ich8_data(struct em_hw *, uint32_t, uint32_t, + uint16_t); +static int32_t em_read_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, + uint16_t *); +static int32_t em_write_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, + uint16_t *); +static void em_release_software_flag(struct em_hw *); +static int32_t em_set_d3_lplu_state(struct em_hw *, boolean_t); +static int32_t em_set_d0_lplu_state(struct em_hw *, boolean_t); +static int32_t em_set_pci_ex_no_snoop(struct em_hw *, uint32_t); +static void em_set_pci_express_master_disable(struct em_hw *); +static int32_t em_wait_autoneg(struct em_hw *); +static void em_write_reg_io(struct em_hw *, uint32_t, uint32_t); +static int32_t em_set_phy_type(struct em_hw *); +static void em_phy_init_script(struct em_hw *); +static int32_t em_setup_copper_link(struct em_hw *); +static int32_t em_setup_fiber_serdes_link(struct em_hw *); +static int32_t em_adjust_serdes_amplitude(struct em_hw *); +static int32_t em_phy_force_speed_duplex(struct em_hw *); +static int32_t em_config_mac_to_phy(struct em_hw *); +static void em_raise_mdi_clk(struct em_hw *, uint32_t *); +static void em_lower_mdi_clk(struct em_hw *, uint32_t *); +static void em_shift_out_mdi_bits(struct em_hw *, uint32_t, uint16_t); +static uint16_t em_shift_in_mdi_bits(struct em_hw *); +static int32_t em_phy_reset_dsp(struct em_hw *); +static int32_t em_write_eeprom_spi(struct em_hw *, uint16_t, uint16_t, + uint16_t *); +static int32_t em_write_eeprom_microwire(struct em_hw *, uint16_t, uint16_t, + uint16_t *); +static int32_t em_spi_eeprom_ready(struct em_hw *); +static void em_raise_ee_clk(struct em_hw *, uint32_t *); +static void em_lower_ee_clk(struct em_hw *, uint32_t *); +static void em_shift_out_ee_bits(struct em_hw *, uint16_t, uint16_t); +static int32_t em_write_phy_reg_ex(struct em_hw *, uint32_t, uint16_t); +static int32_t em_read_phy_reg_ex(struct em_hw *, uint32_t, uint16_t *); +static uint16_t em_shift_in_ee_bits(struct em_hw *, uint16_t); +static int32_t em_acquire_eeprom(struct em_hw *); +static void em_release_eeprom(struct em_hw *); +static void em_standby_eeprom(struct em_hw *); +static int32_t em_set_vco_speed(struct em_hw *); +static int32_t em_polarity_reversal_workaround(struct em_hw *); +static int32_t em_set_phy_mode(struct em_hw *); +static int32_t em_host_if_read_cookie(struct em_hw *, uint8_t *); +static uint8_t em_calculate_mng_checksum(char *, uint32_t); +static int32_t em_configure_kmrn_for_10_100(struct em_hw *, uint16_t); +static int32_t em_configure_kmrn_for_1000(struct em_hw *); /* IGP cable length table */ -static const -uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = - { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, - 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, - 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, - 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, - 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, - 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, - 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, - 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; - -static const -uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = - { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, - 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, - 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, - 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, - 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, - 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, - 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, - 104, 109, 114, 118, 121, 124}; +static const uint16_t +em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = + {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, + 120}; + +static const uint16_t +em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = + {0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, + 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, + 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, + 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, + 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, + 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, + 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, + 121, 124}; /****************************************************************************** * Set the phy type member in the hw struct. @@ -194,56 +196,56 @@ uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = STATIC int32_t em_set_phy_type(struct em_hw *hw) { - DEBUGFUNC("em_set_phy_type"); - - if (hw->mac_type == em_undefined) - return -E1000_ERR_PHY_TYPE; - - switch (hw->phy_id) { - case M88E1000_E_PHY_ID: - case M88E1000_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1111_I_PHY_ID: - hw->phy_type = em_phy_m88; - break; - case IGP01E1000_I_PHY_ID: - if (hw->mac_type == em_82541 || - hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547 || - hw->mac_type == em_82547_rev_2) { - hw->phy_type = em_phy_igp; - break; - } - case IGP03E1000_E_PHY_ID: - hw->phy_type = em_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - hw->phy_type = em_phy_ife; - break; - case M88E1141_E_PHY_ID: - hw->phy_type = em_phy_oem; - break; - case BME1000_E_PHY_ID: - if (hw->phy_revision == 1) { - hw->phy_type = em_phy_bm; - break; - } - /* FALLTHROUGH */ - case GG82563_E_PHY_ID: - if (hw->mac_type == em_80003es2lan) { - hw->phy_type = em_phy_gg82563; - break; - } - /* FALLTHROUGH */ - default: - /* Should never have loaded on this device */ - hw->phy_type = em_phy_undefined; - return -E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; + DEBUGFUNC("em_set_phy_type"); + + if (hw->mac_type == em_undefined) + return -E1000_ERR_PHY_TYPE; + + switch (hw->phy_id) { + case M88E1000_E_PHY_ID: + case M88E1000_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1111_I_PHY_ID: + hw->phy_type = em_phy_m88; + break; + case IGP01E1000_I_PHY_ID: + if (hw->mac_type == em_82541 || + hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547 || + hw->mac_type == em_82547_rev_2) { + hw->phy_type = em_phy_igp; + break; + } + case IGP03E1000_E_PHY_ID: + hw->phy_type = em_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + hw->phy_type = em_phy_ife; + break; + case M88E1141_E_PHY_ID: + hw->phy_type = em_phy_oem; + break; + case BME1000_E_PHY_ID: + if (hw->phy_revision == 1) { + hw->phy_type = em_phy_bm; + break; + } + /* FALLTHROUGH */ + case GG82563_E_PHY_ID: + if (hw->mac_type == em_80003es2lan) { + hw->phy_type = em_phy_gg82563; + break; + } + /* FALLTHROUGH */ + default: + /* Should never have loaded on this device */ + hw->phy_type = em_phy_undefined; + return -E1000_ERR_PHY_TYPE; + } + + return E1000_SUCCESS; } /****************************************************************************** @@ -254,91 +256,92 @@ em_set_phy_type(struct em_hw *hw) static void em_phy_init_script(struct em_hw *hw) { - uint16_t phy_saved_data; - - DEBUGFUNC("em_phy_init_script"); - - if (hw->phy_init_script) { - msec_delay(20); - - /* Save off the current value of register 0x2F5B to be restored at - * the end of this routine. */ - em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - em_write_phy_reg(hw, 0x2F5B, 0x0003); - - msec_delay(20); - - em_write_phy_reg(hw,0x0000,0x0140); - - msec_delay(5); - - switch (hw->mac_type) { - case em_82541: - case em_82547: - em_write_phy_reg(hw, 0x1F95, 0x0001); - - em_write_phy_reg(hw, 0x1F71, 0xBD21); - - em_write_phy_reg(hw, 0x1F79, 0x0018); - - em_write_phy_reg(hw, 0x1F30, 0x1600); - - em_write_phy_reg(hw, 0x1F31, 0x0014); - - em_write_phy_reg(hw, 0x1F32, 0x161C); - - em_write_phy_reg(hw, 0x1F94, 0x0003); - - em_write_phy_reg(hw, 0x1F96, 0x003F); - - em_write_phy_reg(hw, 0x2010, 0x0008); - break; - - case em_82541_rev_2: - case em_82547_rev_2: - em_write_phy_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - em_write_phy_reg(hw, 0x0000, 0x3300); - - msec_delay(20); - - /* Now enable the transmitter */ - em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac_type == em_82547) { - uint16_t fused, fine, coarse; - - /* Move to analog registers page */ - em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); - em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - } + uint16_t phy_saved_data; + DEBUGFUNC("em_phy_init_script"); + + if (hw->phy_init_script) { + msec_delay(20); + /* + * Save off the current value of register 0x2F5B to be + * restored at the end of this routine. + */ + em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + em_write_phy_reg(hw, 0x2F5B, 0x0003); + msec_delay(20); + em_write_phy_reg(hw, 0x0000, 0x0140); + msec_delay(5); + + switch (hw->mac_type) { + case em_82541: + case em_82547: + em_write_phy_reg(hw, 0x1F95, 0x0001); + em_write_phy_reg(hw, 0x1F71, 0xBD21); + em_write_phy_reg(hw, 0x1F79, 0x0018); + em_write_phy_reg(hw, 0x1F30, 0x1600); + em_write_phy_reg(hw, 0x1F31, 0x0014); + em_write_phy_reg(hw, 0x1F32, 0x161C); + em_write_phy_reg(hw, 0x1F94, 0x0003); + em_write_phy_reg(hw, 0x1F96, 0x003F); + em_write_phy_reg(hw, 0x2010, 0x0008); + break; + case em_82541_rev_2: + case em_82547_rev_2: + em_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + em_write_phy_reg(hw, 0x0000, 0x3300); + msec_delay(20); + + /* Now enable the transmitter */ + em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac_type == em_82547) { + uint16_t fused, fine, coarse; + /* Move to analog registers page */ + em_read_phy_reg(hw, + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + em_read_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_STATUS, &fused); + + fine = fused & + IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & + IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= + IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= + IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & + IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & + IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & + IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + em_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + + em_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + } } /****************************************************************************** @@ -349,201 +352,200 @@ em_phy_init_script(struct em_hw *hw) int32_t em_set_mac_type(struct em_hw *hw) { - DEBUGFUNC("em_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - switch (hw->revision_id) { - case E1000_82542_2_0_REV_ID: - hw->mac_type = em_82542_rev2_0; - break; - case E1000_82542_2_1_REV_ID: - hw->mac_type = em_82542_rev2_1; - break; - default: - /* Invalid 82542 revision ID */ - return -E1000_ERR_MAC_TYPE; - } - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - hw->mac_type = em_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - hw->mac_type = em_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - hw->mac_type = em_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - hw->mac_type = em_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - hw->mac_type = em_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - hw->mac_type = em_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - case E1000_DEV_ID_82546GB_2: - hw->mac_type = em_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - hw->mac_type = em_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - hw->mac_type = em_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - hw->mac_type = em_82547; - break; - case E1000_DEV_ID_82547GI: - hw->mac_type = em_82547_rev_2; - break; - case E1000_DEV_ID_82571EB_AF: - case E1000_DEV_ID_82571EB_AT: - case E1000_DEV_ID_82571EB_COPPER: - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82571PT_QUAD_COPPER: - hw->mac_type = em_82571; - break; - case E1000_DEV_ID_82572EI_COPPER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_82572EI: - hw->mac_type = em_82572; - break; - case E1000_DEV_ID_82573E: - case E1000_DEV_ID_82573E_IAMT: - case E1000_DEV_ID_82573E_PM: - case E1000_DEV_ID_82573L: - case E1000_DEV_ID_82573L_PL_1: - case E1000_DEV_ID_82573L_PL_2: - case E1000_DEV_ID_82573V_PM: - hw->mac_type = em_82573; - break; - case E1000_DEV_ID_82574L: - hw->mac_type = em_82574; - break; - case E1000_DEV_ID_82575EB_PT: - case E1000_DEV_ID_82575EB_PF: - case E1000_DEV_ID_82575GB_QP: - case E1000_DEV_ID_82576: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_NS: - hw->mac_type = em_82575; - hw->initialize_hw_bits_disable = 1; - break; - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: - case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->mac_type = em_80003es2lan; - break; - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IFE_G: - case E1000_DEV_ID_ICH8_IFE_GT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - case E1000_DEV_ID_ICH8_IGP_M: - case E1000_DEV_ID_ICH8_IGP_M_AMT: - hw->mac_type = em_ich8lan; - break; - case E1000_DEV_ID_ICH9_BM: - case E1000_DEV_ID_ICH9_IFE: - case E1000_DEV_ID_ICH9_IFE_G: - case E1000_DEV_ID_ICH9_IFE_GT: - case E1000_DEV_ID_ICH9_IGP_AMT: - case E1000_DEV_ID_ICH9_IGP_C: - case E1000_DEV_ID_ICH9_IGP_M: - case E1000_DEV_ID_ICH9_IGP_M_AMT: - case E1000_DEV_ID_ICH9_IGP_M_V: - case E1000_DEV_ID_ICH10_R_BM_LF: - case E1000_DEV_ID_ICH10_R_BM_LM: - case E1000_DEV_ID_ICH10_R_BM_V: - hw->mac_type = em_ich9lan; - break; - case E1000_DEV_ID_ICH10_D_BM_LF: - case E1000_DEV_ID_ICH10_D_BM_LM: - hw->mac_type = em_ich10lan; - break; - case E1000_DEV_ID_EP80579_LAN_1: - hw->mac_type = em_icp_xxxx; - hw->icp_xxxx_port_num = 0; - break; - case E1000_DEV_ID_EP80579_LAN_2: - hw->mac_type = em_icp_xxxx; - hw->icp_xxxx_port_num = 1; - break; - case E1000_DEV_ID_EP80579_LAN_3: - hw->mac_type = em_icp_xxxx; - hw->icp_xxxx_port_num = 2; - break; - default: - /* Should never have loaded on this device */ - return -E1000_ERR_MAC_TYPE; - } - - switch (hw->mac_type) { - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - hw->swfwhw_semaphore_present = TRUE; - hw->asf_firmware_present = TRUE; - break; - case em_80003es2lan: - hw->swfw_sync_present = TRUE; - /* FALLTHROUGH */ - case em_82571: - case em_82572: - case em_82573: - case em_82574: - hw->eeprom_semaphore_present = TRUE; - /* FALLTHROUGH */ - case em_82541: - case em_82547: - case em_82541_rev_2: - case em_82547_rev_2: - hw->asf_firmware_present = TRUE; - break; - default: - break; - } - - return E1000_SUCCESS; + DEBUGFUNC("em_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + switch (hw->revision_id) { + case E1000_82542_2_0_REV_ID: + hw->mac_type = em_82542_rev2_0; + break; + case E1000_82542_2_1_REV_ID: + hw->mac_type = em_82542_rev2_1; + break; + default: + /* Invalid 82542 revision ID */ + return -E1000_ERR_MAC_TYPE; + } + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + hw->mac_type = em_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + hw->mac_type = em_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + hw->mac_type = em_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + hw->mac_type = em_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + hw->mac_type = em_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + hw->mac_type = em_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + case E1000_DEV_ID_82546GB_2: + hw->mac_type = em_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + hw->mac_type = em_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + hw->mac_type = em_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + hw->mac_type = em_82547; + break; + case E1000_DEV_ID_82547GI: + hw->mac_type = em_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_AF: + case E1000_DEV_ID_82571EB_AT: + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + hw->mac_type = em_82571; + break; + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_82572EI: + hw->mac_type = em_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573E_PM: + case E1000_DEV_ID_82573L: + case E1000_DEV_ID_82573L_PL_1: + case E1000_DEV_ID_82573L_PL_2: + case E1000_DEV_ID_82573V_PM: + hw->mac_type = em_82573; + break; + case E1000_DEV_ID_82574L: + hw->mac_type = em_82574; + break; + case E1000_DEV_ID_82575EB_PT: + case E1000_DEV_ID_82575EB_PF: + case E1000_DEV_ID_82575GB_QP: + case E1000_DEV_ID_82576: + case E1000_DEV_ID_82576_FIBER: + case E1000_DEV_ID_82576_SERDES: + case E1000_DEV_ID_82576_QUAD_COPPER: + case E1000_DEV_ID_82576_NS: + hw->mac_type = em_82575; + hw->initialize_hw_bits_disable = 1; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->mac_type = em_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_IGP_M: + case E1000_DEV_ID_ICH8_IGP_M_AMT: + hw->mac_type = em_ich8lan; + break; + case E1000_DEV_ID_ICH9_BM: + case E1000_DEV_ID_ICH9_IFE: + case E1000_DEV_ID_ICH9_IFE_G: + case E1000_DEV_ID_ICH9_IFE_GT: + case E1000_DEV_ID_ICH9_IGP_AMT: + case E1000_DEV_ID_ICH9_IGP_C: + case E1000_DEV_ID_ICH9_IGP_M: + case E1000_DEV_ID_ICH9_IGP_M_AMT: + case E1000_DEV_ID_ICH9_IGP_M_V: + case E1000_DEV_ID_ICH10_R_BM_LF: + case E1000_DEV_ID_ICH10_R_BM_LM: + case E1000_DEV_ID_ICH10_R_BM_V: + hw->mac_type = em_ich9lan; + break; + case E1000_DEV_ID_ICH10_D_BM_LF: + case E1000_DEV_ID_ICH10_D_BM_LM: + hw->mac_type = em_ich10lan; + break; + case E1000_DEV_ID_EP80579_LAN_1: + hw->mac_type = em_icp_xxxx; + hw->icp_xxxx_port_num = 0; + break; + case E1000_DEV_ID_EP80579_LAN_2: + hw->mac_type = em_icp_xxxx; + hw->icp_xxxx_port_num = 1; + break; + case E1000_DEV_ID_EP80579_LAN_3: + hw->mac_type = em_icp_xxxx; + hw->icp_xxxx_port_num = 2; + break; + default: + /* Should never have loaded on this device */ + return -E1000_ERR_MAC_TYPE; + } + + switch (hw->mac_type) { + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + hw->swfwhw_semaphore_present = TRUE; + hw->asf_firmware_present = TRUE; + break; + case em_80003es2lan: + hw->swfw_sync_present = TRUE; + /* FALLTHROUGH */ + case em_82571: + case em_82572: + case em_82573: + case em_82574: + hw->eeprom_semaphore_present = TRUE; + /* FALLTHROUGH */ + case em_82541: + case em_82547: + case em_82541_rev_2: + case em_82547_rev_2: + hw->asf_firmware_present = TRUE; + break; + default: + break; + } + + return E1000_SUCCESS; } - /***************************************************************************** * Set media type and TBI compatibility. * @@ -552,60 +554,58 @@ em_set_mac_type(struct em_hw *hw) void em_set_media_type(struct em_hw *hw) { - uint32_t status; - - DEBUGFUNC("em_set_media_type"); - - if (hw->mac_type != em_82543) { - /* tbi_compatibility is only valid on 82543 */ - hw->tbi_compatibility_en = FALSE; - } - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->media_type = em_media_type_internal_serdes; - break; - case E1000_DEV_ID_EP80579_LAN_1: - case E1000_DEV_ID_EP80579_LAN_2: - case E1000_DEV_ID_EP80579_LAN_3: - hw->media_type = em_media_type_oem; - break; - default: - switch (hw->mac_type) { - case em_82542_rev2_0: - case em_82542_rev2_1: - hw->media_type = em_media_type_fiber; - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - case em_82573: - case em_82574: - /* The STATUS_TBIMODE bit is reserved or reused for the this - * device. - */ - hw->media_type = em_media_type_copper; - break; - default: - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_TBIMODE) { - hw->media_type = em_media_type_fiber; - /* tbi_compatibility not valid on fiber */ - hw->tbi_compatibility_en = FALSE; - } else { - hw->media_type = em_media_type_copper; - } - break; - } - } + uint32_t status; + DEBUGFUNC("em_set_media_type"); + + if (hw->mac_type != em_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = FALSE; + } + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->media_type = em_media_type_internal_serdes; + break; + case E1000_DEV_ID_EP80579_LAN_1: + case E1000_DEV_ID_EP80579_LAN_2: + case E1000_DEV_ID_EP80579_LAN_3: + hw->media_type = em_media_type_oem; + break; + default: + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + hw->media_type = em_media_type_fiber; + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + case em_82573: + case em_82574: + /* + * The STATUS_TBIMODE bit is reserved or reused for + * the this device. + */ + hw->media_type = em_media_type_copper; + break; + default: + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_TBIMODE) { + hw->media_type = em_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = FALSE; + } else { + hw->media_type = em_media_type_copper; + } + break; + } + } } - /****************************************************************************** * Reset the transmit and receive units; mask and clear all interrupts. * @@ -614,221 +614,222 @@ em_set_media_type(struct em_hw *hw) int32_t em_reset_hw(struct em_hw *hw) { - uint32_t ctrl; - uint32_t ctrl_ext; - uint32_t icr; - uint32_t manc; - uint32_t led_ctrl; - uint32_t timeout; - uint32_t extcnf_ctrl; - int32_t ret_val; - - DEBUGFUNC("em_reset_hw"); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == em_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - em_pci_clear_mwi(hw); - } - - if (hw->bus_type == em_bus_type_pci_express) { - /* Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - if (em_disable_pciex_master(hw) != E1000_SUCCESS) { - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - } - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ - hw->tbi_compatibility_on = FALSE; - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msec_delay(10); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Must reset the PHY before resetting the MAC */ - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); - msec_delay(5); - } - - /* Must acquire the MDIO ownership before MAC reset. - * Ownership defaults to firmware after a reset. */ - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - timeout = 10; - - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - do { - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) - break; - else - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - msec_delay(2); - timeout--; - } while (timeout); - } - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac_type == em_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); - } - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - DEBUGOUT("Issuing a global reset to MAC\n"); - - switch (hw->mac_type) { - case em_82544: - case em_82540: - case em_82545: - case em_82546: - case em_82541: - case em_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - case em_82545_rev_3: - case em_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - if (!hw->phy_reset_disable && - em_check_phy_reset_block(hw) == E1000_SUCCESS) { - /* PHY HW reset requires MAC CORE reset at the same - * time to make sure the interface between MAC and the - * external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - } - - em_get_software_flag(hw); - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - msec_delay(5); - break; - default: - E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - } - - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. - */ - switch (hw->mac_type) { - case em_82542_rev2_0: - case em_82542_rev2_1: - case em_82543: - case em_82544: - /* Wait for reset to complete */ - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - /* Wait for EEPROM reload */ - msec_delay(2); - break; - case em_82541: - case em_82541_rev_2: - case em_82547: - case em_82547_rev_2: - /* Wait for EEPROM reload */ - msec_delay(20); - break; - case em_82573: - case em_82574: - if (em_is_onboard_nvm_eeprom(hw) == FALSE) { - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - /* FALLTHROUGH */ - - /* Auto read done will delay 5ms or poll based on mac type */ - ret_val = em_get_auto_rd_done(hw); - if (ret_val) - return ret_val; - break; - default: - /* Wait for EEPROM reload (it happens automatically) */ - msec_delay(5); - break; - } - - /* Disable HW ARPs on ASF enabled adapters */ - if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 && - hw->mac_type != em_icp_xxxx) { - manc = E1000_READ_REG(hw, MANC); - manc &= ~(E1000_MANC_ARP_EN); - E1000_WRITE_REG(hw, MANC, manc); - } - - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { - em_phy_init_script(hw); - - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - icr = E1000_READ_REG(hw, ICR); - - /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == em_82542_rev2_0) { - if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) - em_pci_set_mwi(hw); - } - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - uint32_t kab = E1000_READ_REG(hw, KABGTXD); - kab |= E1000_KABGTXD_BGSQLBIAS; - E1000_WRITE_REG(hw, KABGTXD, kab); - } - - return E1000_SUCCESS; + uint32_t ctrl; + uint32_t ctrl_ext; + uint32_t icr; + uint32_t manc; + uint32_t led_ctrl; + uint32_t timeout; + uint32_t extcnf_ctrl; + int32_t ret_val; + DEBUGFUNC("em_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if (hw->mac_type == em_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + em_pci_clear_mwi(hw); + } + if (hw->bus_type == em_bus_type_pci_express) { + /* + * Prevent the PCI-E bus from sticking if there is no TLP + * connection on the last TLP read/write transaction when MAC + * is reset. + */ + if (em_disable_pciex_master(hw) != E1000_SUCCESS) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + } + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + /* + * Disable the Transmit and Receive units. Then delay to allow any + * pending transactions to complete before we hit the MAC with the + * global reset. + */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + /* + * The tbi_compatibility_on Flag must be cleared when Rctl is + * cleared. + */ + hw->tbi_compatibility_on = FALSE; + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Must reset the PHY before resetting the MAC */ + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msec_delay(5); + } + /* + * Must acquire the MDIO ownership before MAC reset. Ownership + * defaults to firmware after a reset. + */ + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + timeout = 10; + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + do { + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + else + extcnf_ctrl |= + E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + msec_delay(2); + timeout--; + } while (timeout); + } + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac_type == em_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); + } + /* + * Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect the + * current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + DEBUGOUT("Issuing a global reset to MAC\n"); + + switch (hw->mac_type) { + case em_82544: + case em_82540: + case em_82545: + case em_82546: + case em_82541: + case em_82541_rev_2: + /* + * These controllers can't ack the 64-bit write when issuing + * the reset, so use IO-mapping as a workaround to issue the + * reset + */ + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + case em_82545_rev_3: + case em_82546_rev_3: + /* Reset is performed on a shadow of the control register */ + E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + if (!hw->phy_reset_disable && + em_check_phy_reset_block(hw) == E1000_SUCCESS) { + /* + * PHY HW reset requires MAC CORE reset at the same + * time to make sure the interface between MAC and + * the external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + } + em_get_software_flag(hw); + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + msec_delay(5); + break; + default: + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + } + /* + * After MAC reset, force reload of EEPROM to restore power-on + * settings to device. Later controllers reload the EEPROM + * automatically, so just wait for reload to complete. + */ + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + /* Wait for reset to complete */ + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + /* Wait for EEPROM reload */ + msec_delay(2); + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + /* Wait for EEPROM reload */ + msec_delay(20); + break; + case em_82573: + case em_82574: + if (em_is_onboard_nvm_eeprom(hw) == FALSE) { + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + /* FALLTHROUGH */ + + /* Auto read done will delay 5ms or poll based on mac type */ + ret_val = em_get_auto_rd_done(hw); + if (ret_val) + return ret_val; + break; + default: + /* Wait for EEPROM reload (it happens automatically) */ + msec_delay(5); + break; + } + + /* Disable HW ARPs on ASF enabled adapters */ + if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 && + hw->mac_type != em_icp_xxxx) { + manc = E1000_READ_REG(hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(hw, MANC, manc); + } + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + em_phy_init_script(hw); + + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, ICR); + + /* If MWI was previously enabled, reenable it. */ + if (hw->mac_type == em_82542_rev2_0) { + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_set_mwi(hw); + } + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + uint32_t kab = E1000_READ_REG(hw, KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, KABGTXD, kab); + } + return E1000_SUCCESS; } /****************************************************************************** @@ -841,99 +842,109 @@ em_reset_hw(struct em_hw *hw) STATIC void em_initialize_hardware_bits(struct em_hw *hw) { - if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) { - /* Settings common to all silicon */ - uint32_t reg_ctrl, reg_ctrl_ext; - uint32_t reg_tarc0, reg_tarc1; - uint32_t reg_tctl; - uint32_t reg_txdctl, reg_txdctl1; - - reg_tarc0 = E1000_READ_REG(hw, TARC0); - reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and 27 */ - - reg_txdctl = E1000_READ_REG(hw, TXDCTL); - reg_txdctl |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ - E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); - - reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); - reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ - E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); - - switch (hw->mac_type) { - case em_82571: - case em_82572: - reg_tarc1 = E1000_READ_REG(hw, TARC1); - reg_tctl = E1000_READ_REG(hw, TCTL); - - /* Set the phy Tx compatible mode bits */ - reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */ - - reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */ - reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */ - - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ - else - reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case em_82573: - case em_82574: - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl = E1000_READ_REG(hw, CTRL); - - reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */ - reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ - reg_ctrl &= ~0x20000000; /* Clear bit 29 */ - - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - E1000_WRITE_REG(hw, CTRL, reg_ctrl); - break; - case em_80003es2lan: - if ((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) { - reg_tarc0 &= ~0x00100000; /* Clear bit 20 */ - } - - reg_tctl = E1000_READ_REG(hw, TCTL); - reg_tarc1 = E1000_READ_REG(hw, TARC1); - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ - else - reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - if (hw->mac_type == em_ich8lan) - reg_tarc0 |= 0x30000000; /* Set TARC0 bits 29 and 28 */ - reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ - E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); - - reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, 24, 26, 27 */ - - reg_tarc1 = E1000_READ_REG(hw, TARC1); - reg_tctl = E1000_READ_REG(hw, TCTL); - - if (reg_tctl & E1000_TCTL_MULR) - reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ - else - reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ - - reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and 30 */ - - E1000_WRITE_REG(hw, TARC1, reg_tarc1); - break; - default: - break; - } - - E1000_WRITE_REG(hw, TARC0, reg_tarc0); - } + if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) { + /* Settings common to all silicon */ + uint32_t reg_ctrl, reg_ctrl_ext; + uint32_t reg_tarc0, reg_tarc1; + uint32_t reg_tctl; + uint32_t reg_txdctl, reg_txdctl1; + reg_tarc0 = E1000_READ_REG(hw, TARC0); + reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and + * 27 */ + + reg_txdctl = E1000_READ_REG(hw, TXDCTL); + reg_txdctl |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ + E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); + + reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); + reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ + E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); + + switch (hw->mac_type) { + case em_82571: + case em_82572: + reg_tarc1 = E1000_READ_REG(hw, TARC1); + reg_tctl = E1000_READ_REG(hw, TCTL); + + /* Set the phy Tx compatible mode bits */ + reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */ + + reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */ + reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */ + + if (reg_tctl & E1000_TCTL_MULR) + /* Clear bit 28 if MULR is 1b */ + reg_tarc1 &= ~0x10000000; + else + /* Set bit 28 if MULR is 0b */ + reg_tarc1 |= 0x10000000; + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case em_82573: + case em_82574: + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl = E1000_READ_REG(hw, CTRL); + + reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */ + reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ + reg_ctrl &= ~0x20000000; /* Clear bit 29 */ + + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + E1000_WRITE_REG(hw, CTRL, reg_ctrl); + break; + case em_80003es2lan: + if ((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { + /* Clear bit 20 */ + reg_tarc0 &= ~0x00100000; + } + reg_tctl = E1000_READ_REG(hw, TCTL); + reg_tarc1 = E1000_READ_REG(hw, TARC1); + if (reg_tctl & E1000_TCTL_MULR) + /* Clear bit 28 if MULR is 1b */ + reg_tarc1 &= ~0x10000000; + else + /* Set bit 28 if MULR is 0b */ + reg_tarc1 |= 0x10000000; + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + if (hw->mac_type == em_ich8lan) + /* Set TARC0 bits 29 and 28 */ + reg_tarc0 |= 0x30000000; + + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + + reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, + * 24, 26, 27 */ + + reg_tarc1 = E1000_READ_REG(hw, TARC1); + reg_tctl = E1000_READ_REG(hw, TCTL); + + if (reg_tctl & E1000_TCTL_MULR) + /* Clear bit 28 if MULR is 1b */ + reg_tarc1 &= ~0x10000000; + else + /* Set bit 28 if MULR is 0b */ + reg_tarc1 |= 0x10000000; + + reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and + * 30 */ + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + default: + break; + } + + E1000_WRITE_REG(hw, TARC0, reg_tarc0); + } } /****************************************************************************** @@ -950,216 +961,221 @@ em_initialize_hardware_bits(struct em_hw *hw) int32_t em_init_hw(struct em_hw *hw) { - uint32_t ctrl; - uint32_t i; - int32_t ret_val; - uint16_t pcix_cmd_word; - uint16_t pcix_stat_hi_word; - uint16_t cmd_mmrbc; - uint16_t stat_mmrbc; - uint32_t mta_size; - uint32_t reg_data; - uint32_t ctrl_ext; - uint32_t snoop; - - DEBUGFUNC("em_init_hw"); - - /* force full DMA clock frequency for ICH8 */ - if (hw->mac_type == em_ich8lan) { - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~0x80000000; - E1000_WRITE_REG(hw, STATUS, reg_data); - } - - /* Initialize Identification LED */ - ret_val = em_id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error Initializing Identification LED\n"); - return ret_val; - } - - /* Set the media type and TBI compatibility */ - em_set_media_type(hw); - - /* Must be called after em_set_media_type because media_type is used */ - em_initialize_hardware_bits(hw); - - /* Disabling VLAN filtering. */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */ - if (hw->mac_type != em_ich8lan && - hw->mac_type != em_ich9lan && - hw->mac_type != em_ich10lan) { - if (hw->mac_type < em_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - em_clear_vfta(hw); - } - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == em_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - em_pci_clear_mwi(hw); - E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(hw); - msec_delay(5); - } - - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). - */ - em_init_rx_addrs(hw); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == em_82542_rev2_0) { - E1000_WRITE_REG(hw, RCTL, 0); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) - em_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - mta_size = E1000_MC_TBL_SIZE; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - mta_size = E1000_MC_TBL_SIZE_ICH8LAN; - for (i = 0; i < mta_size; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occuring when accessing our register space */ - E1000_WRITE_FLUSH(hw); - } - - /* Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. Valid only on - * 82542 and 82543 silicon. - */ - if (hw->dma_fairness && hw->mac_type <= em_82543) { - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); - } - - switch (hw->mac_type) { - case em_82545_rev_3: - case em_82546_rev_3: - break; - default: - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if (hw->bus_type == em_bus_type_pcix) { - em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); - em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, - &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { - pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, - &pcix_cmd_word); - } - } - break; - } - - /* More time needed for PHY to initialize */ - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - msec_delay(15); - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = em_setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > em_82544) { - ctrl = E1000_READ_REG(hw, TXDCTL); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL, ctrl); - } - - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - em_enable_tx_pkt_filtering(hw); - } - - switch (hw->mac_type) { - default: - break; - case em_80003es2lan: - /* Enable retransmit on late collisions */ - reg_data = E1000_READ_REG(hw, TCTL); - reg_data |= E1000_TCTL_RTLC; - E1000_WRITE_REG(hw, TCTL, reg_data); - - /* Configure Gigabit Carry Extend Padding */ - reg_data = E1000_READ_REG(hw, TCTL_EXT); - reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; - reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; - E1000_WRITE_REG(hw, TCTL_EXT, reg_data); - - /* Configure Transmit Inter-Packet Gap */ - reg_data = E1000_READ_REG(hw, TIPG); - reg_data &= ~E1000_TIPG_IPGT_MASK; - reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, reg_data); - - reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); - reg_data &= ~0x00100000; - E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); - /* FALLTHROUGH */ - case em_82571: - case em_82572: - case em_82575: - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - ctrl = E1000_READ_REG(hw, TXDCTL1); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, TXDCTL1, ctrl); - break; - } - - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - uint32_t gcr = E1000_READ_REG(hw, GCR); - gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - E1000_WRITE_REG(hw, GCR, gcr); - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - em_clear_hw_cntrs(hw); - - /* ICH8 No-snoop bits are opposite polarity. - * Set to snoop by default after reset. */ - if (hw->mac_type == em_ich8lan) - snoop = PCI_EX_82566_SNOOP_ALL; - else if (hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - snoop = (u_int32_t)~(PCI_EX_NO_SNOOP_ALL); - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - em_set_pci_ex_no_snoop(hw, snoop); - - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || - hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return ret_val; + uint32_t ctrl; + uint32_t i; + int32_t ret_val; + uint16_t pcix_cmd_word; + uint16_t pcix_stat_hi_word; + uint16_t cmd_mmrbc; + uint16_t stat_mmrbc; + uint32_t mta_size; + uint32_t reg_data; + uint32_t ctrl_ext; + uint32_t snoop; + DEBUGFUNC("em_init_hw"); + + /* force full DMA clock frequency for ICH8 */ + if (hw->mac_type == em_ich8lan) { + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~0x80000000; + E1000_WRITE_REG(hw, STATUS, reg_data); + } + /* Initialize Identification LED */ + ret_val = em_id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error Initializing Identification LED\n"); + return ret_val; + } + /* Set the media type and TBI compatibility */ + em_set_media_type(hw); + + /* Must be called after em_set_media_type because media_type is used */ + em_initialize_hardware_bits(hw); + + /* Disabling VLAN filtering. */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */ + if (hw->mac_type != em_ich8lan && + hw->mac_type != em_ich9lan && + hw->mac_type != em_ich10lan) { + if (hw->mac_type < em_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + em_clear_vfta(hw); + } + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->mac_type == em_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + em_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + /* + * Setup the receive address. This involves initializing all of the + * Receive Address Registers (RARs 0 - 15). + */ + em_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI*/ + if (hw->mac_type == em_82542_rev2_0) { + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_set_mwi(hw); + } + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + mta_size = E1000_MC_TBL_SIZE; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + mta_size = E1000_MC_TBL_SIZE_ICH8LAN; + for (i = 0; i < mta_size; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* + * use write flush to prevent Memory Write Block (MWB) from + * occuring when accessing our register space + */ + E1000_WRITE_FLUSH(hw); + } + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. Valid only on + * 82542 and 82543 silicon. + */ + if (hw->dma_fairness && hw->mac_type <= em_82543) { + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); + } + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + /* + * Workaround for PCI-X problem when BIOS sets MMRBC + * incorrectly. + */ + if (hw->bus_type == em_bus_type_pcix) { + em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, + &pcix_cmd_word); + em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, + &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) + >> PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & + PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd_word |= stat_mmrbc << + PCIX_COMMAND_MMRBC_SHIFT; + em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, + &pcix_cmd_word); + } + } + break; + } + + /* More time needed for PHY to initialize */ + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + msec_delay(15); + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = em_setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + if (hw->mac_type > em_82544) { + ctrl = E1000_READ_REG(hw, TXDCTL); + ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL, ctrl); + } + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + em_enable_tx_pkt_filtering(hw); + } + switch (hw->mac_type) { + default: + break; + case em_80003es2lan: + /* Enable retransmit on late collisions */ + reg_data = E1000_READ_REG(hw, TCTL); + reg_data |= E1000_TCTL_RTLC; + E1000_WRITE_REG(hw, TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = E1000_READ_REG(hw, TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; + E1000_WRITE_REG(hw, TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = E1000_READ_REG(hw, TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); + /* FALLTHROUGH */ + case em_82571: + case em_82572: + case em_82575: + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + ctrl = E1000_READ_REG(hw, TXDCTL1); + ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL1, ctrl); + break; + } + + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + uint32_t gcr = E1000_READ_REG(hw, GCR); + gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, GCR, gcr); + } + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there is + * no link. + */ + em_clear_hw_cntrs(hw); + /* + * ICH8 No-snoop bits are opposite polarity. Set to snoop by default + * after reset. + */ + if (hw->mac_type == em_ich8lan) + snoop = PCI_EX_82566_SNOOP_ALL; + else if (hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + snoop = (u_int32_t) ~ (PCI_EX_NO_SNOOP_ALL); + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + em_set_pci_ex_no_snoop(hw, snoop); + + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || + hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + /* + * Relaxed ordering must be disabled to avoid a parity error + * crash in a PCI slot. + */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + return ret_val; } /****************************************************************************** @@ -1170,36 +1186,34 @@ em_init_hw(struct em_hw *hw) static int32_t em_adjust_serdes_amplitude(struct em_hw *hw) { - uint16_t eeprom_data; - int32_t ret_val; - - DEBUGFUNC("em_adjust_serdes_amplitude"); - - if (hw->media_type != em_media_type_internal_serdes) - return E1000_SUCCESS; - - switch (hw->mac_type) { - case em_82545_rev_3: - case em_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if (eeprom_data != EEPROM_RESERVED_WORD) { - /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + uint16_t eeprom_data; + int32_t ret_val; + DEBUGFUNC("em_adjust_serdes_amplitude"); + + if (hw->media_type != em_media_type_internal_serdes) + return E1000_SUCCESS; + + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); + if (ret_val) { + return ret_val; + } + if (eeprom_data != EEPROM_RESERVED_WORD) { + /* Adjust SERDES output amplitude only. */ + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, + eeprom_data); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } /****************************************************************************** @@ -1216,156 +1230,158 @@ em_adjust_serdes_amplitude(struct em_hw *hw) int32_t em_setup_link(struct em_hw *hw) { - uint32_t ctrl_ext; - int32_t ret_val; - uint16_t eeprom_data; - uint16_t eeprom_control2_reg_offset; - - DEBUGFUNC("em_setup_link"); - - eeprom_control2_reg_offset = - (hw->mac_type != em_icp_xxxx) - ? EEPROM_INIT_CONTROL2_REG - : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not have to set it up again. */ - if (em_check_phy_reset_block(hw)) - return E1000_SUCCESS; - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->fc == E1000_FC_DEFAULT) { - switch (hw->mac_type) { - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - case em_82573: - case em_82574: - hw->fc = E1000_FC_FULL; - break; - default: - ret_val = em_read_eeprom(hw, eeprom_control2_reg_offset, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = E1000_FC_NONE; - else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == - EEPROM_WORD0F_ASM_DIR) - hw->fc = E1000_FC_TX_PAUSE; - else - hw->fc = E1000_FC_FULL; - break; - } - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if (hw->mac_type == em_82542_rev2_0) - hw->fc &= (~E1000_FC_TX_PAUSE); - - if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) - hw->fc &= (~E1000_FC_RX_PAUSE); - - hw->original_fc = hw->fc; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before em_setup_pcs_link() - * or em_phy_setup() is called. - */ - if (hw->mac_type == em_82543) { - ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - /* Make sure we have a valid PHY */ - ret_val = em_detect_gig_phy(hw); - if (ret_val) { - DEBUGOUT("Error, did not detect valid phy.\n"); - if (hw->mac_type == em_icp_xxxx) - return E1000_DEFER_INIT; - else - return ret_val; - } - DEBUGOUT1("Phy ID = %x \n", hw->phy_id); - - /* Call the necessary subroutine to configure the link. */ - switch (hw->media_type) { - case em_media_type_copper: - case em_media_type_oem: - ret_val = em_setup_copper_link(hw); - break; - default: - ret_val = em_setup_fiber_serdes_link(hw); - break; - } - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - - /* - * FCAL/H and FCT are hardcoded to standard values in - * em_ich8lan / em_ich9lan / em_ich10lan. - */ - if (hw->mac_type != em_ich8lan && - hw->mac_type != em_ich9lan && - hw->mac_type != em_ich10lan) { - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - } - - E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if (!(hw->fc & E1000_FC_TX_PAUSE)) { - E1000_WRITE_REG(hw, FCRTL, 0); - E1000_WRITE_REG(hw, FCRTH, 0); - } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. + uint32_t ctrl_ext; + int32_t ret_val; + uint16_t eeprom_data; + uint16_t eeprom_control2_reg_offset; + DEBUGFUNC("em_setup_link"); + + eeprom_control2_reg_offset = + (hw->mac_type != em_icp_xxxx) + ? EEPROM_INIT_CONTROL2_REG + : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num); + /* + * In the case of the phy reset being blocked, we already have a + * link. We do not have to set it up again. + */ + if (em_check_phy_reset_block(hw)) + return E1000_SUCCESS; + /* + * Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, a + * bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the SW defined + * pins. If there is no SW over-ride of the flow control setting, + * then the variable hw->fc will be initialized based on a value in + * the EEPROM. + */ + if (hw->fc == E1000_FC_DEFAULT) { + switch (hw->mac_type) { + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + case em_82573: + case em_82574: + hw->fc = E1000_FC_FULL; + break; + default: + ret_val = em_read_eeprom(hw, + eeprom_control2_reg_offset, 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = E1000_FC_NONE; + else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = E1000_FC_TX_PAUSE; + else + hw->fc = E1000_FC_FULL; + break; + } + } + /* + * We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if (hw->mac_type == em_82542_rev2_0) + hw->fc &= (~E1000_FC_TX_PAUSE); + + if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~E1000_FC_RX_PAUSE); + + hw->original_fc = hw->fc; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); + /* + * Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the Extended + * Device Control reg with that info. This is needed because one of + * the SW controlled pins is used for signal detection. So this + * should be done before em_setup_pcs_link() or em_phy_setup() is + * called. + */ + if (hw->mac_type == em_82543) { + ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + /* Make sure we have a valid PHY */ + ret_val = em_detect_gig_phy(hw); + if (ret_val) { + DEBUGOUT("Error, did not detect valid phy.\n"); + if (hw->mac_type == em_icp_xxxx) + return E1000_DEFER_INIT; + else + return ret_val; + } + DEBUGOUT1("Phy ID = %x \n", hw->phy_id); + + /* Call the necessary subroutine to configure the link. */ + switch (hw->media_type) { + case em_media_type_copper: + case em_media_type_oem: + ret_val = em_setup_copper_link(hw); + break; + default: + ret_val = em_setup_fiber_serdes_link(hw); + break; + } + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n" + ); + + /* + * FCAL/H and FCT are hardcoded to standard values in + * em_ich8lan / em_ich9lan / em_ich10lan. */ - if (hw->fc_send_xon) { - E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } else { - E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); - E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); - } - } - return ret_val; + if (hw->mac_type != em_ich8lan && + hw->mac_type != em_ich9lan && + hw->mac_type != em_ich10lan) { + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + } + E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + /* + * Set the flow control receive threshold registers. Normally, these + * registers will be set to a default threshold that may be adjusted + * later by the driver's runtime code. However, if the ability to + * transmit pause frames in not enabled, then these registers will be + * set to 0. + */ + if (!(hw->fc & E1000_FC_TX_PAUSE)) { + E1000_WRITE_REG(hw, FCRTL, 0); + E1000_WRITE_REG(hw, FCRTH, 0); + } else { + /* + * We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + if (hw->fc_send_xon) { + E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water + | E1000_FCRTL_XONE)); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } else { + E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } + } + return ret_val; } /****************************************************************************** @@ -1380,1440 +1396,1476 @@ em_setup_link(struct em_hw *hw) static int32_t em_setup_fiber_serdes_link(struct em_hw *hw) { - uint32_t ctrl; - uint32_t status; - uint32_t txcw = 0; - uint32_t i; - uint32_t signal = 0; - int32_t ret_val; - - DEBUGFUNC("em_setup_fiber_serdes_link"); - - /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists - * until explicitly turned off or a power cycle is performed. A read to - * the register does not indicate its status. Therefore, we ensure - * loopback mode is disabled during initialization. - */ - if (hw->mac_type == em_82571 || hw->mac_type == em_82572) - E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); - - /* On adapters with a MAC newer than 82544, SWDP 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - * If we're on serdes media, adjust the output amplitude to value - * set in the EEPROM. - */ - ctrl = E1000_READ_REG(hw, CTRL); - if (hw->media_type == em_media_type_fiber) - signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; - - ret_val = em_adjust_serdes_amplitude(hw); - if (ret_val) - return ret_val; - - /* Take the link out of reset */ - ctrl &= ~(E1000_CTRL_LRST); - - /* Adjust VCO speed to improve BER performance */ - ret_val = em_set_vco_speed(hw); - if (ret_val) - return ret_val; - - em_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case E1000_FC_NONE: - /* Flow control is completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case E1000_FC_RX_PAUSE: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case E1000_FC_TX_PAUSE: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case E1000_FC_FULL: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-neogtiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, TXCW, txcw); - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - hw->txcw = txcw; - msec_delay(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. - */ - if (hw->media_type == em_media_type_internal_serdes || - (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { - DEBUGOUT("Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - msec_delay(10); - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_LU) break; - } - if (i == (LINK_UP_TIMEOUT / 10)) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - /* AutoNeg failed to achieve a link, so we'll call - * em_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - ret_val = em_check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - hw->autoneg_failed = 0; - } else { - hw->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - } else { - DEBUGOUT("No Signal Detected\n"); - } - return E1000_SUCCESS; + uint32_t ctrl; + uint32_t status; + uint32_t txcw = 0; + uint32_t i; + uint32_t signal = 0; + int32_t ret_val; + DEBUGFUNC("em_setup_fiber_serdes_link"); + /* + * On 82571 and 82572 Fiber connections, SerDes loopback mode + * persists until explicitly turned off or a power cycle is + * performed. A read to the register does not indicate its status. + * Therefore, we ensure loopback mode is disabled during + * initialization. + */ + if (hw->mac_type == em_82571 || hw->mac_type == em_82572) + E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); + /* + * On adapters with a MAC newer than 82544, SWDP 1 will be set when + * the optics detect a signal. On older adapters, it will be cleared + * when there is a signal. This applies to fiber media only. If + * we're on serdes media, adjust the output amplitude to value set in + * the EEPROM. + */ + ctrl = E1000_READ_REG(hw, CTRL); + if (hw->media_type == em_media_type_fiber) + signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; + + ret_val = em_adjust_serdes_amplitude(hw); + if (ret_val) + return ret_val; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + /* Adjust VCO speed to improve BER performance */ + ret_val = em_set_vco_speed(hw); + if (ret_val) + return ret_val; + + em_config_collision_dist(hw); + /* + * Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, + * then software will have to set the "PAUSE" bits to the correct + * value in the Tranmsit Config Word Register (TXCW) and re-start + * auto-negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control + * enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: 0: Flow control is + * completely disabled 1: Rx flow control is enabled (we can receive + * pause frames, but not send pause frames). 2: Tx flow control is + * enabled (we can send pause frames but we do not support receiving + * pause frames). 3: Both Rx and TX flow control (symmetric) are + * enabled. + */ + switch (hw->fc) { + case E1000_FC_NONE: + /* + * Flow control is completely disabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case E1000_FC_RX_PAUSE: + /* + * RX Flow control is enabled and TX Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of RX Pause ONLY, we will + * advertise that we support both symmetric and asymmetric RX + * PAUSE. Later, we will disable the adapter's ability to + * send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | + E1000_TXCW_PAUSE_MASK); + break; + case E1000_FC_TX_PAUSE: + /* + * TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case E1000_FC_FULL: + /* + * Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | + E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + /* + * Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-neogtiation is successful + * then the link-up status bit will be set and the flow control + * enable bits (RFCE and TFCE) will be set according to their + * negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, TXCW, txcw); + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + hw->txcw = txcw; + msec_delay(1); + /* + * If we have a signal (the cable is plugged in) then poll for a + * "Link-Up" indication in the Device Status Register. Time-out if a + * link isn't seen in 500 milliseconds seconds (Auto-negotiation + * should complete in less than 500 milliseconds even if the other + * end is doing it in SW). For internal serdes, we just assume a + * signal is present, then poll. + */ + if (hw->media_type == em_media_type_internal_serdes || + (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { + DEBUGOUT("Looking for Link\n"); + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msec_delay(10); + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == (LINK_UP_TIMEOUT / 10)) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + /* + * AutoNeg failed to achieve a link, so we'll call + * em_check_for_link. This routine will force the + * link up if we detect a signal. This will allow us + * to communicate with non-autonegotiating link + * partners. + */ + ret_val = em_check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + } else { + DEBUGOUT("No Signal Detected\n"); + } + return E1000_SUCCESS; } /****************************************************************************** -* Make sure we have a valid PHY and change PHY mode before link setup. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Make sure we have a valid PHY and change PHY mode before link setup. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_copper_link_preconfig(struct em_hw *hw) { - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_copper_link_preconfig"); - - ctrl = E1000_READ_REG(hw, CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if (hw->mac_type > em_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, CTRL, ctrl); - } else { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); - E1000_WRITE_REG(hw, CTRL, ctrl); - ret_val = em_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* Set PHY to class A mode (if necessary) */ - ret_val = em_set_phy_mode(hw); - if (ret_val) - return ret_val; - - if ((hw->mac_type == em_82545_rev_3) || - (hw->mac_type == em_82546_rev_3)) { - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - phy_data |= 0x00000008; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - } - - if (hw->mac_type <= em_82543 || - hw->mac_type == em_82541 || hw->mac_type == em_82547 || - hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) - hw->phy_reset_disable = FALSE; - - return E1000_SUCCESS; + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_copper_link_preconfig"); + + ctrl = E1000_READ_REG(hw, CTRL); + /* + * With 82543, we need to force speed and duplex on the MAC equal to + * what the PHY speed and duplex configuration is. In addition, we + * need to perform a hardware reset on the PHY to take it out of + * reset. + */ + if (hw->mac_type > em_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | + E1000_CTRL_SLU); + E1000_WRITE_REG(hw, CTRL, ctrl); + ret_val = em_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + + /* Set PHY to class A mode (if necessary) */ + ret_val = em_set_phy_mode(hw); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82545_rev_3) || + (hw->mac_type == em_82546_rev_3)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + phy_data |= 0x00000008; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + } + if (hw->mac_type <= em_82543 || + hw->mac_type == em_82541 || hw->mac_type == em_82547 || + hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) + hw->phy_reset_disable = FALSE; + + return E1000_SUCCESS; } - -/******************************************************************** -* Copper link setup for em_phy_igp series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/****************************************************************************** + * Copper link setup for em_phy_igp series. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_copper_link_igp_setup(struct em_hw *hw) { - uint32_t led_ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_copper_link_igp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - ret_val = em_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - /* Wait 15ms for MAC to configure PHY from eeprom settings */ - msec_delay(15); - if (hw->mac_type != em_ich8lan && - hw->mac_type != em_ich9lan && - hw->mac_type != em_ich10lan) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ - if (hw->phy_type == em_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = em_set_d3_lplu_state(hw, FALSE); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* disable lplu d0 during driver init */ - ret_val = em_set_d0_lplu_state(hw, FALSE); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - return ret_val; - } - /* Configure mdi-mdix settings */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { - hw->dsp_config_state = em_dsp_config_disabled; - /* Force MDI for earlier revs of the IGP PHY */ - phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); - hw->mdix = 1; - - } else { - hw->dsp_config_state = em_dsp_config_enabled; - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (hw->mdix) { - case 1: - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - } - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->autoneg) { - em_ms_type phy_ms_setting = hw->master_slave; - - if (hw->ffe_config_state == em_ffe_config_active) - hw->ffe_config_state = em_ffe_config_enabled; - - if (hw->dsp_config_state == em_dsp_config_activated) - hw->dsp_config_state = em_dsp_config_enabled; - - /* when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - /* Set auto Master/Slave resolution process */ - ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - em_ms_force_master : - em_ms_force_slave) : - em_ms_auto; - - switch (phy_ms_setting) { - case em_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case em_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case em_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - break; - default: - break; - } - ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + uint32_t led_ctrl; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_copper_link_igp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + /* Wait 15ms for MAC to configure PHY from eeprom settings */ + msec_delay(15); + if (hw->mac_type != em_ich8lan && + hw->mac_type != em_ich9lan && + hw->mac_type != em_ich10lan) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ + if (hw->phy_type == em_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = em_set_d3_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + /* disable lplu d0 during driver init */ + ret_val = em_set_d0_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; + } + /* Configure mdi-mdix settings */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + hw->dsp_config_state = em_dsp_config_disabled; + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | + IGP01E1000_PSCR_FORCE_MDI_MDIX); + hw->mdix = 1; + + } else { + hw->dsp_config_state = em_dsp_config_enabled; + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (hw->mdix) { + case 1: + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + } + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->autoneg) { + em_ms_type phy_ms_setting = hw->master_slave; + if (hw->ffe_config_state == em_ffe_config_active) + hw->ffe_config_state = em_ffe_config_enabled; + + if (hw->dsp_config_state == em_dsp_config_activated) + hw->dsp_config_state = em_dsp_config_enabled; + /* + * when autonegotiation advertisement is only 1000Mbps then + * we should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? em_ms_force_master : + em_ms_force_slave) : em_ms_auto; + + switch (phy_ms_setting) { + case em_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case em_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case em_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + break; + default: + break; + } + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } -/******************************************************************** -* Copper link setup for em_phy_gg82563 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/****************************************************************************** + * Copper link setup for em_phy_gg82563 series. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_copper_link_ggp_setup(struct em_hw *hw) { - int32_t ret_val; - uint16_t phy_data; - uint32_t reg_data; - - DEBUGFUNC("em_copper_link_ggp_setup"); - - if (!hw->phy_reset_disable) { - - /* Enable CRS on TX for half-duplex operation. */ - ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ - phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; - - ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; - - switch (hw->mdix) { - case 1: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; - break; - case 2: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; - break; - case 0: - default: - phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (hw->disable_polarity_correction == 1) - phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - - if (ret_val) - return ret_val; - - /* SW Reset the PHY so all changes take effect */ - ret_val = em_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - } /* phy_reset_disable */ - - if (hw->mac_type == em_80003es2lan) { - /* Bypass RX and TX FIFO's */ - ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, - E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | - E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; - ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); - - if (ret_val) - return ret_val; - - reg_data = E1000_READ_REG(hw, CTRL_EXT); - reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); - E1000_WRITE_REG(hw, CTRL_EXT, reg_data); - - ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - /* Do not init these registers when the HW is in IAMT mode, since the - * firmware will have already initialized them. We only initialize - * them if the HW is not in IAMT mode. - */ - if (em_check_mng_mode(hw) == FALSE) { - /* Enable Electrical Idle on the PHY */ - phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; - ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - phy_data); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - phy_data); - - if (ret_val) - return ret_val; - } - - /* Workaround: Disable padding in Kumeran interface in the MAC - * and in the PHY to avoid CRC errors. - */ - ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, - &phy_data); - if (ret_val) - return ret_val; - phy_data |= GG82563_ICR_DIS_PADDING; - ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t phy_data; + uint32_t reg_data; + DEBUGFUNC("em_copper_link_ggp_setup"); + + if (!hw->phy_reset_disable) { + + /* Enable CRS on TX for half-duplex operation. */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ + phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; + + ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + /* + * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 + * - MDI mode 2 - MDI-X mode 3 - Auto for 1000Base-T only + * (MDI-X for 10/100Base-T modes) + */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, + &phy_data); + + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + + switch (hw->mdix) { + case 1: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } + /* + * Options: disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity 0 - + * Disabled 1 - Enabled + */ + phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (hw->disable_polarity_correction == 1) + phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, + phy_data); + + if (ret_val) + return ret_val; + + /* SW Reset the PHY so all changes take effect */ + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + } /* phy_reset_disable */ + if (hw->mac_type == em_80003es2lan) { + /* Bypass RX and TX FIFO's */ + ret_val = em_write_kmrn_reg(hw, + E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, + phy_data); + + if (ret_val) + return ret_val; + + reg_data = E1000_READ_REG(hw, CTRL_EXT); + reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); + E1000_WRITE_REG(hw, CTRL_EXT, reg_data); + + ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, + &phy_data); + if (ret_val) + return ret_val; + /* + * Do not init these registers when the HW is in IAMT mode, + * since the firmware will have already initialized them. We + * only initialize them if the HW is not in IAMT mode. + */ + if (em_check_mng_mode(hw) == FALSE) { + /* Enable Electrical Idle on the PHY */ + phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = em_write_phy_reg(hw, + GG82563_PHY_PWR_MGMT_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, phy_data); + + if (ret_val) + return ret_val; + } + /* + * Workaround: Disable padding in Kumeran interface in the + * MAC and in the PHY to avoid CRC errors. + */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, + &phy_data); + if (ret_val) + return ret_val; + phy_data |= GG82563_ICR_DIS_PADDING; + ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } -/******************************************************************** -* Copper link setup for em_phy_m88 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/****************************************************************************** + * Copper link setup for em_phy_m88 series. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_copper_link_mgp_setup(struct em_hw *hw) { - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_copper_link_mgp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_id == M88E1141_E_PHY_ID) { - phy_data |= 0x00000008; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX; - - } - /* For BM PHY this bit is downshift enable */ - else if (hw->phy_type != em_phy_bm) - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (hw->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (hw->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift on BM (disabled by default) */ - if (hw->phy_type == em_phy_bm) - phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (((hw->phy_type == em_phy_m88) && - (hw->phy_revision < M88E1011_I_REV_4) && - (hw->phy_id != BME1000_E_PHY_ID)) || - (hw->phy_type == em_phy_oem)) { - - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_type == em_phy_oem) { - phy_data |= M88E1000_EPSCR_TX_TIME_CTRL; - phy_data |= M88E1000_EPSCR_RX_TIME_CTRL; - } - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = em_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = em_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - } - - if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { - /* - * Set PHY page 0, register 29 to 0x0003 - * The next two writes are supposed to lower BER for gig - * conection + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_copper_link_mgp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_id == M88E1141_E_PHY_ID) { + phy_data |= 0x00000008; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX; + + } + /* For BM PHY this bit is downshift enable */ + else if (hw->phy_type != em_phy_bm) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + /* + * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 - MDI + * mode 2 - MDI-X mode 3 - Auto for 1000Base-T only (MDI-X for + * 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + /* + * Options: disable_polarity_correction = 0 (default) Automatic + * Correction for Reversed Cable Polarity 0 - Disabled 1 - Enabled */ - ret_val = em_write_phy_reg(hw, BM_REG_BIAS1, 0x0003); - if (ret_val) - return ret_val; - - /* Set PHY page 0, register 30 to 0x0000 */ - ret_val = em_write_phy_reg(hw, BM_REG_BIAS2, 0x0000); - if (ret_val) - return ret_val; - } - - /* SW Reset the PHY so all changes take effect */ - ret_val = em_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (hw->phy_type == em_phy_bm) + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if (((hw->phy_type == em_phy_m88) && + (hw->phy_revision < M88E1011_I_REV_4) && + (hw->phy_id != BME1000_E_PHY_ID)) || + (hw->phy_type == em_phy_oem)) { + /* + * Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_type == em_phy_oem) { + phy_data |= M88E1000_EPSCR_TX_TIME_CTRL; + phy_data |= M88E1000_EPSCR_RX_TIME_CTRL; + } + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + } + if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { + /* + * Set PHY page 0, register 29 to 0x0003 + * The next two writes are supposed to lower BER for gig + * conection + */ + ret_val = em_write_phy_reg(hw, BM_REG_BIAS1, 0x0003); + if (ret_val) + return ret_val; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = em_write_phy_reg(hw, BM_REG_BIAS2, 0x0000); + if (ret_val) + return ret_val; + } + /* SW Reset the PHY so all changes take effect */ + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + return E1000_SUCCESS; } -/******************************************************************** -* Setup auto-negotiation and flow control advertisements, -* and then perform auto-negotiation. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/****************************************************************************** + * Setup auto-negotiation and flow control advertisements, + * and then perform auto-negotiation. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ int32_t em_copper_link_autoneg(struct em_hw *hw) { - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_copper_link_autoneg"); - - /* Perform some bounds checking on the hw->autoneg_advertised - * parameter. If this variable is zero, then set it to the default. - */ - hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (hw->autoneg_advertised == 0) - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* IFE phy only supports 10/100 */ - if (hw->phy_type == em_phy_ife) - hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = em_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (hw->wait_autoneg_complete) { - ret_val = em_wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->get_link_status = TRUE; - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_copper_link_autoneg"); + /* + * Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + /* + * If autoneg_advertised is zero, we assume it was not defaulted by + * the calling code so we set to advertise full capability. + */ + if (hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* IFE phy only supports 10/100 */ + if (hw->phy_type == em_phy_ife) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = em_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + /* + * Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + /* + * Does the user want to wait for Auto-Neg to complete here, or check + * at a later time (for example, callback routine). + */ + if (hw->wait_autoneg_complete) { + ret_val = em_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n" + ); + return ret_val; + } + } + hw->get_link_status = TRUE; + + return E1000_SUCCESS; } /****************************************************************************** -* Config the MAC and the PHY after link is up. -* 1) Set up the MAC to the current PHY speed/duplex -* if we are on 82543. If we -* are on newer silicon, we only need to configure -* collision distance in the Transmit Control Register. -* 2) Set up flow control on the MAC to that established with -* the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Config the MAC and the PHY after link is up. + * 1) Set up the MAC to the current PHY speed/duplex + * if we are on 82543. If we + * are on newer silicon, we only need to configure + * collision distance in the Transmit Control Register. + * 2) Set up flow control on the MAC to that established with + * the link partner. + * 3) Config DSP to improve Gigabit link quality for some PHY revisions. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ int32_t em_copper_link_postconfig(struct em_hw *hw) { - int32_t ret_val; - DEBUGFUNC("em_copper_link_postconfig"); - - if (hw->mac_type >= em_82544 && - hw->mac_type != em_icp_xxxx) { - em_config_collision_dist(hw); - } else { - ret_val = em_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error Configuring Flow Control\n"); - return ret_val; - } - - /* Config DSP to improve Giga link quality */ - if (hw->phy_type == em_phy_igp) { - ret_val = em_config_dsp_after_link_change(hw, TRUE); - if (ret_val) { - DEBUGOUT("Error Configuring DSP after link up\n"); - return ret_val; - } - } - - return E1000_SUCCESS; + int32_t ret_val; + DEBUGFUNC("em_copper_link_postconfig"); + + if (hw->mac_type >= em_82544 && + hw->mac_type != em_icp_xxxx) { + em_config_collision_dist(hw); + } else { + ret_val = em_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error Configuring Flow Control\n"); + return ret_val; + } + /* Config DSP to improve Giga link quality */ + if (hw->phy_type == em_phy_igp) { + ret_val = em_config_dsp_after_link_change(hw, TRUE); + if (ret_val) { + DEBUGOUT("Error Configuring DSP after link up\n"); + return ret_val; + } + } + return E1000_SUCCESS; } /****************************************************************************** -* Detects which PHY is present and setup the speed and duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Detects which PHY is present and setup the speed and duplex + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_setup_copper_link(struct em_hw *hw) { - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - uint16_t reg_data; - - DEBUGFUNC("em_setup_copper_link"); - - switch (hw->mac_type) { - case em_80003es2lan: - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - /* Set the mac to wait the maximum time between each - * iteration and increase the max iterations when - * polling the phy; this fixes erroneous timeouts at 10Mbps. */ - ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); - if (ret_val) - return ret_val; - ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); - if (ret_val) - return ret_val; - default: - break; - } - - /* Check if it is a valid PHY and set PHY mode if necessary. */ - ret_val = em_copper_link_preconfig(hw); - if (ret_val) - return ret_val; - - switch (hw->mac_type) { - case em_80003es2lan: - /* Kumeran registers are written-only */ - reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; - reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; - ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, - reg_data); - if (ret_val) - return ret_val; - break; - default: - break; - } - - if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || - hw->phy_type == em_phy_igp_2) { - ret_val = em_copper_link_igp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == em_phy_m88 || - hw->phy_type == em_phy_bm || - hw->phy_type == em_phy_oem) { - ret_val = em_copper_link_mgp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == em_phy_gg82563) { - ret_val = em_copper_link_ggp_setup(hw); - if (ret_val) - return ret_val; - } - - if (hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ - ret_val = em_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H,or 100F - * depending on value from forced_speed_duplex. */ - DEBUGOUT("Forcing speed and duplex\n"); - ret_val = em_phy_force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for (i = 0; i < 10; i++) { - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0; - - if (phy_data & MII_SR_LINK_STATUS) { - /* Config the MAC and PHY after link is up */ - ret_val = em_copper_link_postconfig(hw); - if (ret_val) - return ret_val; - - DEBUGOUT("Valid link established!!!\n"); - return E1000_SUCCESS; - } - usec_delay(10); - } - - DEBUGOUT("Unable to establish link!!!\n"); - return E1000_SUCCESS; + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + uint16_t reg_data; + DEBUGFUNC("em_setup_copper_link"); + + switch (hw->mac_type) { + case em_80003es2lan: + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + /* + * Set the mac to wait the maximum time between each + * iteration and increase the max iterations when polling the + * phy; this fixes erroneous timeouts at 10Mbps. + */ + ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); + if (ret_val) + return ret_val; + ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), + reg_data); + if (ret_val) + return ret_val; + default: + break; + } + + /* Check if it is a valid PHY and set PHY mode if necessary. */ + ret_val = em_copper_link_preconfig(hw); + if (ret_val) + return ret_val; + + switch (hw->mac_type) { + case em_80003es2lan: + /* Kumeran registers are written-only */ + reg_data = + E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; + reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = em_write_kmrn_reg(hw, + E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) { + ret_val = em_copper_link_igp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == em_phy_m88 || + hw->phy_type == em_phy_bm || + hw->phy_type == em_phy_oem) { + ret_val = em_copper_link_mgp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == em_phy_gg82563) { + ret_val = em_copper_link_ggp_setup(hw); + if (ret_val) + return ret_val; + } + if (hw->autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation + */ + ret_val = em_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* + * PHY will be set to 10H, 10F, 100H,or 100F depending on + * value from forced_speed_duplex. + */ + DEBUGOUT("Forcing speed and duplex\n"); + ret_val = em_phy_force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for (i = 0; i < 10; i++) { + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0; + + if (phy_data & MII_SR_LINK_STATUS) { + /* Config the MAC and PHY after link is up */ + ret_val = em_copper_link_postconfig(hw); + if (ret_val) + return ret_val; + + DEBUGOUT("Valid link established!!!\n"); + return E1000_SUCCESS; + } + usec_delay(10); + } + + DEBUGOUT("Unable to establish link!!!\n"); + return E1000_SUCCESS; } /****************************************************************************** -* Configure the MAC-to-PHY interface for 10/100Mbps -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Configure the MAC-to-PHY interface for 10/100Mbps + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) { - int32_t ret_val = E1000_SUCCESS; - uint32_t tipg; - uint16_t reg_data; - - DEBUGFUNC("em_configure_kmrn_for_10_100"); + int32_t ret_val = E1000_SUCCESS; + uint32_t tipg; + uint16_t reg_data; + DEBUGFUNC("em_configure_kmrn_for_10_100"); - reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; - ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; + reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; - E1000_WRITE_REG(hw, TIPG, tipg); + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; + E1000_WRITE_REG(hw, TIPG, tipg); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - if (ret_val) - return ret_val; + if (ret_val) + return ret_val; - if (duplex == HALF_DUPLEX) - reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; - else - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - return ret_val; + return ret_val; } static int32_t em_configure_kmrn_for_1000(struct em_hw *hw) { - int32_t ret_val = E1000_SUCCESS; - uint16_t reg_data; - uint32_t tipg; - - DEBUGFUNC("em_configure_kmrn_for_1000"); + int32_t ret_val = E1000_SUCCESS; + uint16_t reg_data; + uint32_t tipg; + DEBUGFUNC("em_configure_kmrn_for_1000"); - reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; - ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; + reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; - E1000_WRITE_REG(hw, TIPG, tipg); + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, tipg); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - if (ret_val) - return ret_val; + if (ret_val) + return ret_val; - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - return ret_val; + return ret_val; } /****************************************************************************** -* Configures PHY autoneg and flow control advertisement settings -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Configures PHY autoneg and flow control advertisement settings + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ int32_t em_phy_setup_autoneg(struct em_hw *hw) { - int32_t ret_val; - uint16_t mii_autoneg_adv_reg; - uint16_t mii_1000t_ctrl_reg; - - DEBUGFUNC("em_phy_setup_autoneg"); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (hw->phy_type != em_phy_ife) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } else - mii_1000t_ctrl_reg=0; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { - DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - if (hw->phy_type == em_phy_ife) { - DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); - } - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case E1000_FC_NONE: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_RX_PAUSE: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in em_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_TX_PAUSE: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case E1000_FC_FULL: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (hw->phy_type != em_phy_ife) { - ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t mii_autoneg_adv_reg; + uint16_t mii_1000t_ctrl_reg; + DEBUGFUNC("em_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (hw->phy_type != em_phy_ife) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } else + mii_1000t_ctrl_reg = 0; + /* + * Need to parse both autoneg_advertised and fc and set up the + * appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise a + * plethora of combinations, we need to check each bit individually. + */ + /* + * First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + /* Do we want to advertise 10 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + /* Do we want to advertise 100 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + /* Do we want to advertise 100 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT("Advertise 1000mb Half duplex requested, request" + " denied!\n"); + } + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + if (hw->phy_type == em_phy_ife) { + DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is" + " not supported.\n"); + } + } + /* + * Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start + * auto-negotiation. + * + * The possible values of the "fc" parameter are: 0: Flow control is + * completely disabled 1: Rx flow control is enabled (we can receive + * pause frames but not send pause frames). 2: Tx flow control is + * enabled (we can send pause frames but we do not support receiving + * pause frames). 3: Both Rx and TX flow control (symmetric) are + * enabled. other: No software override. The flow control + * configuration in the EEPROM is used. + */ + switch (hw->fc) { + case E1000_FC_NONE: /* 0 */ + /* + * Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_RX_PAUSE:/* 1 */ + /* + * RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* + * Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later (in + * em_config_fc_after_link_up) we will disable the hw's + * ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_TX_PAUSE:/* 2 */ + /* + * TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case E1000_FC_FULL: /* 3 */ + /* + * Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (hw->phy_type != em_phy_ife) { + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } - /****************************************************************************** -* Force PHY speed and duplex settings to hw->forced_speed_duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Force PHY speed and duplex settings to hw->forced_speed_duplex + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_phy_force_speed_duplex(struct em_hw *hw) { - uint32_t ctrl; - int32_t ret_val; - uint16_t mii_ctrl_reg; - uint16_t mii_status_reg; - uint16_t phy_data; - uint16_t i; - - DEBUGFUNC("em_phy_force_speed_duplex"); - - /* Turn off Flow control if we are forcing speed and duplex. */ - hw->fc = E1000_FC_NONE; - - DEBUGOUT1("hw->fc = %d\n", hw->fc); - - /* Read the Device Control Register. */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(DEVICE_SPEED_MASK); - - /* Clear the Auto Speed Detect Enable bit. */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Read the MII Control Register. */ - ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if (ret_val) - return ret_val; - - /* We need to disable autoneg in order to force link and duplex. */ - - mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; - - /* Are we forcing Full or Half Duplex? */ - if (hw->forced_speed_duplex == em_100_full || - hw->forced_speed_duplex == em_10_full) { - /* We want to force full duplex so we SET the full duplex bits in the - * Device and MII Control Registers. - */ - ctrl |= E1000_CTRL_FD; - mii_ctrl_reg |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - /* We want to force half duplex so we CLEAR the full duplex bits in - * the Device and MII Control Registers. - */ - ctrl &= ~E1000_CTRL_FD; - mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - /* Are we forcing 100Mbps??? */ - if (hw->forced_speed_duplex == em_100_full || - hw->forced_speed_duplex == em_100_half) { - /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ - ctrl |= E1000_CTRL_SPD_100; - mii_ctrl_reg |= MII_CR_SPEED_100; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - DEBUGOUT("Forcing 100mb "); - } else { - /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - mii_ctrl_reg |= MII_CR_SPEED_10; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb "); - } - - em_config_collision_dist(hw); - - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - - if ((hw->phy_type == em_phy_m88) || - (hw->phy_type == em_phy_gg82563) || - (hw->phy_type == em_phy_bm) || - (hw->phy_type == em_phy_oem)) { - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed are duplex are forced. - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); - - /* Need to reset the PHY or these changes will be ignored */ - mii_ctrl_reg |= MII_CR_RESET; - - } - - /* Disable MDI-X support for 10/100 */ - else if (hw->phy_type == em_phy_ife) { - ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IFE_PMC_AUTO_MDIX; - phy_data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed or duplex are forced. - */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - /* Write back the modified PHY MII control register. */ - ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if (ret_val) - return ret_val; - - usec_delay(1); - - /* The wait_autoneg_complete flag may be a little misleading here. - * Since we are forcing speed and duplex, Auto-Neg is not enabled. - * But we do want to delay for a period while forcing only so we - * don't generate false No Link messages. So we will wait here - * only if the user has set wait_autoneg_complete to 1, which is - * the default. - */ - if (hw->wait_autoneg_complete) { - /* We will wait for autoneg to complete. */ - DEBUGOUT("Waiting for forced speed/duplex link.\n"); - mii_status_reg = 0; - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msec_delay(100); - } - if ((i == 0) && - ((hw->phy_type == em_phy_m88) || - (hw->phy_type == em_phy_gg82563) || - (hw->phy_type == em_phy_bm))) { - /* We didn't get link. Reset the DSP and wait again for link. */ - ret_val = em_phy_reset_dsp(hw); - if (ret_val) { - DEBUGOUT("Error Resetting PHY DSP\n"); - return ret_val; - } - } - - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msec_delay(100); - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - } - } - - if (hw->phy_type == em_phy_m88 || - hw->phy_type == em_phy_bm || - hw->phy_type == em_phy_oem) { - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This value - * defaults back to a 2.5MHz clock when the PHY is reset. - */ - ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* In addition, because of the s/w reset above, we need to enable CRS on - * TX. This must be set for both full and half duplex operation. - */ - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ( hw->phy_id == M88E1141_E_PHY_ID) - phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX; - else - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { - ret_val = em_polarity_reversal_workaround(hw); - if (ret_val) - return ret_val; - } - } else if (hw->phy_type == em_phy_gg82563) { - /* The TX_CLK of the Extended PHY Specific Control Register defaults - * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if - * we're not in a forced 10/duplex configuration. */ - ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_MSCR_TX_CLK_MASK; - if ((hw->forced_speed_duplex == em_10_full) || - (hw->forced_speed_duplex == em_10_half)) - phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; - else - phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; - - /* Also due to the reset, we need to enable CRS on Tx. */ - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - - ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - return E1000_SUCCESS; + uint32_t ctrl; + int32_t ret_val; + uint16_t mii_ctrl_reg; + uint16_t mii_status_reg; + uint16_t phy_data; + uint16_t i; + DEBUGFUNC("em_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = E1000_FC_NONE; + + DEBUGOUT1("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); + if (ret_val) + return ret_val; + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if (hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_10_full) { + /* + * We want to force full duplex so we SET the full duplex + * bits in the Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + /* + * We want to force half duplex so we CLEAR the full duplex + * bits in the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if (hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb "); + } + + em_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + + if ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563) || + (hw->phy_type == em_phy_bm) || + (hw->phy_type == em_phy_oem)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 + * requires MDI forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + + } + /* Disable MDI-X support for 10/100 */ + else if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PMC_AUTO_MDIX; + phy_data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); + if (ret_val) + return ret_val; + } else { + /* + * Clear Auto-Crossover to force MDI manually. IGP requires + * MDI forced whenever speed or duplex are forced. + */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + /* Write back the modified PHY MII control register. */ + ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); + if (ret_val) + return ret_val; + + usec_delay(1); + /* + * The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here only + * if the user has set wait_autoneg_complete to 1, which is the + * default. + */ + if (hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + DEBUGOUT("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + /* + * We will wait for autoneg to complete or 4.5 seconds to + * expire. + */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msec_delay(100); + } + if ((i == 0) && + ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563) || + (hw->phy_type == em_phy_bm))) { + /* + * We didn't get link. Reset the DSP and wait again + * for link. + */ + ret_val = em_phy_reset_dsp(hw); + if (ret_val) { + DEBUGOUT("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* + * This loop will early-out if the link condition has been + * met. + */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msec_delay(100); + /* + * Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + return ret_val; + } + } + if (hw->phy_type == em_phy_m88 || + hw->phy_type == em_phy_bm || + hw->phy_type == em_phy_oem) { + /* + * Because we reset the PHY above, we need to re-force TX_CLK + * in the Extended PHY Specific Control Register to 25MHz + * clock. This value defaults back to a 2.5MHz clock when + * the PHY is reset. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + /* + * In addition, because of the s/w reset above, we need to + * enable CRS on TX. This must be set for both full and half + * duplex operation. + */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_id == M88E1141_E_PHY_ID) + phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX; + else + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { + ret_val = em_polarity_reversal_workaround(hw); + if (ret_val) + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + /* + * The TX_CLK of the Extended PHY Specific Control Register + * defaults to 2.5MHz on a reset. We need to re-force it + * back to 25MHz, if we're not in a forced 10/duplex + * configuration. + */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_MSCR_TX_CLK_MASK; + if ((hw->forced_speed_duplex == em_10_full) || + (hw->forced_speed_duplex == em_10_half)) + phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; + else + phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; + + /* Also due to the reset, we need to enable CRS on Tx. */ + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + + ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } /****************************************************************************** -* Sets the collision distance in the Transmit Control register -* -* hw - Struct containing variables accessed by shared code -* -* Link should have been established previously. Reads the speed and duplex -* information from the Device Status register. -******************************************************************************/ + * Sets the collision distance in the Transmit Control register + * + * hw - Struct containing variables accessed by shared code + * + * Link should have been established previously. Reads the speed and duplex + * information from the Device Status register. + *****************************************************************************/ void em_config_collision_dist(struct em_hw *hw) { - uint32_t tctl, coll_dist; + uint32_t tctl, coll_dist; + DEBUGFUNC("em_config_collision_dist"); - DEBUGFUNC("em_config_collision_dist"); + if (hw->mac_type < em_82543) + coll_dist = E1000_COLLISION_DISTANCE_82542; + else + coll_dist = E1000_COLLISION_DISTANCE; - if (hw->mac_type < em_82543) - coll_dist = E1000_COLLISION_DISTANCE_82542; - else - coll_dist = E1000_COLLISION_DISTANCE; + tctl = E1000_READ_REG(hw, TCTL); - tctl = E1000_READ_REG(hw, TCTL); + tctl &= ~E1000_TCTL_COLD; + tctl |= coll_dist << E1000_COLD_SHIFT; - tctl &= ~E1000_TCTL_COLD; - tctl |= coll_dist << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, TCTL, tctl); - E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, TCTL, tctl); + E1000_WRITE_FLUSH(hw); } /****************************************************************************** -* Sets MAC speed and duplex settings to reflect the those in the PHY -* -* hw - Struct containing variables accessed by shared code -* mii_reg - data to write to the MII control register -* -* The contents of the PHY register containing the needed information need to -* be passed in. -******************************************************************************/ + * Sets MAC speed and duplex settings to reflect the those in the PHY + * + * hw - Struct containing variables accessed by shared code + * mii_reg - data to write to the MII control register + * + * The contents of the PHY register containing the needed information need to + * be passed in. + *****************************************************************************/ static int32_t em_config_mac_to_phy(struct em_hw *hw) { - uint32_t ctrl; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_config_mac_to_phy"); - - /* 82544 or newer MAC, Auto Speed Detection takes care of - * MAC speed/duplex configuration.*/ - if (hw->mac_type >= em_82544 - && hw->mac_type != em_icp_xxxx) - return E1000_SUCCESS; - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - em_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - - /* Write the configured values back to the Device Control Reg. */ - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_config_mac_to_phy"); + /* + * 82544 or newer MAC, Auto Speed Detection takes care of MAC + * speed/duplex configuration. + */ + if (hw->mac_type >= em_82544 + && hw->mac_type != em_icp_xxxx) + return E1000_SUCCESS; + /* + * Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + /* + * Set up duplex in the Device Control and Transmit Control registers + * depending on negotiated values. + */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + em_config_collision_dist(hw); + /* + * Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; } /****************************************************************************** @@ -2830,59 +2882,55 @@ em_config_mac_to_phy(struct em_hw *hw) int32_t em_force_mac_fc(struct em_hw *hw) { - uint32_t ctrl; - - DEBUGFUNC("em_force_mac_fc"); - - /* Get the current configuration of the Device Control Register */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case E1000_FC_NONE: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case E1000_FC_RX_PAUSE: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case E1000_FC_TX_PAUSE: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case E1000_FC_FULL: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == em_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - E1000_WRITE_REG(hw, CTRL, ctrl); - return E1000_SUCCESS; -} + uint32_t ctrl; + DEBUGFUNC("em_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = E1000_READ_REG(hw, CTRL); + /* + * Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY auto-neg), + * we have to manually enable/disable transmit an receive flow + * control. + * + * The "Case" statement below enables/disable flow control according to + * the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: 0: Flow control is + * completely disabled 1: Rx flow control is enabled (we can receive + * pause frames but not send pause frames). 2: Tx flow control is + * enabled (we can send pause frames frames but we do not receive + * pause frames). 3: Both Rx and TX flow control (symmetric) is + * enabled. other: No other values should be possible at this point. + */ + switch (hw->fc) { + case E1000_FC_NONE: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case E1000_FC_RX_PAUSE: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case E1000_FC_TX_PAUSE: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case E1000_FC_FULL: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if (hw->mac_type == em_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; +} /****************************************************************************** * Configures flow control settings after link is established * @@ -2897,205 +2945,222 @@ em_force_mac_fc(struct em_hw *hw) STATIC int32_t em_config_fc_after_link_up(struct em_hw *hw) { - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t mii_nway_adv_reg; - uint16_t mii_nway_lp_ability_reg; - uint16_t speed; - uint16_t duplex; - - DEBUGFUNC("em_config_fc_after_link_up"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_internal_serdes) && - (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) || - ((hw->media_type == em_media_type_oem) && (!hw->autoneg)) - ) { - ret_val = em_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->media_type == em_media_type_copper || - (hw->media_type == em_media_type_oem)) && - hw->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | em_fc_none - * 0 | 1 | 0 | DC | em_fc_none - * 0 | 1 | 1 | 0 | em_fc_none - * 0 | 1 | 1 | 1 | em_fc_tx_pause - * 1 | 0 | 0 | DC | em_fc_none - * 1 | DC | 1 | DC | em_fc_full - * 1 | 1 | 0 | 0 | em_fc_none - * 1 | 1 | 0 | 1 | em_fc_rx_pause - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | em_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->original_fc == E1000_FC_FULL) { - hw->fc = E1000_FC_FULL; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | em_fc_tx_pause - * - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_TX_PAUSE; - DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | em_fc_rx_pause - * - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->original_fc == E1000_FC_NONE|| - hw->original_fc == E1000_FC_TX_PAUSE) || - hw->fc_strict_ieee) { - hw->fc = E1000_FC_NONE; - DEBUGOUT("Flow Control = NONE.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc = E1000_FC_NONE; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = em_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } else { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - } - } - return E1000_SUCCESS; + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t mii_nway_adv_reg; + uint16_t mii_nway_lp_ability_reg; + uint16_t speed; + uint16_t duplex; + DEBUGFUNC("em_config_fc_after_link_up"); + /* + * Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) + || ((hw->media_type == em_media_type_internal_serdes) && + (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) || + ((hw->media_type == em_media_type_oem) && (!hw->autoneg))) { + ret_val = em_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + /* + * Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg has + * completed, and if so, how the PHY and link partner has flow + * control configured. + */ + if ((hw->media_type == em_media_type_copper || + (hw->media_type == em_media_type_oem)) && + hw->autoneg) { + /* + * Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* + * The AutoNeg process has completed, so we now need + * to read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + /* + * Two bits in the Auto Negotiation Advertisement + * Register (Address 4) and two bits in the Auto + * Negotiation Base Page Ability Register (Address 5) + * determine flow control for both the PHY and the + * link partner. The following table, taken out of + * the IEEE 802.3ab/D6.0 dated March 25, 1999, + * describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER | + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + * -------|---------|-------|---------|--------------- + * 0 | 0 | DC | DC | em_fc_none + * 0 | 1 | 0 | DC | em_fc_none + * 0 | 1 | 1 | 0 | em_fc_none + * 0 | 1 | 1 | 1 | em_fc_tx_pause + * 1 | 0 | 0 | DC | em_fc_none + * 1 | DC | 1 | DC | em_fc_full + * 1 | 1 | 0 | 0 | em_fc_none + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + /* + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. + * The ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + * -------|---------|-------|---------|--------------- + * 1 | DC | 1 | DC | em_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* + * Now we need to check if the user selected + * RX ONLY of pause frames. In this case, we + * had to advertise FULL flow control because + * we could not advertise RX ONLY. Hence, we + * must now check to see if we need to turn + * OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->original_fc == E1000_FC_FULL) { + hw->fc = E1000_FC_FULL; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE" + " frames only.\n"); + } + } + /* + * For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER PAUSE | ASM_DIR | + * PAUSE | ASM_DIR | Result + * -------|---------|-------|---------|--------------- + * ----- 0 | 1 | 1 | 1 | + * em_fc_tx_pause + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = E1000_FC_TX_PAUSE; + DEBUGOUT("Flow Control = TX PAUSE frames only." + "\n"); + } + /* + * For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + * -------|---------|-------|---------|--------------- + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE frames only." + "\n"); + } + /* + * Per the IEEE spec, at this point flow control + * should be disabled. However, we want to consider + * that we could be connected to a legacy switch that + * doesn't advertise desired flow control, but can be + * forced on the link partner. So if we advertised + * no flow control, that is what we will resolve to. + * If we advertised some kind of receive capability + * (Rx Pause Only or Full Flow Control) and the link + * partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can + * do this safely for two reasons: If the link + * partner really didn't want flow control enabled, + * and we enable Rx, no harm done since we won't be + * receiving any PAUSE frames anyway. If the intent + * on the link partner was to have flow control + * enabled, then by us enabling RX only, we can at + * least receive pause frames and process them. This + * is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we + * will be asked to delay transmission of packets + * than asking our link partner to pause transmission + * of frames. + */ + else if ((hw->original_fc == E1000_FC_NONE || + hw->original_fc == E1000_FC_TX_PAUSE) || + hw->fc_strict_ieee) { + hw->fc = E1000_FC_NONE; + DEBUGOUT("Flow Control = NONE.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE frames only." + "\n"); + } + /* + * Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not + * be enabled per IEEE 802.3 spec. + */ + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex" + "\n"); + return ret_val; + } + if (duplex == HALF_DUPLEX) + hw->fc = E1000_FC_NONE; + /* + * Now we call a subroutine to actually force the MAC + * controller to use the correct flow control + * settings. + */ + ret_val = em_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings" + "\n"); + return ret_val; + } + } else { + DEBUGOUT("Copper PHY and Auto Neg has not completed." + "\n"); + } + } + return E1000_SUCCESS; } - /****************************************************************************** * Checks to see if the link status of the hardware has changed. * @@ -3106,234 +3171,257 @@ em_config_fc_after_link_up(struct em_hw *hw) int32_t em_check_for_link(struct em_hw *hw) { - uint32_t rxcw = 0; - uint32_t ctrl; - uint32_t status; - uint32_t rctl; - uint32_t icr; - uint32_t signal = 0; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_check_for_link"); - - ctrl = E1000_READ_REG(hw, CTRL); - status = E1000_READ_REG(hw, STATUS); - - /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - */ - if ((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) { - rxcw = E1000_READ_REG(hw, RXCW); - - if (hw->media_type == em_media_type_fiber) { - signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; - if (status & E1000_STATUS_LU) - hw->get_link_status = FALSE; - } - } - - /* If we have a copper PHY then we only want to go out to the PHY - * registers to see if Auto-Neg has completed and/or if our link - * status has changed. The get_link_status flag will be set if we - * receive a Link Status Change interrupt or we have Rx Sequence - * Errors. - */ - if ((hw->media_type == em_media_type_copper || - (hw->media_type == em_media_type_oem)) && - hw->get_link_status) { - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - * Read the register twice since the link bit is sticky. - */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0; - - if (phy_data & MII_SR_LINK_STATUS) { - hw->get_link_status = FALSE; - /* Check if there was DownShift, must be checked immediately after - * link-up */ - em_check_downshift(hw); - - /* If we are on 82544 or 82543 silicon and speed/duplex - * are forced to 10H or 10F, then we will implement the polarity - * reversal workaround. We disable interrupts first, and upon - * returning, place the devices interrupt state to its previous - * value except for the link status change interrupt which will - * happen due to the execution of this workaround. - */ - - if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { - E1000_WRITE_REG(hw, IMC, 0xffffffff); - ret_val = em_polarity_reversal_workaround(hw); - icr = E1000_READ_REG(hw, ICR); - E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); - E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); - } - - } else { - /* No link detected */ - em_config_dsp_after_link_change(hw, FALSE); - return 0; - } - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!hw->autoneg) return -E1000_ERR_CONFIG; - - /* optimize the dsp settings for the igp phy */ - em_config_dsp_after_link_change(hw, TRUE); - - /* We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx) - em_config_collision_dist(hw); - else { - ret_val = em_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - - /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. - */ - if (hw->tbi_compatibility_en) { - uint16_t speed, duplex; - ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { - /* If link speed is not set to gigabit speed, we do not need - * to enable TBI compatibility. - */ - if (hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ - rctl = E1000_READ_REG(hw, RCTL); - rctl &= ~E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - hw->tbi_compatibility_on = FALSE; - } - } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and - * will look like CRC errors to to the hardware. - */ - if (!hw->tbi_compatibility_on) { - hw->tbi_compatibility_on = TRUE; - rctl = E1000_READ_REG(hw, RCTL); - rctl |= E1000_RCTL_SBP; - E1000_WRITE_REG(hw, RCTL, rctl); - } - } - } - } - /* If we don't have link (auto-negotiation failed or link partner cannot - * auto-negotiate), the cable is plugged in (we have signal), and our - * link partner is not trying to auto-negotiate with us (we are receiving - * idles or data), we need to force link up. We also need to give - * auto-negotiation time to complete, in case the cable was just plugged - * in. The autoneg_failed flag does this. - */ - else if ((((hw->media_type == em_media_type_fiber) && - ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == em_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (hw->autoneg_failed == 0) { - hw->autoneg_failed = 1; - return 0; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = em_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } - /* If we are forcing link and we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable forced link in the - * Device Control register in an attempt to auto-negotiate with our link - * partner. - */ - else if (((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, TXCW, hw->txcw); - E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); - - hw->serdes_link_down = FALSE; - } - /* If we force link for non-auto-negotiation switch, check link status - * based on MAC synchronization for internal serdes media type. - */ - else if ((hw->media_type == em_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if (!(rxcw & E1000_RXCW_IV)) { - hw->serdes_link_down = FALSE; - DEBUGOUT("SERDES: Link is up.\n"); - } - } else { - hw->serdes_link_down = TRUE; - DEBUGOUT("SERDES: Link is down.\n"); - } - } - if ((hw->media_type == em_media_type_internal_serdes) && - (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { - hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); - } - return E1000_SUCCESS; + uint32_t rxcw = 0; + uint32_t ctrl; + uint32_t status; + uint32_t rctl; + uint32_t icr; + uint32_t signal = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_check_for_link"); + + ctrl = E1000_READ_REG(hw, CTRL); + status = E1000_READ_REG(hw, STATUS); + /* + * On adapters with a MAC newer than 82544, SW Defineable pin 1 will + * be set when the optics detect a signal. On older adapters, it will + * be cleared when there is a signal. This applies to fiber media + * only. + */ + if ((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { + rxcw = E1000_READ_REG(hw, RXCW); + + if (hw->media_type == em_media_type_fiber) { + signal = (hw->mac_type > em_82544) ? + E1000_CTRL_SWDPIN1 : 0; + if (status & E1000_STATUS_LU) + hw->get_link_status = FALSE; + } + } + /* + * If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if ((hw->media_type == em_media_type_copper || + (hw->media_type == em_media_type_oem)) && + hw->get_link_status) { + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. Read the register twice since the link bit is + * sticky. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0; + + if (phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = FALSE; + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + em_check_downshift(hw); + /* + * If we are on 82544 or 82543 silicon and + * speed/duplex are forced to 10H or 10F, then we + * will implement the polarity reversal workaround. + * We disable interrupts first, and upon returning, + * place the devices interrupt state to its previous + * value except for the link status change interrupt + * which will happen due to the execution of this + * workaround. + */ + + if ((hw->mac_type == em_82544 || + hw->mac_type == em_82543) && (!hw->autoneg) && + (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { + E1000_WRITE_REG(hw, IMC, 0xffffffff); + ret_val = em_polarity_reversal_workaround(hw); + icr = E1000_READ_REG(hw, ICR); + E1000_WRITE_REG(hw, ICS, + (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); + } + } else { + /* No link detected */ + em_config_dsp_after_link_change(hw, FALSE); + return 0; + } + /* + * If we are forcing speed/duplex, then we simply return + * since we have already determined whether we have link or + * not. + */ + if (!hw->autoneg) + return -E1000_ERR_CONFIG; + + /* optimize the dsp settings for the igp phy */ + em_config_dsp_after_link_change(hw, TRUE); + /* + * We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto Speed + * Detection takes care of MAC speed/duplex configuration. + * So we only need to configure Collision Distance in the + * MAC. Otherwise, we need to force speed/duplex on the MAC + * to the current PHY speed/duplex settings. + */ + if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx) + em_config_collision_dist(hw); + else { + ret_val = em_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY" + " settings\n"); + return ret_val; + } + } + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + /* + * At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking + * the link partner capability register. We use the link + * speed to determine if TBI compatibility needs to be turned + * on or off. If the link is not at gigabit speed, then TBI + * compatibility is not needed. If we are at gigabit speed, + * we turn on TBI compatibility. + */ + if (hw->tbi_compatibility_en) { + uint16_t speed, duplex; + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex" + "\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* + * If link speed is not set to gigabit speed, + * we do not need to enable TBI + * compatibility. + */ + if (hw->tbi_compatibility_on) { + /* + * If we previously were in the mode, + * turn it off. + */ + rctl = E1000_READ_REG(hw, RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + hw->tbi_compatibility_on = FALSE; + } + } else { + /* + * If TBI compatibility is was previously + * off, turn it on. For compatibility with a + * TBI link partner, we will store bad + * packets. Some frames have an additional + * byte on the end and will look like CRC + * errors to to the hardware. + */ + if (!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = TRUE; + rctl = E1000_READ_REG(hw, RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + } + } + } + } + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + else if ((((hw->media_type == em_media_type_fiber) && + ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || + (hw->media_type == em_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { + if (hw->autoneg_failed == 0) { + hw->autoneg_failed = 1; + return 0; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } + /* + * If we are forcing link and we are receiving /C/ ordered sets, + * re-enable auto-negotiation in the TXCW register and disable forced + * link in the Device Control register in an attempt to + * auto-negotiate with our link partner. + */ + else if (((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, TXCW, hw->txcw); + E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); + + hw->serdes_link_down = FALSE; + } + /* + * If we force link for non-auto-negotiation switch, check link + * status based on MAC synchronization for internal serdes media + * type. + */ + else if ((hw->media_type == em_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if (!(rxcw & E1000_RXCW_IV)) { + hw->serdes_link_down = FALSE; + DEBUGOUT("SERDES: Link is up.\n"); + } + } else { + hw->serdes_link_down = TRUE; + DEBUGOUT("SERDES: Link is down.\n"); + } + } + if ((hw->media_type == em_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + hw->serdes_link_down = !(E1000_STATUS_LU & + E1000_READ_REG(hw, STATUS)); + } + return E1000_SUCCESS; } /****************************************************************************** @@ -3344,1061 +3432,1091 @@ em_check_for_link(struct em_hw *hw) * duplex - Duplex setting of the connection *****************************************************************************/ int32_t -em_get_speed_and_duplex(struct em_hw *hw, - uint16_t *speed, - uint16_t *duplex) +em_get_speed_and_duplex(struct em_hw *hw, uint16_t *speed, uint16_t *duplex) { - uint32_t status; - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_get_speed_and_duplex"); - - if (hw->mac_type >= em_82543) { - status = E1000_READ_REG(hw, STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT(" Half Duplex\n"); - } - } else { - DEBUGOUT("1000 Mbs, Full Duplex\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } - - /* IGP01 PHY may advertise full duplex operation after speed downgrade even - * if it is operating at half duplex. Here we set the duplex settings to - * match the duplex in the link partner's capabilities. - */ - if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { - ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if (ret_val) - return ret_val; - - if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) - *duplex = HALF_DUPLEX; - else { - ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if (ret_val) - return ret_val; - if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || - (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) - *duplex = HALF_DUPLEX; - } - } - - if ((hw->mac_type == em_80003es2lan) && - (hw->media_type == em_media_type_copper)) { - if (*speed == SPEED_1000) - ret_val = em_configure_kmrn_for_1000(hw); - else - ret_val = em_configure_kmrn_for_10_100(hw, *duplex); - if (ret_val) - return ret_val; - } - - if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) { - ret_val = em_kumeran_lock_loss_workaround(hw); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + uint32_t status; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_get_speed_and_duplex"); + + if (hw->mac_type >= em_82543) { + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT(" Half Duplex\n"); + } + } else { + DEBUGOUT("1000 Mbs, Full Duplex\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + /* + * IGP01 PHY may advertise full duplex operation after speed + * downgrade even if it is operating at half duplex. Here we set the + * duplex settings to match the duplex in the link partner's + * capabilities. + */ + if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); + if (ret_val) + return ret_val; + + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + *duplex = HALF_DUPLEX; + else { + ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, + &phy_data); + if (ret_val) + return ret_val; + if ((*speed == SPEED_100 && + !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + (*speed == SPEED_10 && + !(phy_data & NWAY_LPAR_10T_FD_CAPS))) + *duplex = HALF_DUPLEX; + } + } + if ((hw->mac_type == em_80003es2lan) && + (hw->media_type == em_media_type_copper)) { + if (*speed == SPEED_1000) + ret_val = em_configure_kmrn_for_1000(hw); + else + ret_val = em_configure_kmrn_for_10_100(hw, *duplex); + if (ret_val) + return ret_val; + } + if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) { + ret_val = em_kumeran_lock_loss_workaround(hw); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } /****************************************************************************** -* Blocks until autoneg completes or times out (~4.5 seconds) -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Blocks until autoneg completes or times out (~4.5 seconds) + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ STATIC int32_t em_wait_autoneg(struct em_hw *hw) { - int32_t ret_val; - uint16_t i; - uint16_t phy_data; - - DEBUGFUNC("em_wait_autoneg"); - DEBUGOUT("Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - if (phy_data & MII_SR_AUTONEG_COMPLETE) { - return E1000_SUCCESS; - } - msec_delay(100); - } - return E1000_SUCCESS; + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + DEBUGFUNC("em_wait_autoneg"); + DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + if (phy_data & MII_SR_AUTONEG_COMPLETE) { + return E1000_SUCCESS; + } + msec_delay(100); + } + return E1000_SUCCESS; } /****************************************************************************** -* Raises the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ + * Raises the Management Data Clock + * + * hw - Struct containing variables accessed by shared code + * ctrl - Device control register's current value + *****************************************************************************/ static void -em_raise_mdi_clk(struct em_hw *hw, - uint32_t *ctrl) +em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl) { - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - usec_delay(10); + /* + * Raise the clock input to the Management Data Clock (by setting the + * MDC bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); } /****************************************************************************** -* Lowers the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ + * Lowers the Management Data Clock + * + * hw - Struct containing variables accessed by shared code + * ctrl - Device control register's current value + *****************************************************************************/ static void -em_lower_mdi_clk(struct em_hw *hw, - uint32_t *ctrl) +em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl) { - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. - */ - E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - usec_delay(10); + /* + * Lower the clock input to the Management Data Clock (by clearing + * the MDC bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); } /****************************************************************************** -* Shifts data bits out to the PHY -* -* hw - Struct containing variables accessed by shared code -* data - Data to send out to the PHY -* count - Number of bits to shift out -* -* Bits are shifted out in MSB to LSB order. -******************************************************************************/ + * Shifts data bits out to the PHY + * + * hw - Struct containing variables accessed by shared code + * data - Data to send out to the PHY + * count - Number of bits to shift out + * + * Bits are shifted out in MSB to LSB order. + *****************************************************************************/ static void -em_shift_out_mdi_bits(struct em_hw *hw, - uint32_t data, - uint16_t count) +em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count) { - uint32_t ctrl; - uint32_t mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = E1000_READ_REG(hw, CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(10); + uint32_t ctrl; + uint32_t mask; + /* + * We need to shift "count" number of bits out to the PHY. So, the + * value in the "data" parameter will be shifted out to the PHY one + * bit at a time. In order to do this, "data" must be broken down + * into bits. + */ + mask = 0x01; + mask <<= (count - 1); - em_raise_mdi_clk(hw, &ctrl); - em_lower_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); - mask = mask >> 1; - } + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output + * pins. + */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* + * A "1" is shifted out to the PHY by setting the MDIO bit to + * "1" and then raising and lowering the Management Data + * Clock. A "0" is shifted out to the PHY by setting the MDIO + * bit to "0" and then raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(10); + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } } /****************************************************************************** -* Shifts data bits in from the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Bits are shifted in in MSB to LSB order. -******************************************************************************/ + * Shifts data bits in from the PHY + * + * hw - Struct containing variables accessed by shared code + * + * Bits are shifted in in MSB to LSB order. + *****************************************************************************/ static uint16_t em_shift_in_mdi_bits(struct em_hw *hw) { - uint32_t ctrl; - uint16_t data = 0; - uint8_t i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = E1000_READ_REG(hw, CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - em_raise_mdi_clk(hw, &ctrl); - em_lower_mdi_clk(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data = data << 1; - em_raise_mdi_clk(hw, &ctrl); - ctrl = E1000_READ_REG(hw, CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - em_lower_mdi_clk(hw, &ctrl); - } - - em_raise_mdi_clk(hw, &ctrl); - em_lower_mdi_clk(hw, &ctrl); - - return data; + uint32_t ctrl; + uint16_t data = 0; + uint8_t i; + /* + * In order to read a register from the PHY, we need to shift in a + * total of 18 bits from the PHY. The first two bit (turnaround) + * times are used to avoid contention on the MDIO pin when a read + * operation is performed. These two bits are ignored by us and + * thrown away. Bits are "shifted in" by raising the input to the + * Management Data Clock (setting the MDC bit), and then reading the + * value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, CTRL); + /* + * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as + * input. + */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + /* + * Raise and Lower the clock before reading in the data. This + * accounts for the turnaround bits. The first clock occurred when we + * clocked out the last bit of the Register Address. + */ + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data = data << 1; + em_raise_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + em_lower_mdi_clk(hw, &ctrl); + } + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + return data; } STATIC int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) { - uint32_t swfw_sync = 0; - uint32_t swmask = mask; - uint32_t fwmask = mask << 16; - int32_t timeout = 200; - - DEBUGFUNC("em_swfw_sync_acquire"); - - if (hw->swfwhw_semaphore_present) - return em_get_software_flag(hw); - - if (!hw->swfw_sync_present) - return em_get_hw_eeprom_semaphore(hw); - - while (timeout) { - if (em_get_hw_eeprom_semaphore(hw)) - return -E1000_ERR_SWFW_SYNC; - - swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) { - break; - } - - /* firmware currently using resource (fwmask) */ - /* or other software thread currently using resource (swmask) */ - em_put_hw_eeprom_semaphore(hw); - msec_delay_irq(5); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - return -E1000_ERR_SWFW_SYNC; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); - - em_put_hw_eeprom_semaphore(hw); - return E1000_SUCCESS; + uint32_t swfw_sync = 0; + uint32_t swmask = mask; + uint32_t fwmask = mask << 16; + int32_t timeout = 200; + DEBUGFUNC("em_swfw_sync_acquire"); + + if (hw->swfwhw_semaphore_present) + return em_get_software_flag(hw); + + if (!hw->swfw_sync_present) + return em_get_hw_eeprom_semaphore(hw); + + while (timeout) { + if (em_get_hw_eeprom_semaphore(hw)) + return -E1000_ERR_SWFW_SYNC; + + swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) { + break; + } + /* + * firmware currently using resource (fwmask) + * or other software thread currently using resource (swmask) + */ + em_put_hw_eeprom_semaphore(hw); + msec_delay_irq(5); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout." + "\n"); + return -E1000_ERR_SWFW_SYNC; + } + swfw_sync |= swmask; + E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); + + em_put_hw_eeprom_semaphore(hw); + return E1000_SUCCESS; } STATIC void em_swfw_sync_release(struct em_hw *hw, uint16_t mask) { - uint32_t swfw_sync; - uint32_t swmask = mask; - - DEBUGFUNC("em_swfw_sync_release"); - - if (hw->swfwhw_semaphore_present) { - em_release_software_flag(hw); - return; - } - - if (!hw->swfw_sync_present) { - em_put_hw_eeprom_semaphore(hw); - return; - } - - /* if (em_get_hw_eeprom_semaphore(hw)) - * return -E1000_ERR_SWFW_SYNC; */ - while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); - /* empty */ + uint32_t swfw_sync; + uint32_t swmask = mask; + DEBUGFUNC("em_swfw_sync_release"); + + if (hw->swfwhw_semaphore_present) { + em_release_software_flag(hw); + return; + } + if (!hw->swfw_sync_present) { + em_put_hw_eeprom_semaphore(hw); + return; + } + /* + * if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; + */ + while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); + /* empty */ - swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); - swfw_sync &= ~swmask; - E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); + swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); + swfw_sync &= ~swmask; + E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); - em_put_hw_eeprom_semaphore(hw); + em_put_hw_eeprom_semaphore(hw); } - -/***************************************************************************** -* Reads the value from a PHY register, if the value is on a specific non zero -* page, sets the page first. -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to read -******************************************************************************/ +/****************************************************************************** + * Reads the value from a PHY register, if the value is on a specific non zero + * page, sets the page first. + * hw - Struct containing variables accessed by shared code + * reg_addr - address of the PHY register to read + *****************************************************************************/ int32_t -em_read_phy_reg(struct em_hw *hw, - uint32_t reg_addr, - uint16_t *phy_data) +em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) { - uint32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("em_read_phy_reg"); - - if ((hw->mac_type == em_80003es2lan) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (em_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - if ((hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || - hw->phy_type == em_phy_igp_2) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr); - if (ret_val) { - em_swfw_sync_release(hw, swfw); - return ret_val; - } - } else if (hw->phy_type == em_phy_gg82563) { - if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || - (hw->mac_type == em_80003es2lan)) { - /* Select Configuration Page */ - if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - ret_val = em_write_phy_reg_ex(hw, - GG82563_PHY_PAGE_SELECT_ALT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } - - if (ret_val) { - em_swfw_sync_release(hw, swfw); - return ret_val; - } - } - } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { - if (reg_addr > MAX_PHY_MULTI_PAGE_REG) { - ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> PHY_PAGE_SHIFT)); - if (ret_val) - return ret_val; - } - } - - - ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - em_swfw_sync_release(hw, swfw); - return ret_val; + uint32_t ret_val; + uint16_t swfw; + DEBUGFUNC("em_read_phy_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t) reg_addr); + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || + (hw->mac_type == em_80003es2lan)) { + /* Select Configuration Page */ + if ((reg_addr & MAX_PHY_REG_ADDRESS) < + GG82563_MIN_ALT_REG) { + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT, + (uint16_t) ((uint16_t) reg_addr >> + GG82563_PAGE_SHIFT)); + } else { + /* + * Use Alternative Page Select register to + * access registers 30 and 31 + */ + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT_ALT, + (uint16_t) ((uint16_t) reg_addr >> + GG82563_PAGE_SHIFT)); + } + + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } + } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { + if (reg_addr > MAX_PHY_MULTI_PAGE_REG) { + ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT, + (uint16_t) ((uint16_t) reg_addr >> + PHY_PAGE_SHIFT)); + if (ret_val) + return ret_val; + } + } + ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + em_swfw_sync_release(hw, swfw); + return ret_val; } STATIC int32_t -em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, - uint16_t *phy_data) +em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) { - uint32_t i; - uint32_t mdic = 0; - - DEBUGFUNC("em_read_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if(hw->mac_type == em_icp_xxxx) { - *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num, - reg_addr); - return E1000_SUCCESS; - } - - if (hw->mac_type > em_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (hw->phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { - usec_delay(50); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (uint16_t) mdic; - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * em_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (hw->phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - em_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *phy_data = em_shift_in_mdi_bits(hw); - } - return E1000_SUCCESS; + uint32_t i; + uint32_t mdic = 0; + DEBUGFUNC("em_read_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + if (hw->mac_type == em_icp_xxxx) { + *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num, + reg_addr); + return E1000_SUCCESS; + } + if (hw->mac_type > em_82543) { + /* + * Set up Op-code, Phy Address, and register address in the + * MDI Control register. The MAC will take care of + * interfacing with the PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (hw->phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 64; i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (uint16_t) mdic; + } else { + /* + * We must first send a preamble through the MDIO pin to + * signal the beginning of an MII instruction. This is done + * by sending 32 consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + /* + * Now combine the next few fields that are required for a + * read operation. We use this method instead of calling the + * em_shift_out_mdi_bits routine five different times. The + * format of a MII read instruction consists of a shift out + * of 14 bits and is defined as follows: <Preamble><SOF><Op + * Code><Phy Addr><Reg Addr> followed by a shift in of 18 + * bits. This first two bits shifted in are TurnAround bits + * used to avoid contention on the MDIO pin when a READ + * operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the + * desired data. + */ + mdic = ((reg_addr) | (hw->phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + em_shift_out_mdi_bits(hw, mdic, 14); + /* + * Now that we've shifted out the read command to the MII, we + * need to "shift in" the 16-bit value (18 total bits) of the + * requested PHY register address. + */ + *phy_data = em_shift_in_mdi_bits(hw); + } + return E1000_SUCCESS; } /****************************************************************************** -* Writes a value to a PHY register -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to write -* data - data to write to the PHY -******************************************************************************/ + * Writes a value to a PHY register + * + * hw - Struct containing variables accessed by shared code + * reg_addr - address of the PHY register to write + * data - data to write to the PHY + *****************************************************************************/ int32_t -em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, - uint16_t phy_data) +em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) { - uint32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("em_write_phy_reg"); - - if ((hw->mac_type == em_80003es2lan) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (em_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - if ((hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || - hw->phy_type == em_phy_igp_2) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (uint16_t)reg_addr); - if (ret_val) { - em_swfw_sync_release(hw, swfw); - return ret_val; - } - } else if (hw->phy_type == em_phy_gg82563) { - if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || - (hw->mac_type == em_80003es2lan)) { - /* Select Configuration Page */ - if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - ret_val = em_write_phy_reg_ex(hw, - GG82563_PHY_PAGE_SELECT_ALT, - (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); - } - - if (ret_val) { - em_swfw_sync_release(hw, swfw); - return ret_val; - } - } - } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { - if (reg_addr > MAX_PHY_MULTI_PAGE_REG) { - ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT, - (uint16_t)((uint16_t)reg_addr >> PHY_PAGE_SHIFT)); - if (ret_val) - return ret_val; - } - } - - ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - em_swfw_sync_release(hw, swfw); - return ret_val; + uint32_t ret_val; + uint16_t swfw; + DEBUGFUNC("em_write_phy_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t) reg_addr); + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || + (hw->mac_type == em_80003es2lan)) { + /* Select Configuration Page */ + if ((reg_addr & MAX_PHY_REG_ADDRESS) < + GG82563_MIN_ALT_REG) { + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT, + (uint16_t) ((uint16_t) reg_addr >> + GG82563_PAGE_SHIFT)); + } else { + /* + * Use Alternative Page Select register to + * access registers 30 and 31 + */ + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT_ALT, + (uint16_t) ((uint16_t) reg_addr >> + GG82563_PAGE_SHIFT)); + } + + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } + } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { + if (reg_addr > MAX_PHY_MULTI_PAGE_REG) { + ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT, + (uint16_t) ((uint16_t) reg_addr >> + PHY_PAGE_SHIFT)); + if (ret_val) + return ret_val; + } + } + ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + em_swfw_sync_release(hw, swfw); + return ret_val; } STATIC int32_t -em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, - uint16_t phy_data) +em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) { - uint32_t i; - uint32_t mdic = 0; - - DEBUGFUNC("em_write_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if(hw->mac_type == em_icp_xxxx) { - gcu_miibus_writereg(hw, hw->icp_xxxx_port_num, - reg_addr, phy_data); - return E1000_SUCCESS; - } - if (hw->mac_type > em_82543) { - /* Set up Op-code, Phy Address, register address, and data intended - * for the PHY register in the MDI Control register. The MAC will take - * care of interfacing with the PHY to send the desired data. - */ - mdic = (((uint32_t) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (hw->phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 641; i++) { - usec_delay(5); - mdic = E1000_READ_REG(hw, MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * em_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (hw->phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (uint32_t) phy_data; - - em_shift_out_mdi_bits(hw, mdic, 32); - } - - return E1000_SUCCESS; + uint32_t i; + uint32_t mdic = 0; + DEBUGFUNC("em_write_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + if (hw->mac_type == em_icp_xxxx) { + gcu_miibus_writereg(hw, hw->icp_xxxx_port_num, + reg_addr, phy_data); + return E1000_SUCCESS; + } + if (hw->mac_type > em_82543) { + /* + * Set up Op-code, Phy Address, register address, and data + * intended for the PHY register in the MDI Control register. + * The MAC will take care of interfacing with the PHY to send + * the desired data. + */ + mdic = (((uint32_t) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (hw->phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 641; i++) { + usec_delay(5); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* + * We'll need to use the SW defined pins to shift the write + * command out to the PHY. We first send a preamble to the + * PHY to signal the beginning of the MII instruction. This + * is done by sending 32 consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + /* + * Now combine the remaining required fields that will + * indicate a write operation. We use this method instead of + * calling the em_shift_out_mdi_bits routine for each field + * in the command. The format of a MII write instruction is + * as follows: <Preamble><SOF><Op Code><Phy Addr><Reg + * Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | + (hw->phy_addr << 7) | (PHY_OP_WRITE << 12) | + (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (uint32_t) phy_data; + + em_shift_out_mdi_bits(hw, mdic, 32); + } + + return E1000_SUCCESS; } STATIC int32_t -em_read_kmrn_reg(struct em_hw *hw, - uint32_t reg_addr, - uint16_t *data) +em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data) { - uint32_t reg_val; - uint16_t swfw; - DEBUGFUNC("em_read_kmrn_reg"); - - if ((hw->mac_type == em_80003es2lan) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (em_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - /* Write register address */ - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & - E1000_KUMCTRLSTA_OFFSET) | - E1000_KUMCTRLSTA_REN; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - usec_delay(2); - - /* Read the data returned */ - reg_val = E1000_READ_REG(hw, KUMCTRLSTA); - *data = (uint16_t)reg_val; - - em_swfw_sync_release(hw, swfw); - return E1000_SUCCESS; + uint32_t reg_val; + uint16_t swfw; + DEBUGFUNC("em_read_kmrn_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + /* Write register address */ + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & + E1000_KUMCTRLSTA_OFFSET) | + E1000_KUMCTRLSTA_REN; + + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + usec_delay(2); + + /* Read the data returned */ + reg_val = E1000_READ_REG(hw, KUMCTRLSTA); + *data = (uint16_t) reg_val; + + em_swfw_sync_release(hw, swfw); + return E1000_SUCCESS; } STATIC int32_t -em_write_kmrn_reg(struct em_hw *hw, - uint32_t reg_addr, - uint16_t data) +em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data) { - uint32_t reg_val; - uint16_t swfw; - DEBUGFUNC("em_write_kmrn_reg"); - - if ((hw->mac_type == em_80003es2lan) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (em_swfw_sync_acquire(hw, swfw)) - return -E1000_ERR_SWFW_SYNC; - - reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & - E1000_KUMCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); - usec_delay(2); - - em_swfw_sync_release(hw, swfw); - return E1000_SUCCESS; + uint32_t reg_val; + uint16_t swfw; + DEBUGFUNC("em_write_kmrn_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & + E1000_KUMCTRLSTA_OFFSET) | data; + + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + usec_delay(2); + + em_swfw_sync_release(hw, swfw); + return E1000_SUCCESS; } /****************************************************************************** -* Returns the PHY to the power-on reset state -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Returns the PHY to the power-on reset state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ int32_t em_phy_hw_reset(struct em_hw *hw) { - uint32_t ctrl, ctrl_ext; - uint32_t led_ctrl; - int32_t ret_val; - uint16_t swfw; - - DEBUGFUNC("em_phy_hw_reset"); - - /* In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. */ - ret_val = em_check_phy_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - - DEBUGOUT("Resetting Phy...\n"); - - if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx ) { - if ((hw->mac_type == em_80003es2lan) && - (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { - swfw = E1000_SWFW_PHY1_SM; - } else { - swfw = E1000_SWFW_PHY0_SM; - } - if (em_swfw_sync_acquire(hw, swfw)) { - DEBUGOUT("Unable to acquire swfw sync\n"); - return -E1000_ERR_SWFW_SYNC; - } - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - * For pre-em_82571 hardware, we delay for 10ms between the assert - * and deassert. For em_82571 hardware and later, we instead delay - * for 50us between and 10ms after the deassertion. - */ - ctrl = E1000_READ_REG(hw, CTRL); - E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - if (hw->mac_type < em_82571) - msec_delay(10); - else - usec_delay(100); - - E1000_WRITE_REG(hw, CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - if (hw->mac_type >= em_82571) - msec_delay_irq(10); - em_swfw_sync_release(hw, swfw); - /* the M88E1141_E_PHY_ID might need reset here, but nothing proves it */ - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - msec_delay(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - usec_delay(150); - - if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { - /* Configure activity LED after PHY reset */ - led_ctrl = E1000_READ_REG(hw, LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, LEDCTL, led_ctrl); - } - - /* Wait for FW to finish PHY configuration. */ - ret_val = em_get_phy_cfg_done(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - em_release_software_semaphore(hw); - - if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3)) - ret_val = em_init_lcd_from_nvm(hw); - - return ret_val; + uint32_t ctrl, ctrl_ext; + uint32_t led_ctrl; + int32_t ret_val; + uint16_t swfw; + DEBUGFUNC("em_phy_hw_reset"); + /* + * In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. + */ + ret_val = em_check_phy_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + + DEBUGOUT("Resetting Phy...\n"); + + if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx) { + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) { + DEBUGOUT("Unable to acquire swfw sync\n"); + return -E1000_ERR_SWFW_SYNC; + } + /* + * Read the device control register and assert the + * E1000_CTRL_PHY_RST bit. Then, take it out of reset. For + * pre-em_82571 hardware, we delay for 10ms between the + * assert and deassert. For em_82571 hardware and later, we + * instead delay for 50us between and 10ms after the + * deassertion. + */ + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + if (hw->mac_type < em_82571) + msec_delay(10); + else + usec_delay(100); + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + if (hw->mac_type >= em_82571) + msec_delay_irq(10); + em_swfw_sync_release(hw, swfw); + /* + * the M88E1141_E_PHY_ID might need reset here, but nothing + * proves it + */ + } else { + /* + * Read the Extended Device Control Register, assert the + * PHY_RESET_DIR bit to put the PHY into reset. Then, take it + * out of reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + msec_delay(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + usec_delay(150); + + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + /* Wait for FW to finish PHY configuration. */ + ret_val = em_get_phy_cfg_done(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + em_release_software_semaphore(hw); + + if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3)) + ret_val = em_init_lcd_from_nvm(hw); + + return ret_val; } - /****************************************************************************** -* Resets the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Sets bit 15 of the MII Control regiser -******************************************************************************/ + * Resets the PHY + * + * hw - Struct containing variables accessed by shared code + * + * Sets bit 15 of the MII Control regiser + *****************************************************************************/ int32_t em_phy_reset(struct em_hw *hw) { - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_phy_reset"); - - /* In the case of the phy reset being blocked, it's not an error, we - * simply return success without performing the reset. */ - ret_val = em_check_phy_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - - switch (hw->phy_type) { - case em_phy_igp: - case em_phy_igp_2: - case em_phy_igp_3: - case em_phy_ife: - ret_val = em_phy_hw_reset(hw); - if (ret_val) - return ret_val; - break; - default: - ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= MII_CR_RESET; - ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - usec_delay(1); - break; - } - - if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) - em_phy_init_script(hw); - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_phy_reset"); + /* + * In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. + */ + ret_val = em_check_phy_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + + switch (hw->phy_type) { + case em_phy_igp: + case em_phy_igp_2: + case em_phy_igp_3: + case em_phy_ife: + ret_val = em_phy_hw_reset(hw); + if (ret_val) + return ret_val; + break; + default: + ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= MII_CR_RESET; + ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + break; + } + + if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) + em_phy_init_script(hw); + + return E1000_SUCCESS; } /****************************************************************************** -* Work-around for 82566 Kumeran PCS lock loss: -* On link status change (i.e. PCI reset, speed change) and link is up and -* speed is gigabit- -* 0) if workaround is optionally disabled do nothing -* 1) wait 1ms for Kumeran link to come up -* 2) check Kumeran Diagnostic register PCS lock loss bit -* 3) if not set the link is locked (all is good), otherwise... -* 4) reset the PHY -* 5) repeat up to 10 times -* Note: this is only called for IGP3 copper when speed is 1gb. -* -* hw - struct containing variables accessed by shared code -******************************************************************************/ + * Work-around for 82566 Kumeran PCS lock loss: + * On link status change (i.e. PCI reset, speed change) and link is up and + * speed is gigabit- + * 0) if workaround is optionally disabled do nothing + * 1) wait 1ms for Kumeran link to come up + * 2) check Kumeran Diagnostic register PCS lock loss bit + * 3) if not set the link is locked (all is good), otherwise... + * 4) reset the PHY + * 5) repeat up to 10 times + * Note: this is only called for IGP3 copper when speed is 1gb. + * + * hw - struct containing variables accessed by shared code + *****************************************************************************/ STATIC int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw) { - int32_t ret_val; - int32_t reg; - int32_t cnt; - uint16_t phy_data; - - if (hw->kmrn_lock_loss_workaround_disabled) - return E1000_SUCCESS; - - /* Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouled up link - * stability */ - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - - if (phy_data & MII_SR_LINK_STATUS) { - for (cnt = 0; cnt < 10; cnt++) { - /* read once to clear */ - ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - /* and again to get new status */ - ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); - if (ret_val) - return ret_val; - - /* check for PCS lock */ - if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) - return E1000_SUCCESS; - - /* Issue PHY reset */ - em_phy_hw_reset(hw); - msec_delay_irq(5); - } - /* Disable GigE link negotiation */ - reg = E1000_READ_REG(hw, PHY_CTRL); - E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - - /* unable to acquire PCS lock */ - return E1000_ERR_PHY; - } - - return E1000_SUCCESS; + int32_t ret_val; + int32_t reg; + int32_t cnt; + uint16_t phy_data; + if (hw->kmrn_lock_loss_workaround_disabled) + return E1000_SUCCESS; + /* + * Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link stability + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + + if (phy_data & MII_SR_LINK_STATUS) { + for (cnt = 0; cnt < 10; cnt++) { + /* read once to clear */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, + &phy_data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + em_phy_hw_reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE + | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* unable to acquire PCS lock */ + return E1000_ERR_PHY; + } + return E1000_SUCCESS; } /****************************************************************************** -* Reads and matches the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Reads and matches the expected PHY address for known PHY IDs + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ STATIC int32_t em_match_gig_phy(struct em_hw *hw) { - int32_t phy_init_status, ret_val; - uint16_t phy_id_high, phy_id_low; - boolean_t match = FALSE; - - DEBUGFUNC("em_match_gig_phy"); - - ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) - return ret_val; - - hw->phy_id = (uint32_t) (phy_id_high << 16); - usec_delay(20); - ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) - return ret_val; - - hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); - hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - - switch (hw->mac_type) { - case em_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; - break; - case em_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; - break; - case em_82540: - case em_82545: - case em_82545_rev_3: - case em_82546: - case em_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; - break; - case em_82541: - case em_82541_rev_2: - case em_82547: - case em_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; - break; - case em_82573: - if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; - break; - case em_82574: - if (hw->phy_id == BME1000_E_PHY_ID) match = TRUE; - break; - case em_80003es2lan: - if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; - if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; - if (hw->phy_id == BME1000_E_PHY_ID) match = TRUE; - break; - case em_icp_xxxx: - if (hw->phy_id == M88E1141_E_PHY_ID) match = TRUE; - break; - default: - DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - phy_init_status = em_set_phy_type(hw); - - if ((match) && (phy_init_status == E1000_SUCCESS)) { - DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); - return E1000_SUCCESS; - } - DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); - return -E1000_ERR_PHY; + int32_t phy_init_status, ret_val; + uint16_t phy_id_high, phy_id_low; + boolean_t match = FALSE; + DEBUGFUNC("em_match_gig_phy"); + + ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if (ret_val) + return ret_val; + + hw->phy_id = (uint32_t) (phy_id_high << 16); + usec_delay(20); + ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if (ret_val) + return ret_val; + + hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; + + switch (hw->mac_type) { + case em_82543: + if (hw->phy_id == M88E1000_E_PHY_ID) + match = TRUE; + break; + case em_82544: + if (hw->phy_id == M88E1000_I_PHY_ID) + match = TRUE; + break; + case em_82540: + case em_82545: + case em_82545_rev_3: + case em_82546: + case em_82546_rev_3: + if (hw->phy_id == M88E1011_I_PHY_ID) + match = TRUE; + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + if (hw->phy_id == IGP01E1000_I_PHY_ID) + match = TRUE; + break; + case em_82573: + if (hw->phy_id == M88E1111_I_PHY_ID) + match = TRUE; + break; + case em_82574: + if (hw->phy_id == BME1000_E_PHY_ID) + match = TRUE; + break; + case em_80003es2lan: + if (hw->phy_id == GG82563_E_PHY_ID) + match = TRUE; + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + if (hw->phy_id == IGP03E1000_E_PHY_ID) + match = TRUE; + if (hw->phy_id == IFE_E_PHY_ID) + match = TRUE; + if (hw->phy_id == IFE_PLUS_E_PHY_ID) + match = TRUE; + if (hw->phy_id == IFE_C_E_PHY_ID) + match = TRUE; + if (hw->phy_id == BME1000_E_PHY_ID) + match = TRUE; + break; + case em_icp_xxxx: + if (hw->phy_id == M88E1141_E_PHY_ID) + match = TRUE; + break; + default: + DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + phy_init_status = em_set_phy_type(hw); + + if ((match) && (phy_init_status == E1000_SUCCESS)) { + DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); + return E1000_SUCCESS; + } + DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; } /****************************************************************************** -* Probes the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Probes the expected PHY address for known PHY IDs + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ STATIC int32_t em_detect_gig_phy(struct em_hw *hw) { - int32_t ret_val; - - DEBUGFUNC("em_detect_gig_phy"); - - if (hw->phy_id != 0) - return E1000_SUCCESS; - - /* default phy address, most phys reside here, but not all (ICH10) */ - if (hw->mac_type != em_icp_xxxx) - hw->phy_addr = 1; - else - hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */ - - /* The 82571 firmware may still be configuring the PHY. In this - * case, we cannot access the PHY until the configuration is done. So - * we explicitly set the PHY values. */ - if (hw->mac_type == em_82571 || - hw->mac_type == em_82572 || - hw->mac_type == em_82575) { - hw->phy_id = IGP01E1000_I_PHY_ID; - hw->phy_type = em_phy_igp_2; - return E1000_SUCCESS; - } - - /* Some of the fiber cards dont have a phy, so we must exit cleanly here */ - if ((hw->media_type == em_media_type_fiber) && - (hw->mac_type == em_82542_rev2_0 || - hw->mac_type == em_82542_rev2_1 || - hw->mac_type == em_82543 || - hw->mac_type == em_82574 || - hw->mac_type == em_82573 || - hw->mac_type == em_82574 || - hw->mac_type == em_80003es2lan)) { - hw->phy_type = em_phy_undefined; - return E1000_SUCCESS; - } - - /* Up to 82543 (incl), we need reset the phy, or it might not get - * detected */ - if (hw->mac_type <= em_82543) { - ret_val = em_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work- - * around that forces PHY page 0 to be set or the reads fail. The rest of - * the code in this routine uses em_read_phy_reg to read the PHY ID. - * So for ESB-2 we need to have this set so our reads won't fail. If the - * attached PHY is not a em_phy_gg82563, the routines below will figure - * this out as well. */ - if (hw->mac_type == em_80003es2lan) - hw->phy_type = em_phy_gg82563; - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - for (hw->phy_addr = 1; (hw->phy_addr < 4); hw->phy_addr++) { - ret_val = em_match_gig_phy(hw); - if (ret_val == E1000_SUCCESS) - return E1000_SUCCESS; - } - return -E1000_ERR_PHY; + int32_t ret_val; + DEBUGFUNC("em_detect_gig_phy"); + + if (hw->phy_id != 0) + return E1000_SUCCESS; + + /* default phy address, most phys reside here, but not all (ICH10) */ + if (hw->mac_type != em_icp_xxxx) + hw->phy_addr = 1; + else + hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */ + + /* + * The 82571 firmware may still be configuring the PHY. In this + * case, we cannot access the PHY until the configuration is done. + * So we explicitly set the PHY values. + */ + if (hw->mac_type == em_82571 || + hw->mac_type == em_82572 || + hw->mac_type == em_82575) { + hw->phy_id = IGP01E1000_I_PHY_ID; + hw->phy_type = em_phy_igp_2; + return E1000_SUCCESS; + } + /* + * Some of the fiber cards dont have a phy, so we must exit cleanly + * here + */ + if ((hw->media_type == em_media_type_fiber) && + (hw->mac_type == em_82542_rev2_0 || + hw->mac_type == em_82542_rev2_1 || + hw->mac_type == em_82543 || + hw->mac_type == em_82574 || + hw->mac_type == em_82573 || + hw->mac_type == em_82574 || + hw->mac_type == em_80003es2lan)) { + hw->phy_type = em_phy_undefined; + return E1000_SUCCESS; + } + /* + * Up to 82543 (incl), we need reset the phy, or it might not get + * detected + */ + if (hw->mac_type <= em_82543) { + ret_val = em_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + /* + * ESB-2 PHY reads require em_phy_gg82563 to be set because of a + * work- around that forces PHY page 0 to be set or the reads fail. + * The rest of the code in this routine uses em_read_phy_reg to read + * the PHY ID. So for ESB-2 we need to have this set so our reads + * won't fail. If the attached PHY is not a em_phy_gg82563, the + * routines below will figure this out as well. + */ + if (hw->mac_type == em_80003es2lan) + hw->phy_type = em_phy_gg82563; + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + for (hw->phy_addr = 1; (hw->phy_addr < 4); hw->phy_addr++) { + ret_val = em_match_gig_phy(hw); + if (ret_val == E1000_SUCCESS) + return E1000_SUCCESS; + } + return -E1000_ERR_PHY; } /****************************************************************************** -* Resets the PHY's DSP -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ + * Resets the PHY's DSP + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ static int32_t em_phy_reset_dsp(struct em_hw *hw) { - int32_t ret_val; - DEBUGFUNC("em_phy_reset_dsp"); - - do { - if (hw->phy_type != em_phy_gg82563) { - ret_val = em_write_phy_reg(hw, 29, 0x001d); - if (ret_val) break; - } - ret_val = em_write_phy_reg(hw, 30, 0x00c1); - if (ret_val) break; - ret_val = em_write_phy_reg(hw, 30, 0x0000); - if (ret_val) break; - ret_val = E1000_SUCCESS; - } while (0); - - return ret_val; + int32_t ret_val; + DEBUGFUNC("em_phy_reset_dsp"); + + do { + if (hw->phy_type != em_phy_gg82563) { + ret_val = em_write_phy_reg(hw, 29, 0x001d); + if (ret_val) + break; + } + ret_val = em_write_phy_reg(hw, 30, 0x00c1); + if (ret_val) + break; + ret_val = em_write_phy_reg(hw, 30, 0x0000); + if (ret_val) + break; + ret_val = E1000_SUCCESS; + } while (0); + + return ret_val; } /****************************************************************************** @@ -4411,190 +4529,203 @@ em_phy_reset_dsp(struct em_hw *hw) int32_t em_init_eeprom_params(struct em_hw *hw) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd = E1000_READ_REG(hw, EECD); - int32_t ret_val = E1000_SUCCESS; - uint16_t eeprom_size; - - DEBUGFUNC("em_init_eeprom_params"); - - switch (hw->mac_type) { - case em_82542_rev2_0: - case em_82542_rev2_1: - case em_82543: - case em_82544: - eeprom->type = em_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case em_82540: - case em_82545: - case em_82545_rev_3: - case em_icp_xxxx: - case em_82546: - case em_82546_rev_3: - eeprom->type = em_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case em_82541: - case em_82541_rev_2: - case em_82547: - case em_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = em_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = em_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case em_82571: - case em_82572: - case em_82575: - eeprom->type = em_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - break; - case em_82573: - case em_82574: - eeprom->type = em_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = TRUE; - eeprom->use_eewr = TRUE; - if (em_is_onboard_nvm_eeprom(hw) == FALSE) { - eeprom->type = em_eeprom_flash; - eeprom->word_size = 2048; - - /* Ensure that the Autonomous FLASH update bit is cleared due to - * Flash update issue on parts which use a FLASH for NVM. */ - eecd &= ~E1000_EECD_AUPDEN; - E1000_WRITE_REG(hw, EECD, eecd); - } - break; - case em_80003es2lan: - eeprom->type = em_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - eeprom->use_eerd = TRUE; - eeprom->use_eewr = FALSE; - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - { - int32_t i = 0; - uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); - - eeprom->type = em_eeprom_ich8; - eeprom->use_eerd = FALSE; - eeprom->use_eewr = FALSE; - eeprom->word_size = E1000_SHADOW_RAM_WORDS; - - /* Zero the shadow RAM structure. But don't load it from NVM - * so as to save time for driver init */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - - hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * - ICH_FLASH_SECTOR_SIZE; - - hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; - hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); - - hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; - - hw->flash_bank_size /= 2 * sizeof(uint16_t); - - break; - } - default: - break; - } - - if (eeprom->type == em_eeprom_spi) { - /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to - * 32KB (incremented by powers of 2). - */ - if (hw->mac_type <= em_82547_rev_2) { - /* Set to default value for initial eeprom read. */ - eeprom->word_size = 64; - ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if (ret_val) - return ret_val; - eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; - /* 256B eeprom size was not supported in earlier hardware, so we - * bump eeprom_size up one to ensure that "1" (which maps to 256B) - * is never the result used in the shifting logic below. */ - if (eeprom_size) - eeprom_size++; - } else { - eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - } - - eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); - } - return ret_val; + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd = E1000_READ_REG(hw, EECD); + int32_t ret_val = E1000_SUCCESS; + uint16_t eeprom_size; + DEBUGFUNC("em_init_eeprom_params"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + eeprom->type = em_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82540: + case em_82545: + case em_82545_rev_3: + case em_icp_xxxx: + case em_82546: + case em_82546_rev_3: + eeprom->type = em_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = em_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82571: + case em_82572: + case em_82575: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82573: + case em_82574: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = TRUE; + eeprom->use_eewr = TRUE; + if (em_is_onboard_nvm_eeprom(hw) == FALSE) { + eeprom->type = em_eeprom_flash; + eeprom->word_size = 2048; + /* + * Ensure that the Autonomous FLASH update bit is + * cleared due to Flash update issue on parts which + * use a FLASH for NVM. + */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, EECD, eecd); + } + break; + case em_80003es2lan: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = TRUE; + eeprom->use_eewr = FALSE; + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + { + int32_t i = 0; + uint32_t flash_size = + E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); + eeprom->type = em_eeprom_ich8; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + eeprom->word_size = E1000_SHADOW_RAM_WORDS; + /* + * Zero the shadow RAM structure. But don't load it + * from NVM so as to save time for driver init + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = + FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = + 0xFFFF; + } + } + hw->flash_base_addr = (flash_size & + ICH_GFPREG_BASE_MASK) * ICH_FLASH_SECTOR_SIZE; + + hw->flash_bank_size = ((flash_size >> 16) & + ICH_GFPREG_BASE_MASK) + 1; + hw->flash_bank_size -= (flash_size & + ICH_GFPREG_BASE_MASK); + + hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; + + hw->flash_bank_size /= 2 * sizeof(uint16_t); + + break; + } + default: + break; + } + + if (eeprom->type == em_eeprom_spi) { + /* + * eeprom_size will be an enum [0..8] that maps to eeprom + * sizes 128B to 32KB (incremented by powers of 2). + */ + if (hw->mac_type <= em_82547_rev_2) { + /* Set to default value for initial eeprom read. */ + eeprom->word_size = 64; + ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, + &eeprom_size); + if (ret_val) + return ret_val; + eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> + EEPROM_SIZE_SHIFT; + /* + * 256B eeprom size was not supported in earlier + * hardware, so we bump eeprom_size up one to ensure + * that "1" (which maps to 256B) is never the result + * used in the shifting logic below. + */ + if (eeprom_size) + eeprom_size++; + } else { + eeprom_size = (uint16_t) ( + (eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + } + + eeprom->word_size = 1 << + (eeprom_size + EEPROM_WORD_SIZE_SHIFT); + } + return ret_val; } /****************************************************************************** @@ -4604,16 +4735,16 @@ em_init_eeprom_params(struct em_hw *hw) * eecd - EECD's current value *****************************************************************************/ static void -em_raise_ee_clk(struct em_hw *hw, - uint32_t *eecd) +em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd) { - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait <delay> microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->eeprom.delay_usec); + /* + * Raise the clock input to the EEPROM (by setting the SK bit), and + * then wait <delay> microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); } /****************************************************************************** @@ -4623,16 +4754,16 @@ em_raise_ee_clk(struct em_hw *hw, * eecd - EECD's current value *****************************************************************************/ static void -em_lower_ee_clk(struct em_hw *hw, - uint32_t *eecd) +em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd) { - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->eeprom.delay_usec); + /* + * Lower the clock input to the EEPROM (by clearing the SK bit), and + * then wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); } /****************************************************************************** @@ -4643,51 +4774,51 @@ em_lower_ee_clk(struct em_hw *hw, * count - number of bits to shift out *****************************************************************************/ static void -em_shift_out_ee_bits(struct em_hw *hw, - uint16_t data, - uint16_t count) +em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - uint32_t mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = E1000_READ_REG(hw, EECD); - if (eeprom->type == em_eeprom_microwire) { - eecd &= ~E1000_EECD_DO; - } else if (eeprom->type == em_eeprom_spi) { - eecd |= E1000_EECD_DO; - } - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(eeprom->delay_usec); - - em_raise_ee_clk(hw, &eecd); - em_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while (mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, EECD, eecd); + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint32_t mask; + /* + * We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = E1000_READ_REG(hw, EECD); + if (eeprom->type == em_eeprom_microwire) { + eecd &= ~E1000_EECD_DO; + } else if (eeprom->type == em_eeprom_spi) { + eecd |= E1000_EECD_DO; + } + do { + /* + * A "1" is shifted out to the EEPROM by setting bit "DI" to + * a "1", and then raising and then lowering the clock (the + * SK bit controls the clock input to the EEPROM). A "0" is + * shifted out to the EEPROM by setting "DI" to "0" and then + * raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(eeprom->delay_usec); + + em_raise_ee_clk(hw, &eecd); + em_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while (mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, EECD, eecd); } /****************************************************************************** @@ -4696,41 +4827,39 @@ em_shift_out_ee_bits(struct em_hw *hw, * hw - Struct containing variables accessed by shared code *****************************************************************************/ static uint16_t -em_shift_in_ee_bits(struct em_hw *hw, - uint16_t count) +em_shift_in_ee_bits(struct em_hw *hw, uint16_t count) { - uint32_t eecd; - uint32_t i; - uint16_t data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. - */ + uint32_t eecd; + uint32_t i; + uint16_t data; + /* + * In order to read a register from the EEPROM, we need to shift + * 'count' bits in from the EEPROM. Bits are "shifted in" by raising + * the clock input to the EEPROM (setting the SK bit), and then + * reading the value of the "DO" bit. During this "shifting in" + * process the "DI" bit should always be clear. + */ - eecd = E1000_READ_REG(hw, EECD); + eecd = E1000_READ_REG(hw, EECD); - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; - for (i = 0; i < count; i++) { - data = data << 1; - em_raise_ee_clk(hw, &eecd); + for (i = 0; i < count; i++) { + data = data << 1; + em_raise_ee_clk(hw, &eecd); - eecd = E1000_READ_REG(hw, EECD); + eecd = E1000_READ_REG(hw, EECD); - eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) - data |= 1; + eecd &= ~(E1000_EECD_DI); + if (eecd & E1000_EECD_DO) + data |= 1; - em_lower_ee_clk(hw, &eecd); - } + em_lower_ee_clk(hw, &eecd); + } - return data; + return data; } - /****************************************************************************** * Prepares EEPROM for access * @@ -4742,55 +4871,52 @@ em_shift_in_ee_bits(struct em_hw *hw, static int32_t em_acquire_eeprom(struct em_hw *hw) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd, i=0; - - DEBUGFUNC("em_acquire_eeprom"); - - if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) - return -E1000_ERR_SWFW_SYNC; - eecd = E1000_READ_REG(hw, EECD); - - if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) { - /* Request EEPROM Access */ - if (hw->mac_type > em_82544) { - eecd |= E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - eecd = E1000_READ_REG(hw, EECD); - while ((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - usec_delay(5); - eecd = E1000_READ_REG(hw, EECD); - } - if (!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - DEBUGOUT("Could not acquire EEPROM grant\n"); - em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); - return -E1000_ERR_EEPROM; - } - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == em_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - } else if (eeprom->type == em_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - usec_delay(1); - } - - return E1000_SUCCESS; + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd, i = 0; + DEBUGFUNC("em_acquire_eeprom"); + + if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) + return -E1000_ERR_SWFW_SYNC; + eecd = E1000_READ_REG(hw, EECD); + + if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) { + /* Request EEPROM Access */ + if (hw->mac_type > em_82544) { + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while ((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + usec_delay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if (!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); + return -E1000_ERR_EEPROM; + } + } + } + + /* Setup EEPROM for Read/Write */ + if (eeprom->type == em_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + } else if (eeprom->type == em_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(1); + } + return E1000_SUCCESS; } /****************************************************************************** @@ -4801,45 +4927,44 @@ em_acquire_eeprom(struct em_hw *hw) static void em_standby_eeprom(struct em_hw *hw) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - - eecd = E1000_READ_REG(hw, EECD); - - if (eeprom->type == em_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - } else if (eeprom->type == em_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(eeprom->delay_usec); - } + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + eecd = E1000_READ_REG(hw, EECD); + + if (eeprom->type == em_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + } else if (eeprom->type == em_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + } } /****************************************************************************** @@ -4850,47 +4975,44 @@ em_standby_eeprom(struct em_hw *hw) static void em_release_eeprom(struct em_hw *hw) { - uint32_t eecd; - - DEBUGFUNC("em_release_eeprom"); - - eecd = E1000_READ_REG(hw, EECD); - - if (hw->eeprom.type == em_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ - - E1000_WRITE_REG(hw, EECD, eecd); - - usec_delay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == em_eeprom_microwire) { - /* cleanup eeprom */ - - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - - E1000_WRITE_REG(hw, EECD, eecd); - - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->eeprom.delay_usec); - - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - E1000_WRITE_REG(hw, EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->eeprom.delay_usec); - } - - /* Stop requesting EEPROM access */ - if (hw->mac_type > em_82544) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, EECD, eecd); - } - - em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); + uint32_t eecd; + DEBUGFUNC("em_release_eeprom"); + + eecd = E1000_READ_REG(hw, EECD); + + if (hw->eeprom.type == em_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ + + E1000_WRITE_REG(hw, EECD, eecd); + + usec_delay(hw->eeprom.delay_usec); + } else if (hw->eeprom.type == em_eeprom_microwire) { + /* cleanup eeprom */ + + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + E1000_WRITE_REG(hw, EECD, eecd); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); + } + /* Stop requesting EEPROM access */ + if (hw->mac_type > em_82544) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); } /****************************************************************************** @@ -4901,39 +5023,37 @@ em_release_eeprom(struct em_hw *hw) STATIC int32_t em_spi_eeprom_ready(struct em_hw *hw) { - uint16_t retry_count = 0; - uint8_t spi_stat_reg; - - DEBUGFUNC("em_spi_eeprom_ready"); - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - retry_count += 5; - - em_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { - DEBUGOUT("SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; + uint16_t retry_count = 0; + uint8_t spi_stat_reg; + DEBUGFUNC("em_spi_eeprom_ready"); + /* + * Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (uint8_t) em_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + retry_count += 5; + + em_standby_eeprom(hw); + } while (retry_count < EEPROM_MAX_RETRY_SPI); + /* + * ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if (retry_count >= EEPROM_MAX_RETRY_SPI) { + DEBUGOUT("SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; } /****************************************************************************** @@ -4945,97 +5065,99 @@ em_spi_eeprom_ready(struct em_hw *hw) * words - number of words to read *****************************************************************************/ int32_t -em_read_eeprom(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_read_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t i = 0; - - DEBUGFUNC("em_read_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - em_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); - return -E1000_ERR_EEPROM; - } - - /* EEPROM's that don't use EERD to read require us to bit-bang the SPI - * directly. In this case, we need to acquire the EEPROM so that - * FW or other port software does not interrupt. - */ - if (em_is_onboard_nvm_eeprom(hw) == TRUE && - hw->eeprom.use_eerd == FALSE) { - /* Prepare the EEPROM for bit-bang reading */ - if (em_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Eerd register EEPROM access requires no eeprom aquire/release */ - if (eeprom->use_eerd == TRUE) - return em_read_eeprom_eerd(hw, offset, words, data); - - /* ICH EEPROM access is done via the ICH flash controller */ - if (eeprom->type == em_eeprom_ich8) - return em_read_eeprom_ich8(hw, offset, words, data); - - /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should relase it */ - if (eeprom->type == em_eeprom_spi) { - uint16_t word_in; - uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - - if (em_spi_eeprom_ready(hw)) { - em_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - em_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); - - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = em_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if (eeprom->type == em_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - em_shift_out_ee_bits(hw, (uint16_t)(offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ - data[i] = em_shift_in_ee_bits(hw, 16); - em_standby_eeprom(hw); - } - } - - /* End this read operation */ - em_release_eeprom(hw); - - return E1000_SUCCESS; + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t i = 0; + DEBUGFUNC("em_read_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + em_init_eeprom_params(hw); + /* + * A check for invalid values: offset too large, too many words, and + * not enough words. + */ + if ((offset >= eeprom->word_size) || + (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT2("\"words\" parameter out of bounds. Words = %d," + " size = %d\n", offset, eeprom->word_size); + return -E1000_ERR_EEPROM; + } + /* + * EEPROM's that don't use EERD to read require us to bit-bang the + * SPI directly. In this case, we need to acquire the EEPROM so that + * FW or other port software does not interrupt. + */ + if (em_is_onboard_nvm_eeprom(hw) == TRUE && + hw->eeprom.use_eerd == FALSE) { + /* Prepare the EEPROM for bit-bang reading */ + if (em_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + /* Eerd register EEPROM access requires no eeprom aquire/release */ + if (eeprom->use_eerd == TRUE) + return em_read_eeprom_eerd(hw, offset, words, data); + + /* ICH EEPROM access is done via the ICH flash controller */ + if (eeprom->type == em_eeprom_ich8) + return em_read_eeprom_ich8(hw, offset, words, data); + /* + * Set up the SPI or Microwire EEPROM for bit-bang reading. We have + * acquired the EEPROM at this point, so any returns should relase it + */ + if (eeprom->type == em_eeprom_spi) { + uint16_t word_in; + uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; + if (em_spi_eeprom_ready(hw)) { + em_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + em_standby_eeprom(hw); + /* + * Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + em_shift_out_ee_bits(hw, (uint16_t) (offset * 2), + eeprom->address_bits); + /* + * Read the data. The address of the eeprom internally + * increments with each byte (spi) being read, saving on the + * overhead of eeprom setup and tear-down. The address + * counter will roll over if reading beyond the size of the + * eeprom, thus allowing the entire memory to be read + * starting from any offset. + */ + for (i = 0; i < words; i++) { + word_in = em_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if (eeprom->type == em_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + em_shift_out_ee_bits(hw, (uint16_t) (offset + i), + eeprom->address_bits); + /* + * Read the data. For microwire, each word requires + * the overhead of eeprom setup and tear-down. + */ + data[i] = em_shift_in_ee_bits(hw, 16); + em_standby_eeprom(hw); + } + } + /* End this read operation */ + em_release_eeprom(hw); + + return E1000_SUCCESS; } /****************************************************************************** @@ -5047,29 +5169,27 @@ em_read_eeprom(struct em_hw *hw, * words - number of words to read *****************************************************************************/ STATIC int32_t -em_read_eeprom_eerd(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - uint32_t i, eerd = 0; - int32_t error = 0; + uint32_t i, eerd = 0; + int32_t error = 0; + for (i = 0; i < words; i++) { + eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) + + E1000_EEPROM_RW_REG_START; - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + - E1000_EEPROM_RW_REG_START; + E1000_WRITE_REG(hw, EERD, eerd); + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - E1000_WRITE_REG(hw, EERD, eerd); - error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); + if (error) { + break; + } + data[i] = (E1000_READ_REG(hw, EERD) >> + E1000_EEPROM_RW_REG_DATA); - if (error) { - break; - } - data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); + } - } - - return error; + return error; } /****************************************************************************** @@ -5081,39 +5201,35 @@ em_read_eeprom_eerd(struct em_hw *hw, * words - number of words to read *****************************************************************************/ STATIC int32_t -em_write_eeprom_eewr(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - uint32_t register_value = 0; - uint32_t i = 0; - int32_t error = 0; - - if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) - return -E1000_ERR_SWFW_SYNC; - - for (i = 0; i < words; i++) { - register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | - ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | - E1000_EEPROM_RW_REG_START; - - error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if (error) { - break; - } - - E1000_WRITE_REG(hw, EEWR, register_value); - - error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - - if (error) { - break; - } - } - - em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); - return error; + uint32_t register_value = 0; + uint32_t i = 0; + int32_t error = 0; + if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) + return -E1000_ERR_SWFW_SYNC; + + for (i = 0; i < words; i++) { + register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | + ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) | + E1000_EEPROM_RW_REG_START; + + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + if (error) { + break; + } + E1000_WRITE_REG(hw, EEWR, register_value); + + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + + if (error) { + break; + } + } + + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); + return error; } /****************************************************************************** @@ -5124,55 +5240,53 @@ em_write_eeprom_eewr(struct em_hw *hw, STATIC int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) { - uint32_t attempts = 100000; - uint32_t i, reg = 0; - int32_t done = E1000_ERR_EEPROM; - - for (i = 0; i < attempts; i++) { - if (eerd == E1000_EEPROM_POLL_READ) - reg = E1000_READ_REG(hw, EERD); - else - reg = E1000_READ_REG(hw, EEWR); - - if (reg & E1000_EEPROM_RW_REG_DONE) { - done = E1000_SUCCESS; - break; - } - usec_delay(5); - } - - return done; + uint32_t attempts = 100000; + uint32_t i, reg = 0; + int32_t done = E1000_ERR_EEPROM; + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) + reg = E1000_READ_REG(hw, EERD); + else + reg = E1000_READ_REG(hw, EEWR); + + if (reg & E1000_EEPROM_RW_REG_DONE) { + done = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + return done; } -/*************************************************************************** -* Description: Determines if the onboard NVM is FLASH or EEPROM. -* -* hw - Struct containing variables accessed by shared code -****************************************************************************/ +/****************************************************************************** + * Description: Determines if the onboard NVM is FLASH or EEPROM. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ STATIC boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw) { - uint32_t eecd = 0; - - DEBUGFUNC("em_is_onboard_nvm_eeprom"); - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - return FALSE; - - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - eecd = E1000_READ_REG(hw, EECD); - - /* Isolate bits 15 & 16 */ - eecd = ((eecd >> 15) & 0x03); - - /* If both bits are set, device is Flash type */ - if (eecd == 0x03) { - return FALSE; - } - } - return TRUE; + uint32_t eecd = 0; + DEBUGFUNC("em_is_onboard_nvm_eeprom"); + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + return FALSE; + + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + eecd = E1000_READ_REG(hw, EECD); + + /* Isolate bits 15 & 16 */ + eecd = ((eecd >> 15) & 0x03); + + /* If both bits are set, device is Flash type */ + if (eecd == 0x03) { + return FALSE; + } + } + return TRUE; } /****************************************************************************** @@ -5187,65 +5301,68 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw) int32_t em_validate_eeprom_checksum(struct em_hw *hw) { - uint16_t checksum = 0; - uint16_t i, eeprom_data; - uint16_t checksum_reg; - - DEBUGFUNC("em_validate_eeprom_checksum"); - - checksum_reg = hw->mac_type != em_icp_xxxx - ? EEPROM_CHECKSUM_REG - : EEPROM_CHECKSUM_REG_ICP_xxxx; - - if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) && - (em_is_onboard_nvm_eeprom(hw) == FALSE)) { - /* Check bit 4 of word 10h. If it is 0, firmware is done updating - * 10h-12h. Checksum may need to be fixed. */ - em_read_eeprom(hw, 0x10, 1, &eeprom_data); - if ((eeprom_data & 0x10) == 0) { - /* Read 0x23 and check bit 15. This bit is a 1 when the checksum - * has already been fixed. If the checksum is still wrong and this - * bit is a 1, we need to return bad checksum. Otherwise, we need - * to set this bit to a 1 and update the checksum. */ - em_read_eeprom(hw, 0x23, 1, &eeprom_data); - if ((eeprom_data & 0x8000) == 0) { - eeprom_data |= 0x8000; - em_write_eeprom(hw, 0x23, 1, &eeprom_data); - em_update_eeprom_checksum(hw); - } - } - } - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /* Drivers must allocate the shadow ram structure for the - * EEPROM checksum to be updated. Otherwise, this bit as well - * as the checksum must both be set correctly for this - * validation to pass. - */ - em_read_eeprom(hw, 0x19, 1, &eeprom_data); - if ((eeprom_data & 0x40) == 0) { - eeprom_data |= 0x40; - em_write_eeprom(hw, 0x19, 1, &eeprom_data); - em_update_eeprom_checksum(hw); - } - } - - for (i = 0; i < (checksum_reg + 1); i++) { - if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - - if (checksum == (uint16_t) EEPROM_SUM) - return E1000_SUCCESS; - else { - DEBUGOUT("EEPROM Checksum Invalid\n"); - return -E1000_ERR_EEPROM; - } + uint16_t checksum = 0; + uint16_t i, eeprom_data; + uint16_t checksum_reg; + DEBUGFUNC("em_validate_eeprom_checksum"); + + checksum_reg = hw->mac_type != em_icp_xxxx ? + EEPROM_CHECKSUM_REG : + EEPROM_CHECKSUM_REG_ICP_xxxx; + + if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) && + (em_is_onboard_nvm_eeprom(hw) == FALSE)) { + /* + * Check bit 4 of word 10h. If it is 0, firmware is done + * updating 10h-12h. Checksum may need to be fixed. + */ + em_read_eeprom(hw, 0x10, 1, &eeprom_data); + if ((eeprom_data & 0x10) == 0) { + /* + * Read 0x23 and check bit 15. This bit is a 1 when + * the checksum has already been fixed. If the + * checksum is still wrong and this bit is a 1, we + * need to return bad checksum. Otherwise, we need + * to set this bit to a 1 and update the checksum. + */ + em_read_eeprom(hw, 0x23, 1, &eeprom_data); + if ((eeprom_data & 0x8000) == 0) { + eeprom_data |= 0x8000; + em_write_eeprom(hw, 0x23, 1, &eeprom_data); + em_update_eeprom_checksum(hw); + } + } + } + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* + * Drivers must allocate the shadow ram structure for the + * EEPROM checksum to be updated. Otherwise, this bit as + * well as the checksum must both be set correctly for this + * validation to pass. + */ + em_read_eeprom(hw, 0x19, 1, &eeprom_data); + if ((eeprom_data & 0x40) == 0) { + eeprom_data |= 0x40; + em_write_eeprom(hw, 0x19, 1, &eeprom_data); + em_update_eeprom_checksum(hw); + } + } + for (i = 0; i < (checksum_reg + 1); i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + + if (checksum == (uint16_t) EEPROM_SUM) + return E1000_SUCCESS; + else { + DEBUGOUT("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } } /****************************************************************************** @@ -5259,35 +5376,36 @@ em_validate_eeprom_checksum(struct em_hw *hw) int32_t em_update_eeprom_checksum(struct em_hw *hw) { - uint32_t ctrl_ext; - uint16_t checksum = 0; - uint16_t i, eeprom_data; - - DEBUGFUNC("em_update_eeprom_checksum"); - - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - checksum = (uint16_t) EEPROM_SUM - checksum; - if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { - DEBUGOUT("EEPROM Write Error\n"); - return -E1000_ERR_EEPROM; - } else if (hw->eeprom.type == em_eeprom_flash) { - em_commit_shadow_ram(hw); - } else if (hw->eeprom.type == em_eeprom_ich8) { - em_commit_shadow_ram(hw); - /* Reload the EEPROM, or else modifications will not appear - * until after next adapter reset. */ - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - msec_delay(10); - } - return E1000_SUCCESS; + uint32_t ctrl_ext; + uint16_t checksum = 0; + uint16_t i, eeprom_data; + DEBUGFUNC("em_update_eeprom_checksum"); + + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (uint16_t) EEPROM_SUM - checksum; + if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + DEBUGOUT("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } else if (hw->eeprom.type == em_eeprom_flash) { + em_commit_shadow_ram(hw); + } else if (hw->eeprom.type == em_eeprom_ich8) { + em_commit_shadow_ram(hw); + /* + * Reload the EEPROM, or else modifications will not appear + * until after next adapter reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + msec_delay(10); + } + return E1000_SUCCESS; } /****************************************************************************** @@ -5302,51 +5420,48 @@ em_update_eeprom_checksum(struct em_hw *hw) * EEPROM will most likely contain an invalid checksum. *****************************************************************************/ int32_t -em_write_eeprom(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_write_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - struct em_eeprom_info *eeprom = &hw->eeprom; - int32_t status = 0; - - DEBUGFUNC("em_write_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - em_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT("\"words\" parameter out of bounds\n"); - return -E1000_ERR_EEPROM; - } - - /* 82573/4 writes only through eewr */ - if (eeprom->use_eewr == TRUE) - return em_write_eeprom_eewr(hw, offset, words, data); - - if (eeprom->type == em_eeprom_ich8) - return em_write_eeprom_ich8(hw, offset, words, data); - - /* Prepare the EEPROM for writing */ - if (em_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - if (eeprom->type == em_eeprom_microwire) { - status = em_write_eeprom_microwire(hw, offset, words, data); - } else { - status = em_write_eeprom_spi(hw, offset, words, data); - msec_delay(10); - } - - /* Done with writing */ - em_release_eeprom(hw); - - return status; + struct em_eeprom_info *eeprom = &hw->eeprom; + int32_t status = 0; + DEBUGFUNC("em_write_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + em_init_eeprom_params(hw); + /* + * A check for invalid values: offset too large, too many words, and + * not enough words. + */ + if ((offset >= eeprom->word_size) || + (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + /* 82573/4 writes only through eewr */ + if (eeprom->use_eewr == TRUE) + return em_write_eeprom_eewr(hw, offset, words, data); + + if (eeprom->type == em_eeprom_ich8) + return em_write_eeprom_ich8(hw, offset, words, data); + + /* Prepare the EEPROM for writing */ + if (em_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if (eeprom->type == em_eeprom_microwire) { + status = em_write_eeprom_microwire(hw, offset, words, data); + } else { + status = em_write_eeprom_spi(hw, offset, words, data); + msec_delay(10); + } + + /* Done with writing */ + em_release_eeprom(hw); + + return status; } /****************************************************************************** @@ -5359,60 +5474,62 @@ em_write_eeprom(struct em_hw *hw, * *****************************************************************************/ STATIC int32_t -em_write_eeprom_spi(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint16_t widx = 0; - - DEBUGFUNC("em_write_eeprom_spi"); - - while (widx < words) { - uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; - - if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; - - em_standby_eeprom(hw); - - /* Send the WRITE ENABLE command (8 bit opcode ) */ - em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, - eeprom->opcode_bits); - - em_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - write_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); - - em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), - eeprom->address_bits); - - /* Send the data */ - - /* Loop to allow for up to whole page write (32 bytes) of eeprom */ - while (widx < words) { - uint16_t word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - em_shift_out_ee_bits(hw, word_out, 16); - widx++; - - /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE - * operation, while the smaller eeproms are capable of an 8-byte - * PAGE WRITE operation. Break the inner loop to pass new address - */ - if ((((offset + widx)*2) % eeprom->page_size) == 0) { - em_standby_eeprom(hw); - break; - } - } - } - - return E1000_SUCCESS; + struct em_eeprom_info *eeprom = &hw->eeprom; + uint16_t widx = 0; + DEBUGFUNC("em_write_eeprom_spi"); + + while (widx < words) { + uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; + if (em_spi_eeprom_ready(hw)) + return -E1000_ERR_EEPROM; + + em_standby_eeprom(hw); + + /* Send the WRITE ENABLE command (8 bit opcode ) */ + em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, + eeprom->opcode_bits); + + em_standby_eeprom(hw); + /* + * Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + write_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); + + em_shift_out_ee_bits(hw, (uint16_t) ((offset + widx) * 2), + eeprom->address_bits); + + /* Send the data */ + /* + * Loop to allow for up to whole page write (32 bytes) of + * eeprom + */ + while (widx < words) { + uint16_t word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + em_shift_out_ee_bits(hw, word_out, 16); + widx++; + /* + * Some larger eeprom sizes are capable of a 32-byte + * PAGE WRITE operation, while the smaller eeproms + * are capable of an 8-byte PAGE WRITE operation. + * Break the inner loop to pass new address + */ + if ((((offset + widx) * 2) % eeprom->page_size) == 0) { + em_standby_eeprom(hw); + break; + } + } + } + + return E1000_SUCCESS; } /****************************************************************************** @@ -5425,80 +5542,78 @@ em_write_eeprom_spi(struct em_hw *hw, * *****************************************************************************/ STATIC int32_t -em_write_eeprom_microwire(struct em_hw *hw, - uint16_t offset, - uint16_t words, - uint16_t *data) +em_write_eeprom_microwire(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) { - struct em_eeprom_info *eeprom = &hw->eeprom; - uint32_t eecd; - uint16_t words_written = 0; - uint16_t i = 0; - - DEBUGFUNC("em_write_eeprom_microwire"); - - /* Send the write enable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 11). It's less work to include - * the 11 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This puts the - * EEPROM into write/erase mode. - */ - em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, - (uint16_t)(eeprom->opcode_bits + 2)); - - em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); - - /* Prepare the EEPROM */ - em_standby_eeprom(hw); - - while (words_written < words) { - /* Send the Write command (3-bit opcode + addr) */ - em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, - eeprom->opcode_bits); - - em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), - eeprom->address_bits); - - /* Send the data */ - em_shift_out_ee_bits(hw, data[words_written], 16); + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint16_t words_written = 0; + uint16_t i = 0; + DEBUGFUNC("em_write_eeprom_microwire"); + /* + * Send the write enable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 11). It's less work to + * include the 11 of the dummy address as part of the opcode than it + * is to shift it over the correct number of bits for the address. + * This puts the EEPROM into write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, + (uint16_t) (eeprom->opcode_bits + 2)); + + em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); + + /* Prepare the EEPROM */ + em_standby_eeprom(hw); + + while (words_written < words) { + /* Send the Write command (3-bit opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, + eeprom->opcode_bits); + + em_shift_out_ee_bits(hw, (uint16_t) (offset + words_written), + eeprom->address_bits); + + /* Send the data */ + em_shift_out_ee_bits(hw, data[words_written], 16); + /* + * Toggle the CS line. This in effect tells the EEPROM to + * execute the previous command. + */ + em_standby_eeprom(hw); + /* + * Read DO repeatedly until it is high (equal to '1'). The + * EEPROM will signal that the command has been completed by + * raising the DO signal. If DO does not go high in 10 + * milliseconds, then error out. + */ + for (i = 0; i < 200; i++) { + eecd = E1000_READ_REG(hw, EECD); + if (eecd & E1000_EECD_DO) + break; + usec_delay(50); + } + if (i == 200) { + DEBUGOUT("EEPROM Write did not complete\n"); + return -E1000_ERR_EEPROM; + } + /* Recover from write */ + em_standby_eeprom(hw); + + words_written++; + } + /* + * Send the write disable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 10). It's less work to + * include the 10 of the dummy address as part of the opcode than it + * is to shift it over the correct number of bits for the address. + * This takes the EEPROM out of write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, + (uint16_t) (eeprom->opcode_bits + 2)); - /* Toggle the CS line. This in effect tells the EEPROM to execute - * the previous command. - */ - em_standby_eeprom(hw); + em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); - /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will - * signal that the command has been completed by raising the DO signal. - * If DO does not go high in 10 milliseconds, then error out. - */ - for (i = 0; i < 200; i++) { - eecd = E1000_READ_REG(hw, EECD); - if (eecd & E1000_EECD_DO) break; - usec_delay(50); - } - if (i == 200) { - DEBUGOUT("EEPROM Write did not complete\n"); - return -E1000_ERR_EEPROM; - } - - /* Recover from write */ - em_standby_eeprom(hw); - - words_written++; - } - - /* Send the write disable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 10). It's less work to include - * the 10 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This takes the - * EEPROM out of write/erase mode. - */ - em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, - (uint16_t)(eeprom->opcode_bits + 2)); - - em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); - - return E1000_SUCCESS; + return E1000_SUCCESS; } /****************************************************************************** @@ -5514,160 +5629,183 @@ em_write_eeprom_microwire(struct em_hw *hw, STATIC int32_t em_commit_shadow_ram(struct em_hw *hw) { - uint32_t attempts = 100000; - uint32_t eecd = 0; - uint32_t flop = 0; - uint32_t i = 0; - int32_t error = E1000_SUCCESS; - uint32_t old_bank_offset = 0; - uint32_t new_bank_offset = 0; - uint8_t low_byte = 0; - uint8_t high_byte = 0; - boolean_t sector_write_failed = FALSE; - - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - /* The flop register will be used to determine if flash type is STM */ - flop = E1000_READ_REG(hw, FLOP); - for (i=0; i < attempts; i++) { - eecd = E1000_READ_REG(hw, EECD); - if ((eecd & E1000_EECD_FLUPD) == 0) { - break; - } - usec_delay(5); - } - - if (i == attempts) { - return -E1000_ERR_EEPROM; - } - - /* If STM opcode located in bits 15:8 of flop, reset firmware */ - if ((flop & 0xFF00) == E1000_STM_OPCODE) { - E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); - } - - /* Perform the flash update */ - E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); - - for (i=0; i < attempts; i++) { - eecd = E1000_READ_REG(hw, EECD); - if ((eecd & E1000_EECD_FLUPD) == 0) { - break; - } - usec_delay(5); - } - - if (i == attempts) { - return -E1000_ERR_EEPROM; - } - } - - if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) && - hw->eeprom_shadow_ram != NULL) { - /* We're writing to the opposite bank so if we're on bank 1, - * write to bank 0 etc. We also need to erase the segment that - * is going to be written */ - if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { - new_bank_offset = hw->flash_bank_size * 2; - old_bank_offset = 0; - em_erase_ich8_4k_segment(hw, 1); - } else { - old_bank_offset = hw->flash_bank_size * 2; - new_bank_offset = 0; - em_erase_ich8_4k_segment(hw, 0); - } - - sector_write_failed = FALSE; - /* Loop for every byte in the shadow RAM, - * which is in units of words. */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - /* Determine whether to write the value stored - * in the other NVM bank or a modified value stored - * in the shadow RAM */ - if (hw->eeprom_shadow_ram[i].modified == TRUE) { - low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; - usec_delay(100); - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, low_byte); - - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - else { - high_byte = - (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); - usec_delay(100); - } - } else { - em_read_ich8_byte(hw, (i << 1) + old_bank_offset, - &low_byte); - usec_delay(100); - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset, low_byte); - - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - else { - em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, - &high_byte); - usec_delay(100); - } - } - - /* If the write of the low byte was successful, go ahread and - * write the high byte while checking to make sure that if it - * is the signature byte, then it is handled properly */ - if (sector_write_failed == FALSE) { - /* If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. - * This will allow us to write 10b which indicates the - * signature is valid. We want to do this after the write - * has completed so that we don't mark the segment valid - * while the write is still in progress */ - if (i == E1000_ICH_NVM_SIG_WORD) - high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; - - error = em_verify_write_ich8_byte(hw, - (i << 1) + new_bank_offset + 1, high_byte); - if (error != E1000_SUCCESS) - sector_write_failed = TRUE; - - } else { - /* If the write failed then break from the loop and - * return an error */ - break; - } - } - - /* Don't bother writing the segment valid bits if sector - * programming failed. */ - if (sector_write_failed == FALSE) { - /* Finally validate the new segment by setting bit 15:14 - * to 10b in word 0x13 , this can be done without an - * erase as well since these bits are 11 to start with - * and we need to change bit 14 to 0b */ - em_read_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, - &high_byte); - high_byte &= 0xBF; - error = em_verify_write_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); - /* And invalidate the previously valid segment by setting - * its signature word (0x13) high_byte to 0b. This can be - * done without an erase because flash erase sets all bits - * to 1's. We can write 1's to 0's without an erase */ - if (error == E1000_SUCCESS) { - error = em_verify_write_ich8_byte(hw, - E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); - } - - /* Clear the now not used entry in the cache */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - hw->eeprom_shadow_ram[i].modified = FALSE; - hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; - } - } - } - - return error; + uint32_t attempts = 100000; + uint32_t eecd = 0; + uint32_t flop = 0; + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + uint32_t old_bank_offset = 0; + uint32_t new_bank_offset = 0; + uint8_t low_byte = 0; + uint8_t high_byte = 0; + boolean_t sector_write_failed = FALSE; + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + /* + * The flop register will be used to determine if flash type + * is STM + */ + flop = E1000_READ_REG(hw, FLOP); + for (i = 0; i < attempts; i++) { + eecd = E1000_READ_REG(hw, EECD); + if ((eecd & E1000_EECD_FLUPD) == 0) { + break; + } + usec_delay(5); + } + + if (i == attempts) { + return -E1000_ERR_EEPROM; + } + /* + * If STM opcode located in bits 15:8 of flop, reset firmware + */ + if ((flop & 0xFF00) == E1000_STM_OPCODE) { + E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); + } + /* Perform the flash update */ + E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); + + for (i = 0; i < attempts; i++) { + eecd = E1000_READ_REG(hw, EECD); + if ((eecd & E1000_EECD_FLUPD) == 0) { + break; + } + usec_delay(5); + } + + if (i == attempts) { + return -E1000_ERR_EEPROM; + } + } + if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) && + hw->eeprom_shadow_ram != NULL) { + /* + * We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment + * that is going to be written + */ + if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { + new_bank_offset = hw->flash_bank_size * 2; + old_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 1); + } else { + old_bank_offset = hw->flash_bank_size * 2; + new_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 0); + } + + sector_write_failed = FALSE; + /* + * Loop for every byte in the shadow RAM, which is in units + * of words. + */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* + * Determine whether to write the value stored in the + * other NVM bank or a modified value stored in the + * shadow RAM + */ + if (hw->eeprom_shadow_ram[i].modified == TRUE) { + low_byte = (uint8_t) + hw->eeprom_shadow_ram[i].eeprom_word; + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + else { + high_byte = (uint8_t) + (hw->eeprom_shadow_ram + [i].eeprom_word >> 8); + usec_delay(100); + } + } else { + em_read_ich8_byte(hw, (i << 1) + + old_bank_offset, &low_byte); + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + else { + em_read_ich8_byte(hw, (i << 1) + + old_bank_offset + 1, &high_byte); + usec_delay(100); + } + } + /* + * If the write of the low byte was successful, go + * ahread and write the high byte while checking to + * make sure that if it is the signature byte, then + * it is handled properly + */ + if (sector_write_failed == FALSE) { + /* + * If the word is 0x13, then make sure the + * signature bits (15:14) are 11b until the + * commit has completed. This will allow us + * to write 10b which indicates the signature + * is valid. We want to do this after the + * write has completed so that we don't mark + * the segment valid while the write is still + * in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD) + high_byte = E1000_ICH_NVM_SIG_MASK | + high_byte; + + error = em_verify_write_ich8_byte(hw, (i << 1) + + new_bank_offset + 1, high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + } else { + /* + * If the write failed then break from the + * loop and return an error + */ + break; + } + } + /* + * Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (sector_write_failed == FALSE) { + /* + * Finally validate the new segment by setting bit + * 15:14 to 10b in word 0x13 , this can be done + * without an erase as well since these bits are 11 + * to start with and we need to change bit 14 to 0b + */ + em_read_ich8_byte(hw, E1000_ICH_NVM_SIG_WORD * 2 + 1 + + new_bank_offset, &high_byte); + high_byte &= 0xBF; + error = em_verify_write_ich8_byte(hw, + E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + high_byte); + /* + * And invalidate the previously valid segment by + * setting its signature word (0x13) high_byte to 0b. + * This can be done without an erase because flash + * erase sets all bits to 1's. We can write 1's to + * 0's without an erase + */ + if (error == E1000_SUCCESS) { + error = em_verify_write_ich8_byte(hw, + E1000_ICH_NVM_SIG_WORD * 2 + 1 + + old_bank_offset, 0); + } + /* Clear the now not used entry in the cache */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + } + return error; } /****************************************************************************** @@ -5677,31 +5815,29 @@ em_commit_shadow_ram(struct em_hw *hw) * part_num - Adapter's part number *****************************************************************************/ int32_t -em_read_part_num(struct em_hw *hw, - uint32_t *part_num) +em_read_part_num(struct em_hw *hw, uint32_t *part_num) { - uint16_t offset = EEPROM_PBA_BYTE_1; - uint16_t eeprom_data; - - DEBUGFUNC("em_read_part_num"); - - /* Get word 0 from EEPROM */ - if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - /* Save word 0 in upper half of part_num */ - *part_num = (uint32_t) (eeprom_data << 16); - - /* Get word 1 from EEPROM */ - if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - /* Save word 1 in lower half of part_num */ - *part_num |= eeprom_data; - - return E1000_SUCCESS; + uint16_t offset = EEPROM_PBA_BYTE_1; + uint16_t eeprom_data; + DEBUGFUNC("em_read_part_num"); + + /* Get word 0 from EEPROM */ + if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 0 in upper half of part_num */ + *part_num = (uint32_t) (eeprom_data << 16); + + /* Get word 1 from EEPROM */ + if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 1 in lower half of part_num */ + *part_num |= eeprom_data; + + return E1000_SUCCESS; } /****************************************************************************** @@ -5711,45 +5847,44 @@ em_read_part_num(struct em_hw *hw, * hw - Struct containing variables accessed by shared code *****************************************************************************/ int32_t -em_read_mac_addr(struct em_hw * hw) +em_read_mac_addr(struct em_hw *hw) { - uint16_t offset; - uint16_t eeprom_data, i; - uint16_t ia_base_addr = 0; - - DEBUGFUNC("em_read_mac_addr"); - - if(hw->mac_type == em_icp_xxxx) { - ia_base_addr = (uint16_t) - EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num); - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - offset = i >> 1; - if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); - hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); - } - - switch (hw->mac_type) { - default: - break; - case em_82546: - case em_82546_rev_3: - case em_82571: - case em_82575: - case em_80003es2lan: - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - hw->perm_mac_addr[5] ^= 0x01; - break; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i++) - hw->mac_addr[i] = hw->perm_mac_addr[i]; - return E1000_SUCCESS; + uint16_t offset; + uint16_t eeprom_data, i; + uint16_t ia_base_addr = 0; + DEBUGFUNC("em_read_mac_addr"); + + if (hw->mac_type == em_icp_xxxx) { + ia_base_addr = (uint16_t) + EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num); + } + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data) + < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i + 1] = (uint8_t) (eeprom_data >> 8); + } + + switch (hw->mac_type) { + default: + break; + case em_82546: + case em_82546_rev_3: + case em_82571: + case em_82575: + case em_80003es2lan: + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + hw->perm_mac_addr[5] ^= 0x01; + break; + } + + for (i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return E1000_SUCCESS; } /****************************************************************************** @@ -5764,38 +5899,38 @@ em_read_mac_addr(struct em_hw * hw) STATIC void em_init_rx_addrs(struct em_hw *hw) { - uint32_t i; - uint32_t rar_num; - - DEBUGFUNC("em_init_rx_addrs"); - - /* Setup the receive address. */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - em_rar_set(hw, hw->mac_addr, 0); - - rar_num = E1000_RAR_ENTRIES; - - /* Reserve a spot for the Locally Administered Address to work around - * an 82571 issue in which a reset on one port will reload the MAC on - * the other port. */ - if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) - rar_num -= 1; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - rar_num = E1000_RAR_ENTRIES_ICH8LAN; - if (hw->mac_type == em_ich8lan) - rar_num -= 1; - - /* Zero out the other 15 receive addresses. */ - DEBUGOUT("Clearing RAR[1-15]\n"); - for (i = 1; i < rar_num; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(hw); - } + uint32_t i; + uint32_t rar_num; + DEBUGFUNC("em_init_rx_addrs"); + + /* Setup the receive address. */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + em_rar_set(hw, hw->mac_addr, 0); + + rar_num = E1000_RAR_ENTRIES; + /* + * Reserve a spot for the Locally Administered Address to work around + * an 82571 issue in which a reset on one port will reload the MAC on + * the other port. + */ + if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) + rar_num -= 1; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + rar_num = E1000_RAR_ENTRIES_ICH8LAN; + if (hw->mac_type == em_ich8lan) + rar_num -= 1; + + /* Zero out the other 15 receive addresses. */ + DEBUGOUT("Clearing RAR[1-15]\n"); + for (i = 1; i < rar_num; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); + } } /****************************************************************************** @@ -5813,88 +5948,86 @@ em_init_rx_addrs(struct em_hw *hw) * multicast table. *****************************************************************************/ void -em_mc_addr_list_update(struct em_hw *hw, - uint8_t *mc_addr_list, - uint32_t mc_addr_count, - uint32_t pad, - uint32_t rar_used_count) +em_mc_addr_list_update(struct em_hw *hw, uint8_t *mc_addr_list, + uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count) { - uint32_t hash_value; - uint32_t i; - uint32_t num_rar_entry; - uint32_t num_mta_entry; - - DEBUGFUNC("em_mc_addr_list_update"); - - /* Set the new number of MC addresses that we are being requested to use. */ - hw->num_mc_addrs = mc_addr_count; - - /* Clear RAR[1-15] */ - DEBUGOUT(" Clearing RAR[1-15]\n"); - num_rar_entry = E1000_RAR_ENTRIES; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; - if (hw->mac_type == em_ich8lan) - num_rar_entry -= 1; - - /* Reserve a spot for the Locally Administered Address to work around - * an 82571 issue in which a reset on one port will reload the MAC on - * the other port. */ - if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) - num_rar_entry -= 1; - - for (i = rar_used_count; i < num_rar_entry; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(hw); - } - - /* Clear the MTA */ - DEBUGOUT(" Clearing MTA\n"); - num_mta_entry = E1000_NUM_MTA_REGISTERS; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; - - for (i = 0; i < num_mta_entry; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - E1000_WRITE_FLUSH(hw); - } - - /* Add the new addresses */ - for (i = 0; i < mc_addr_count; i++) { - DEBUGOUT(" Adding the multicast addresses:\n"); - DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], - mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); - - hash_value = em_hash_mc_addr(hw, - mc_addr_list + - (i * (ETH_LENGTH_OF_ADDRESS + pad))); - - DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); - - /* Place this multicast address in the RAR if there is room, * - * else put it in the MTA - */ - if (rar_used_count < num_rar_entry) { - em_rar_set(hw, - mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), - rar_used_count); - rar_used_count++; - } else { - em_mta_set(hw, hash_value); - } - } - DEBUGOUT("MC Update Complete\n"); + uint32_t hash_value; + uint32_t i; + uint32_t num_rar_entry; + uint32_t num_mta_entry; + DEBUGFUNC("em_mc_addr_list_update"); + /* + * Set the new number of MC addresses that we are being requested to + * use. + */ + hw->num_mc_addrs = mc_addr_count; + + /* Clear RAR[1-15] */ + DEBUGOUT(" Clearing RAR[1-15]\n"); + num_rar_entry = E1000_RAR_ENTRIES; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; + if (hw->mac_type == em_ich8lan) + num_rar_entry -= 1; + /* + * Reserve a spot for the Locally Administered Address to work around + * an 82571 issue in which a reset on one port will reload the MAC on + * the other port. + */ + if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) + num_rar_entry -= 1; + + for (i = rar_used_count; i < num_rar_entry; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); + } + + /* Clear the MTA */ + DEBUGOUT(" Clearing MTA\n"); + num_mta_entry = E1000_NUM_MTA_REGISTERS; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; + + for (i = 0; i < num_mta_entry; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* Add the new addresses */ + for (i = 0; i < mc_addr_count; i++) { + DEBUGOUT(" Adding the multicast addresses:\n"); + DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); + + hash_value = em_hash_mc_addr(hw, mc_addr_list + + (i * (ETH_LENGTH_OF_ADDRESS + pad))); + + DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); + /* + * Place this multicast address in the RAR if there is room, * + * else put it in the MTA + */ + if (rar_used_count < num_rar_entry) { + em_rar_set(hw, mc_addr_list + + (i * (ETH_LENGTH_OF_ADDRESS + pad)), + rar_used_count); + rar_used_count++; + } else { + em_mta_set(hw, hash_value); + } + } + DEBUGOUT("MC Update Complete\n"); } /****************************************************************************** @@ -5904,72 +6037,79 @@ em_mc_addr_list_update(struct em_hw *hw, * mc_addr - the multicast address to hash *****************************************************************************/ uint32_t -em_hash_mc_addr(struct em_hw *hw, - uint8_t *mc_addr) +em_hash_mc_addr(struct em_hw *hw, uint8_t *mc_addr) { - uint32_t hash_value = 0; - - /* The portion of the address that is used for the hash table is - * determined by the mc_filter_type setting. - */ - switch (hw->mc_filter_type) { - /* [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - */ - case 0: - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /* [47:38] i.e. 0x158 for above example address */ - hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); - } else { - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } - break; - case 1: - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /* [46:37] i.e. 0x2B1 for above example address */ - hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); - } else { - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); - } - break; - case 2: - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /*[45:36] i.e. 0x163 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); - } else { - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } - break; - case 3: - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /* [43:34] i.e. 0x18D for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); - } else { - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); - } - break; - } - - hash_value &= 0xFFF; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - hash_value &= 0x3FF; - - return hash_value; + uint32_t hash_value = 0; + /* + * The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* + * [0] [1] [2] [3] [4] [5] 01 AA 00 12 34 56 LSB + * MSB + */ + case 0: + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* [47:38] i.e. 0x158 for above example address */ + hash_value = ((mc_addr[4] >> 6) | + (((uint16_t) mc_addr[5]) << 2)); + } else { + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | + (((uint16_t) mc_addr[5]) << 4)); + } + break; + case 1: + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* [46:37] i.e. 0x2B1 for above example address */ + hash_value = ((mc_addr[4] >> 5) | + (((uint16_t) mc_addr[5]) << 3)); + } else { + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | + (((uint16_t) mc_addr[5]) << 5)); + } + break; + case 2: + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* [45:36] i.e. 0x163 for above example address */ + hash_value = ((mc_addr[4] >> 4) | + (((uint16_t) mc_addr[5]) << 4)); + } else { + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | + (((uint16_t) mc_addr[5]) << 6)); + } + break; + case 3: + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* [43:34] i.e. 0x18D for above example address */ + hash_value = ((mc_addr[4] >> 2) | + (((uint16_t) mc_addr[5]) << 6)); + } else { + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | + (((uint16_t) mc_addr[5]) << 8)); + } + break; + } + + hash_value &= 0xFFF; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + hash_value &= 0x3FF; + + return hash_value; } /****************************************************************************** @@ -5979,47 +6119,46 @@ em_hash_mc_addr(struct em_hw *hw, * hash_value - Multicast address hash value *****************************************************************************/ void -em_mta_set(struct em_hw *hw, - uint32_t hash_value) +em_mta_set(struct em_hw *hw, uint32_t hash_value) { - uint32_t hash_bit, hash_reg; - uint32_t mta; - uint32_t temp; - - /* The MTA is a register array of 128 32-bit registers. - * It is treated like an array of 4096 bits. We want to set - * bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The register is determined by the - * upper 7 bits of the hash value and the bit within that - * register are determined by the lower 5 bits of the value. - */ - hash_reg = (hash_value >> 5) & 0x7F; - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - hash_reg &= 0x1F; - - hash_bit = hash_value & 0x1F; - - mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); - - mta |= (1 << hash_bit); - - /* If we are on an 82544 and we are trying to write an odd offset - * in the MTA, save off the previous entry before writing and - * restore the old value after writing. - */ - if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { - temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); - E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); - E1000_WRITE_FLUSH(hw); - } else { - E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); - } + uint32_t hash_bit, hash_reg; + uint32_t mta; + uint32_t temp; + /* + * The MTA is a register array of 128 32-bit registers. It is treated + * like an array of 4096 bits. We want to set bit + * BitArray[hash_value]. So we figure out what register the bit is + * in, read it, OR in the new bit, then write back the new value. + * The register is determined by the upper 7 bits of the hash value + * and the bit within that register are determined by the lower 5 + * bits of the value. + */ + hash_reg = (hash_value >> 5) & 0x7F; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + hash_reg &= 0x1F; + + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); + + mta |= (1 << hash_bit); + /* + * If we are on an 82544 and we are trying to write an odd offset in + * the MTA, save off the previous entry before writing and restore + * the old value after writing. + */ + if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + E1000_WRITE_FLUSH(hw); + } else { + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + } } /****************************************************************************** @@ -6030,54 +6169,50 @@ em_mta_set(struct em_hw *hw, * index - Receive address register to write *****************************************************************************/ void -em_rar_set(struct em_hw *hw, - uint8_t *addr, - uint32_t index) +em_rar_set(struct em_hw *hw, uint8_t *addr, uint32_t index) { - uint32_t rar_low, rar_high; - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((uint32_t) addr[0] | - ((uint32_t) addr[1] << 8) | - ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); - rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); - - /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx - * unit hang. - * - * Description: - * If there are any Rx frames queued up or otherwise present in the HW - * before RSS is enabled, and then we enable RSS, the HW Rx unit will - * hang. To work around this issue, we have to disable receives and - * flush out all Rx frames before we enable RSS. To do so, we modify we - * redirect all Rx traffic to manageability and then reset the HW. - * This flushes away Rx frames, and (since the redirections to - * manageability persists across resets) keeps new ones from coming in - * while we work. Then, we clear the Address Valid AV bit for all MAC - * addresses and undo the re-direction to manageability. - * Now, frames are coming in again, but the MAC won't accept them, so - * far so good. We now proceed to initialize RSS (if necessary) and - * configure the Rx unit. Last, we re-enable the AV bits and continue - * on our merry way. - */ - switch (hw->mac_type) { - case em_82571: - case em_82572: - case em_80003es2lan: - if (hw->leave_av_bit_off == TRUE) - break; - default: - /* Indicate to hardware the Address is Valid. */ - rar_high |= E1000_RAH_AV; - break; - } - - E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); - E1000_WRITE_FLUSH(hw); + uint32_t rar_low, rar_high; + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | + ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); + rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); + /* + * Disable Rx and flush all Rx frames before enabling RSS to avoid Rx + * unit hang. + * + * Description: If there are any Rx frames queued up or otherwise + * present in the HW before RSS is enabled, and then we enable RSS, + * the HW Rx unit will hang. To work around this issue, we have to + * disable receives and flush out all Rx frames before we enable RSS. + * To do so, we modify we redirect all Rx traffic to manageability + * and then reset the HW. This flushes away Rx frames, and (since the + * redirections to manageability persists across resets) keeps new + * ones from coming in while we work. Then, we clear the Address + * Valid AV bit for all MAC addresses and undo the re-direction to + * manageability. Now, frames are coming in again, but the MAC won't + * accept them, so far so good. We now proceed to initialize RSS (if + * necessary) and configure the Rx unit. Last, we re-enable the AV + * bits and continue on our merry way. + */ + switch (hw->mac_type) { + case em_82571: + case em_82572: + case em_80003es2lan: + if (hw->leave_av_bit_off == TRUE) + break; + default: + /* Indicate to hardware the Address is Valid. */ + rar_high |= E1000_RAH_AV; + break; + } + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(hw); } /****************************************************************************** @@ -6088,117 +6223,117 @@ em_rar_set(struct em_hw *hw, STATIC void em_clear_vfta(struct em_hw *hw) { - uint32_t offset; - uint32_t vfta_value = 0; - uint32_t vfta_offset = 0; - uint32_t vfta_bit_in_reg = 0; - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - return; - - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { - if (hw->mng_cookie.vlan_id != 0) { - /* The VFTA is a 4096b bit-field, each identifying a single VLAN - * ID. The following operations determine which 32b entry - * (i.e. offset) into the array we want to set the VLAN ID - * (i.e. bit) of the manageability unit. */ - vfta_offset = (hw->mng_cookie.vlan_id >> - E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK; - vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & - E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - } - } - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of the - * manageability unit */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(hw); - } + uint32_t offset; + uint32_t vfta_value = 0; + uint32_t vfta_offset = 0; + uint32_t vfta_bit_in_reg = 0; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + return; + + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { + if (hw->mng_cookie.vlan_id != 0) { + /* + * The VFTA is a 4096b bit-field, each identifying a + * single VLAN ID. The following operations + * determine which 32b entry (i.e. offset) into the + * array we want to set the VLAN ID (i.e. bit) of the + * manageability unit. + */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; + + vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* + * If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of + * the manageability unit + */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); + } } STATIC int32_t -em_id_led_init(struct em_hw * hw) +em_id_led_init(struct em_hw *hw) { - uint32_t ledctl; - const uint32_t ledctl_mask = 0x000000FF; - const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - uint16_t eeprom_data, i, temp; - const uint16_t led_mask = 0x0F; - - DEBUGFUNC("em_id_led_init"); - - if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) { - /* Nothing to do */ - return E1000_SUCCESS; - } - - ledctl = E1000_READ_REG(hw, LEDCTL); - hw->ledctl_default = ledctl; - hw->ledctl_mode1 = hw->ledctl_default; - hw->ledctl_mode2 = hw->ledctl_default; - - if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if ((hw->mac_type == em_82573) && - (eeprom_data == ID_LED_RESERVED_82573)) - eeprom_data = ID_LED_DEFAULT_82573; - else if ((eeprom_data == ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) { - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - eeprom_data = ID_LED_DEFAULT_ICH8LAN; - else - eeprom_data = ID_LED_DEFAULT; - } - - for (i = 0; i < 4; i++) { - temp = (eeprom_data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - return E1000_SUCCESS; + uint32_t ledctl; + const uint32_t ledctl_mask = 0x000000FF; + const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + uint16_t eeprom_data, i, temp; + const uint16_t led_mask = 0x0F; + DEBUGFUNC("em_id_led_init"); + + if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) { + /* Nothing to do */ + return E1000_SUCCESS; + } + ledctl = E1000_READ_REG(hw, LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if ((hw->mac_type == em_82573) && + (eeprom_data == ID_LED_RESERVED_82573)) + eeprom_data = ID_LED_DEFAULT_82573; + else if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + eeprom_data = ID_LED_DEFAULT_ICH8LAN; + else + eeprom_data = ID_LED_DEFAULT; + } + for (i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return E1000_SUCCESS; } /****************************************************************************** @@ -6209,103 +6344,103 @@ em_id_led_init(struct em_hw * hw) void em_clear_hw_cntrs(struct em_hw *hw) { - volatile uint32_t temp; - - temp = E1000_READ_REG(hw, CRCERRS); - temp = E1000_READ_REG(hw, SYMERRS); - temp = E1000_READ_REG(hw, MPC); - temp = E1000_READ_REG(hw, SCC); - temp = E1000_READ_REG(hw, ECOL); - temp = E1000_READ_REG(hw, MCC); - temp = E1000_READ_REG(hw, LATECOL); - temp = E1000_READ_REG(hw, COLC); - temp = E1000_READ_REG(hw, DC); - temp = E1000_READ_REG(hw, SEC); - temp = E1000_READ_REG(hw, RLEC); - temp = E1000_READ_REG(hw, XONRXC); - temp = E1000_READ_REG(hw, XONTXC); - temp = E1000_READ_REG(hw, XOFFRXC); - temp = E1000_READ_REG(hw, XOFFTXC); - temp = E1000_READ_REG(hw, FCRUC); - - if (hw->mac_type != em_ich8lan && - hw->mac_type != em_ich9lan && - hw->mac_type != em_ich10lan) { - temp = E1000_READ_REG(hw, PRC64); - temp = E1000_READ_REG(hw, PRC127); - temp = E1000_READ_REG(hw, PRC255); - temp = E1000_READ_REG(hw, PRC511); - temp = E1000_READ_REG(hw, PRC1023); - temp = E1000_READ_REG(hw, PRC1522); - } - - temp = E1000_READ_REG(hw, GPRC); - temp = E1000_READ_REG(hw, BPRC); - temp = E1000_READ_REG(hw, MPRC); - temp = E1000_READ_REG(hw, GPTC); - temp = E1000_READ_REG(hw, GORCL); - temp = E1000_READ_REG(hw, GORCH); - temp = E1000_READ_REG(hw, GOTCL); - temp = E1000_READ_REG(hw, GOTCH); - temp = E1000_READ_REG(hw, RNBC); - temp = E1000_READ_REG(hw, RUC); - temp = E1000_READ_REG(hw, RFC); - temp = E1000_READ_REG(hw, ROC); - temp = E1000_READ_REG(hw, RJC); - temp = E1000_READ_REG(hw, TORL); - temp = E1000_READ_REG(hw, TORH); - temp = E1000_READ_REG(hw, TOTL); - temp = E1000_READ_REG(hw, TOTH); - temp = E1000_READ_REG(hw, TPR); - temp = E1000_READ_REG(hw, TPT); - - if (hw->mac_type != em_ich8lan && - hw->mac_type != em_ich9lan && - hw->mac_type != em_ich10lan) { - temp = E1000_READ_REG(hw, PTC64); - temp = E1000_READ_REG(hw, PTC127); - temp = E1000_READ_REG(hw, PTC255); - temp = E1000_READ_REG(hw, PTC511); - temp = E1000_READ_REG(hw, PTC1023); - temp = E1000_READ_REG(hw, PTC1522); - } - - temp = E1000_READ_REG(hw, MPTC); - temp = E1000_READ_REG(hw, BPTC); - - if (hw->mac_type < em_82543) return; - - temp = E1000_READ_REG(hw, ALGNERRC); - temp = E1000_READ_REG(hw, RXERRC); - temp = E1000_READ_REG(hw, TNCRS); - temp = E1000_READ_REG(hw, CEXTERR); - temp = E1000_READ_REG(hw, TSCTC); - temp = E1000_READ_REG(hw, TSCTFC); - - if (hw->mac_type <= em_82544 - || hw->mac_type == em_icp_xxxx) return; - - temp = E1000_READ_REG(hw, MGTPRC); - temp = E1000_READ_REG(hw, MGTPDC); - temp = E1000_READ_REG(hw, MGTPTC); - - if (hw->mac_type <= em_82547_rev_2) return; - - temp = E1000_READ_REG(hw, IAC); - temp = E1000_READ_REG(hw, ICRXOC); - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) - return; - - temp = E1000_READ_REG(hw, ICRXPTC); - temp = E1000_READ_REG(hw, ICRXATC); - temp = E1000_READ_REG(hw, ICTXPTC); - temp = E1000_READ_REG(hw, ICTXATC); - temp = E1000_READ_REG(hw, ICTXQEC); - temp = E1000_READ_REG(hw, ICTXQMTC); - temp = E1000_READ_REG(hw, ICRXDMTC); + volatile uint32_t temp; + temp = E1000_READ_REG(hw, CRCERRS); + temp = E1000_READ_REG(hw, SYMERRS); + temp = E1000_READ_REG(hw, MPC); + temp = E1000_READ_REG(hw, SCC); + temp = E1000_READ_REG(hw, ECOL); + temp = E1000_READ_REG(hw, MCC); + temp = E1000_READ_REG(hw, LATECOL); + temp = E1000_READ_REG(hw, COLC); + temp = E1000_READ_REG(hw, DC); + temp = E1000_READ_REG(hw, SEC); + temp = E1000_READ_REG(hw, RLEC); + temp = E1000_READ_REG(hw, XONRXC); + temp = E1000_READ_REG(hw, XONTXC); + temp = E1000_READ_REG(hw, XOFFRXC); + temp = E1000_READ_REG(hw, XOFFTXC); + temp = E1000_READ_REG(hw, FCRUC); + + if (hw->mac_type != em_ich8lan && + hw->mac_type != em_ich9lan && + hw->mac_type != em_ich10lan) { + temp = E1000_READ_REG(hw, PRC64); + temp = E1000_READ_REG(hw, PRC127); + temp = E1000_READ_REG(hw, PRC255); + temp = E1000_READ_REG(hw, PRC511); + temp = E1000_READ_REG(hw, PRC1023); + temp = E1000_READ_REG(hw, PRC1522); + } + temp = E1000_READ_REG(hw, GPRC); + temp = E1000_READ_REG(hw, BPRC); + temp = E1000_READ_REG(hw, MPRC); + temp = E1000_READ_REG(hw, GPTC); + temp = E1000_READ_REG(hw, GORCL); + temp = E1000_READ_REG(hw, GORCH); + temp = E1000_READ_REG(hw, GOTCL); + temp = E1000_READ_REG(hw, GOTCH); + temp = E1000_READ_REG(hw, RNBC); + temp = E1000_READ_REG(hw, RUC); + temp = E1000_READ_REG(hw, RFC); + temp = E1000_READ_REG(hw, ROC); + temp = E1000_READ_REG(hw, RJC); + temp = E1000_READ_REG(hw, TORL); + temp = E1000_READ_REG(hw, TORH); + temp = E1000_READ_REG(hw, TOTL); + temp = E1000_READ_REG(hw, TOTH); + temp = E1000_READ_REG(hw, TPR); + temp = E1000_READ_REG(hw, TPT); + + if (hw->mac_type != em_ich8lan && + hw->mac_type != em_ich9lan && + hw->mac_type != em_ich10lan) { + temp = E1000_READ_REG(hw, PTC64); + temp = E1000_READ_REG(hw, PTC127); + temp = E1000_READ_REG(hw, PTC255); + temp = E1000_READ_REG(hw, PTC511); + temp = E1000_READ_REG(hw, PTC1023); + temp = E1000_READ_REG(hw, PTC1522); + } + temp = E1000_READ_REG(hw, MPTC); + temp = E1000_READ_REG(hw, BPTC); + + if (hw->mac_type < em_82543) + return; + + temp = E1000_READ_REG(hw, ALGNERRC); + temp = E1000_READ_REG(hw, RXERRC); + temp = E1000_READ_REG(hw, TNCRS); + temp = E1000_READ_REG(hw, CEXTERR); + temp = E1000_READ_REG(hw, TSCTC); + temp = E1000_READ_REG(hw, TSCTFC); + + if (hw->mac_type <= em_82544 + || hw->mac_type == em_icp_xxxx) + return; + + temp = E1000_READ_REG(hw, MGTPRC); + temp = E1000_READ_REG(hw, MGTPDC); + temp = E1000_READ_REG(hw, MGTPTC); + + if (hw->mac_type <= em_82547_rev_2) + return; + + temp = E1000_READ_REG(hw, IAC); + temp = E1000_READ_REG(hw, ICRXOC); + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) + return; + + temp = E1000_READ_REG(hw, ICRXPTC); + temp = E1000_READ_REG(hw, ICRXATC); + temp = E1000_READ_REG(hw, ICTXPTC); + temp = E1000_READ_REG(hw, ICTXATC); + temp = E1000_READ_REG(hw, ICTXQEC); + temp = E1000_READ_REG(hw, ICTXQMTC); + temp = E1000_READ_REG(hw, ICRXDMTC); } /****************************************************************************** @@ -6316,76 +6451,76 @@ em_clear_hw_cntrs(struct em_hw *hw) * mac_addr - The Ethernet destination address of the frame in question *****************************************************************************/ void -em_tbi_adjust_stats(struct em_hw *hw, - struct em_hw_stats *stats, - uint32_t frame_len, - uint8_t *mac_addr) +em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, + uint32_t frame_len, uint8_t *mac_addr) { - uint64_t carry_bit; - - /* First adjust the frame length. */ - frame_len--; - /* We need to adjust the statistics counters, since the hardware - * counters overcount this packet as a CRC error and undercount - * the packet as a good packet - */ - /* This packet should not be counted as a CRC error. */ - stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ - stats->gprc++; - - /* Adjust the Good Octets received counters */ - carry_bit = 0x80000000 & stats->gorcl; - stats->gorcl += frame_len; - /* If the high bit of Gorcl (the low 32 bits of the Good Octets - * Received Count) was one before the addition, - * AND it is zero after, then we lost the carry out, - * need to add one to Gorch (Good Octets Received Count High). - * This could be simplified if all environments supported - * 64-bit integers. - */ - if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) - stats->gorch++; - /* Is this a broadcast or multicast? Check broadcast first, - * since the test for a multicast frame will test positive on - * a broadcast frame. - */ - if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) - /* Broadcast packet */ - stats->bprc++; - else if (*mac_addr & 0x01) - /* Multicast packet */ - stats->mprc++; - - if (frame_len == hw->max_frame_size) { - /* In this case, the hardware has overcounted the number of - * oversize frames. - */ - if (stats->roc > 0) - stats->roc--; - } - - /* Adjust the bin counters when the extra byte put the frame in the - * wrong bin. Remember that the frame_len was adjusted above. - */ - if (frame_len == 64) { - stats->prc64++; - stats->prc127--; - } else if (frame_len == 127) { - stats->prc127++; - stats->prc255--; - } else if (frame_len == 255) { - stats->prc255++; - stats->prc511--; - } else if (frame_len == 511) { - stats->prc511++; - stats->prc1023--; - } else if (frame_len == 1023) { - stats->prc1023++; - stats->prc1522--; - } else if (frame_len == 1522) { - stats->prc1522++; - } + uint64_t carry_bit; + /* First adjust the frame length. */ + frame_len--; + /* + * We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount the + * packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* + * If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, AND it is zero after, + * then we lost the carry out, need to add one to Gorch (Good Octets + * Received Count High). This could be simplified if all environments + * supported 64-bit integers. + */ + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* + * Is this a broadcast or multicast? Check broadcast first, since + * the test for a multicast frame will test positive on a broadcast + * frame. + */ + if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if (frame_len == hw->max_frame_size) { + /* + * In this case, the hardware has overcounted the number of + * oversize frames. + */ + if (stats->roc > 0) + stats->roc--; + } + /* + * Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } } /****************************************************************************** @@ -6396,77 +6531,75 @@ em_tbi_adjust_stats(struct em_hw *hw, void em_get_bus_info(struct em_hw *hw) { - int32_t ret_val; - uint16_t pci_ex_link_status; - uint32_t status; - - switch (hw->mac_type) { - case em_82542_rev2_0: - case em_82542_rev2_1: - hw->bus_type = em_bus_type_unknown; - hw->bus_speed = em_bus_speed_unknown; - hw->bus_width = em_bus_width_unknown; - break; - case em_icp_xxxx: - hw->bus_type = em_bus_type_cpp; - hw->bus_speed = em_bus_speed_unknown; - hw->bus_width = em_bus_width_unknown; - break; - case em_82571: - case em_82572: - case em_82573: - case em_82574: - case em_82575: - case em_80003es2lan: - hw->bus_type = em_bus_type_pci_express; - hw->bus_speed = em_bus_speed_2500; - ret_val = em_read_pcie_cap_reg(hw, - PCI_EX_LINK_STATUS, - &pci_ex_link_status); - if (ret_val) - hw->bus_width = em_bus_width_unknown; - else - hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> - PCI_EX_LINK_WIDTH_SHIFT; - break; - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - hw->bus_type = em_bus_type_pci_express; - hw->bus_speed = em_bus_speed_2500; - hw->bus_width = em_bus_width_pciex_1; - break; - default: - status = E1000_READ_REG(hw, STATUS); - hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? - em_bus_type_pcix : em_bus_type_pci; - - if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { - hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? - em_bus_speed_66 : em_bus_speed_120; - } else if (hw->bus_type == em_bus_type_pci) { - hw->bus_speed = (status & E1000_STATUS_PCI66) ? - em_bus_speed_66 : em_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - hw->bus_speed = em_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - hw->bus_speed = em_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - hw->bus_speed = em_bus_speed_133; - break; - default: - hw->bus_speed = em_bus_speed_reserved; - break; - } - } - hw->bus_width = (status & E1000_STATUS_BUS64) ? - em_bus_width_64 : em_bus_width_32; - break; - } + int32_t ret_val; + uint16_t pci_ex_link_status; + uint32_t status; + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + hw->bus_type = em_bus_type_unknown; + hw->bus_speed = em_bus_speed_unknown; + hw->bus_width = em_bus_width_unknown; + break; + case em_icp_xxxx: + hw->bus_type = em_bus_type_cpp; + hw->bus_speed = em_bus_speed_unknown; + hw->bus_width = em_bus_width_unknown; + break; + case em_82571: + case em_82572: + case em_82573: + case em_82574: + case em_82575: + case em_80003es2lan: + hw->bus_type = em_bus_type_pci_express; + hw->bus_speed = em_bus_speed_2500; + ret_val = em_read_pcie_cap_reg(hw, PCI_EX_LINK_STATUS, + &pci_ex_link_status); + if (ret_val) + hw->bus_width = em_bus_width_unknown; + else + hw->bus_width = (pci_ex_link_status & + PCI_EX_LINK_WIDTH_MASK) >> PCI_EX_LINK_WIDTH_SHIFT; + break; + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + hw->bus_type = em_bus_type_pci_express; + hw->bus_speed = em_bus_speed_2500; + hw->bus_width = em_bus_width_pciex_1; + break; + default: + status = E1000_READ_REG(hw, STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + em_bus_type_pcix : em_bus_type_pci; + + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? + em_bus_speed_66 : em_bus_speed_120; + } else if (hw->bus_type == em_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + em_bus_speed_66 : em_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = em_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = em_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = em_bus_speed_133; + break; + default: + hw->bus_speed = em_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + em_bus_width_64 : em_bus_width_32; + break; + } } /****************************************************************************** @@ -6478,15 +6611,12 @@ em_get_bus_info(struct em_hw *hw) * value - value to write *****************************************************************************/ STATIC void -em_write_reg_io(struct em_hw *hw, - uint32_t offset, - uint32_t value) +em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value) { - unsigned long io_addr = hw->io_base; - unsigned long io_data = hw->io_base + 4; - - em_io_write(hw, io_addr, offset); - em_io_write(hw, io_data, value); + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; + em_io_write(hw, io_addr, offset); + em_io_write(hw, io_data, value); } /****************************************************************************** @@ -6505,179 +6635,186 @@ em_write_reg_io(struct em_hw *hw, * For IGP phy's, the function calculates the range by the AGC registers. *****************************************************************************/ STATIC int32_t -em_get_cable_length(struct em_hw *hw, - uint16_t *min_length, - uint16_t *max_length) +em_get_cable_length(struct em_hw *hw, uint16_t *min_length, + uint16_t *max_length) { - int32_t ret_val; - uint16_t agc_value = 0; - uint16_t i, phy_data; - uint16_t cable_length; - - DEBUGFUNC("em_get_cable_length"); - - *min_length = *max_length = 0; - - /* Use old method for Phy older than IGP */ - if (hw->phy_type == em_phy_m88 || - hw->phy_type == em_phy_oem) { - - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - /* Convert the enum value to ranged values */ - switch (cable_length) { - case em_cable_length_50: - *min_length = 0; - *max_length = em_igp_cable_length_50; - break; - case em_cable_length_50_80: - *min_length = em_igp_cable_length_50; - *max_length = em_igp_cable_length_80; - break; - case em_cable_length_80_110: - *min_length = em_igp_cable_length_80; - *max_length = em_igp_cable_length_110; - break; - case em_cable_length_110_140: - *min_length = em_igp_cable_length_110; - *max_length = em_igp_cable_length_140; - break; - case em_cable_length_140: - *min_length = em_igp_cable_length_140; - *max_length = em_igp_cable_length_170; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == em_phy_gg82563) { - ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, - &phy_data); - if (ret_val) - return ret_val; - cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; - - switch (cable_length) { - case em_gg_cable_length_60: - *min_length = 0; - *max_length = em_igp_cable_length_60; - break; - case em_gg_cable_length_60_115: - *min_length = em_igp_cable_length_60; - *max_length = em_igp_cable_length_115; - break; - case em_gg_cable_length_115_150: - *min_length = em_igp_cable_length_115; - *max_length = em_igp_cable_length_150; - break; - case em_gg_cable_length_150: - *min_length = em_igp_cable_length_150; - *max_length = em_igp_cable_length_180; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ - uint16_t cur_agc_value; - uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D}; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - - ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - - /* Value bound check. */ - if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc_value == 0)) - return -E1000_ERR_PHY; - - agc_value += cur_agc_value; - - /* Update minimal AGC value. */ - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; - } - - /* Remove the minimal AGC result for length < 50m */ - if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { - agc_value -= min_agc_value; - - /* Get the average length of the remaining 3 channels */ - agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); - } else { - /* Get the average length of all the 4 channels. */ - agc_value /= IGP01E1000_PHY_CHANNEL_NUM; - } - - /* Set the range of the calculated length. */ - *min_length = ((em_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) > 0) ? - (em_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) : 0; - *max_length = em_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; - } else if (hw->phy_type == em_phy_igp_2 || - hw->phy_type == em_phy_igp_3) { - uint16_t cur_agc_index, max_agc_index = 0; - uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; - uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = - {IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D}; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* Getting bits 15:9, which represent the combination of course and - * fine gain values. The result is a number that can be put into - * the lookup table to obtain the approximate cable length. */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (em_igp_2_cable_length_table[min_agc_index] > - em_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (em_igp_2_cable_length_table[max_agc_index] < - em_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += em_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (em_igp_2_cable_length_table[min_agc_index] + - em_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - *max_length = agc_value + IGP02E1000_AGC_RANGE; - } - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t agc_value = 0; + uint16_t i, phy_data; + uint16_t cable_length; + DEBUGFUNC("em_get_cable_length"); + + *min_length = *max_length = 0; + + /* Use old method for Phy older than IGP */ + if (hw->phy_type == em_phy_m88 || + hw->phy_type == em_phy_oem) { + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + /* Convert the enum value to ranged values */ + switch (cable_length) { + case em_cable_length_50: + *min_length = 0; + *max_length = em_igp_cable_length_50; + break; + case em_cable_length_50_80: + *min_length = em_igp_cable_length_50; + *max_length = em_igp_cable_length_80; + break; + case em_cable_length_80_110: + *min_length = em_igp_cable_length_80; + *max_length = em_igp_cable_length_110; + break; + case em_cable_length_110_140: + *min_length = em_igp_cable_length_110; + *max_length = em_igp_cable_length_140; + break; + case em_cable_length_140: + *min_length = em_igp_cable_length_140; + *max_length = em_igp_cable_length_170; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == em_phy_gg82563) { + ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; + + switch (cable_length) { + case em_gg_cable_length_60: + *min_length = 0; + *max_length = em_igp_cable_length_60; + break; + case em_gg_cable_length_60_115: + *min_length = em_igp_cable_length_60; + *max_length = em_igp_cable_length_115; + break; + case em_gg_cable_length_115_150: + *min_length = em_igp_cable_length_115; + *max_length = em_igp_cable_length_150; + break; + case em_gg_cable_length_150: + *min_length = em_igp_cable_length_150; + *max_length = em_igp_cable_length_180; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ + uint16_t cur_agc_value; + uint16_t min_agc_value = + IGP01E1000_AGC_LENGTH_TABLE_SIZE; + uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D}; + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, agc_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + cur_agc_value = phy_data >> + IGP01E1000_AGC_LENGTH_SHIFT; + + /* Value bound check. */ + if ((cur_agc_value >= + IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) + return -E1000_ERR_PHY; + + agc_value += cur_agc_value; + + /* Update minimal AGC value. */ + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * + em_igp_cable_length_50) { + agc_value -= min_agc_value; + + /* + * Get the average length of the remaining 3 channels + */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Get the average length of all the 4 channels. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + /* Set the range of the calculated length. */ + *min_length = ((em_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) > 0) ? + (em_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) : 0; + *max_length = em_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + } else if (hw->phy_type == em_phy_igp_2 || + hw->phy_type == em_phy_igp_3) { + uint16_t cur_agc_index, max_agc_index = 0; + uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; + uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = + {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, IGP02E1000_PHY_AGC_D}; + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, agc_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + /* + * Getting bits 15:9, which represent the combination + * of course and fine gain values. The result is a + * number that can be put into the lookup table to + * obtain the approximate cable length. + */ + cur_agc_index = (phy_data >> + IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) + || (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (em_igp_2_cable_length_table[min_agc_index] > + em_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (em_igp_2_cable_length_table[max_agc_index] < + em_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += em_igp_2_cable_length_table + [cur_agc_index]; + } + + agc_value -= (em_igp_2_cable_length_table[min_agc_index] + + em_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + /* + * Calculate cable length with the error range of +/- 10 + * meters. + */ + *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + *max_length = agc_value + IGP02E1000_AGC_RANGE; + } + return E1000_SUCCESS; } /****************************************************************************** @@ -6698,36 +6835,35 @@ em_get_cable_length(struct em_hw *hw, STATIC int32_t em_check_downshift(struct em_hw *hw) { - int32_t ret_val; - uint16_t phy_data; - - DEBUGFUNC("em_check_downshift"); - - if (hw->phy_type == em_phy_igp || - hw->phy_type == em_phy_igp_3 || - hw->phy_type == em_phy_igp_2) { - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; - } else if ((hw->phy_type == em_phy_m88) || - (hw->phy_type == em_phy_gg82563) || - (hw->phy_type == em_phy_oem)) { - ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> - M88E1000_PSSR_DOWNSHIFT_SHIFT; - } else if (hw->phy_type == em_phy_ife) { - /* em_phy_ife supports 10/100 speed only */ - hw->speed_downgraded = FALSE; - } - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_check_downshift"); + + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & + IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; + } else if ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563) || + (hw->phy_type == em_phy_oem)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> + M88E1000_PSSR_DOWNSHIFT_SHIFT; + } else if (hw->phy_type == em_phy_ife) { + /* em_phy_ife supports 10/100 speed only */ + hw->speed_downgraded = FALSE; + } + return E1000_SUCCESS; } /***************************************************************************** @@ -6741,185 +6877,189 @@ em_check_downshift(struct em_hw *hw) * E1000_SUCCESS at any other case. * ****************************************************************************/ - STATIC int32_t -em_config_dsp_after_link_change(struct em_hw *hw, - boolean_t link_up) +em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up) { - int32_t ret_val; - uint16_t phy_data, phy_saved_data, speed, duplex, i; - uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D}; - uint16_t min_length, max_length; - - DEBUGFUNC("em_config_dsp_after_link_change"); - - if (hw->phy_type != em_phy_igp) - return E1000_SUCCESS; - - if (link_up) { - ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (speed == SPEED_1000) { - - ret_val = em_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - if ((hw->dsp_config_state == em_dsp_config_enabled) && - min_length >= em_igp_cable_length_50) { - - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = em_read_phy_reg(hw, dsp_reg_array[i], - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - - ret_val = em_write_phy_reg(hw, dsp_reg_array[i], - phy_data); - if (ret_val) - return ret_val; - } - hw->dsp_config_state = em_dsp_config_activated; - } - - if ((hw->ffe_config_state == em_ffe_config_enabled) && - (min_length < em_igp_cable_length_50)) { - - uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; - uint32_t idle_errs = 0; - - /* clear previous idle error counts */ - ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - for (i = 0; i < ffe_idle_err_timeout; i++) { - usec_delay(1000); - ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { - hw->ffe_config_state = em_ffe_config_active; - - ret_val = em_write_phy_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) - return ret_val; - break; - } - - if (idle_errs) - ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; - } - } - } - } else { - if (hw->dsp_config_state == em_dsp_config_activated) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - msec_delay_irq(20); - - ret_val = em_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; - - ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if (ret_val) - return ret_val; - } - - ret_val = em_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - msec_delay_irq(20); - - /* Now enable the transmitter */ - ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->dsp_config_state = em_dsp_config_enabled; - } - - if (hw->ffe_config_state == em_ffe_config_active) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - msec_delay_irq(20); - - ret_val = em_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) - return ret_val; - - ret_val = em_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - msec_delay_irq(20); - - /* Now enable the transmitter */ - ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->ffe_config_state = em_ffe_config_enabled; - } - } - return E1000_SUCCESS; + int32_t ret_val; + uint16_t phy_data, phy_saved_data, speed, duplex, i; + uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_PARAM_A, IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, IGP01E1000_PHY_AGC_PARAM_D}; + uint16_t min_length, max_length; + DEBUGFUNC("em_config_dsp_after_link_change"); + + if (hw->phy_type != em_phy_igp) + return E1000_SUCCESS; + + if (link_up) { + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed == SPEED_1000) { + + ret_val = em_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; + + if ((hw->dsp_config_state == em_dsp_config_enabled) && + min_length >= em_igp_cable_length_50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; + i++) { + ret_val = em_read_phy_reg(hw, + dsp_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + phy_data &= + ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = em_write_phy_reg(hw, + dsp_reg_array[i], phy_data); + if (ret_val) + return ret_val; + } + hw->dsp_config_state = em_dsp_config_activated; + } + if ((hw->ffe_config_state == em_ffe_config_enabled) && + (min_length < em_igp_cable_length_50)) { + + uint16_t ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_20; + uint32_t idle_errs = 0; + /* clear previous idle error counts */ + ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + usec_delay(1000); + ret_val = em_read_phy_reg(hw, + PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + idle_errs += (phy_data & + SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > + SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + hw->ffe_config_state = + em_ffe_config_active; + + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + return ret_val; + break; + } + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } + } + } else { + if (hw->dsp_config_state == em_dsp_config_activated) { + /* + * Save off the current value of register 0x2F5B to + * be restored at the end of the routines. + */ + ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= + IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = em_write_phy_reg(hw, + dsp_reg_array[i], phy_data); + if (ret_val) + return ret_val; + } + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->dsp_config_state = em_dsp_config_enabled; + } + if (hw->ffe_config_state == em_ffe_config_active) { + /* + * Save off the current value of register 0x2F5B to + * be restored at the end of the routines. + */ + ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->ffe_config_state = em_ffe_config_enabled; + } + } + return E1000_SUCCESS; } /***************************************************************************** @@ -6933,32 +7073,32 @@ em_config_dsp_after_link_change(struct em_hw *hw, static int32_t em_set_phy_mode(struct em_hw *hw) { - int32_t ret_val; - uint16_t eeprom_data; - - DEBUGFUNC("em_set_phy_mode"); - - if ((hw->mac_type == em_82545_rev_3) && - (hw->media_type == em_media_type_copper)) { - ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if (ret_val) - return ret_val; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if (ret_val) - return ret_val; - - hw->phy_reset_disable = FALSE; - } - } - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t eeprom_data; + DEBUGFUNC("em_set_phy_mode"); + + if ((hw->mac_type == em_82545_rev_3) && + (hw->media_type == em_media_type_copper)) { + ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, + &eeprom_data); + if (ret_val) { + return ret_val; + } + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = em_write_phy_reg(hw, + M88E1000_PHY_PAGE_SELECT, 0x000B); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, + M88E1000_PHY_GEN_CONTROL, 0x8104); + if (ret_val) + return ret_val; + + hw->phy_reset_disable = FALSE; + } + } + return E1000_SUCCESS; } /***************************************************************************** @@ -6974,127 +7114,133 @@ em_set_phy_mode(struct em_hw *hw) * E1000_SUCCESS at any other case. * ****************************************************************************/ - STATIC int32_t -em_set_d3_lplu_state(struct em_hw *hw, - boolean_t active) +em_set_d3_lplu_state(struct em_hw *hw, boolean_t active) { - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC("em_set_d3_lplu_state"); - - if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 - && hw->phy_type != em_phy_igp_3) - return E1000_SUCCESS; - - /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used for - * Dx transitions and states */ - if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { - ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if (ret_val) - return ret_val; - } else if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - /* MAC writes into PHY register based on the state transition - * and start auto-negotiation. SW driver can overwrite the settings - * in CSR PHY power control E1000_PHY_CTRL register. */ - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { - ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { - phy_data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == em_smart_speed_on) { - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == em_smart_speed_off) { - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - - } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - - if (hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { - phy_data |= IGP01E1000_GMII_FLEX_SPD; - ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data |= IGP02E1000_PM_D3_LPLU; - ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_set_d3_lplu_state"); + + if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 + && hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + /* + * During driver activity LPLU should not be used or it will attain + * link from the lowest speeds starting from 10Mbps. The capability + * is used for Dx transitions and states + */ + if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { + ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); + if (ret_val) + return ret_val; + } else if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + /* + * MAC writes into PHY register based on the state transition + * and start auto-negotiation. SW driver can overwrite the + * settings in CSR PHY power control E1000_PHY_CTRL register. + */ + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { + ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, + &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } else { + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = em_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + } + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (hw->smart_speed == em_smart_speed_on) { + ret_val = em_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == em_smart_speed_off) { + ret_val = em_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + } + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) + || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { + phy_data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } else { + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data |= IGP02E1000_PM_D3_LPLU; + ret_val = em_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; } /***************************************************************************** @@ -7110,97 +7256,98 @@ em_set_d3_lplu_state(struct em_hw *hw, * E1000_SUCCESS at any other case. * ****************************************************************************/ - STATIC int32_t -em_set_d0_lplu_state(struct em_hw *hw, - boolean_t active) +em_set_d0_lplu_state(struct em_hw *hw, boolean_t active) { - uint32_t phy_ctrl = 0; - int32_t ret_val; - uint16_t phy_data; - DEBUGFUNC("em_set_d0_lplu_state"); - - if (hw->mac_type <= em_82547_rev_2) - return E1000_SUCCESS; - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); - } else { - ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == em_smart_speed_on) { - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == em_smart_speed_off) { - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - - - } else { - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); - } else { - phy_data |= IGP02E1000_PM_D0_LPLU; - ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); - if (ret_val) - return ret_val; - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_set_d0_lplu_state"); + + if (hw->mac_type <= em_82547_rev_2) + return E1000_SUCCESS; + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { + ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, + &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = em_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (hw->smart_speed == em_smart_speed_on) { + ret_val = em_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == em_smart_speed_off) { + ret_val = em_read_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + } + } else { + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data |= IGP02E1000_PM_D0_LPLU; + ret_val = em_write_phy_reg(hw, + IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; } /****************************************************************************** @@ -7211,85 +7358,81 @@ em_set_d0_lplu_state(struct em_hw *hw, static int32_t em_set_vco_speed(struct em_hw *hw) { - int32_t ret_val; - uint16_t default_page = 0; - uint16_t phy_data; - - DEBUGFUNC("em_set_vco_speed"); - - switch (hw->mac_type) { - case em_82545_rev_3: - case em_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - /* Set PHY register 30, page 5, bit 8 to 0 */ - - ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if (ret_val) - return ret_val; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Set PHY register 30, page 4, bit 11 to 1 */ - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PHY_VCO_REG_BIT11; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; + int32_t ret_val; + uint16_t default_page = 0; + uint16_t phy_data; + DEBUGFUNC("em_set_vco_speed"); + + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; } - /***************************************************************************** * This function reads the cookie from ARC ram. * * returns: - E1000_SUCCESS . ****************************************************************************/ STATIC int32_t -em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) +em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer) { - uint8_t i; - uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; - uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; - - length = (length >> 2); - offset = (offset >> 2); - - for (i = 0; i < length; i++) { - *((uint32_t *) buffer + i) = - E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); - } - return E1000_SUCCESS; + uint8_t i; + uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; + uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; + length = (length >> 2); + offset = (offset >> 2); + + for (i = 0; i < length; i++) { + *((uint32_t *) buffer + i) = + E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); + } + return E1000_SUCCESS; } - /***************************************************************************** * This function checks whether the HOST IF is enabled for command operaton * and also checks whether the previous command is completed. @@ -7300,30 +7443,29 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) * - E1000_SUCCESS for success. ****************************************************************************/ STATIC int32_t -em_mng_enable_host_if(struct em_hw * hw) +em_mng_enable_host_if(struct em_hw *hw) { - uint32_t hicr; - uint8_t i; - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, HICR); - if ((hicr & E1000_HICR_EN) == 0) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay_irq(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - return E1000_SUCCESS; + uint32_t hicr; + uint8_t i; + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, HICR); + if ((hicr & E1000_HICR_EN) == 0) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + return E1000_SUCCESS; } /***************************************************************************** @@ -7334,21 +7476,20 @@ em_mng_enable_host_if(struct em_hw * hw) boolean_t em_check_mng_mode(struct em_hw *hw) { - uint32_t fwsm; - - fwsm = E1000_READ_REG(hw, FWSM); - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return TRUE; - } else if ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) - return TRUE; - - return FALSE; + uint32_t fwsm; + fwsm = E1000_READ_REG(hw, FWSM); + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + } else if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + + return FALSE; } /***************************************************************************** @@ -7359,16 +7500,15 @@ em_check_mng_mode(struct em_hw *hw) STATIC uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length) { - uint8_t sum = 0; - uint32_t i; - - if (!buffer) - return 0; + uint8_t sum = 0; + uint32_t i; + if (!buffer) + return 0; - for (i=0; i < length; i++) - sum += buffer[i]; + for (i = 0; i < length; i++) + sum += buffer[i]; - return (uint8_t) (0 - sum); + return (uint8_t) (0 - sum); } /***************************************************************************** @@ -7379,124 +7519,123 @@ em_calculate_mng_checksum(char *buffer, uint32_t length) boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw) { - /* called in init as well as watchdog timer functions */ - - int32_t ret_val, checksum; - boolean_t tx_filter = FALSE; - struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); - uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); - - if (em_check_mng_mode(hw)) { - ret_val = em_mng_enable_host_if(hw); - if (ret_val == E1000_SUCCESS) { - ret_val = em_host_if_read_cookie(hw, buffer); - if (ret_val == E1000_SUCCESS) { - checksum = hdr->checksum; - hdr->checksum = 0; - if ((hdr->signature == E1000_IAMT_SIGNATURE) && - checksum == em_calculate_mng_checksum((char *)buffer, - E1000_MNG_DHCP_COOKIE_LENGTH)) { - if (hdr->status & - E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) - tx_filter = TRUE; - } else - tx_filter = TRUE; - } else - tx_filter = TRUE; - } - } - - hw->tx_pkt_filtering = tx_filter; - return tx_filter; + /* called in init as well as watchdog timer functions */ + int32_t ret_val, checksum; + boolean_t tx_filter = FALSE; + struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); + uint8_t *buffer = (uint8_t *) & (hw->mng_cookie); + if (em_check_mng_mode(hw)) { + ret_val = em_mng_enable_host_if(hw); + if (ret_val == E1000_SUCCESS) { + ret_val = em_host_if_read_cookie(hw, buffer); + if (ret_val == E1000_SUCCESS) { + checksum = hdr->checksum; + hdr->checksum = 0; + if ((hdr->signature == E1000_IAMT_SIGNATURE) && + checksum == em_calculate_mng_checksum( + (char *) buffer, + E1000_MNG_DHCP_COOKIE_LENGTH)) { + if (hdr->status & + E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) + tx_filter = TRUE; + } else + tx_filter = TRUE; + } else + tx_filter = TRUE; + } + } + hw->tx_pkt_filtering = tx_filter; + return tx_filter; } - static int32_t em_polarity_reversal_workaround(struct em_hw *hw) { - int32_t ret_val; - uint16_t mii_status_reg; - uint16_t i; - - /* Polarity reversal workaround for forced 10F/10H links. */ - - /* Disable the transmitter on the PHY */ - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) - return ret_val; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the NO link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be clear. - */ - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; - msec_delay_irq(100); - } - - /* Recommended delay time after link has been lost */ - msec_delay_irq(1000); - - /* Now we will re-enable the transmitter on the PHY */ - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - msec_delay_irq(50); - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) - return ret_val; - msec_delay_irq(50); - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) - return ret_val; - msec_delay_irq(50); - ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) - return ret_val; - - ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be set. - */ - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msec_delay_irq(100); - } - return E1000_SUCCESS; + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t i; + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the NO link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) + break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable the transmitter on the PHY */ + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Link Status bit + * to be set. + */ + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msec_delay_irq(100); + } + return E1000_SUCCESS; } -/*************************************************************************** +/****************************************************************************** * * Disables PCI-Express master access. * @@ -7504,25 +7643,25 @@ em_polarity_reversal_workaround(struct em_hw *hw) * * returns: - none. * - ***************************************************************************/ + *****************************************************************************/ STATIC void em_set_pci_express_master_disable(struct em_hw *hw) { - uint32_t ctrl; + uint32_t ctrl; + DEBUGFUNC("em_set_pci_express_master_disable"); - DEBUGFUNC("em_set_pci_express_master_disable"); + if (hw->bus_type != em_bus_type_pci_express) + return; - if (hw->bus_type != em_bus_type_pci_express) - return; - - ctrl = E1000_READ_REG(hw, CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, CTRL, ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, CTRL, ctrl); } -/******************************************************************************* +/****************************************************************************** * - * Disables PCI-Express master access and verifies there are no pending requests + * Disables PCI-Express master access and verifies there are no pending + * requests * * hw: Struct containing variables accessed by shared code * @@ -7534,32 +7673,31 @@ em_set_pci_express_master_disable(struct em_hw *hw) int32_t em_disable_pciex_master(struct em_hw *hw) { - int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ - - DEBUGFUNC("em_disable_pciex_master"); - - if (hw->bus_type != em_bus_type_pci_express) - return E1000_SUCCESS; - - em_set_pci_express_master_disable(hw); - - while (timeout) { - if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) - break; - else - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return E1000_SUCCESS; + int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ + DEBUGFUNC("em_disable_pciex_master"); + + if (hw->bus_type != em_bus_type_pci_express) + return E1000_SUCCESS; + + em_set_pci_express_master_disable(hw); + + while (timeout) { + if (!(E1000_READ_REG(hw, STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + else + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + return E1000_SUCCESS; } -/******************************************************************************* +/****************************************************************************** * * Check for EEPROM Auto Read bit done. * @@ -7572,44 +7710,46 @@ em_disable_pciex_master(struct em_hw *hw) STATIC int32_t em_get_auto_rd_done(struct em_hw *hw) { - int32_t timeout = AUTO_READ_DONE_TIMEOUT; - - DEBUGFUNC("em_get_auto_rd_done"); - - switch (hw->mac_type) { - default: - msec_delay(5); - break; - case em_82571: - case em_82572: - case em_82573: - case em_82574: - case em_82575: - case em_80003es2lan: - case em_ich8lan: - case em_ich9lan: - case em_ich10lan: - while (timeout) { - if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) - break; - else msec_delay(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); - return -E1000_ERR_RESET; - } - break; - } - - /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. - * Need to wait for PHY configuration completion before accessing NVM - * and PHY. */ - if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) - msec_delay(25); - - return E1000_SUCCESS; + int32_t timeout = AUTO_READ_DONE_TIMEOUT; + DEBUGFUNC("em_get_auto_rd_done"); + + switch (hw->mac_type) { + default: + msec_delay(5); + break; + case em_82571: + case em_82572: + case em_82573: + case em_82574: + case em_82575: + case em_80003es2lan: + case em_ich8lan: + case em_ich9lan: + case em_ich10lan: + while (timeout) { + if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) + break; + else + msec_delay(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Auto read by HW from EEPROM has not" + " completed.\n"); + return -E1000_ERR_RESET; + } + break; + } + /* + * PHY configuration from NVM just starts after EECD_AUTO_RD sets to + * high. Need to wait for PHY configuration completion before + * accessing NVM and PHY. + */ + if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) + msec_delay(25); + + return E1000_SUCCESS; } /*************************************************************************** @@ -7624,38 +7764,38 @@ em_get_auto_rd_done(struct em_hw *hw) STATIC int32_t em_get_phy_cfg_done(struct em_hw *hw) { - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; - - DEBUGFUNC("em_get_phy_cfg_done"); - - switch (hw->mac_type) { - default: - msec_delay_irq(10); - break; - case em_80003es2lan: - /* Separate *_CFG_DONE_* bit for each port */ - if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) - cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; - /* FALLTHROUGH */ - case em_82571: - case em_82572: - case em_82575: - while (timeout) { - if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) - break; - else - msec_delay(1); - timeout--; - } - if (!timeout) { - DEBUGOUT("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - break; - } - - return E1000_SUCCESS; + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; + DEBUGFUNC("em_get_phy_cfg_done"); + + switch (hw->mac_type) { + default: + msec_delay_irq(10); + break; + case em_80003es2lan: + /* Separate *_CFG_DONE_* bit for each port */ + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; + /* FALLTHROUGH */ + case em_82571: + case em_82572: + case em_82575: + while (timeout) { + if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) + break; + else + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed." + "\n"); + return -E1000_ERR_RESET; + } + break; + } + + return E1000_SUCCESS; } /*************************************************************************** @@ -7672,43 +7812,41 @@ em_get_phy_cfg_done(struct em_hw *hw) STATIC int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw) { - int32_t timeout; - uint32_t swsm; - - DEBUGFUNC("em_get_hw_eeprom_semaphore"); - - if (!hw->eeprom_semaphore_present) - return E1000_SUCCESS; - - if (hw->mac_type == em_80003es2lan) { - /* Get the SW semaphore. */ - if (em_get_software_semaphore(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Get the FW semaphore. */ - timeout = hw->eeprom.word_size + 1; - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - swsm |= E1000_SWSM_SWESMBI; - E1000_WRITE_REG(hw, SWSM, swsm); - /* if we managed to set the bit we got the semaphore. */ - swsm = E1000_READ_REG(hw, SWSM); - if (swsm & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - timeout--; - } - - if (!timeout) { - /* Release semaphores */ - em_put_hw_eeprom_semaphore(hw); - DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; + int32_t timeout; + uint32_t swsm; + DEBUGFUNC("em_get_hw_eeprom_semaphore"); + + if (!hw->eeprom_semaphore_present) + return E1000_SUCCESS; + + if (hw->mac_type == em_80003es2lan) { + /* Get the SW semaphore. */ + if (em_get_software_semaphore(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + /* Get the FW semaphore. */ + timeout = hw->eeprom.word_size + 1; + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + swsm |= E1000_SWSM_SWESMBI; + E1000_WRITE_REG(hw, SWSM, swsm); + /* if we managed to set the bit we got the semaphore. */ + swsm = E1000_READ_REG(hw, SWSM); + if (swsm & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + timeout--; + } + + if (!timeout) { + /* Release semaphores */ + em_put_hw_eeprom_semaphore(hw); + DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set." + "\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; } /*************************************************************************** @@ -7722,20 +7860,19 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw) STATIC void em_put_hw_eeprom_semaphore(struct em_hw *hw) { - uint32_t swsm; - - DEBUGFUNC("em_put_hw_eeprom_semaphore"); - - if (!hw->eeprom_semaphore_present) - return; - - swsm = E1000_READ_REG(hw, SWSM); - if (hw->mac_type == em_80003es2lan) { - /* Release both semaphores. */ - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - } else - swsm &= ~(E1000_SWSM_SWESMBI); - E1000_WRITE_REG(hw, SWSM, swsm); + uint32_t swsm; + DEBUGFUNC("em_put_hw_eeprom_semaphore"); + + if (!hw->eeprom_semaphore_present) + return; + + swsm = E1000_READ_REG(hw, SWSM); + if (hw->mac_type == em_80003es2lan) { + /* Release both semaphores. */ + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + } else + swsm &= ~(E1000_SWSM_SWESMBI); + E1000_WRITE_REG(hw, SWSM, swsm); } /*************************************************************************** @@ -7751,29 +7888,30 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw) STATIC int32_t em_get_software_semaphore(struct em_hw *hw) { - int32_t timeout = hw->eeprom.word_size + 1; - uint32_t swsm; - - DEBUGFUNC("em_get_software_semaphore"); - - if (hw->mac_type != em_80003es2lan) - return E1000_SUCCESS; - - while (timeout) { - swsm = E1000_READ_REG(hw, SWSM); - /* If SMBI bit cleared, it is now set and we hold the semaphore */ - if (!(swsm & E1000_SWSM_SMBI)) - break; - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; + int32_t timeout = hw->eeprom.word_size + 1; + uint32_t swsm; + DEBUGFUNC("em_get_software_semaphore"); + + if (hw->mac_type != em_80003es2lan) + return E1000_SUCCESS; + + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + /* + * If SMBI bit cleared, it is now set and we hold the + * semaphore + */ + if (!(swsm & E1000_SWSM_SMBI)) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_RESET; + } + return E1000_SUCCESS; } /*************************************************************************** @@ -7786,17 +7924,16 @@ em_get_software_semaphore(struct em_hw *hw) STATIC void em_release_software_semaphore(struct em_hw *hw) { - uint32_t swsm; - - DEBUGFUNC("em_release_software_semaphore"); + uint32_t swsm; + DEBUGFUNC("em_release_software_semaphore"); - if (hw->mac_type != em_80003es2lan) - return; + if (hw->mac_type != em_80003es2lan) + return; - swsm = E1000_READ_REG(hw, SWSM); - /* Release the SW semaphores.*/ - swsm &= ~E1000_SWSM_SMBI; - E1000_WRITE_REG(hw, SWSM, swsm); + swsm = E1000_READ_REG(hw, SWSM); + /* Release the SW semaphores. */ + swsm &= ~E1000_SWSM_SMBI; + E1000_WRITE_REG(hw, SWSM, swsm); } /****************************************************************************** @@ -7813,21 +7950,19 @@ em_release_software_semaphore(struct em_hw *hw) int32_t em_check_phy_reset_block(struct em_hw *hw) { - uint32_t manc = 0; - uint32_t fwsm = 0; - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - fwsm = E1000_READ_REG(hw, FWSM); - return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS - : E1000_BLK_PHY_RESET; - } - - if (hw->mac_type > em_82547_rev_2) - manc = E1000_READ_REG(hw, MANC); - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS; + uint32_t manc = 0; + uint32_t fwsm = 0; + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + fwsm = E1000_READ_REG(hw, FWSM); + return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS : + E1000_BLK_PHY_RESET; + } + if (hw->mac_type > em_82547_rev_2) + manc = E1000_READ_REG(hw, MANC); + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; } /****************************************************************************** @@ -7842,34 +7977,30 @@ em_check_phy_reset_block(struct em_hw *hw) STATIC int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) { - uint32_t gcr_reg = 0; - - DEBUGFUNC("em_set_pci_ex_no_snoop"); - - if (hw->bus_type == em_bus_type_unknown) - em_get_bus_info(hw); - - if (hw->bus_type != em_bus_type_pci_express) - return E1000_SUCCESS; - - if (no_snoop) { - gcr_reg = E1000_READ_REG(hw, GCR); - gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); - gcr_reg |= no_snoop; - E1000_WRITE_REG(hw, GCR, gcr_reg); - } - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - uint32_t ctrl_ext; - - ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); - } - - return E1000_SUCCESS; + uint32_t gcr_reg = 0; + DEBUGFUNC("em_set_pci_ex_no_snoop"); + + if (hw->bus_type == em_bus_type_unknown) + em_get_bus_info(hw); + + if (hw->bus_type != em_bus_type_pci_express) + return E1000_SUCCESS; + + if (no_snoop) { + gcr_reg = E1000_READ_REG(hw, GCR); + gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); + gcr_reg |= no_snoop; + E1000_WRITE_REG(hw, GCR, gcr_reg); + } + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + uint32_t ctrl_ext; + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + return E1000_SUCCESS; } /*************************************************************************** @@ -7884,33 +8015,31 @@ em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) STATIC int32_t em_get_software_flag(struct em_hw *hw) { - int32_t timeout = PHY_CFG_TIMEOUT; - uint32_t extcnf_ctrl; - - DEBUGFUNC("em_get_software_flag"); - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - - extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("FW or HW locks the resource too long.\n"); - return -E1000_ERR_CONFIG; - } - } - - return E1000_SUCCESS; + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t extcnf_ctrl; + DEBUGFUNC("em_get_software_flag"); + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW locks the resource too long.\n"); + return -E1000_ERR_CONFIG; + } + } + return E1000_SUCCESS; } /*************************************************************************** @@ -7925,22 +8054,19 @@ em_get_software_flag(struct em_hw *hw) STATIC void em_release_software_flag(struct em_hw *hw) { - uint32_t extcnf_ctrl; - - DEBUGFUNC("em_release_software_flag"); - - if (hw->mac_type == em_ich8lan || - hw->mac_type == em_ich9lan || - hw->mac_type == em_ich10lan) { - extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); - } - - return; + uint32_t extcnf_ctrl; + DEBUGFUNC("em_release_software_flag"); + + if (hw->mac_type == em_ich8lan || + hw->mac_type == em_ich9lan || + hw->mac_type == em_ich10lan) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + } + return; } - /****************************************************************************** * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access * register. @@ -7952,47 +8078,50 @@ em_release_software_flag(struct em_hw *hw) *****************************************************************************/ STATIC int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) + uint16_t *data) { - int32_t error = E1000_SUCCESS; - uint32_t flash_bank = 0; - uint32_t act_offset = 0; - uint32_t bank_offset = 0; - uint16_t word = 0; - uint16_t i = 0; - - /* We need to know which is the valid flash bank. In the event - * that we didn't allocate eeprom_shadow_ram, we may not be - * managing flash_bank. So it cannot be trusted and needs - * to be updated with each read. - */ - /* Value of bit 22 corresponds to the flash bank we're on. */ - flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; - - /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ - bank_offset = flash_bank * (hw->flash_bank_size * 2); - - error = em_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - for (i = 0; i < words; i++) { - if (hw->eeprom_shadow_ram != NULL && - hw->eeprom_shadow_ram[offset+i].modified == TRUE) { - data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; - } else { - /* The NVM part needs a byte offset, hence * 2 */ - act_offset = bank_offset + ((offset + i) * 2); - error = em_read_ich8_word(hw, act_offset, &word); - if (error != E1000_SUCCESS) - break; - data[i] = word; - } - } - - em_release_software_flag(hw); - - return error; + int32_t error = E1000_SUCCESS; + uint32_t flash_bank = 0; + uint32_t act_offset = 0; + uint32_t bank_offset = 0; + uint16_t word = 0; + uint16_t i = 0; + /* + * We need to know which is the valid flash bank. In the event that + * we didn't allocate eeprom_shadow_ram, we may not be managing + * flash_bank. So it cannot be trusted and needs to be updated with + * each read. + */ + /* Value of bit 22 corresponds to the flash bank we're on. */ + flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; + /* + * Adjust offset appropriately if we're on bank 1 - adjust for word + * size + */ + bank_offset = flash_bank * (hw->flash_bank_size * 2); + + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + for (i = 0; i < words; i++) { + if (hw->eeprom_shadow_ram != NULL && + hw->eeprom_shadow_ram[offset + i].modified == TRUE) { + data[i] = + hw->eeprom_shadow_ram[offset + i].eeprom_word; + } else { + /* The NVM part needs a byte offset, hence * 2 */ + act_offset = bank_offset + ((offset + i) * 2); + error = em_read_ich8_word(hw, act_offset, &word); + if (error != E1000_SUCCESS) + break; + data[i] = word; + } + } + + em_release_software_flag(hw); + + return error; } /****************************************************************************** @@ -8008,43 +8137,45 @@ em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, *****************************************************************************/ STATIC int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, - uint16_t *data) + uint16_t *data) { - uint32_t i = 0; - int32_t error = E1000_SUCCESS; - - error = em_get_software_flag(hw); - if (error != E1000_SUCCESS) - return error; - - /* A driver can write to the NVM only if it has eeprom_shadow_ram - * allocated. Subsequent reads to the modified words are read from - * this cached structure as well. Writes will only go into this - * cached structure unless it's followed by a call to - * em_update_eeprom_checksum() where it will commit the changes - * and clear the "modified" field. - */ - if (hw->eeprom_shadow_ram != NULL) { - for (i = 0; i < words; i++) { - if ((offset + i) < E1000_SHADOW_RAM_WORDS) { - hw->eeprom_shadow_ram[offset+i].modified = TRUE; - hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; - } else { - error = -E1000_ERR_EEPROM; - break; - } - } - } else { - /* Drivers have the option to not allocate eeprom_shadow_ram as long - * as they don't perform any NVM writes. An attempt in doing so - * will result in this error. - */ - error = -E1000_ERR_EEPROM; - } - - em_release_software_flag(hw); - - return error; + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + /* + * A driver can write to the NVM only if it has eeprom_shadow_ram + * allocated. Subsequent reads to the modified words are read from + * this cached structure as well. Writes will only go into this + * cached structure unless it's followed by a call to + * em_update_eeprom_checksum() where it will commit the changes and + * clear the "modified" field. + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < words; i++) { + if ((offset + i) < E1000_SHADOW_RAM_WORDS) { + hw->eeprom_shadow_ram[offset + i].modified = + TRUE; + hw->eeprom_shadow_ram[offset + i].eeprom_word = + data[i]; + } else { + error = -E1000_ERR_EEPROM; + break; + } + } + } else { + /* + * Drivers have the option to not allocate eeprom_shadow_ram + * as long as they don't perform any NVM writes. An attempt + * in doing so will result in this error. + */ + error = -E1000_ERR_EEPROM; + } + + em_release_software_flag(hw); + + return error; } /****************************************************************************** @@ -8056,95 +8187,106 @@ em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, STATIC int32_t em_ich8_cycle_init(struct em_hw *hw) { - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - int32_t i = 0; - - DEBUGFUNC("em_ich8_cycle_init"); - - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* May be check the Flash Des Valid bit in Hw status */ - if (hsfsts.hsf_status.fldesvalid == 0) { - DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); - return error; - } - - /* Clear FCERR in Hw status by writing 1 */ - /* Clear DAEL in Hw status by writing a 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - - /* Either we should have a hardware SPI cycle in progress bit to check - * against, in order to start a new cycle or FDONE bit should be changed - * in the hardware so that it is 1 after harware reset, which can then be - * used as an indication whether a cycle is in progress or has been - * completed .. we should also have some software semaphore mechanism to - * guard FDONE or the cycle in progress bit so that two threads access to - * those bits can be sequentiallized or a way so that 2 threads dont - * start the cycle at the same time */ - - if (hsfsts.hsf_status.flcinprog == 0) { - /* There is no cycle running at present, so we can start a cycle */ - /* Begin by setting Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - error = E1000_SUCCESS; - } else { - /* otherwise poll for sometime so the current cycle has a chance - * to end before giving up. */ - for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcinprog == 0) { - error = E1000_SUCCESS; - break; - } - usec_delay(1); - } - if (error == E1000_SUCCESS) { - /* Successful in waiting for previous cycle to timeout, - * now set the Flash Cycle Done. */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - } else { - DEBUGOUT("Flash controller busy, cannot get access"); - } - } - return error; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + int32_t i = 0; + DEBUGFUNC("em_ich8_cycle_init"); + + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* May be check the Flash Des Valid bit in Hw status */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be" + " used."); + return error; + } + /* Clear FCERR in Hw status by writing 1 */ + /* Clear DAEL in Hw status by writing a 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + /* + * Either we should have a hardware SPI cycle in progress bit to + * check against, in order to start a new cycle or FDONE bit should + * be changed in the hardware so that it is 1 after harware reset, + * which can then be used as an indication whether a cycle is in + * progress or has been completed .. we should also have some + * software semaphore mechanism to guard FDONE or the cycle in + * progress bit so that two threads access to those bits can be + * sequentiallized or a way so that 2 threads dont start the cycle at + * the same time + */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* + * There is no cycle running at present, so we can start a + * cycle + */ + /* Begin by setting Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, + hsfsts.regval); + error = E1000_SUCCESS; + } else { + /* + * otherwise poll for sometime so the current cycle has a + * chance to end before giving up. + */ + for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + error = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (error == E1000_SUCCESS) { + /* + * Successful in waiting for previous cycle to + * timeout, now set the Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, + hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + return error; } /****************************************************************************** * This function starts a flash cycle and waits for its completion * * hw - The pointer to the hw structure - ****************************************************************************/ + *****************************************************************************/ STATIC int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) { - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - int32_t error = E1000_ERR_EEPROM; - uint32_t i = 0; - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone == 1) - break; - usec_delay(1); - i++; - } while (i < timeout); - if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { - error = E1000_SUCCESS; - } - return error; + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + uint32_t i = 0; + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + usec_delay(1); + i++; + } while (i < timeout); + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { + error = E1000_SUCCESS; + } + return error; } /****************************************************************************** @@ -8156,74 +8298,84 @@ em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) * data - Pointer to the word to store the value read. *****************************************************************************/ STATIC int32_t -em_read_ich8_data(struct em_hw *hw, uint32_t index, - uint32_t size, uint16_t* data) +em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, + uint16_t *data) { - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("em_read_ich8_data"); - - if (size < 1 || size > 2 || data == 0x0 || - index > ICH_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - /* TODO: TBD maybe check the index against the size of flash */ - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); - - /* Check if FCERR is set to 1, if set to 1, clear it and try the whole - * sequence a few more times, else read in (shift in) the Flash Data0, - * the order is least significant byte first msb to lsb */ - if (error == E1000_SUCCESS) { - flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); - if (size == 1) { - *data = (uint8_t)(flash_data & 0x000000FF); - } else if (size == 2) { - *data = (uint16_t)(flash_data & 0x0000FFFF); - } - break; - } else { - /* If we've gotten here, then things are probably completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return error; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + DEBUGFUNC("em_read_ich8_data"); + + if (size < 1 || size > 2 || data == 0x0 || + index > ICH_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + /* + * Write the last 24 bits of index into Flash Linear address + * field in Flash Address + */ + /* TODO: TBD maybe check the index against the size of flash */ + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, + flash_linear_address); + + error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); + /* + * Check if FCERR is set to 1, if set to 1, clear it and try + * the whole sequence a few more times, else read in (shift + * in) the Flash Data0, the order is least significant byte + * first msb to lsb + */ + if (error == E1000_SUCCESS) { + flash_data = E1000_READ_ICH_FLASH_REG(hw, + ICH_FLASH_FDATA0); + if (size == 1) { + *data = (uint8_t) (flash_data & 0x000000FF); + } else if (size == 2) { + *data = (uint16_t) (flash_data & 0x0000FFFF); + } + break; + } else { + /* + * If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not" + " complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return error; } /****************************************************************************** @@ -8236,70 +8388,78 @@ em_read_ich8_data(struct em_hw *hw, uint32_t index, *****************************************************************************/ STATIC int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, - uint16_t data) + uint16_t data) { - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - uint32_t flash_data = 0; - int32_t error = -E1000_ERR_EEPROM; - int32_t count = 0; - - DEBUGFUNC("em_write_ich8_data"); - - if (size < 1 || size > 2 || data > size * 0xff || - index > ICH_FLASH_LINEAR_ADDR_MASK) - return error; - - flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + - hw->flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size -1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of index into Flash Linear address field in - * Flash Address */ - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - if (size == 1) - flash_data = (uint32_t)data & 0x00FF; - else - flash_data = (uint32_t)data; - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); - - /* check if FCERR is set to 1 , if set to 1, clear it and try the whole - * sequence a few more times else done */ - error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); - if (error == E1000_SUCCESS) { - break; - } else { - /* If we're here, then things are most likely completely hosed, - * but if the error condition is detected, it won't hurt to give - * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle did not complete."); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return error; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + DEBUGFUNC("em_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + index > ICH_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + /* + * Write the last 24 bits of index into Flash Linear address + * field in Flash Address + */ + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, + flash_linear_address); + + if (size == 1) + flash_data = (uint32_t) data & 0x00FF; + else + flash_data = (uint32_t) data; + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); + /* + * check if FCERR is set to 1 , if set to 1, clear it and try + * the whole sequence a few more times else done + */ + error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); + if (error == E1000_SUCCESS) { + break; + } else { + /* + * If we're here, then things are most likely + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not" + " complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return error; } /****************************************************************************** @@ -8310,17 +8470,15 @@ em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, * data - Pointer to a byte to store the value read. *****************************************************************************/ STATIC int32_t -em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data) +em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data) { - int32_t status = E1000_SUCCESS; - uint16_t word = 0; - - status = em_read_ich8_data(hw, index, 1, &word); - if (status == E1000_SUCCESS) { - *data = (uint8_t)word; - } - - return status; + int32_t status = E1000_SUCCESS; + uint16_t word = 0; + status = em_read_ich8_data(hw, index, 1, &word); + if (status == E1000_SUCCESS) { + *data = (uint8_t) word; + } + return status; } /****************************************************************************** @@ -8335,27 +8493,27 @@ em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data) STATIC int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) { - int32_t error = E1000_SUCCESS; - int32_t program_retries = 0; - - DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); - - error = em_write_ich8_byte(hw, index, byte); - - if (error != E1000_SUCCESS) { - for (program_retries = 0; program_retries < 100; program_retries++) { - DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); - error = em_write_ich8_byte(hw, index, byte); - usec_delay(100); - if (error == E1000_SUCCESS) - break; - } - } - - if (program_retries == 100) - error = E1000_ERR_EEPROM; - - return error; + int32_t error = E1000_SUCCESS; + int32_t program_retries = 0; + DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); + + error = em_write_ich8_byte(hw, index, byte); + + if (error != E1000_SUCCESS) { + for (program_retries = 0; program_retries < 100; + program_retries++) { + DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", + byte, index); + error = em_write_ich8_byte(hw, index, byte); + usec_delay(100); + if (error == E1000_SUCCESS) + break; + } + } + if (program_retries == 100) + error = E1000_ERR_EEPROM; + + return error; } /****************************************************************************** @@ -8368,12 +8526,11 @@ em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) STATIC int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) { - int32_t status = E1000_SUCCESS; - uint16_t word = (uint16_t)data; - - status = em_write_ich8_data(hw, index, 1, word); + int32_t status = E1000_SUCCESS; + uint16_t word = (uint16_t) data; + status = em_write_ich8_data(hw, index, 1, word); - return status; + return status; } /****************************************************************************** @@ -8386,12 +8543,11 @@ em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) STATIC int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) { - int32_t status = E1000_SUCCESS; - status = em_read_ich8_data(hw, index, 2, data); - return status; + int32_t status = E1000_SUCCESS; + status = em_read_ich8_data(hw, index, 2, data); + return status; } - /****************************************************************************** * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 * based. @@ -8406,154 +8562,171 @@ em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank) { - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - uint32_t flash_linear_address; - int32_t count = 0; - int32_t error = E1000_ERR_EEPROM; - int32_t iteration; - int32_t sub_sector_size = 0; - int32_t bank_size; - int32_t j = 0; - int32_t error_flag = 0; - - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ - /* 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector can be - * calculated as bank * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as bank * 4096 - * 10: The HW sector is 8K bytes - * 11: The Hw sector size is 64K bytes */ - if (hsfsts.hsf_status.berasesz == 0x0) { - /* Hw sector size 256 */ - sub_sector_size = ICH_FLASH_SEG_SIZE_256; - bank_size = ICH_FLASH_SECTOR_SIZE; - iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; - } else if (hsfsts.hsf_status.berasesz == 0x1) { - bank_size = ICH_FLASH_SEG_SIZE_4K; - iteration = 1; - } else if (hsfsts.hsf_status.berasesz == 0x2) { - if (hw->mac_type == em_ich9lan) { - uint32_t gfpreg, sector_base_addr, sector_end_addr; - - gfpreg = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); - - /* - * sector_X_addr is a "sector"-aligned address (4096 bytes) - * Add 1 to sector_end_addr since this sector is included in - * the overall size. - */ - sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK; - sector_end_addr = ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK) + 1; - - /* - * find total size of the NVM, then cut in half since the total - * size represents two separate NVM banks. - */ - bank_size = (sector_end_addr - sector_base_addr) - << ICH_FLASH_SECT_ADDR_SHIFT; - bank_size /= 2; - /* Word align */ - bank_size = (bank_size / sizeof(uint16_t)) * sizeof(uint16_t); - - sub_sector_size = ICH_FLASH_SEG_SIZE_8K; - iteration = bank_size / ICH_FLASH_SEG_SIZE_8K; - } else { - return error; - } - } else if (hsfsts.hsf_status.berasesz == 0x3) { - bank_size = ICH_FLASH_SEG_SIZE_64K; - iteration = 1; - } else { - return error; - } - - for (j = 0; j < iteration ; j++) { - do { - count++; - /* Steps */ - error = em_ich8_cycle_init(hw); - if (error != E1000_SUCCESS) { - error_flag = 1; - break; - } - - /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash - * Control */ - hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; - E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* Write the last 24 bits of an index within the block into Flash - * Linear address field in Flash Address. This probably needs to - * be calculated here based off the on-chip erase sector size and - * the software bank size (4, 8 or 64 KBytes) */ - flash_linear_address = bank * bank_size + j * sub_sector_size; - flash_linear_address += hw->flash_base_addr; - flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; - - E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); - - error = em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); - /* Check if FCERR is set to 1. If 1, clear it and try the whole - * sequence a few more times else Done */ - if (error == E1000_SUCCESS) { - break; - } else { - hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* repeat for some time before giving up */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - error_flag = 1; - break; - } - } - } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); - if (error_flag == 1) - break; - } - if (error_flag != 1) - error = E1000_SUCCESS; - return error; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + int32_t count = 0; + int32_t error = E1000_ERR_EEPROM; + int32_t iteration; + int32_t sub_sector_size = 0; + int32_t bank_size; + int32_t j = 0; + int32_t error_flag = 0; + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + /* + * Determine HW Sector size: Read BERASE bits of Hw flash Status + * register + */ + /* + * 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector can be + * calculated as bank * 4096 + n * 256 01: The Hw sector is 4K bytes, + * hence we need to erase 1 sector. The start index for the nth Hw + * sector can be calculated as bank * 4096 10: The HW sector is 8K + * bytes 11: The Hw sector size is 64K bytes + */ + if (hsfsts.hsf_status.berasesz == 0x0) { + /* Hw sector size 256 */ + sub_sector_size = ICH_FLASH_SEG_SIZE_256; + bank_size = ICH_FLASH_SECTOR_SIZE; + iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; + } else if (hsfsts.hsf_status.berasesz == 0x1) { + bank_size = ICH_FLASH_SEG_SIZE_4K; + iteration = 1; + } else if (hsfsts.hsf_status.berasesz == 0x2) { + if (hw->mac_type == em_ich9lan) { + uint32_t gfpreg, sector_base_addr, sector_end_addr; + gfpreg = E1000_READ_ICH_FLASH_REG(hw, + ICH_FLASH_GFPREG); + /* + * sector_X_addr is a "sector"-aligned address (4096 bytes) + * Add 1 to sector_end_addr since this sector is included in + * the overall size. + */ + sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK; + sector_end_addr = + ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK) + 1; + + /* + * find total size of the NVM, then cut in half since the total + * size represents two separate NVM banks. + */ + bank_size = (sector_end_addr - sector_base_addr) + << ICH_FLASH_SECT_ADDR_SHIFT; + bank_size /= 2; + /* Word align */ + bank_size = + (bank_size / sizeof(uint16_t)) * sizeof(uint16_t); + + sub_sector_size = ICH_FLASH_SEG_SIZE_8K; + iteration = bank_size / ICH_FLASH_SEG_SIZE_8K; + } else { + return error; + } + } else if (hsfsts.hsf_status.berasesz == 0x3) { + bank_size = ICH_FLASH_SEG_SIZE_64K; + iteration = 1; + } else { + return error; + } + + for (j = 0; j < iteration; j++) { + do { + count++; + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) { + error_flag = 1; + break; + } + /* + * Write a value 11 (block Erase) in Flash Cycle + * field in Hw flash Control + */ + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + /* + * Write the last 24 bits of an index within the + * block into Flash Linear address field in Flash + * Address. This probably needs to be calculated + * here based off the on-chip erase sector size and + * the software bank size (4, 8 or 64 KBytes) + */ + flash_linear_address = + bank * bank_size + j * sub_sector_size; + flash_linear_address += hw->flash_base_addr; + flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, + flash_linear_address); + + error = + em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); + /* + * Check if FCERR is set to 1. If 1, clear it and + * try the whole sequence a few more times else Done + */ + if (error == E1000_SUCCESS) { + break; + } else { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* + * repeat for some time before giving + * up + */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + error_flag = 1; + break; + } + } + } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); + if (error_flag == 1) + break; + } + if (error_flag != 1) + error = E1000_SUCCESS; + return error; } - STATIC int32_t -em_init_lcd_from_nvm_config_region(struct em_hw *hw, - uint32_t cnf_base_addr, uint32_t cnf_size) +em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, + uint32_t cnf_size) { - uint32_t ret_val = E1000_SUCCESS; - uint16_t word_addr, reg_data, reg_addr; - uint16_t i; - - /* cnf_base_addr is in DWORD */ - word_addr = (uint16_t)(cnf_base_addr << 1); - - /* cnf_size is returned in size of dwords */ - for (i = 0; i < cnf_size; i++) { - ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, ®_data); - if (ret_val) - return ret_val; - - ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); - if (ret_val) - return ret_val; - - ret_val = em_get_software_flag(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - - ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); - - em_release_software_flag(hw); - } - - return ret_val; + uint32_t ret_val = E1000_SUCCESS; + uint16_t word_addr, reg_data, reg_addr; + uint16_t i; + /* cnf_base_addr is in DWORD */ + word_addr = (uint16_t) (cnf_base_addr << 1); + + /* cnf_size is returned in size of dwords */ + for (i = 0; i < cnf_size; i++) { + ret_val = + em_read_eeprom(hw, (word_addr + i * 2), 1, ®_data); + if (ret_val) + return ret_val; + + ret_val = + em_read_eeprom(hw, (word_addr + i * 2 + 1), 1, ®_addr); + if (ret_val) + return ret_val; + + ret_val = em_get_software_flag(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + ret_val = + em_write_phy_reg_ex(hw, (uint32_t) reg_addr, reg_data); + + em_release_software_flag(hw); + } + + return ret_val; } /****************************************************************************** @@ -8567,55 +8740,55 @@ em_init_lcd_from_nvm_config_region(struct em_hw *hw, STATIC int32_t em_init_lcd_from_nvm(struct em_hw *hw) { - uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask; - - if (hw->phy_type != em_phy_igp_3) - return E1000_SUCCESS; - - /* Check if SW needs configure the PHY */ - if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) || - (hw->device_id == E1000_DEV_ID_ICH8_IGP_M)) - sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M; - else - sw_cfg_mask = FEXTNVM_SW_CONFIG; - - reg_data = E1000_READ_REG(hw, FEXTNVM); - if (!(reg_data & sw_cfg_mask)) - return E1000_SUCCESS; - - /* Wait for basic configuration completes before proceeding*/ - loop = 0; - do { - reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; - usec_delay(100); - loop++; - } while ((!reg_data) && (loop < 50)); - - /* Clear the Init Done bit for the next init event */ - reg_data = E1000_READ_REG(hw, STATUS); - reg_data &= ~E1000_STATUS_LAN_INIT_DONE; - E1000_WRITE_REG(hw, STATUS, reg_data); - - /* Make sure HW does not configure LCD from PHY extended configuration - before SW configuration */ - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { - reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); - cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; - cnf_size >>= 16; - if (cnf_size) { - reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); - cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; - /* cnf_base_addr is in DWORD */ - cnf_base_addr >>= 16; - - /* Configure LCD from extended configuration region. */ - ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr, - cnf_size); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; + uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask; + if (hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + + /* Check if SW needs configure the PHY */ + if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) || + (hw->device_id == E1000_DEV_ID_ICH8_IGP_M)) + sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M; + else + sw_cfg_mask = FEXTNVM_SW_CONFIG; + + reg_data = E1000_READ_REG(hw, FEXTNVM); + if (!(reg_data & sw_cfg_mask)) + return E1000_SUCCESS; + + /* Wait for basic configuration completes before proceeding */ + loop = 0; + do { + reg_data = + E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + loop++; + } while ((!reg_data) && (loop < 50)); + + /* Clear the Init Done bit for the next init event */ + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, STATUS, reg_data); + /* + * Make sure HW does not configure LCD from PHY extended + * configuration before SW configuration + */ + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { + reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); + cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; + cnf_size >>= 16; + if (cnf_size) { + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; + /* cnf_base_addr is in DWORD */ + cnf_base_addr >>= 16; + + /* Configure LCD from extended configuration region. */ + ret_val = em_init_lcd_from_nvm_config_region(hw, + cnf_base_addr, cnf_size); + if (ret_val) + return ret_val; + } + } + return E1000_SUCCESS; } |