summaryrefslogtreecommitdiff
path: root/sys
diff options
context:
space:
mode:
authorDariusz Swiderski <dms@cvs.openbsd.org>2010-01-09 22:56:25 +0000
committerDariusz Swiderski <dms@cvs.openbsd.org>2010-01-09 22:56:25 +0000
commit2b1a05ccd6caade948fadc096f848b3c358d006c (patch)
tree52dc692f7e71a9986ab2ccf4795c473287c7aec6 /sys
parentf8c751b234f6d4b295b93cdbefa799ac69c849f2 (diff)
a lot of knf loving. hudge diff, no binary change.
ok claudio@
Diffstat (limited to 'sys')
-rw-r--r--sys/dev/pci/if_em_hw.c14825
1 files changed, 7499 insertions, 7326 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c
index 777172e5490..be7a9be4104 100644
--- a/sys/dev/pci/if_em_hw.c
+++ b/sys/dev/pci/if_em_hw.c
@@ -1,40 +1,39 @@
/*******************************************************************************
- Copyright (c) 2001-2005, Intel Corporation
+ Copyright (c) 2001-2005, Intel Corporation
All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
+
+ Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
+
+ 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
-
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
-/* $OpenBSD: if_em_hw.c,v 1.44 2009/12/27 13:12:58 fkr Exp $ */
-
-/* if_em_hw.c
- * Shared functions for accessing and configuring the MAC
+/* $OpenBSD: if_em_hw.c,v 1.45 2010/01/09 22:56:24 dms Exp $ */
+/*
+ * if_em_hw.c Shared functions for accessing and configuring the MAC
*/
#if 0
@@ -74,117 +73,120 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
#define STATIC
-static int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
-static void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
-static int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
-static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-static int32_t em_get_software_semaphore(struct em_hw *hw);
-static void em_release_software_semaphore(struct em_hw *hw);
-
-static int32_t em_check_downshift(struct em_hw *hw);
-static void em_clear_vfta(struct em_hw *hw);
-static int32_t em_commit_shadow_ram(struct em_hw *hw);
-static int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
-static int32_t em_config_fc_after_link_up(struct em_hw *hw);
-static int32_t em_match_gig_phy(struct em_hw *hw);
-static int32_t em_detect_gig_phy(struct em_hw *hw);
-static int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank);
-static int32_t em_get_auto_rd_done(struct em_hw *hw);
-static int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
-static int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
-static int32_t em_get_phy_cfg_done(struct em_hw *hw);
-static int32_t em_get_software_flag(struct em_hw *hw);
-static int32_t em_ich8_cycle_init(struct em_hw *hw);
-static int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
-static int32_t em_id_led_init(struct em_hw *hw);
-static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
-static int32_t em_init_lcd_from_nvm(struct em_hw *hw);
-static void em_init_rx_addrs(struct em_hw *hw);
-static void em_initialize_hardware_bits(struct em_hw *hw);
-static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
-static int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
-static int32_t em_mng_enable_host_if(struct em_hw *hw);
-static int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
-static void em_put_hw_eeprom_semaphore(struct em_hw *hw);
-static int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data);
-static int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
-static int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
-static int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data);
-static int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
-static int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t data);
-static int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static void em_release_software_flag(struct em_hw *hw);
-static int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
-static int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
-static int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
-static void em_set_pci_express_master_disable(struct em_hw *hw);
-static int32_t em_wait_autoneg(struct em_hw *hw);
-static void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
-static int32_t em_set_phy_type(struct em_hw *hw);
-static void em_phy_init_script(struct em_hw *hw);
-static int32_t em_setup_copper_link(struct em_hw *hw);
-static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
-static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
-static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
-static int32_t em_config_mac_to_phy(struct em_hw *hw);
-static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
- uint16_t count);
-static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
-static int32_t em_phy_reset_dsp(struct em_hw *hw);
-static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset, uint16_t words,
- uint16_t *data);
-static int32_t em_spi_eeprom_ready(struct em_hw *hw);
-static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
- uint16_t count);
-static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data);
-static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
- uint16_t *phy_data);
-static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
-static int32_t em_acquire_eeprom(struct em_hw *hw);
-static void em_release_eeprom(struct em_hw *hw);
-static void em_standby_eeprom(struct em_hw *hw);
-static int32_t em_set_vco_speed(struct em_hw *hw);
-static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
-static int32_t em_set_phy_mode(struct em_hw *hw);
-static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
-static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
- uint16_t duplex);
-static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
+static int32_t em_swfw_sync_acquire(struct em_hw *, uint16_t);
+static void em_swfw_sync_release(struct em_hw *, uint16_t);
+static int32_t em_read_kmrn_reg(struct em_hw *, uint32_t, uint16_t *);
+static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t, uint16_t);
+static int32_t em_get_software_semaphore(struct em_hw *);
+static void em_release_software_semaphore(struct em_hw *);
+
+static int32_t em_check_downshift(struct em_hw *);
+static void em_clear_vfta(struct em_hw *);
+static int32_t em_commit_shadow_ram(struct em_hw *);
+static int32_t em_config_dsp_after_link_change(struct em_hw *, boolean_t);
+static int32_t em_config_fc_after_link_up(struct em_hw *);
+static int32_t em_match_gig_phy(struct em_hw *);
+static int32_t em_detect_gig_phy(struct em_hw *);
+static int32_t em_erase_ich8_4k_segment(struct em_hw *, uint32_t);
+static int32_t em_get_auto_rd_done(struct em_hw *);
+static int32_t em_get_cable_length(struct em_hw *, uint16_t *, uint16_t *);
+static int32_t em_get_hw_eeprom_semaphore(struct em_hw *);
+static int32_t em_get_phy_cfg_done(struct em_hw *);
+static int32_t em_get_software_flag(struct em_hw *);
+static int32_t em_ich8_cycle_init(struct em_hw *);
+static int32_t em_ich8_flash_cycle(struct em_hw *, uint32_t);
+static int32_t em_id_led_init(struct em_hw *);
+static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *, uint32_t,
+ uint32_t);
+static int32_t em_init_lcd_from_nvm(struct em_hw *);
+static void em_init_rx_addrs(struct em_hw *);
+static void em_initialize_hardware_bits(struct em_hw *);
+static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *);
+static int32_t em_kumeran_lock_loss_workaround(struct em_hw *);
+static int32_t em_mng_enable_host_if(struct em_hw *);
+static int32_t em_read_eeprom_eerd(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *);
+static int32_t em_write_eeprom_eewr(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *data);
+static int32_t em_poll_eerd_eewr_done(struct em_hw *, int);
+static void em_put_hw_eeprom_semaphore(struct em_hw *);
+static int32_t em_read_ich8_byte(struct em_hw *, uint32_t, uint8_t *);
+static int32_t em_verify_write_ich8_byte(struct em_hw *, uint32_t, uint8_t);
+static int32_t em_write_ich8_byte(struct em_hw *, uint32_t, uint8_t);
+static int32_t em_read_ich8_word(struct em_hw *, uint32_t, uint16_t *);
+static int32_t em_read_ich8_data(struct em_hw *, uint32_t, uint32_t,
+ uint16_t *);
+static int32_t em_write_ich8_data(struct em_hw *, uint32_t, uint32_t,
+ uint16_t);
+static int32_t em_read_eeprom_ich8(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *);
+static int32_t em_write_eeprom_ich8(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *);
+static void em_release_software_flag(struct em_hw *);
+static int32_t em_set_d3_lplu_state(struct em_hw *, boolean_t);
+static int32_t em_set_d0_lplu_state(struct em_hw *, boolean_t);
+static int32_t em_set_pci_ex_no_snoop(struct em_hw *, uint32_t);
+static void em_set_pci_express_master_disable(struct em_hw *);
+static int32_t em_wait_autoneg(struct em_hw *);
+static void em_write_reg_io(struct em_hw *, uint32_t, uint32_t);
+static int32_t em_set_phy_type(struct em_hw *);
+static void em_phy_init_script(struct em_hw *);
+static int32_t em_setup_copper_link(struct em_hw *);
+static int32_t em_setup_fiber_serdes_link(struct em_hw *);
+static int32_t em_adjust_serdes_amplitude(struct em_hw *);
+static int32_t em_phy_force_speed_duplex(struct em_hw *);
+static int32_t em_config_mac_to_phy(struct em_hw *);
+static void em_raise_mdi_clk(struct em_hw *, uint32_t *);
+static void em_lower_mdi_clk(struct em_hw *, uint32_t *);
+static void em_shift_out_mdi_bits(struct em_hw *, uint32_t, uint16_t);
+static uint16_t em_shift_in_mdi_bits(struct em_hw *);
+static int32_t em_phy_reset_dsp(struct em_hw *);
+static int32_t em_write_eeprom_spi(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *);
+static int32_t em_write_eeprom_microwire(struct em_hw *, uint16_t, uint16_t,
+ uint16_t *);
+static int32_t em_spi_eeprom_ready(struct em_hw *);
+static void em_raise_ee_clk(struct em_hw *, uint32_t *);
+static void em_lower_ee_clk(struct em_hw *, uint32_t *);
+static void em_shift_out_ee_bits(struct em_hw *, uint16_t, uint16_t);
+static int32_t em_write_phy_reg_ex(struct em_hw *, uint32_t, uint16_t);
+static int32_t em_read_phy_reg_ex(struct em_hw *, uint32_t, uint16_t *);
+static uint16_t em_shift_in_ee_bits(struct em_hw *, uint16_t);
+static int32_t em_acquire_eeprom(struct em_hw *);
+static void em_release_eeprom(struct em_hw *);
+static void em_standby_eeprom(struct em_hw *);
+static int32_t em_set_vco_speed(struct em_hw *);
+static int32_t em_polarity_reversal_workaround(struct em_hw *);
+static int32_t em_set_phy_mode(struct em_hw *);
+static int32_t em_host_if_read_cookie(struct em_hw *, uint8_t *);
+static uint8_t em_calculate_mng_checksum(char *, uint32_t);
+static int32_t em_configure_kmrn_for_10_100(struct em_hw *, uint16_t);
+static int32_t em_configure_kmrn_for_1000(struct em_hw *);
/* IGP cable length table */
-static const
-uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
- { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
- 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
- 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
- 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
- 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
- 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
- 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
- 104, 109, 114, 118, 121, 124};
+static const uint16_t
+em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
+ {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+ 110,
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120,
+ 120};
+
+static const uint16_t
+em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
+ {0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+ 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+ 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+ 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+ 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+ 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+ 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118,
+ 121, 124};
/******************************************************************************
* Set the phy type member in the hw struct.
@@ -194,56 +196,56 @@ uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
STATIC int32_t
em_set_phy_type(struct em_hw *hw)
{
- DEBUGFUNC("em_set_phy_type");
-
- if (hw->mac_type == em_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch (hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- hw->phy_type = em_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
- hw->phy_type = em_phy_igp;
- break;
- }
- case IGP03E1000_E_PHY_ID:
- hw->phy_type = em_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- hw->phy_type = em_phy_ife;
- break;
- case M88E1141_E_PHY_ID:
- hw->phy_type = em_phy_oem;
- break;
- case BME1000_E_PHY_ID:
- if (hw->phy_revision == 1) {
- hw->phy_type = em_phy_bm;
- break;
- }
- /* FALLTHROUGH */
- case GG82563_E_PHY_ID:
- if (hw->mac_type == em_80003es2lan) {
- hw->phy_type = em_phy_gg82563;
- break;
- }
- /* FALLTHROUGH */
- default:
- /* Should never have loaded on this device */
- hw->phy_type = em_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
+ DEBUGFUNC("em_set_phy_type");
+
+ if (hw->mac_type == em_undefined)
+ return -E1000_ERR_PHY_TYPE;
+
+ switch (hw->phy_id) {
+ case M88E1000_E_PHY_ID:
+ case M88E1000_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ hw->phy_type = em_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID:
+ if (hw->mac_type == em_82541 ||
+ hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547 ||
+ hw->mac_type == em_82547_rev_2) {
+ hw->phy_type = em_phy_igp;
+ break;
+ }
+ case IGP03E1000_E_PHY_ID:
+ hw->phy_type = em_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ hw->phy_type = em_phy_ife;
+ break;
+ case M88E1141_E_PHY_ID:
+ hw->phy_type = em_phy_oem;
+ break;
+ case BME1000_E_PHY_ID:
+ if (hw->phy_revision == 1) {
+ hw->phy_type = em_phy_bm;
+ break;
+ }
+ /* FALLTHROUGH */
+ case GG82563_E_PHY_ID:
+ if (hw->mac_type == em_80003es2lan) {
+ hw->phy_type = em_phy_gg82563;
+ break;
+ }
+ /* FALLTHROUGH */
+ default:
+ /* Should never have loaded on this device */
+ hw->phy_type = em_phy_undefined;
+ return -E1000_ERR_PHY_TYPE;
+ }
+
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -254,91 +256,92 @@ em_set_phy_type(struct em_hw *hw)
static void
em_phy_init_script(struct em_hw *hw)
{
- uint16_t phy_saved_data;
-
- DEBUGFUNC("em_phy_init_script");
-
- if (hw->phy_init_script) {
- msec_delay(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- msec_delay(20);
-
- em_write_phy_reg(hw,0x0000,0x0140);
-
- msec_delay(5);
-
- switch (hw->mac_type) {
- case em_82541:
- case em_82547:
- em_write_phy_reg(hw, 0x1F95, 0x0001);
-
- em_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- em_write_phy_reg(hw, 0x1F79, 0x0018);
-
- em_write_phy_reg(hw, 0x1F30, 0x1600);
-
- em_write_phy_reg(hw, 0x1F31, 0x0014);
-
- em_write_phy_reg(hw, 0x1F32, 0x161C);
-
- em_write_phy_reg(hw, 0x1F94, 0x0003);
-
- em_write_phy_reg(hw, 0x1F96, 0x003F);
-
- em_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case em_82541_rev_2:
- case em_82547_rev_2:
- em_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- em_write_phy_reg(hw, 0x0000, 0x3300);
-
- msec_delay(20);
-
- /* Now enable the transmitter */
- em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac_type == em_82547) {
- uint16_t fused, fine, coarse;
-
- /* Move to analog registers page */
- em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
+ uint16_t phy_saved_data;
+ DEBUGFUNC("em_phy_init_script");
+
+ if (hw->phy_init_script) {
+ msec_delay(20);
+ /*
+ * Save off the current value of register 0x2F5B to be
+ * restored at the end of this routine.
+ */
+ em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ em_write_phy_reg(hw, 0x2F5B, 0x0003);
+ msec_delay(20);
+ em_write_phy_reg(hw, 0x0000, 0x0140);
+ msec_delay(5);
+
+ switch (hw->mac_type) {
+ case em_82541:
+ case em_82547:
+ em_write_phy_reg(hw, 0x1F95, 0x0001);
+ em_write_phy_reg(hw, 0x1F71, 0xBD21);
+ em_write_phy_reg(hw, 0x1F79, 0x0018);
+ em_write_phy_reg(hw, 0x1F30, 0x1600);
+ em_write_phy_reg(hw, 0x1F31, 0x0014);
+ em_write_phy_reg(hw, 0x1F32, 0x161C);
+ em_write_phy_reg(hw, 0x1F94, 0x0003);
+ em_write_phy_reg(hw, 0x1F96, 0x003F);
+ em_write_phy_reg(hw, 0x2010, 0x0008);
+ break;
+ case em_82541_rev_2:
+ case em_82547_rev_2:
+ em_write_phy_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ em_write_phy_reg(hw, 0x0000, 0x3300);
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac_type == em_82547) {
+ uint16_t fused, fine, coarse;
+ /* Move to analog registers page */
+ em_read_phy_reg(hw,
+ IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ em_read_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+ fine = fused &
+ IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused &
+ IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse >
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -=
+ IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -=
+ IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse ==
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused &
+ IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine &
+ IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse &
+ IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ em_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_CONTROL,
+ fused);
+
+ em_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+ }
}
/******************************************************************************
@@ -349,201 +352,200 @@ em_phy_init_script(struct em_hw *hw)
int32_t
em_set_mac_type(struct em_hw *hw)
{
- DEBUGFUNC("em_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = em_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = em_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = em_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = em_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = em_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = em_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = em_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = em_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- case E1000_DEV_ID_82546GB_2:
- hw->mac_type = em_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- hw->mac_type = em_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = em_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = em_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = em_82547_rev_2;
- break;
- case E1000_DEV_ID_82571EB_AF:
- case E1000_DEV_ID_82571EB_AT:
- case E1000_DEV_ID_82571EB_COPPER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- hw->mac_type = em_82571;
- break;
- case E1000_DEV_ID_82572EI_COPPER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82572EI:
- hw->mac_type = em_82572;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- case E1000_DEV_ID_82573E_PM:
- case E1000_DEV_ID_82573L:
- case E1000_DEV_ID_82573L_PL_1:
- case E1000_DEV_ID_82573L_PL_2:
- case E1000_DEV_ID_82573V_PM:
- hw->mac_type = em_82573;
- break;
- case E1000_DEV_ID_82574L:
- hw->mac_type = em_82574;
- break;
- case E1000_DEV_ID_82575EB_PT:
- case E1000_DEV_ID_82575EB_PF:
- case E1000_DEV_ID_82575GB_QP:
- case E1000_DEV_ID_82576:
- case E1000_DEV_ID_82576_FIBER:
- case E1000_DEV_ID_82576_SERDES:
- case E1000_DEV_ID_82576_QUAD_COPPER:
- case E1000_DEV_ID_82576_NS:
- hw->mac_type = em_82575;
- hw->initialize_hw_bits_disable = 1;
- break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
- case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->mac_type = em_80003es2lan;
- break;
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IFE_G:
- case E1000_DEV_ID_ICH8_IFE_GT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_IGP_M:
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- hw->mac_type = em_ich8lan;
- break;
- case E1000_DEV_ID_ICH9_BM:
- case E1000_DEV_ID_ICH9_IFE:
- case E1000_DEV_ID_ICH9_IFE_G:
- case E1000_DEV_ID_ICH9_IFE_GT:
- case E1000_DEV_ID_ICH9_IGP_AMT:
- case E1000_DEV_ID_ICH9_IGP_C:
- case E1000_DEV_ID_ICH9_IGP_M:
- case E1000_DEV_ID_ICH9_IGP_M_AMT:
- case E1000_DEV_ID_ICH9_IGP_M_V:
- case E1000_DEV_ID_ICH10_R_BM_LF:
- case E1000_DEV_ID_ICH10_R_BM_LM:
- case E1000_DEV_ID_ICH10_R_BM_V:
- hw->mac_type = em_ich9lan;
- break;
- case E1000_DEV_ID_ICH10_D_BM_LF:
- case E1000_DEV_ID_ICH10_D_BM_LM:
- hw->mac_type = em_ich10lan;
- break;
- case E1000_DEV_ID_EP80579_LAN_1:
- hw->mac_type = em_icp_xxxx;
- hw->icp_xxxx_port_num = 0;
- break;
- case E1000_DEV_ID_EP80579_LAN_2:
- hw->mac_type = em_icp_xxxx;
- hw->icp_xxxx_port_num = 1;
- break;
- case E1000_DEV_ID_EP80579_LAN_3:
- hw->mac_type = em_icp_xxxx;
- hw->icp_xxxx_port_num = 2;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
-
- switch (hw->mac_type) {
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- hw->swfwhw_semaphore_present = TRUE;
- hw->asf_firmware_present = TRUE;
- break;
- case em_80003es2lan:
- hw->swfw_sync_present = TRUE;
- /* FALLTHROUGH */
- case em_82571:
- case em_82572:
- case em_82573:
- case em_82574:
- hw->eeprom_semaphore_present = TRUE;
- /* FALLTHROUGH */
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- hw->asf_firmware_present = TRUE;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
+ DEBUGFUNC("em_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ switch (hw->revision_id) {
+ case E1000_82542_2_0_REV_ID:
+ hw->mac_type = em_82542_rev2_0;
+ break;
+ case E1000_82542_2_1_REV_ID:
+ hw->mac_type = em_82542_rev2_1;
+ break;
+ default:
+ /* Invalid 82542 revision ID */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ hw->mac_type = em_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ hw->mac_type = em_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ hw->mac_type = em_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ hw->mac_type = em_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ hw->mac_type = em_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ hw->mac_type = em_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ case E1000_DEV_ID_82546GB_2:
+ hw->mac_type = em_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
+ hw->mac_type = em_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ hw->mac_type = em_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ case E1000_DEV_ID_82547EI_MOBILE:
+ hw->mac_type = em_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ hw->mac_type = em_82547_rev_2;
+ break;
+ case E1000_DEV_ID_82571EB_AF:
+ case E1000_DEV_ID_82571EB_AT:
+ case E1000_DEV_ID_82571EB_COPPER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82571PT_QUAD_COPPER:
+ hw->mac_type = em_82571;
+ break;
+ case E1000_DEV_ID_82572EI_COPPER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82572EI_SERDES:
+ case E1000_DEV_ID_82572EI:
+ hw->mac_type = em_82572;
+ break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ case E1000_DEV_ID_82573E_PM:
+ case E1000_DEV_ID_82573L:
+ case E1000_DEV_ID_82573L_PL_1:
+ case E1000_DEV_ID_82573L_PL_2:
+ case E1000_DEV_ID_82573V_PM:
+ hw->mac_type = em_82573;
+ break;
+ case E1000_DEV_ID_82574L:
+ hw->mac_type = em_82574;
+ break;
+ case E1000_DEV_ID_82575EB_PT:
+ case E1000_DEV_ID_82575EB_PF:
+ case E1000_DEV_ID_82575GB_QP:
+ case E1000_DEV_ID_82576:
+ case E1000_DEV_ID_82576_FIBER:
+ case E1000_DEV_ID_82576_SERDES:
+ case E1000_DEV_ID_82576_QUAD_COPPER:
+ case E1000_DEV_ID_82576_NS:
+ hw->mac_type = em_82575;
+ hw->initialize_hw_bits_disable = 1;
+ break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+ case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->mac_type = em_80003es2lan;
+ break;
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_G:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ hw->mac_type = em_ich8lan;
+ break;
+ case E1000_DEV_ID_ICH9_BM:
+ case E1000_DEV_ID_ICH9_IFE:
+ case E1000_DEV_ID_ICH9_IFE_G:
+ case E1000_DEV_ID_ICH9_IFE_GT:
+ case E1000_DEV_ID_ICH9_IGP_AMT:
+ case E1000_DEV_ID_ICH9_IGP_C:
+ case E1000_DEV_ID_ICH9_IGP_M:
+ case E1000_DEV_ID_ICH9_IGP_M_AMT:
+ case E1000_DEV_ID_ICH9_IGP_M_V:
+ case E1000_DEV_ID_ICH10_R_BM_LF:
+ case E1000_DEV_ID_ICH10_R_BM_LM:
+ case E1000_DEV_ID_ICH10_R_BM_V:
+ hw->mac_type = em_ich9lan;
+ break;
+ case E1000_DEV_ID_ICH10_D_BM_LF:
+ case E1000_DEV_ID_ICH10_D_BM_LM:
+ hw->mac_type = em_ich10lan;
+ break;
+ case E1000_DEV_ID_EP80579_LAN_1:
+ hw->mac_type = em_icp_xxxx;
+ hw->icp_xxxx_port_num = 0;
+ break;
+ case E1000_DEV_ID_EP80579_LAN_2:
+ hw->mac_type = em_icp_xxxx;
+ hw->icp_xxxx_port_num = 1;
+ break;
+ case E1000_DEV_ID_EP80579_LAN_3:
+ hw->mac_type = em_icp_xxxx;
+ hw->icp_xxxx_port_num = 2;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ return -E1000_ERR_MAC_TYPE;
+ }
+
+ switch (hw->mac_type) {
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ hw->swfwhw_semaphore_present = TRUE;
+ hw->asf_firmware_present = TRUE;
+ break;
+ case em_80003es2lan:
+ hw->swfw_sync_present = TRUE;
+ /* FALLTHROUGH */
+ case em_82571:
+ case em_82572:
+ case em_82573:
+ case em_82574:
+ hw->eeprom_semaphore_present = TRUE;
+ /* FALLTHROUGH */
+ case em_82541:
+ case em_82547:
+ case em_82541_rev_2:
+ case em_82547_rev_2:
+ hw->asf_firmware_present = TRUE;
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
}
-
/*****************************************************************************
* Set media type and TBI compatibility.
*
@@ -552,60 +554,58 @@ em_set_mac_type(struct em_hw *hw)
void
em_set_media_type(struct em_hw *hw)
{
- uint32_t status;
-
- DEBUGFUNC("em_set_media_type");
-
- if (hw->mac_type != em_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = FALSE;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->media_type = em_media_type_internal_serdes;
- break;
- case E1000_DEV_ID_EP80579_LAN_1:
- case E1000_DEV_ID_EP80579_LAN_2:
- case E1000_DEV_ID_EP80579_LAN_3:
- hw->media_type = em_media_type_oem;
- break;
- default:
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->media_type = em_media_type_fiber;
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- case em_82573:
- case em_82574:
- /* The STATUS_TBIMODE bit is reserved or reused for the this
- * device.
- */
- hw->media_type = em_media_type_copper;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_TBIMODE) {
- hw->media_type = em_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = FALSE;
- } else {
- hw->media_type = em_media_type_copper;
- }
- break;
- }
- }
+ uint32_t status;
+ DEBUGFUNC("em_set_media_type");
+
+ if (hw->mac_type != em_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = FALSE;
+ }
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82572EI_SERDES:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->media_type = em_media_type_internal_serdes;
+ break;
+ case E1000_DEV_ID_EP80579_LAN_1:
+ case E1000_DEV_ID_EP80579_LAN_2:
+ case E1000_DEV_ID_EP80579_LAN_3:
+ hw->media_type = em_media_type_oem;
+ break;
+ default:
+ switch (hw->mac_type) {
+ case em_82542_rev2_0:
+ case em_82542_rev2_1:
+ hw->media_type = em_media_type_fiber;
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ case em_82573:
+ case em_82574:
+ /*
+ * The STATUS_TBIMODE bit is reserved or reused for
+ * the this device.
+ */
+ hw->media_type = em_media_type_copper;
+ break;
+ default:
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_TBIMODE) {
+ hw->media_type = em_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = FALSE;
+ } else {
+ hw->media_type = em_media_type_copper;
+ }
+ break;
+ }
+ }
}
-
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
@@ -614,221 +614,222 @@ em_set_media_type(struct em_hw *hw)
int32_t
em_reset_hw(struct em_hw *hw)
{
- uint32_t ctrl;
- uint32_t ctrl_ext;
- uint32_t icr;
- uint32_t manc;
- uint32_t led_ctrl;
- uint32_t timeout;
- uint32_t extcnf_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- }
-
- if (hw->bus_type == em_bus_type_pci_express) {
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = FALSE;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
- msec_delay(5);
- }
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- timeout = 10;
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
- else
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msec_delay(2);
- timeout--;
- } while (timeout);
- }
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac_type == em_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- DEBUGOUT("Issuing a global reset to MAC\n");
-
- switch (hw->mac_type) {
- case em_82544:
- case em_82540:
- case em_82545:
- case em_82546:
- case em_82541:
- case em_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case em_82545_rev_3:
- case em_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- if (!hw->phy_reset_disable &&
- em_check_phy_reset_block(hw) == E1000_SUCCESS) {
- /* PHY HW reset requires MAC CORE reset at the same
- * time to make sure the interface between MAC and the
- * external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
- }
-
- em_get_software_flag(hw);
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- msec_delay(5);
- break;
- default:
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* Wait for reset to complete */
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* Wait for EEPROM reload */
- msec_delay(2);
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- /* Wait for EEPROM reload */
- msec_delay(20);
- break;
- case em_82573:
- case em_82574:
- if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- /* FALLTHROUGH */
-
- /* Auto read done will delay 5ms or poll based on mac type */
- ret_val = em_get_auto_rd_done(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- /* Wait for EEPROM reload (it happens automatically) */
- msec_delay(5);
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 &&
- hw->mac_type != em_icp_xxxx) {
- manc = E1000_READ_REG(hw, MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
- }
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- em_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- icr = E1000_READ_REG(hw, ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == em_82542_rev2_0) {
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- uint32_t kab = E1000_READ_REG(hw, KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- E1000_WRITE_REG(hw, KABGTXD, kab);
- }
-
- return E1000_SUCCESS;
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+ uint32_t icr;
+ uint32_t manc;
+ uint32_t led_ctrl;
+ uint32_t timeout;
+ uint32_t extcnf_ctrl;
+ int32_t ret_val;
+ DEBUGFUNC("em_reset_hw");
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if (hw->mac_type == em_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ em_pci_clear_mwi(hw);
+ }
+ if (hw->bus_type == em_bus_type_pci_express) {
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP
+ * connection on the last TLP read/write transaction when MAC
+ * is reset.
+ */
+ if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+ }
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+ /*
+ * Disable the Transmit and Receive units. Then delay to allow any
+ * pending transactions to complete before we hit the MAC with the
+ * global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+ /*
+ * The tbi_compatibility_on Flag must be cleared when Rctl is
+ * cleared.
+ */
+ hw->tbi_compatibility_on = FALSE;
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Must reset the PHY before resetting the MAC */
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ msec_delay(5);
+ }
+ /*
+ * Must acquire the MDIO ownership before MAC reset. Ownership
+ * defaults to firmware after a reset.
+ */
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ timeout = 10;
+
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ do {
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ break;
+ else
+ extcnf_ctrl |=
+ E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ msec_delay(2);
+ timeout--;
+ } while (timeout);
+ }
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
+ if (hw->mac_type == em_ich8lan) {
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
+ E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
+ /* Set Packet Buffer Size to 16k. */
+ E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
+ }
+ /*
+ * Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect the
+ * current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+
+ switch (hw->mac_type) {
+ case em_82544:
+ case em_82540:
+ case em_82545:
+ case em_82546:
+ case em_82541:
+ case em_82541_rev_2:
+ /*
+ * These controllers can't ack the 64-bit write when issuing
+ * the reset, so use IO-mapping as a workaround to issue the
+ * reset
+ */
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ case em_82545_rev_3:
+ case em_82546_rev_3:
+ /* Reset is performed on a shadow of the control register */
+ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ if (!hw->phy_reset_disable &&
+ em_check_phy_reset_block(hw) == E1000_SUCCESS) {
+ /*
+ * PHY HW reset requires MAC CORE reset at the same
+ * time to make sure the interface between MAC and
+ * the external PHY is reset.
+ */
+ ctrl |= E1000_CTRL_PHY_RST;
+ }
+ em_get_software_flag(hw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ msec_delay(5);
+ break;
+ default:
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ }
+ /*
+ * After MAC reset, force reload of EEPROM to restore power-on
+ * settings to device. Later controllers reload the EEPROM
+ * automatically, so just wait for reload to complete.
+ */
+ switch (hw->mac_type) {
+ case em_82542_rev2_0:
+ case em_82542_rev2_1:
+ case em_82543:
+ case em_82544:
+ /* Wait for reset to complete */
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ /* Wait for EEPROM reload */
+ msec_delay(2);
+ break;
+ case em_82541:
+ case em_82541_rev_2:
+ case em_82547:
+ case em_82547_rev_2:
+ /* Wait for EEPROM reload */
+ msec_delay(20);
+ break;
+ case em_82573:
+ case em_82574:
+ if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ /* FALLTHROUGH */
+
+ /* Auto read done will delay 5ms or poll based on mac type */
+ ret_val = em_get_auto_rd_done(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ /* Wait for EEPROM reload (it happens automatically) */
+ msec_delay(5);
+ break;
+ }
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 &&
+ hw->mac_type != em_icp_xxxx) {
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ em_phy_init_script(hw);
+
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if (hw->mac_type == em_82542_rev2_0) {
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_pci_set_mwi(hw);
+ }
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ uint32_t kab = E1000_READ_REG(hw, KABGTXD);
+ kab |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, KABGTXD, kab);
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -841,99 +842,109 @@ em_reset_hw(struct em_hw *hw)
STATIC void
em_initialize_hardware_bits(struct em_hw *hw)
{
- if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) {
- /* Settings common to all silicon */
- uint32_t reg_ctrl, reg_ctrl_ext;
- uint32_t reg_tarc0, reg_tarc1;
- uint32_t reg_tctl;
- uint32_t reg_txdctl, reg_txdctl1;
-
- reg_tarc0 = E1000_READ_REG(hw, TARC0);
- reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and 27 */
-
- reg_txdctl = E1000_READ_REG(hw, TXDCTL);
- reg_txdctl |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */
- E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
-
- reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
- reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */
- E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
-
- switch (hw->mac_type) {
- case em_82571:
- case em_82572:
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- reg_tctl = E1000_READ_REG(hw, TCTL);
-
- /* Set the phy Tx compatible mode bits */
- reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */
-
- reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */
- reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */
-
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */
- else
- reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- case em_82573:
- case em_82574:
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- reg_ctrl = E1000_READ_REG(hw, CTRL);
-
- reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */
- reg_ctrl_ext |= 0x00400000; /* Set bit 22 */
- reg_ctrl &= ~0x20000000; /* Clear bit 29 */
-
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
- E1000_WRITE_REG(hw, CTRL, reg_ctrl);
- break;
- case em_80003es2lan:
- if ((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
- reg_tarc0 &= ~0x00100000; /* Clear bit 20 */
- }
-
- reg_tctl = E1000_READ_REG(hw, TCTL);
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */
- else
- reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- if (hw->mac_type == em_ich8lan)
- reg_tarc0 |= 0x30000000; /* Set TARC0 bits 29 and 28 */
- reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- reg_ctrl_ext |= 0x00400000; /* Set bit 22 */
- E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
-
- reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, 24, 26, 27 */
-
- reg_tarc1 = E1000_READ_REG(hw, TARC1);
- reg_tctl = E1000_READ_REG(hw, TCTL);
-
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */
- else
- reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */
-
- reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and 30 */
-
- E1000_WRITE_REG(hw, TARC1, reg_tarc1);
- break;
- default:
- break;
- }
-
- E1000_WRITE_REG(hw, TARC0, reg_tarc0);
- }
+ if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) {
+ /* Settings common to all silicon */
+ uint32_t reg_ctrl, reg_ctrl_ext;
+ uint32_t reg_tarc0, reg_tarc1;
+ uint32_t reg_tctl;
+ uint32_t reg_txdctl, reg_txdctl1;
+ reg_tarc0 = E1000_READ_REG(hw, TARC0);
+ reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and
+ * 27 */
+
+ reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */
+ E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+ reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+ reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */
+ E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+ switch (hw->mac_type) {
+ case em_82571:
+ case em_82572:
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+
+ /* Set the phy Tx compatible mode bits */
+ reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */
+
+ reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */
+ reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */
+
+ if (reg_tctl & E1000_TCTL_MULR)
+ /* Clear bit 28 if MULR is 1b */
+ reg_tarc1 &= ~0x10000000;
+ else
+ /* Set bit 28 if MULR is 0b */
+ reg_tarc1 |= 0x10000000;
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case em_82573:
+ case em_82574:
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl = E1000_READ_REG(hw, CTRL);
+
+ reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */
+ reg_ctrl_ext |= 0x00400000; /* Set bit 22 */
+ reg_ctrl &= ~0x20000000; /* Clear bit 29 */
+
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+ E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+ break;
+ case em_80003es2lan:
+ if ((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) {
+ /* Clear bit 20 */
+ reg_tarc0 &= ~0x00100000;
+ }
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ if (reg_tctl & E1000_TCTL_MULR)
+ /* Clear bit 28 if MULR is 1b */
+ reg_tarc1 &= ~0x10000000;
+ else
+ /* Set bit 28 if MULR is 0b */
+ reg_tarc1 |= 0x10000000;
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ if (hw->mac_type == em_ich8lan)
+ /* Set TARC0 bits 29 and 28 */
+ reg_tarc0 |= 0x30000000;
+
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext |= 0x00400000; /* Set bit 22 */
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+ reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23,
+ * 24, 26, 27 */
+
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+
+ if (reg_tctl & E1000_TCTL_MULR)
+ /* Clear bit 28 if MULR is 1b */
+ reg_tarc1 &= ~0x10000000;
+ else
+ /* Set bit 28 if MULR is 0b */
+ reg_tarc1 |= 0x10000000;
+
+ reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and
+ * 30 */
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+ }
}
/******************************************************************************
@@ -950,216 +961,221 @@ em_initialize_hardware_bits(struct em_hw *hw)
int32_t
em_init_hw(struct em_hw *hw)
{
- uint32_t ctrl;
- uint32_t i;
- int32_t ret_val;
- uint16_t pcix_cmd_word;
- uint16_t pcix_stat_hi_word;
- uint16_t cmd_mmrbc;
- uint16_t stat_mmrbc;
- uint32_t mta_size;
- uint32_t reg_data;
- uint32_t ctrl_ext;
- uint32_t snoop;
-
- DEBUGFUNC("em_init_hw");
-
- /* force full DMA clock frequency for ICH8 */
- if (hw->mac_type == em_ich8lan) {
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~0x80000000;
- E1000_WRITE_REG(hw, STATUS, reg_data);
- }
-
- /* Initialize Identification LED */
- ret_val = em_id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- em_set_media_type(hw);
-
- /* Must be called after em_set_media_type because media_type is used */
- em_initialize_hardware_bits(hw);
-
- /* Disabling VLAN filtering. */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */
- if (hw->mac_type != em_ich8lan &&
- hw->mac_type != em_ich9lan &&
- hw->mac_type != em_ich10lan) {
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
- }
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- em_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == em_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occuring when accessing our register space */
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if (hw->dma_fairness && hw->mac_type <= em_82543) {
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if (hw->bus_type == em_bus_type_pcix) {
- em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
- em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
- &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if (cmd_mmrbc > stat_mmrbc) {
- pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
- &pcix_cmd_word);
- }
- }
- break;
- }
-
- /* More time needed for PHY to initialize */
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- msec_delay(15);
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = em_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > em_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
- }
-
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- em_enable_tx_pkt_filtering(hw);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case em_80003es2lan:
- /* Enable retransmit on late collisions */
- reg_data = E1000_READ_REG(hw, TCTL);
- reg_data |= E1000_TCTL_RTLC;
- E1000_WRITE_REG(hw, TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = E1000_READ_REG(hw, TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
- E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = E1000_READ_REG(hw, TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
- /* FALLTHROUGH */
- case em_82571:
- case em_82572:
- case em_82575:
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- ctrl = E1000_READ_REG(hw, TXDCTL1);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, TXDCTL1, ctrl);
- break;
- }
-
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- uint32_t gcr = E1000_READ_REG(hw, GCR);
- gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- E1000_WRITE_REG(hw, GCR, gcr);
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- em_clear_hw_cntrs(hw);
-
- /* ICH8 No-snoop bits are opposite polarity.
- * Set to snoop by default after reset. */
- if (hw->mac_type == em_ich8lan)
- snoop = PCI_EX_82566_SNOOP_ALL;
- else if (hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- snoop = (u_int32_t)~(PCI_EX_NO_SNOOP_ALL);
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- em_set_pci_ex_no_snoop(hw, snoop);
-
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot. */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return ret_val;
+ uint32_t ctrl;
+ uint32_t i;
+ int32_t ret_val;
+ uint16_t pcix_cmd_word;
+ uint16_t pcix_stat_hi_word;
+ uint16_t cmd_mmrbc;
+ uint16_t stat_mmrbc;
+ uint32_t mta_size;
+ uint32_t reg_data;
+ uint32_t ctrl_ext;
+ uint32_t snoop;
+ DEBUGFUNC("em_init_hw");
+
+ /* force full DMA clock frequency for ICH8 */
+ if (hw->mac_type == em_ich8lan) {
+ reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data &= ~0x80000000;
+ E1000_WRITE_REG(hw, STATUS, reg_data);
+ }
+ /* Initialize Identification LED */
+ ret_val = em_id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+ /* Set the media type and TBI compatibility */
+ em_set_media_type(hw);
+
+ /* Must be called after em_set_media_type because media_type is used */
+ em_initialize_hardware_bits(hw);
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */
+ if (hw->mac_type != em_ich8lan &&
+ hw->mac_type != em_ich9lan &&
+ hw->mac_type != em_ich10lan) {
+ if (hw->mac_type < em_82545_rev_3)
+ E1000_WRITE_REG(hw, VET, 0);
+ em_clear_vfta(hw);
+ }
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->mac_type == em_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ em_pci_clear_mwi(hw);
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+ /*
+ * Setup the receive address. This involves initializing all of the
+ * Receive Address Registers (RARs 0 - 15).
+ */
+ em_init_rx_addrs(hw);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI*/
+ if (hw->mac_type == em_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_pci_set_mwi(hw);
+ }
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ mta_size = E1000_MC_TBL_SIZE;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+ for (i = 0; i < mta_size; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ /*
+ * use write flush to prevent Memory Write Block (MWB) from
+ * occuring when accessing our register space
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives. Valid only on
+ * 82542 and 82543 silicon.
+ */
+ if (hw->dma_fairness && hw->mac_type <= em_82543) {
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+ switch (hw->mac_type) {
+ case em_82545_rev_3:
+ case em_82546_rev_3:
+ break;
+ default:
+ /*
+ * Workaround for PCI-X problem when BIOS sets MMRBC
+ * incorrectly.
+ */
+ if (hw->bus_type == em_bus_type_pcix) {
+ em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER,
+ &pcix_cmd_word);
+ em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
+ &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK)
+ >> PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word &
+ PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd_word |= stat_mmrbc <<
+ PCIX_COMMAND_MMRBC_SHIFT;
+ em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
+ &pcix_cmd_word);
+ }
+ }
+ break;
+ }
+
+ /* More time needed for PHY to initialize */
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ msec_delay(15);
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = em_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ if (hw->mac_type > em_82544) {
+ ctrl = E1000_READ_REG(hw, TXDCTL);
+ ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL, ctrl);
+ }
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ em_enable_tx_pkt_filtering(hw);
+ }
+ switch (hw->mac_type) {
+ default:
+ break;
+ case em_80003es2lan:
+ /* Enable retransmit on late collisions */
+ reg_data = E1000_READ_REG(hw, TCTL);
+ reg_data |= E1000_TCTL_RTLC;
+ E1000_WRITE_REG(hw, TCTL, reg_data);
+
+ /* Configure Gigabit Carry Extend Padding */
+ reg_data = E1000_READ_REG(hw, TCTL_EXT);
+ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+ reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+ E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+ /* Configure Transmit Inter-Packet Gap */
+ reg_data = E1000_READ_REG(hw, TIPG);
+ reg_data &= ~E1000_TIPG_IPGT_MASK;
+ reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+ E1000_WRITE_REG(hw, TIPG, reg_data);
+
+ reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+ reg_data &= ~0x00100000;
+ E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+ /* FALLTHROUGH */
+ case em_82571:
+ case em_82572:
+ case em_82575:
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ ctrl = E1000_READ_REG(hw, TXDCTL1);
+ ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+ break;
+ }
+
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ uint32_t gcr = E1000_READ_REG(hw, GCR);
+ gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ E1000_WRITE_REG(hw, GCR, gcr);
+ }
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there is
+ * no link.
+ */
+ em_clear_hw_cntrs(hw);
+ /*
+ * ICH8 No-snoop bits are opposite polarity. Set to snoop by default
+ * after reset.
+ */
+ if (hw->mac_type == em_ich8lan)
+ snoop = PCI_EX_82566_SNOOP_ALL;
+ else if (hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ snoop = (u_int32_t) ~ (PCI_EX_NO_SNOOP_ALL);
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ em_set_pci_ex_no_snoop(hw, snoop);
+
+ if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+ hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ /*
+ * Relaxed ordering must be disabled to avoid a parity error
+ * crash in a PCI slot.
+ */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+ return ret_val;
}
/******************************************************************************
@@ -1170,36 +1186,34 @@ em_init_hw(struct em_hw *hw)
static int32_t
em_adjust_serdes_amplitude(struct em_hw *hw)
{
- uint16_t eeprom_data;
- int32_t ret_val;
-
- DEBUGFUNC("em_adjust_serdes_amplitude");
-
- if (hw->media_type != em_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if (eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ uint16_t eeprom_data;
+ int32_t ret_val;
+ DEBUGFUNC("em_adjust_serdes_amplitude");
+
+ if (hw->media_type != em_media_type_internal_serdes)
+ return E1000_SUCCESS;
+
+ switch (hw->mac_type) {
+ case em_82545_rev_3:
+ case em_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
+ if (ret_val) {
+ return ret_val;
+ }
+ if (eeprom_data != EEPROM_RESERVED_WORD) {
+ /* Adjust SERDES output amplitude only. */
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL,
+ eeprom_data);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -1216,156 +1230,158 @@ em_adjust_serdes_amplitude(struct em_hw *hw)
int32_t
em_setup_link(struct em_hw *hw)
{
- uint32_t ctrl_ext;
- int32_t ret_val;
- uint16_t eeprom_data;
- uint16_t eeprom_control2_reg_offset;
-
- DEBUGFUNC("em_setup_link");
-
- eeprom_control2_reg_offset =
- (hw->mac_type != em_icp_xxxx)
- ? EEPROM_INIT_CONTROL2_REG
- : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num);
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not have to set it up again. */
- if (em_check_phy_reset_block(hw))
- return E1000_SUCCESS;
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->fc == E1000_FC_DEFAULT) {
- switch (hw->mac_type) {
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- case em_82573:
- case em_82574:
- hw->fc = E1000_FC_FULL;
- break;
- default:
- ret_val = em_read_eeprom(hw, eeprom_control2_reg_offset,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = E1000_FC_NONE;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = E1000_FC_TX_PAUSE;
- else
- hw->fc = E1000_FC_FULL;
- break;
- }
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == em_82542_rev2_0)
- hw->fc &= (~E1000_FC_TX_PAUSE);
-
- if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~E1000_FC_RX_PAUSE);
-
- hw->original_fc = hw->fc;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before em_setup_pcs_link()
- * or em_phy_setup() is called.
- */
- if (hw->mac_type == em_82543) {
- ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- /* Make sure we have a valid PHY */
- ret_val = em_detect_gig_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error, did not detect valid phy.\n");
- if (hw->mac_type == em_icp_xxxx)
- return E1000_DEFER_INIT;
- else
- return ret_val;
- }
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
- /* Call the necessary subroutine to configure the link. */
- switch (hw->media_type) {
- case em_media_type_copper:
- case em_media_type_oem:
- ret_val = em_setup_copper_link(hw);
- break;
- default:
- ret_val = em_setup_fiber_serdes_link(hw);
- break;
- }
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
- /*
- * FCAL/H and FCT are hardcoded to standard values in
- * em_ich8lan / em_ich9lan / em_ich10lan.
- */
- if (hw->mac_type != em_ich8lan &&
- hw->mac_type != em_ich9lan &&
- hw->mac_type != em_ich10lan) {
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- }
-
- E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (!(hw->fc & E1000_FC_TX_PAUSE)) {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+ uint16_t eeprom_control2_reg_offset;
+ DEBUGFUNC("em_setup_link");
+
+ eeprom_control2_reg_offset =
+ (hw->mac_type != em_icp_xxxx)
+ ? EEPROM_INIT_CONTROL2_REG
+ : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num);
+ /*
+ * In the case of the phy reset being blocked, we already have a
+ * link. We do not have to set it up again.
+ */
+ if (em_check_phy_reset_block(hw))
+ return E1000_SUCCESS;
+ /*
+ * Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode, a
+ * bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the SW defined
+ * pins. If there is no SW over-ride of the flow control setting,
+ * then the variable hw->fc will be initialized based on a value in
+ * the EEPROM.
+ */
+ if (hw->fc == E1000_FC_DEFAULT) {
+ switch (hw->mac_type) {
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ case em_82573:
+ case em_82574:
+ hw->fc = E1000_FC_FULL;
+ break;
+ default:
+ ret_val = em_read_eeprom(hw,
+ eeprom_control2_reg_offset, 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = E1000_FC_NONE;
+ else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = E1000_FC_TX_PAUSE;
+ else
+ hw->fc = E1000_FC_FULL;
+ break;
+ }
+ }
+ /*
+ * We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if (hw->mac_type == em_82542_rev2_0)
+ hw->fc &= (~E1000_FC_TX_PAUSE);
+
+ if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~E1000_FC_RX_PAUSE);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+ /*
+ * Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the Extended
+ * Device Control reg with that info. This is needed because one of
+ * the SW controlled pins is used for signal detection. So this
+ * should be done before em_setup_pcs_link() or em_phy_setup() is
+ * called.
+ */
+ if (hw->mac_type == em_82543) {
+ ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+ 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+ /* Make sure we have a valid PHY */
+ ret_val = em_detect_gig_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ if (hw->mac_type == em_icp_xxxx)
+ return E1000_DEFER_INIT;
+ else
+ return ret_val;
+ }
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+ /* Call the necessary subroutine to configure the link. */
+ switch (hw->media_type) {
+ case em_media_type_copper:
+ case em_media_type_oem:
+ ret_val = em_setup_copper_link(hw);
+ break;
+ default:
+ ret_val = em_setup_fiber_serdes_link(hw);
+ break;
+ }
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"
+ );
+
+ /*
+ * FCAL/H and FCT are hardcoded to standard values in
+ * em_ich8lan / em_ich9lan / em_ich10lan.
*/
- if (hw->fc_send_xon) {
- E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- } else {
- E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
+ if (hw->mac_type != em_ich8lan &&
+ hw->mac_type != em_ich9lan &&
+ hw->mac_type != em_ich10lan) {
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ }
+ E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+ /*
+ * Set the flow control receive threshold registers. Normally, these
+ * registers will be set to a default threshold that may be adjusted
+ * later by the driver's runtime code. However, if the ability to
+ * transmit pause frames in not enabled, then these registers will be
+ * set to 0.
+ */
+ if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ } else {
+ /*
+ * We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ if (hw->fc_send_xon) {
+ E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water
+ | E1000_FCRTL_XONE));
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
}
/******************************************************************************
@@ -1380,1440 +1396,1476 @@ em_setup_link(struct em_hw *hw)
static int32_t
em_setup_fiber_serdes_link(struct em_hw *hw)
{
- uint32_t ctrl;
- uint32_t status;
- uint32_t txcw = 0;
- uint32_t i;
- uint32_t signal = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_setup_fiber_serdes_link");
-
- /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
- * until explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
- E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
- /* On adapters with a MAC newer than 82544, SWDP 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value
- * set in the EEPROM.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- if (hw->media_type == em_media_type_fiber)
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = em_adjust_serdes_amplitude(hw);
- if (ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = em_set_vco_speed(hw);
- if (ret_val)
- return ret_val;
-
- em_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case E1000_FC_NONE:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case E1000_FC_RX_PAUSE:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case E1000_FC_TX_PAUSE:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case E1000_FC_FULL:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- hw->txcw = txcw;
- msec_delay(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if (hw->media_type == em_media_type_internal_serdes ||
- (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- DEBUGOUT("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_LU) break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * em_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = em_check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
- } else {
- DEBUGOUT("No Signal Detected\n");
- }
- return E1000_SUCCESS;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal = 0;
+ int32_t ret_val;
+ DEBUGFUNC("em_setup_fiber_serdes_link");
+ /*
+ * On 82571 and 82572 Fiber connections, SerDes loopback mode
+ * persists until explicitly turned off or a power cycle is
+ * performed. A read to the register does not indicate its status.
+ * Therefore, we ensure loopback mode is disabled during
+ * initialization.
+ */
+ if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
+ E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
+ /*
+ * On adapters with a MAC newer than 82544, SWDP 1 will be set when
+ * the optics detect a signal. On older adapters, it will be cleared
+ * when there is a signal. This applies to fiber media only. If
+ * we're on serdes media, adjust the output amplitude to value set in
+ * the EEPROM.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if (hw->media_type == em_media_type_fiber)
+ signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+ ret_val = em_adjust_serdes_amplitude(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = em_set_vco_speed(hw);
+ if (ret_val)
+ return ret_val;
+
+ em_config_collision_dist(hw);
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled,
+ * then software will have to set the "PAUSE" bits to the correct
+ * value in the Tranmsit Config Word Register (TXCW) and re-start
+ * auto-negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control
+ * enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are: 0: Flow control is
+ * completely disabled 1: Rx flow control is enabled (we can receive
+ * pause frames, but not send pause frames). 2: Tx flow control is
+ * enabled (we can send pause frames but we do not support receiving
+ * pause frames). 3: Both Rx and TX flow control (symmetric) are
+ * enabled.
+ */
+ switch (hw->fc) {
+ case E1000_FC_NONE:
+ /*
+ * Flow control is completely disabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case E1000_FC_RX_PAUSE:
+ /*
+ * RX Flow control is enabled and TX Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of RX Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric RX
+ * PAUSE. Later, we will disable the adapter's ability to
+ * send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD |
+ E1000_TXCW_PAUSE_MASK);
+ break;
+ case E1000_FC_TX_PAUSE:
+ /*
+ * TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case E1000_FC_FULL:
+ /*
+ * Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD |
+ E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+ /*
+ * Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-neogtiation is successful
+ * then the link-up status bit will be set and the flow control
+ * enable bits (RFCE and TFCE) will be set according to their
+ * negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ hw->txcw = txcw;
+ msec_delay(1);
+ /*
+ * If we have a signal (the cable is plugged in) then poll for a
+ * "Link-Up" indication in the Device Status Register. Time-out if a
+ * link isn't seen in 500 milliseconds seconds (Auto-negotiation
+ * should complete in less than 500 milliseconds even if the other
+ * end is doing it in SW). For internal serdes, we just assume a
+ * signal is present, then poll.
+ */
+ if (hw->media_type == em_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == (LINK_UP_TIMEOUT / 10)) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ /*
+ * AutoNeg failed to achieve a link, so we'll call
+ * em_check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us
+ * to communicate with non-autonegotiating link
+ * partners.
+ */
+ ret_val = em_check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_copper_link_preconfig(struct em_hw *hw)
{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_preconfig");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > em_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- ret_val = em_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = em_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82545_rev_3) ||
- (hw->mac_type == em_82546_rev_3)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if (hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
- hw->phy_reset_disable = FALSE;
-
- return E1000_SUCCESS;
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_copper_link_preconfig");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /*
+ * With 82543, we need to force speed and duplex on the MAC equal to
+ * what the PHY speed and duplex configuration is. In addition, we
+ * need to perform a hardware reset on the PHY to take it out of
+ * reset.
+ */
+ if (hw->mac_type > em_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
+ E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ ret_val = em_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Set PHY to class A mode (if necessary) */
+ ret_val = em_set_phy_mode(hw);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == em_82545_rev_3) ||
+ (hw->mac_type == em_82546_rev_3)) {
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ phy_data |= 0x00000008;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ }
+ if (hw->mac_type <= em_82543 ||
+ hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
+ hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
+ hw->phy_reset_disable = FALSE;
+
+ return E1000_SUCCESS;
}
-
-/********************************************************************
-* Copper link setup for em_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/******************************************************************************
+ * Copper link setup for em_phy_igp series.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_copper_link_igp_setup(struct em_hw *hw)
{
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- msec_delay(15);
- if (hw->mac_type != em_ich8lan &&
- hw->mac_type != em_ich9lan &&
- hw->mac_type != em_ich10lan) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == em_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = em_set_d3_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* disable lplu d0 during driver init */
- ret_val = em_set_d0_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- hw->dsp_config_state = em_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = em_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->autoneg) {
- em_ms_type phy_ms_setting = hw->master_slave;
-
- if (hw->ffe_config_state == em_ffe_config_active)
- hw->ffe_config_state = em_ffe_config_enabled;
-
- if (hw->dsp_config_state == em_dsp_config_activated)
- hw->dsp_config_state = em_dsp_config_enabled;
-
- /* when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- em_ms_force_master :
- em_ms_force_slave) :
- em_ms_auto;
-
- switch (phy_ms_setting) {
- case em_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case em_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case em_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- break;
- default:
- break;
- }
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ uint32_t led_ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_copper_link_igp_setup");
+
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ ret_val = em_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
+ msec_delay(15);
+ if (hw->mac_type != em_ich8lan &&
+ hw->mac_type != em_ich9lan &&
+ hw->mac_type != em_ich10lan) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+ /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+ if (hw->phy_type == em_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = em_set_d3_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ return ret_val;
+ }
+ }
+ /* disable lplu d0 during driver init */
+ ret_val = em_set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ return ret_val;
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ hw->dsp_config_state = em_dsp_config_disabled;
+ /* Force MDI for earlier revs of the IGP PHY */
+ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
+ IGP01E1000_PSCR_FORCE_MDI_MDIX);
+ hw->mdix = 1;
+
+ } else {
+ hw->dsp_config_state = em_dsp_config_enabled;
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ }
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ if (hw->autoneg) {
+ em_ms_type phy_ms_setting = hw->master_slave;
+ if (hw->ffe_config_state == em_ffe_config_active)
+ hw->ffe_config_state = em_ffe_config_enabled;
+
+ if (hw->dsp_config_state == em_dsp_config_activated)
+ hw->dsp_config_state = em_dsp_config_enabled;
+ /*
+ * when autonegotiation advertisement is only 1000Mbps then
+ * we should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = em_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Set auto Master/Slave resolution process */
+ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ? em_ms_force_master :
+ em_ms_force_slave) : em_ms_auto;
+
+ switch (phy_ms_setting) {
+ case em_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case em_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case em_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ break;
+ default:
+ break;
+ }
+ ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Copper link setup for em_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/******************************************************************************
+ * Copper link setup for em_phy_gg82563 series.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_copper_link_ggp_setup(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t phy_data;
- uint32_t reg_data;
-
- DEBUGFUNC("em_copper_link_ggp_setup");
-
- if (!hw->phy_reset_disable) {
-
- /* Enable CRS on TX for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
- phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
- ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (hw->disable_polarity_correction == 1)
- phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
- } /* phy_reset_disable */
-
- if (hw->mac_type == em_80003es2lan) {
- /* Bypass RX and TX FIFO's */
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
- if (ret_val)
- return ret_val;
-
- reg_data = E1000_READ_REG(hw, CTRL_EXT);
- reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (em_check_mng_mode(hw) == FALSE) {
- /* Enable Electrical Idle on the PHY */
- phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- phy_data);
-
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= GG82563_ICR_DIS_PADDING;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t phy_data;
+ uint32_t reg_data;
+ DEBUGFUNC("em_copper_link_ggp_setup");
+
+ if (!hw->phy_reset_disable) {
+
+ /* Enable CRS on TX for half-duplex operation. */
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+ phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1
+ * - MDI mode 2 - MDI-X mode 3 - Auto for 1000Base-T only
+ * (MDI-X for 10/100Base-T modes)
+ */
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL,
+ &phy_data);
+
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+ break;
+ case 2:
+ phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ break;
+ }
+ /*
+ * Options: disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity 0 -
+ * Disabled 1 - Enabled
+ */
+ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ if (hw->disable_polarity_correction == 1)
+ phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL,
+ phy_data);
+
+ if (ret_val)
+ return ret_val;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = em_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+ } /* phy_reset_disable */
+ if (hw->mac_type == em_80003es2lan) {
+ /* Bypass RX and TX FIFO's */
+ ret_val = em_write_kmrn_reg(hw,
+ E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+ E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2,
+ phy_data);
+
+ if (ret_val)
+ return ret_val;
+
+ reg_data = E1000_READ_REG(hw, CTRL_EXT);
+ reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Do not init these registers when the HW is in IAMT mode,
+ * since the firmware will have already initialized them. We
+ * only initialize them if the HW is not in IAMT mode.
+ */
+ if (em_check_mng_mode(hw) == FALSE) {
+ /* Enable Electrical Idle on the PHY */
+ phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = em_write_phy_reg(hw,
+ GG82563_PHY_PWR_MGMT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = em_write_phy_reg(hw,
+ GG82563_PHY_KMRN_MODE_CTRL, phy_data);
+
+ if (ret_val)
+ return ret_val;
+ }
+ /*
+ * Workaround: Disable padding in Kumeran interface in the
+ * MAC and in the PHY to avoid CRC errors.
+ */
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data |= GG82563_ICR_DIS_PADDING;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Copper link setup for em_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/******************************************************************************
+ * Copper link setup for em_phy_m88 series.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_copper_link_mgp_setup(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_mgp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_id == M88E1141_E_PHY_ID) {
- phy_data |= 0x00000008;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- }
- /* For BM PHY this bit is downshift enable */
- else if (hw->phy_type != em_phy_bm)
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift on BM (disabled by default) */
- if (hw->phy_type == em_phy_bm)
- phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (((hw->phy_type == em_phy_m88) &&
- (hw->phy_revision < M88E1011_I_REV_4) &&
- (hw->phy_id != BME1000_E_PHY_ID)) ||
- (hw->phy_type == em_phy_oem)) {
-
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type == em_phy_oem) {
- phy_data |= M88E1000_EPSCR_TX_TIME_CTRL;
- phy_data |= M88E1000_EPSCR_RX_TIME_CTRL;
- }
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
- /*
- * Set PHY page 0, register 29 to 0x0003
- * The next two writes are supposed to lower BER for gig
- * conection
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_copper_link_mgp_setup");
+
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_id == M88E1141_E_PHY_ID) {
+ phy_data |= 0x00000008;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ }
+ /* For BM PHY this bit is downshift enable */
+ else if (hw->phy_type != em_phy_bm)
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ /*
+ * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 - MDI
+ * mode 2 - MDI-X mode 3 - Auto for 1000Base-T only (MDI-X for
+ * 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+ /*
+ * Options: disable_polarity_correction = 0 (default) Automatic
+ * Correction for Reversed Cable Polarity 0 - Disabled 1 - Enabled
*/
- ret_val = em_write_phy_reg(hw, BM_REG_BIAS1, 0x0003);
- if (ret_val)
- return ret_val;
-
- /* Set PHY page 0, register 30 to 0x0000 */
- ret_val = em_write_phy_reg(hw, BM_REG_BIAS2, 0x0000);
- if (ret_val)
- return ret_val;
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift on BM (disabled by default) */
+ if (hw->phy_type == em_phy_bm)
+ phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (((hw->phy_type == em_phy_m88) &&
+ (hw->phy_revision < M88E1011_I_REV_4) &&
+ (hw->phy_id != BME1000_E_PHY_ID)) ||
+ (hw->phy_type == em_phy_oem)) {
+ /*
+ * Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_type == em_phy_oem) {
+ phy_data |= M88E1000_EPSCR_TX_TIME_CTRL;
+ phy_data |= M88E1000_EPSCR_RX_TIME_CTRL;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((hw->phy_revision == E1000_REVISION_2) &&
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
+ /* Vidalia Phy, set the downshift counter to 5x */
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
+ /*
+ * Set PHY page 0, register 29 to 0x0003
+ * The next two writes are supposed to lower BER for gig
+ * conection
+ */
+ ret_val = em_write_phy_reg(hw, BM_REG_BIAS1, 0x0003);
+ if (ret_val)
+ return ret_val;
+
+ /* Set PHY page 0, register 30 to 0x0000 */
+ ret_val = em_write_phy_reg(hw, BM_REG_BIAS2, 0x0000);
+ if (ret_val)
+ return ret_val;
+ }
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = em_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/******************************************************************************
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
int32_t
em_copper_link_autoneg(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* IFE phy only supports 10/100 */
- if (hw->phy_type == em_phy_ife)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = em_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (hw->wait_autoneg_complete) {
- ret_val = em_wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = TRUE;
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_copper_link_autoneg");
+ /*
+ * Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ /*
+ * If autoneg_advertised is zero, we assume it was not defaulted by
+ * the calling code so we set to advertise full capability.
+ */
+ if (hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* IFE phy only supports 10/100 */
+ if (hw->phy_type == em_phy_ife)
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = em_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+ /*
+ * Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Does the user want to wait for Auto-Neg to complete here, or check
+ * at a later time (for example, callback routine).
+ */
+ if (hw->wait_autoneg_complete) {
+ ret_val = em_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n"
+ );
+ return ret_val;
+ }
+ }
+ hw->get_link_status = TRUE;
+
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Config the MAC and the PHY after link is up.
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
int32_t
em_copper_link_postconfig(struct em_hw *hw)
{
- int32_t ret_val;
- DEBUGFUNC("em_copper_link_postconfig");
-
- if (hw->mac_type >= em_82544 &&
- hw->mac_type != em_icp_xxxx) {
- em_config_collision_dist(hw);
- } else {
- ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if (hw->phy_type == em_phy_igp) {
- ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if (ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ DEBUGFUNC("em_copper_link_postconfig");
+
+ if (hw->mac_type >= em_82544 &&
+ hw->mac_type != em_icp_xxxx) {
+ em_config_collision_dist(hw);
+ } else {
+ ret_val = em_config_mac_to_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = em_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+ /* Config DSP to improve Giga link quality */
+ if (hw->phy_type == em_phy_igp) {
+ ret_val = em_config_dsp_after_link_change(hw, TRUE);
+ if (ret_val) {
+ DEBUGOUT("Error Configuring DSP after link up\n");
+ return ret_val;
+ }
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Detects which PHY is present and setup the speed and duplex
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_setup_copper_link(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
- uint16_t reg_data;
-
- DEBUGFUNC("em_setup_copper_link");
-
- switch (hw->mac_type) {
- case em_80003es2lan:
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps. */
- ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
- default:
- break;
- }
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = em_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac_type) {
- case em_80003es2lan:
- /* Kumeran registers are written-only */
- reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
- reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_m88 ||
- hw->phy_type == em_phy_bm ||
- hw->phy_type == em_phy_oem) {
- ret_val = em_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_gg82563) {
- ret_val = em_copper_link_ggp_setup(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = em_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = em_phy_force_speed_duplex(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = em_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- usec_delay(10);
- }
-
- DEBUGOUT("Unable to establish link!!!\n");
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+ uint16_t reg_data;
+ DEBUGFUNC("em_setup_copper_link");
+
+ switch (hw->mac_type) {
+ case em_80003es2lan:
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ /*
+ * Set the mac to wait the maximum time between each
+ * iteration and increase the max iterations when polling the
+ * phy; this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9),
+ &reg_data);
+ if (ret_val)
+ return ret_val;
+ reg_data |= 0x3F;
+ ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9),
+ reg_data);
+ if (ret_val)
+ return ret_val;
+ default:
+ break;
+ }
+
+ /* Check if it is a valid PHY and set PHY mode if necessary. */
+ ret_val = em_copper_link_preconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ switch (hw->mac_type) {
+ case em_80003es2lan:
+ /* Kumeran registers are written-only */
+ reg_data =
+ E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+ reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val = em_write_kmrn_reg(hw,
+ E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ break;
+ }
+
+ if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
+ hw->phy_type == em_phy_igp_2) {
+ ret_val = em_copper_link_igp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == em_phy_m88 ||
+ hw->phy_type == em_phy_bm ||
+ hw->phy_type == em_phy_oem) {
+ ret_val = em_copper_link_mgp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == em_phy_gg82563) {
+ ret_val = em_copper_link_ggp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ if (hw->autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation
+ */
+ ret_val = em_copper_link_autoneg(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H,or 100F depending on
+ * value from forced_speed_duplex.
+ */
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = em_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for (i = 0; i < 10; i++) {
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0;
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ /* Config the MAC and PHY after link is up */
+ ret_val = em_copper_link_postconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT("Valid link established!!!\n");
+ return E1000_SUCCESS;
+ }
+ usec_delay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Configure the MAC-to-PHY interface for 10/100Mbps
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
{
- int32_t ret_val = E1000_SUCCESS;
- uint32_t tipg;
- uint16_t reg_data;
-
- DEBUGFUNC("em_configure_kmrn_for_10_100");
+ int32_t ret_val = E1000_SUCCESS;
+ uint32_t tipg;
+ uint16_t reg_data;
+ DEBUGFUNC("em_configure_kmrn_for_10_100");
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
+ reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+ ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
- E1000_WRITE_REG(hw, TIPG, tipg);
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+ E1000_WRITE_REG(hw, TIPG, tipg);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+ else
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
- return ret_val;
+ return ret_val;
}
static int32_t
em_configure_kmrn_for_1000(struct em_hw *hw)
{
- int32_t ret_val = E1000_SUCCESS;
- uint16_t reg_data;
- uint32_t tipg;
-
- DEBUGFUNC("em_configure_kmrn_for_1000");
+ int32_t ret_val = E1000_SUCCESS;
+ uint16_t reg_data;
+ uint32_t tipg;
+ DEBUGFUNC("em_configure_kmrn_for_1000");
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
+ reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+ ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- E1000_WRITE_REG(hw, TIPG, tipg);
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+ E1000_WRITE_REG(hw, TIPG, tipg);
- ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
- return ret_val;
+ return ret_val;
}
/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Configures PHY autoneg and flow control advertisement settings
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
int32_t
em_phy_setup_autoneg(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t mii_autoneg_adv_reg;
- uint16_t mii_1000t_ctrl_reg;
-
- DEBUGFUNC("em_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type != em_phy_ife) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- } else
- mii_1000t_ctrl_reg=0;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- if (hw->phy_type == em_phy_ife) {
- DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
- }
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case E1000_FC_NONE: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_RX_PAUSE: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in em_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_TX_PAUSE: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case E1000_FC_FULL: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (hw->phy_type != em_phy_ife) {
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+ DEBUGFUNC("em_phy_setup_autoneg");
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_type != em_phy_ife) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ } else
+ mii_1000t_ctrl_reg = 0;
+ /*
+ * Need to parse both autoneg_advertised and fc and set up the
+ * appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise a
+ * plethora of combinations, we need to check each bit individually.
+ */
+ /*
+ * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex requested, request"
+ " denied!\n");
+ }
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ if (hw->phy_type == em_phy_ife) {
+ DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is"
+ " not supported.\n");
+ }
+ }
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start
+ * auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are: 0: Flow control is
+ * completely disabled 1: Rx flow control is enabled (we can receive
+ * pause frames but not send pause frames). 2: Tx flow control is
+ * enabled (we can send pause frames but we do not support receiving
+ * pause frames). 3: Both Rx and TX flow control (symmetric) are
+ * enabled. other: No software override. The flow control
+ * configuration in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case E1000_FC_NONE: /* 0 */
+ /*
+ * Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case E1000_FC_RX_PAUSE:/* 1 */
+ /*
+ * RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /*
+ * Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later (in
+ * em_config_fc_after_link_up) we will disable the hw's
+ * ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case E1000_FC_TX_PAUSE:/* 2 */
+ /*
+ * TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case E1000_FC_FULL: /* 3 */
+ /*
+ * Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (hw->phy_type != em_phy_ife) {
+ ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
-
/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_phy_force_speed_duplex(struct em_hw *hw)
{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t mii_ctrl_reg;
- uint16_t mii_status_reg;
- uint16_t phy_data;
- uint16_t i;
-
- DEBUGFUNC("em_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = E1000_FC_NONE;
-
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb ");
- }
-
- em_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- if ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563) ||
- (hw->phy_type == em_phy_bm) ||
- (hw->phy_type == em_phy_oem)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
-
- }
-
- /* Disable MDI-X support for 10/100 */
- else if (hw->phy_type == em_phy_ife) {
- ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PMC_AUTO_MDIX;
- phy_data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if (hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- }
- if ((i == 0) &&
- ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563) ||
- (hw->phy_type == em_phy_bm))) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = em_phy_reset_dsp(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
-
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == em_phy_m88 ||
- hw->phy_type == em_phy_bm ||
- hw->phy_type == em_phy_oem) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ( hw->phy_id == M88E1141_E_PHY_ID)
- phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
- else
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- ret_val = em_polarity_reversal_workaround(hw);
- if (ret_val)
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- /* The TX_CLK of the Extended PHY Specific Control Register defaults
- * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
- * we're not in a forced 10/duplex configuration. */
- ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if ((hw->forced_speed_duplex == em_10_full) ||
- (hw->forced_speed_duplex == em_10_half))
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
- /* Also due to the reset, we need to enable CRS on Tx. */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
- ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t mii_ctrl_reg;
+ uint16_t mii_status_reg;
+ uint16_t phy_data;
+ uint16_t i;
+ DEBUGFUNC("em_phy_force_speed_duplex");
+
+ /* Turn off Flow control if we are forcing speed and duplex. */
+ hw->fc = E1000_FC_NONE;
+
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+ /* Read the Device Control Register. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(DEVICE_SPEED_MASK);
+
+ /* Clear the Auto Speed Detect Enable bit. */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Read the MII Control Register. */
+ ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+
+ /* We need to disable autoneg in order to force link and duplex. */
+
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Are we forcing Full or Half Duplex? */
+ if (hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_10_full) {
+ /*
+ * We want to force full duplex so we SET the full duplex
+ * bits in the Device and MII Control Registers.
+ */
+ ctrl |= E1000_CTRL_FD;
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ /*
+ * We want to force half duplex so we CLEAR the full duplex
+ * bits in the Device and MII Control Registers.
+ */
+ ctrl &= ~E1000_CTRL_FD;
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ /* Are we forcing 100Mbps??? */
+ if (hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_100_half) {
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+ ctrl |= E1000_CTRL_SPD_100;
+ mii_ctrl_reg |= MII_CR_SPEED_100;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb ");
+ } else {
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ mii_ctrl_reg |= MII_CR_SPEED_10;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb ");
+ }
+
+ em_config_collision_dist(hw);
+
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ if ((hw->phy_type == em_phy_m88) ||
+ (hw->phy_type == em_phy_gg82563) ||
+ (hw->phy_type == em_phy_bm) ||
+ (hw->phy_type == em_phy_oem)) {
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000
+ * requires MDI forced whenever speed are duplex are forced.
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+ /* Need to reset the PHY or these changes will be ignored */
+ mii_ctrl_reg |= MII_CR_RESET;
+
+ }
+ /* Disable MDI-X support for 10/100 */
+ else if (hw->phy_type == em_phy_ife) {
+ ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IFE_PMC_AUTO_MDIX;
+ phy_data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /*
+ * Clear Auto-Crossover to force MDI manually. IGP requires
+ * MDI forced whenever speed or duplex are forced.
+ */
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Write back the modified PHY MII control register. */
+ ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(1);
+ /*
+ * The wait_autoneg_complete flag may be a little misleading here.
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+ * But we do want to delay for a period while forcing only so we
+ * don't generate false No Link messages. So we will wait here only
+ * if the user has set wait_autoneg_complete to 1, which is the
+ * default.
+ */
+ if (hw->wait_autoneg_complete) {
+ /* We will wait for autoneg to complete. */
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
+ mii_status_reg = 0;
+ /*
+ * We will wait for autoneg to complete or 4.5 seconds to
+ * expire.
+ */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS,
+ &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS,
+ &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ msec_delay(100);
+ }
+ if ((i == 0) &&
+ ((hw->phy_type == em_phy_m88) ||
+ (hw->phy_type == em_phy_gg82563) ||
+ (hw->phy_type == em_phy_bm))) {
+ /*
+ * We didn't get link. Reset the DSP and wait again
+ * for link.
+ */
+ ret_val = em_phy_reset_dsp(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting PHY DSP\n");
+ return ret_val;
+ }
+ }
+ /*
+ * This loop will early-out if the link condition has been
+ * met.
+ */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ msec_delay(100);
+ /*
+ * Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS,
+ &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS,
+ &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ if (hw->phy_type == em_phy_m88 ||
+ hw->phy_type == em_phy_bm ||
+ hw->phy_type == em_phy_oem) {
+ /*
+ * Because we reset the PHY above, we need to re-force TX_CLK
+ * in the Extended PHY Specific Control Register to 25MHz
+ * clock. This value defaults back to a 2.5MHz clock when
+ * the PHY is reset.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * In addition, because of the s/w reset above, we need to
+ * enable CRS on TX. This must be set for both full and half
+ * duplex operation.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_id == M88E1141_E_PHY_ID)
+ phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ else
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
+ (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
+ ret_val = em_polarity_reversal_workaround(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if (hw->phy_type == em_phy_gg82563) {
+ /*
+ * The TX_CLK of the Extended PHY Specific Control Register
+ * defaults to 2.5MHz on a reset. We need to re-force it
+ * back to 25MHz, if we're not in a forced 10/duplex
+ * configuration.
+ */
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+ if ((hw->forced_speed_duplex == em_10_full) ||
+ (hw->forced_speed_duplex == em_10_half))
+ phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
+ else
+ phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
+
+ /* Also due to the reset, we need to enable CRS on Tx. */
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+
+ ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
+ * Sets the collision distance in the Transmit Control register
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ *****************************************************************************/
void
em_config_collision_dist(struct em_hw *hw)
{
- uint32_t tctl, coll_dist;
+ uint32_t tctl, coll_dist;
+ DEBUGFUNC("em_config_collision_dist");
- DEBUGFUNC("em_config_collision_dist");
+ if (hw->mac_type < em_82543)
+ coll_dist = E1000_COLLISION_DISTANCE_82542;
+ else
+ coll_dist = E1000_COLLISION_DISTANCE;
- if (hw->mac_type < em_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
+ tctl = E1000_READ_REG(hw, TCTL);
- tctl = E1000_READ_REG(hw, TCTL);
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= coll_dist << E1000_COLD_SHIFT;
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mii_reg - data to write to the MII control register
+ *
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ *****************************************************************************/
static int32_t
em_config_mac_to_phy(struct em_hw *hw)
{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if (hw->mac_type >= em_82544
- && hw->mac_type != em_icp_xxxx)
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- em_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_config_mac_to_phy");
+ /*
+ * 82544 or newer MAC, Auto Speed Detection takes care of MAC
+ * speed/duplex configuration.
+ */
+ if (hw->mac_type >= em_82544
+ && hw->mac_type != em_icp_xxxx)
+ return E1000_SUCCESS;
+ /*
+ * Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+ /*
+ * Set up duplex in the Device Control and Transmit Control registers
+ * depending on negotiated values.
+ */
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+ else
+ ctrl &= ~E1000_CTRL_FD;
+
+ em_config_collision_dist(hw);
+ /*
+ * Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -2830,59 +2882,55 @@ em_config_mac_to_phy(struct em_hw *hw)
int32_t
em_force_mac_fc(struct em_hw *hw)
{
- uint32_t ctrl;
-
- DEBUGFUNC("em_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case E1000_FC_NONE:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case E1000_FC_RX_PAUSE:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case E1000_FC_TX_PAUSE:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case E1000_FC_FULL:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == em_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
+ uint32_t ctrl;
+ DEBUGFUNC("em_force_mac_fc");
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /*
+ * Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY auto-neg),
+ * we have to manually enable/disable transmit an receive flow
+ * control.
+ *
+ * The "Case" statement below enables/disable flow control according to
+ * the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are: 0: Flow control is
+ * completely disabled 1: Rx flow control is enabled (we can receive
+ * pause frames but not send pause frames). 2: Tx flow control is
+ * enabled (we can send pause frames frames but we do not receive
+ * pause frames). 3: Both Rx and TX flow control (symmetric) is
+ * enabled. other: No other values should be possible at this point.
+ */
+ switch (hw->fc) {
+ case E1000_FC_NONE:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case E1000_FC_RX_PAUSE:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case E1000_FC_TX_PAUSE:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case E1000_FC_FULL:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if (hw->mac_type == em_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return E1000_SUCCESS;
+}
/******************************************************************************
* Configures flow control settings after link is established
*
@@ -2897,205 +2945,222 @@ em_force_mac_fc(struct em_hw *hw)
STATIC int32_t
em_config_fc_after_link_up(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t mii_nway_adv_reg;
- uint16_t mii_nway_lp_ability_reg;
- uint16_t speed;
- uint16_t duplex;
-
- DEBUGFUNC("em_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) ||
- ((hw->media_type == em_media_type_oem) && (!hw->autoneg))
- ) {
- ret_val = em_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == em_media_type_copper ||
- (hw->media_type == em_media_type_oem)) &&
- hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | em_fc_none
- * 0 | 1 | 0 | DC | em_fc_none
- * 0 | 1 | 1 | 0 | em_fc_none
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- * 1 | 0 | 0 | DC | em_fc_none
- * 1 | DC | 1 | DC | em_fc_full
- * 1 | 1 | 0 | 0 | em_fc_none
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | em_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == E1000_FC_FULL) {
- hw->fc = E1000_FC_FULL;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_TX_PAUSE;
- DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if ((hw->original_fc == E1000_FC_NONE||
- hw->original_fc == E1000_FC_TX_PAUSE) ||
- hw->fc_strict_ieee) {
- hw->fc = E1000_FC_NONE;
- DEBUGOUT("Flow Control = NONE.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc = E1000_FC_NONE;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = em_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
- }
- }
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+ DEBUGFUNC("em_config_fc_after_link_up");
+ /*
+ * Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed))
+ || ((hw->media_type == em_media_type_internal_serdes) &&
+ (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) ||
+ ((hw->media_type == em_media_type_oem) && (!hw->autoneg))) {
+ ret_val = em_force_mac_fc(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+ /*
+ * Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg has
+ * completed, and if so, how the PHY and link partner has flow
+ * control configured.
+ */
+ if ((hw->media_type == em_media_type_copper ||
+ (hw->media_type == em_media_type_oem)) &&
+ hw->autoneg) {
+ /*
+ * Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /*
+ * The AutoNeg process has completed, so we now need
+ * to read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Two bits in the Auto Negotiation Advertisement
+ * Register (Address 4) and two bits in the Auto
+ * Negotiation Base Page Ability Register (Address 5)
+ * determine flow control for both the PHY and the
+ * link partner. The following table, taken out of
+ * the IEEE 802.3ab/D6.0 dated March 25, 1999,
+ * describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER |
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ * -------|---------|-------|---------|---------------
+ * 0 | 0 | DC | DC | em_fc_none
+ * 0 | 1 | 0 | DC | em_fc_none
+ * 0 | 1 | 1 | 0 | em_fc_none
+ * 0 | 1 | 1 | 1 | em_fc_tx_pause
+ * 1 | 0 | 0 | DC | em_fc_none
+ * 1 | DC | 1 | DC | em_fc_full
+ * 1 | 1 | 0 | 0 | em_fc_none
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ /*
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends.
+ * The ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ * -------|---------|-------|---------|---------------
+ * 1 | DC | 1 | DC | em_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /*
+ * Now we need to check if the user selected
+ * RX ONLY of pause frames. In this case, we
+ * had to advertise FULL flow control because
+ * we could not advertise RX ONLY. Hence, we
+ * must now check to see if we need to turn
+ * OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->original_fc == E1000_FC_FULL) {
+ hw->fc = E1000_FC_FULL;
+ DEBUGOUT("Flow Control = FULL.\n");
+ } else {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT("Flow Control = RX PAUSE"
+ " frames only.\n");
+ }
+ }
+ /*
+ * For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER PAUSE | ASM_DIR |
+ * PAUSE | ASM_DIR | Result
+ * -------|---------|-------|---------|---------------
+ * ----- 0 | 1 | 1 | 1 |
+ * em_fc_tx_pause
+ *
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = E1000_FC_TX_PAUSE;
+ DEBUGOUT("Flow Control = TX PAUSE frames only."
+ "\n");
+ }
+ /*
+ * For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ * -------|---------|-------|---------|---------------
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT("Flow Control = RX PAUSE frames only."
+ "\n");
+ }
+ /*
+ * Per the IEEE spec, at this point flow control
+ * should be disabled. However, we want to consider
+ * that we could be connected to a legacy switch that
+ * doesn't advertise desired flow control, but can be
+ * forced on the link partner. So if we advertised
+ * no flow control, that is what we will resolve to.
+ * If we advertised some kind of receive capability
+ * (Rx Pause Only or Full Flow Control) and the link
+ * partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can
+ * do this safely for two reasons: If the link
+ * partner really didn't want flow control enabled,
+ * and we enable Rx, no harm done since we won't be
+ * receiving any PAUSE frames anyway. If the intent
+ * on the link partner was to have flow control
+ * enabled, then by us enabling RX only, we can at
+ * least receive pause frames and process them. This
+ * is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we
+ * will be asked to delay transmission of packets
+ * than asking our link partner to pause transmission
+ * of frames.
+ */
+ else if ((hw->original_fc == E1000_FC_NONE ||
+ hw->original_fc == E1000_FC_TX_PAUSE) ||
+ hw->fc_strict_ieee) {
+ hw->fc = E1000_FC_NONE;
+ DEBUGOUT("Flow Control = NONE.\n");
+ } else {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT("Flow Control = RX PAUSE frames only."
+ "\n");
+ }
+ /*
+ * Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not
+ * be enabled per IEEE 802.3 spec.
+ */
+ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex"
+ "\n");
+ return ret_val;
+ }
+ if (duplex == HALF_DUPLEX)
+ hw->fc = E1000_FC_NONE;
+ /*
+ * Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control
+ * settings.
+ */
+ ret_val = em_force_mac_fc(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings"
+ "\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT("Copper PHY and Auto Neg has not completed."
+ "\n");
+ }
+ }
+ return E1000_SUCCESS;
}
-
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
@@ -3106,234 +3171,257 @@ em_config_fc_after_link_up(struct em_hw *hw)
int32_t
em_check_for_link(struct em_hw *hw)
{
- uint32_t rxcw = 0;
- uint32_t ctrl;
- uint32_t status;
- uint32_t rctl;
- uint32_t icr;
- uint32_t signal = 0;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_for_link");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- status = E1000_READ_REG(hw, STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if ((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
- rxcw = E1000_READ_REG(hw, RXCW);
-
- if (hw->media_type == em_media_type_fiber) {
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
- hw->get_link_status = FALSE;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if ((hw->media_type == em_media_type_copper ||
- (hw->media_type == em_media_type_oem)) &&
- hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = FALSE;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- em_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
- ret_val = em_polarity_reversal_workaround(hw);
- icr = E1000_READ_REG(hw, ICR);
- E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
- E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- em_config_dsp_after_link_change(hw, FALSE);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- em_config_dsp_after_link_change(hw, TRUE);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx)
- em_config_collision_dist(hw);
- else {
- ret_val = em_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if (hw->tbi_compatibility_en) {
- uint16_t speed, duplex;
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if (hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = E1000_READ_REG(hw, RCTL);
- rctl &= ~E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- hw->tbi_compatibility_on = FALSE;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if (!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = TRUE;
- rctl = E1000_READ_REG(hw, RCTL);
- rctl |= E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- }
- }
- }
- }
- /* If we don't have link (auto-negotiation failed or link partner cannot
- * auto-negotiate), the cable is plugged in (we have signal), and our
- * link partner is not trying to auto-negotiate with us (we are receiving
- * idles or data), we need to force link up. We also need to give
- * auto-negotiation time to complete, in case the cable was just plugged
- * in. The autoneg_failed flag does this.
- */
- else if ((((hw->media_type == em_media_type_fiber) &&
- ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- return 0;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = em_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- }
- /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable forced link in the
- * Device Control register in an attempt to auto-negotiate with our link
- * partner.
- */
- else if (((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, TXCW, hw->txcw);
- E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_link_down = FALSE;
- }
- /* If we force link for non-auto-negotiation switch, check link status
- * based on MAC synchronization for internal serdes media type.
- */
- else if ((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_link_down = FALSE;
- DEBUGOUT("SERDES: Link is up.\n");
- }
- } else {
- hw->serdes_link_down = TRUE;
- DEBUGOUT("SERDES: Link is down.\n");
- }
- }
- if ((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
- }
- return E1000_SUCCESS;
+ uint32_t rxcw = 0;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t rctl;
+ uint32_t icr;
+ uint32_t signal = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_check_for_link");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ status = E1000_READ_REG(hw, STATUS);
+ /*
+ * On adapters with a MAC newer than 82544, SW Defineable pin 1 will
+ * be set when the optics detect a signal. On older adapters, it will
+ * be cleared when there is a signal. This applies to fiber media
+ * only.
+ */
+ if ((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) {
+ rxcw = E1000_READ_REG(hw, RXCW);
+
+ if (hw->media_type == em_media_type_fiber) {
+ signal = (hw->mac_type > em_82544) ?
+ E1000_CTRL_SWDPIN1 : 0;
+ if (status & E1000_STATUS_LU)
+ hw->get_link_status = FALSE;
+ }
+ }
+ /*
+ * If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if ((hw->media_type == em_media_type_copper ||
+ (hw->media_type == em_media_type_oem)) &&
+ hw->get_link_status) {
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY. Read the register twice since the link bit is
+ * sticky.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS) != 0;
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = FALSE;
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ em_check_downshift(hw);
+ /*
+ * If we are on 82544 or 82543 silicon and
+ * speed/duplex are forced to 10H or 10F, then we
+ * will implement the polarity reversal workaround.
+ * We disable interrupts first, and upon returning,
+ * place the devices interrupt state to its previous
+ * value except for the link status change interrupt
+ * which will happen due to the execution of this
+ * workaround.
+ */
+
+ if ((hw->mac_type == em_82544 ||
+ hw->mac_type == em_82543) && (!hw->autoneg) &&
+ (hw->forced_speed_duplex == em_10_full ||
+ hw->forced_speed_duplex == em_10_half)) {
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+ ret_val = em_polarity_reversal_workaround(hw);
+ icr = E1000_READ_REG(hw, ICR);
+ E1000_WRITE_REG(hw, ICS,
+ (icr & ~E1000_ICS_LSC));
+ E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
+ }
+ } else {
+ /* No link detected */
+ em_config_dsp_after_link_change(hw, FALSE);
+ return 0;
+ }
+ /*
+ * If we are forcing speed/duplex, then we simply return
+ * since we have already determined whether we have link or
+ * not.
+ */
+ if (!hw->autoneg)
+ return -E1000_ERR_CONFIG;
+
+ /* optimize the dsp settings for the igp phy */
+ em_config_dsp_after_link_change(hw, TRUE);
+ /*
+ * We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto Speed
+ * Detection takes care of MAC speed/duplex configuration.
+ * So we only need to configure Collision Distance in the
+ * MAC. Otherwise, we need to force speed/duplex on the MAC
+ * to the current PHY speed/duplex settings.
+ */
+ if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx)
+ em_config_collision_dist(hw);
+ else {
+ ret_val = em_config_mac_to_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY"
+ " settings\n");
+ return ret_val;
+ }
+ }
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = em_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ /*
+ * At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking
+ * the link partner capability register. We use the link
+ * speed to determine if TBI compatibility needs to be turned
+ * on or off. If the link is not at gigabit speed, then TBI
+ * compatibility is not needed. If we are at gigabit speed,
+ * we turn on TBI compatibility.
+ */
+ if (hw->tbi_compatibility_en) {
+ uint16_t speed, duplex;
+ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex"
+ "\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
+ /*
+ * If link speed is not set to gigabit speed,
+ * we do not need to enable TBI
+ * compatibility.
+ */
+ if (hw->tbi_compatibility_on) {
+ /*
+ * If we previously were in the mode,
+ * turn it off.
+ */
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ hw->tbi_compatibility_on = FALSE;
+ }
+ } else {
+ /*
+ * If TBI compatibility is was previously
+ * off, turn it on. For compatibility with a
+ * TBI link partner, we will store bad
+ * packets. Some frames have an additional
+ * byte on the end and will look like CRC
+ * errors to to the hardware.
+ */
+ if (!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = TRUE;
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ }
+ }
+ }
+ }
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ else if ((((hw->media_type == em_media_type_fiber) &&
+ ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ return 0;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = em_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ }
+ /*
+ * If we are forcing link and we are receiving /C/ ordered sets,
+ * re-enable auto-negotiation in the TXCW register and disable forced
+ * link in the Device Control register in an attempt to
+ * auto-negotiate with our link partner.
+ */
+ else if (((hw->media_type == em_media_type_fiber) ||
+ (hw->media_type == em_media_type_internal_serdes)) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, TXCW, hw->txcw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ hw->serdes_link_down = FALSE;
+ }
+ /*
+ * If we force link for non-auto-negotiation switch, check link
+ * status based on MAC synchronization for internal serdes media
+ * type.
+ */
+ else if ((hw->media_type == em_media_type_internal_serdes) &&
+ !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ hw->serdes_link_down = FALSE;
+ DEBUGOUT("SERDES: Link is up.\n");
+ }
+ } else {
+ hw->serdes_link_down = TRUE;
+ DEBUGOUT("SERDES: Link is down.\n");
+ }
+ }
+ if ((hw->media_type == em_media_type_internal_serdes) &&
+ (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ hw->serdes_link_down = !(E1000_STATUS_LU &
+ E1000_READ_REG(hw, STATUS));
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -3344,1061 +3432,1091 @@ em_check_for_link(struct em_hw *hw)
* duplex - Duplex setting of the connection
*****************************************************************************/
int32_t
-em_get_speed_and_duplex(struct em_hw *hw,
- uint16_t *speed,
- uint16_t *duplex)
+em_get_speed_and_duplex(struct em_hw *hw, uint16_t *speed, uint16_t *duplex)
{
- uint32_t status;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_get_speed_and_duplex");
-
- if (hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT(" Half Duplex\n");
- }
- } else {
- DEBUGOUT("1000 Mbs, Full Duplex\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
- return ret_val;
- if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- if ((hw->mac_type == em_80003es2lan) &&
- (hw->media_type == em_media_type_copper)) {
- if (*speed == SPEED_1000)
- ret_val = em_configure_kmrn_for_1000(hw);
- else
- ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
- if (ret_val)
- return ret_val;
- }
-
- if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
- ret_val = em_kumeran_lock_loss_workaround(hw);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ uint32_t status;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_get_speed_and_duplex");
+
+ if (hw->mac_type >= em_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+ /*
+ * IGP01 PHY may advertise full duplex operation after speed
+ * downgrade even if it is operating at half duplex. Here we set the
+ * duplex settings to match the duplex in the link partner's
+ * capabilities.
+ */
+ if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
+ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ *duplex = HALF_DUPLEX;
+ else {
+ ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ if ((*speed == SPEED_100 &&
+ !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+ (*speed == SPEED_10 &&
+ !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+ if ((hw->mac_type == em_80003es2lan) &&
+ (hw->media_type == em_media_type_copper)) {
+ if (*speed == SPEED_1000)
+ ret_val = em_configure_kmrn_for_1000(hw);
+ else
+ ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
+ if (ret_val)
+ return ret_val;
+ }
+ if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
+ ret_val = em_kumeran_lock_loss_workaround(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
STATIC int32_t
em_wait_autoneg(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_wait_autoneg");
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msec_delay(100);
- }
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+ DEBUGFUNC("em_wait_autoneg");
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+ return E1000_SUCCESS;
+ }
+ msec_delay(100);
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
+ * Raises the Management Data Clock
+ *
+ * hw - Struct containing variables accessed by shared code
+ * ctrl - Device control register's current value
+ *****************************************************************************/
static void
-em_raise_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
+em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl)
{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
+ /*
+ * Raise the clock input to the Management Data Clock (by setting the
+ * MDC bit), and then delay 10 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
}
/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
+ * Lowers the Management Data Clock
+ *
+ * hw - Struct containing variables accessed by shared code
+ * ctrl - Device control register's current value
+ *****************************************************************************/
static void
-em_lower_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
+em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl)
{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
+ /*
+ * Lower the clock input to the Management Data Clock (by clearing
+ * the MDC bit), and then delay 10 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
}
/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
+ * Shifts data bits out to the PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - Data to send out to the PHY
+ * count - Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ *****************************************************************************/
static void
-em_shift_out_mdi_bits(struct em_hw *hw,
- uint32_t data,
- uint16_t count)
+em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count)
{
- uint32_t ctrl;
- uint32_t mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(10);
+ uint32_t ctrl;
+ uint32_t mask;
+ /*
+ * We need to shift "count" number of bits out to the PHY. So, the
+ * value in the "data" parameter will be shifted out to the PHY one
+ * bit at a time. In order to do this, "data" must be broken down
+ * into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
- mask = mask >> 1;
- }
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output
+ * pins.
+ */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /*
+ * A "1" is shifted out to the PHY by setting the MDIO bit to
+ * "1" and then raising and lowering the Management Data
+ * Clock. A "0" is shifted out to the PHY by setting the MDIO
+ * bit to "0" and then raising and lowering the clock.
+ */
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(10);
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
}
/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
+ * Shifts data bits in from the PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ *****************************************************************************/
static uint16_t
em_shift_in_mdi_bits(struct em_hw *hw)
{
- uint32_t ctrl;
- uint16_t data = 0;
- uint8_t i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- em_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- em_lower_mdi_clk(hw, &ctrl);
- }
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- return data;
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+ /*
+ * In order to read a register from the PHY, we need to shift in a
+ * total of 18 bits from the PHY. The first two bit (turnaround)
+ * times are used to avoid contention on the MDIO pin when a read
+ * operation is performed. These two bits are ignored by us and
+ * thrown away. Bits are "shifted in" by raising the input to the
+ * Management Data Clock (setting the MDC bit), and then reading the
+ * value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /*
+ * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+ * input.
+ */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ /*
+ * Raise and Lower the clock before reading in the data. This
+ * accounts for the turnaround bits. The first clock occurred when we
+ * clocked out the last bit of the Register Address.
+ */
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ em_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ em_lower_mdi_clk(hw, &ctrl);
+ }
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ return data;
}
STATIC int32_t
em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
{
- uint32_t swfw_sync = 0;
- uint32_t swmask = mask;
- uint32_t fwmask = mask << 16;
- int32_t timeout = 200;
-
- DEBUGFUNC("em_swfw_sync_acquire");
-
- if (hw->swfwhw_semaphore_present)
- return em_get_software_flag(hw);
-
- if (!hw->swfw_sync_present)
- return em_get_hw_eeprom_semaphore(hw);
-
- while (timeout) {
- if (em_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask))) {
- break;
- }
-
- /* firmware currently using resource (fwmask) */
- /* or other software thread currently using resource (swmask) */
- em_put_hw_eeprom_semaphore(hw);
- msec_delay_irq(5);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
- em_put_hw_eeprom_semaphore(hw);
- return E1000_SUCCESS;
+ uint32_t swfw_sync = 0;
+ uint32_t swmask = mask;
+ uint32_t fwmask = mask << 16;
+ int32_t timeout = 200;
+ DEBUGFUNC("em_swfw_sync_acquire");
+
+ if (hw->swfwhw_semaphore_present)
+ return em_get_software_flag(hw);
+
+ if (!hw->swfw_sync_present)
+ return em_get_hw_eeprom_semaphore(hw);
+
+ while (timeout) {
+ if (em_get_hw_eeprom_semaphore(hw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask))) {
+ break;
+ }
+ /*
+ * firmware currently using resource (fwmask)
+ * or other software thread currently using resource (swmask)
+ */
+ em_put_hw_eeprom_semaphore(hw);
+ msec_delay_irq(5);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout."
+ "\n");
+ return -E1000_ERR_SWFW_SYNC;
+ }
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+ em_put_hw_eeprom_semaphore(hw);
+ return E1000_SUCCESS;
}
STATIC void
em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
{
- uint32_t swfw_sync;
- uint32_t swmask = mask;
-
- DEBUGFUNC("em_swfw_sync_release");
-
- if (hw->swfwhw_semaphore_present) {
- em_release_software_flag(hw);
- return;
- }
-
- if (!hw->swfw_sync_present) {
- em_put_hw_eeprom_semaphore(hw);
- return;
- }
-
- /* if (em_get_hw_eeprom_semaphore(hw))
- * return -E1000_ERR_SWFW_SYNC; */
- while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
- /* empty */
+ uint32_t swfw_sync;
+ uint32_t swmask = mask;
+ DEBUGFUNC("em_swfw_sync_release");
+
+ if (hw->swfwhw_semaphore_present) {
+ em_release_software_flag(hw);
+ return;
+ }
+ if (!hw->swfw_sync_present) {
+ em_put_hw_eeprom_semaphore(hw);
+ return;
+ }
+ /*
+ * if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC;
+ */
+ while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
+ /* empty */
- swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
- swfw_sync &= ~swmask;
- E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+ swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+ swfw_sync &= ~swmask;
+ E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
- em_put_hw_eeprom_semaphore(hw);
+ em_put_hw_eeprom_semaphore(hw);
}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
+/******************************************************************************
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ * hw - Struct containing variables accessed by shared code
+ * reg_addr - address of the PHY register to read
+ *****************************************************************************/
int32_t
-em_read_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
+em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data)
{
- uint32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_read_phy_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == em_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = em_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
- if (reg_addr > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> PHY_PAGE_SHIFT));
- if (ret_val)
- return ret_val;
- }
- }
-
-
- ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- em_swfw_sync_release(hw, swfw);
- return ret_val;
+ uint32_t ret_val;
+ uint16_t swfw;
+ DEBUGFUNC("em_read_phy_reg");
+
+ if ((hw->mac_type == em_80003es2lan) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ swfw = E1000_SWFW_PHY1_SM;
+ } else {
+ swfw = E1000_SWFW_PHY0_SM;
+ }
+ if (em_swfw_sync_acquire(hw, swfw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ if ((hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
+ hw->phy_type == em_phy_igp_2) &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (uint16_t) reg_addr);
+ if (ret_val) {
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
+ }
+ } else if (hw->phy_type == em_phy_gg82563) {
+ if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
+ (hw->mac_type == em_80003es2lan)) {
+ /* Select Configuration Page */
+ if ((reg_addr & MAX_PHY_REG_ADDRESS) <
+ GG82563_MIN_ALT_REG) {
+ ret_val = em_write_phy_reg_ex(hw,
+ GG82563_PHY_PAGE_SELECT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ GG82563_PAGE_SHIFT));
+ } else {
+ /*
+ * Use Alternative Page Select register to
+ * access registers 30 and 31
+ */
+ ret_val = em_write_phy_reg_ex(hw,
+ GG82563_PHY_PAGE_SELECT_ALT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ GG82563_PAGE_SHIFT));
+ }
+
+ if (ret_val) {
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
+ }
+ }
+ } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
+ if (reg_addr > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ PHY_PAGE_SHIFT));
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
}
STATIC int32_t
-em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t *phy_data)
+em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data)
{
- uint32_t i;
- uint32_t mdic = 0;
-
- DEBUGFUNC("em_read_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type == em_icp_xxxx) {
- *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num,
- reg_addr);
- return E1000_SUCCESS;
- }
-
- if (hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (hw->phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (uint16_t) mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (hw->phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- em_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = em_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
+ uint32_t i;
+ uint32_t mdic = 0;
+ DEBUGFUNC("em_read_phy_reg_ex");
+
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+ if (hw->mac_type == em_icp_xxxx) {
+ *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num,
+ reg_addr);
+ return E1000_SUCCESS;
+ }
+ if (hw->mac_type > em_82543) {
+ /*
+ * Set up Op-code, Phy Address, and register address in the
+ * MDI Control register. The MAC will take care of
+ * interfacing with the PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (hw->phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (uint16_t) mdic;
+ } else {
+ /*
+ * We must first send a preamble through the MDIO pin to
+ * signal the beginning of an MII instruction. This is done
+ * by sending 32 consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+ /*
+ * Now combine the next few fields that are required for a
+ * read operation. We use this method instead of calling the
+ * em_shift_out_mdi_bits routine five different times. The
+ * format of a MII read instruction consists of a shift out
+ * of 14 bits and is defined as follows: <Preamble><SOF><Op
+ * Code><Phy Addr><Reg Addr> followed by a shift in of 18
+ * bits. This first two bits shifted in are TurnAround bits
+ * used to avoid contention on the MDIO pin when a READ
+ * operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the
+ * desired data.
+ */
+ mdic = ((reg_addr) | (hw->phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ em_shift_out_mdi_bits(hw, mdic, 14);
+ /*
+ * Now that we've shifted out the read command to the MII, we
+ * need to "shift in" the 16-bit value (18 total bits) of the
+ * requested PHY register address.
+ */
+ *phy_data = em_shift_in_mdi_bits(hw);
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
+ * Writes a value to a PHY register
+ *
+ * hw - Struct containing variables accessed by shared code
+ * reg_addr - address of the PHY register to write
+ * data - data to write to the PHY
+ *****************************************************************************/
int32_t
-em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data)
+em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
- uint32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_write_phy_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == em_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = em_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- em_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
- if (reg_addr > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT,
- (uint16_t)((uint16_t)reg_addr >> PHY_PAGE_SHIFT));
- if (ret_val)
- return ret_val;
- }
- }
-
- ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- em_swfw_sync_release(hw, swfw);
- return ret_val;
+ uint32_t ret_val;
+ uint16_t swfw;
+ DEBUGFUNC("em_write_phy_reg");
+
+ if ((hw->mac_type == em_80003es2lan) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ swfw = E1000_SWFW_PHY1_SM;
+ } else {
+ swfw = E1000_SWFW_PHY0_SM;
+ }
+ if (em_swfw_sync_acquire(hw, swfw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ if ((hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
+ hw->phy_type == em_phy_igp_2) &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (uint16_t) reg_addr);
+ if (ret_val) {
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
+ }
+ } else if (hw->phy_type == em_phy_gg82563) {
+ if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
+ (hw->mac_type == em_80003es2lan)) {
+ /* Select Configuration Page */
+ if ((reg_addr & MAX_PHY_REG_ADDRESS) <
+ GG82563_MIN_ALT_REG) {
+ ret_val = em_write_phy_reg_ex(hw,
+ GG82563_PHY_PAGE_SELECT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ GG82563_PAGE_SHIFT));
+ } else {
+ /*
+ * Use Alternative Page Select register to
+ * access registers 30 and 31
+ */
+ ret_val = em_write_phy_reg_ex(hw,
+ GG82563_PHY_PAGE_SELECT_ALT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ GG82563_PAGE_SHIFT));
+ }
+
+ if (ret_val) {
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
+ }
+ }
+ } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) {
+ if (reg_addr > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT,
+ (uint16_t) ((uint16_t) reg_addr >>
+ PHY_PAGE_SHIFT));
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ em_swfw_sync_release(hw, swfw);
+ return ret_val;
}
STATIC int32_t
-em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data)
+em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
- uint32_t i;
- uint32_t mdic = 0;
-
- DEBUGFUNC("em_write_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type == em_icp_xxxx) {
- gcu_miibus_writereg(hw, hw->icp_xxxx_port_num,
- reg_addr, phy_data);
- return E1000_SUCCESS;
- }
- if (hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((uint32_t) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (hw->phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 641; i++) {
- usec_delay(5);
- mdic = E1000_READ_REG(hw, MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (hw->phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (uint32_t) phy_data;
-
- em_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
+ uint32_t i;
+ uint32_t mdic = 0;
+ DEBUGFUNC("em_write_phy_reg_ex");
+
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+ if (hw->mac_type == em_icp_xxxx) {
+ gcu_miibus_writereg(hw, hw->icp_xxxx_port_num,
+ reg_addr, phy_data);
+ return E1000_SUCCESS;
+ }
+ if (hw->mac_type > em_82543) {
+ /*
+ * Set up Op-code, Phy Address, register address, and data
+ * intended for the PHY register in the MDI Control register.
+ * The MAC will take care of interfacing with the PHY to send
+ * the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (hw->phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 641; i++) {
+ usec_delay(5);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /*
+ * We'll need to use the SW defined pins to shift the write
+ * command out to the PHY. We first send a preamble to the
+ * PHY to signal the beginning of the MII instruction. This
+ * is done by sending 32 consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+ /*
+ * Now combine the remaining required fields that will
+ * indicate a write operation. We use this method instead of
+ * calling the em_shift_out_mdi_bits routine for each field
+ * in the command. The format of a MII write instruction is
+ * as follows: <Preamble><SOF><Op Code><Phy Addr><Reg
+ * Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) |
+ (hw->phy_addr << 7) | (PHY_OP_WRITE << 12) |
+ (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ em_shift_out_mdi_bits(hw, mdic, 32);
+ }
+
+ return E1000_SUCCESS;
}
STATIC int32_t
-em_read_kmrn_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *data)
+em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data)
{
- uint32_t reg_val;
- uint16_t swfw;
- DEBUGFUNC("em_read_kmrn_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- /* Write register address */
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) |
- E1000_KUMCTRLSTA_REN;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- usec_delay(2);
-
- /* Read the data returned */
- reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
- *data = (uint16_t)reg_val;
-
- em_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
+ uint32_t reg_val;
+ uint16_t swfw;
+ DEBUGFUNC("em_read_kmrn_reg");
+
+ if ((hw->mac_type == em_80003es2lan) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ swfw = E1000_SWFW_PHY1_SM;
+ } else {
+ swfw = E1000_SWFW_PHY0_SM;
+ }
+ if (em_swfw_sync_acquire(hw, swfw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ /* Write register address */
+ reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+ E1000_KUMCTRLSTA_OFFSET) |
+ E1000_KUMCTRLSTA_REN;
+
+ E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ usec_delay(2);
+
+ /* Read the data returned */
+ reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+ *data = (uint16_t) reg_val;
+
+ em_swfw_sync_release(hw, swfw);
+ return E1000_SUCCESS;
}
STATIC int32_t
-em_write_kmrn_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t data)
+em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data)
{
- uint32_t reg_val;
- uint16_t swfw;
- DEBUGFUNC("em_write_kmrn_reg");
-
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
- usec_delay(2);
-
- em_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
+ uint32_t reg_val;
+ uint16_t swfw;
+ DEBUGFUNC("em_write_kmrn_reg");
+
+ if ((hw->mac_type == em_80003es2lan) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ swfw = E1000_SWFW_PHY1_SM;
+ } else {
+ swfw = E1000_SWFW_PHY0_SM;
+ }
+
+ if (em_swfw_sync_acquire(hw, swfw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+ E1000_KUMCTRLSTA_OFFSET) | data;
+
+ E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+ usec_delay(2);
+
+ em_swfw_sync_release(hw, swfw);
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Returns the PHY to the power-on reset state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
int32_t
em_phy_hw_reset(struct em_hw *hw)
{
- uint32_t ctrl, ctrl_ext;
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t swfw;
-
- DEBUGFUNC("em_phy_hw_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- DEBUGOUT("Resetting Phy...\n");
-
- if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx ) {
- if ((hw->mac_type == em_80003es2lan) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (em_swfw_sync_acquire(hw, swfw)) {
- DEBUGOUT("Unable to acquire swfw sync\n");
- return -E1000_ERR_SWFW_SYNC;
- }
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- * For pre-em_82571 hardware, we delay for 10ms between the assert
- * and deassert. For em_82571 hardware and later, we instead delay
- * for 50us between and 10ms after the deassertion.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type < em_82571)
- msec_delay(10);
- else
- usec_delay(100);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac_type >= em_82571)
- msec_delay_irq(10);
- em_swfw_sync_release(hw, swfw);
- /* the M88E1141_E_PHY_ID might need reset here, but nothing proves it */
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- usec_delay(150);
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- ret_val = em_get_phy_cfg_done(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
- em_release_software_semaphore(hw);
-
- if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
- ret_val = em_init_lcd_from_nvm(hw);
-
- return ret_val;
+ uint32_t ctrl, ctrl_ext;
+ uint32_t led_ctrl;
+ int32_t ret_val;
+ uint16_t swfw;
+ DEBUGFUNC("em_phy_hw_reset");
+ /*
+ * In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset.
+ */
+ ret_val = em_check_phy_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx) {
+ if ((hw->mac_type == em_80003es2lan) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ swfw = E1000_SWFW_PHY1_SM;
+ } else {
+ swfw = E1000_SWFW_PHY0_SM;
+ }
+ if (em_swfw_sync_acquire(hw, swfw)) {
+ DEBUGOUT("Unable to acquire swfw sync\n");
+ return -E1000_ERR_SWFW_SYNC;
+ }
+ /*
+ * Read the device control register and assert the
+ * E1000_CTRL_PHY_RST bit. Then, take it out of reset. For
+ * pre-em_82571 hardware, we delay for 10ms between the
+ * assert and deassert. For em_82571 hardware and later, we
+ * instead delay for 50us between and 10ms after the
+ * deassertion.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ if (hw->mac_type < em_82571)
+ msec_delay(10);
+ else
+ usec_delay(100);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ if (hw->mac_type >= em_82571)
+ msec_delay_irq(10);
+ em_swfw_sync_release(hw, swfw);
+ /*
+ * the M88E1141_E_PHY_ID might need reset here, but nothing
+ * proves it
+ */
+ } else {
+ /*
+ * Read the Extended Device Control Register, assert the
+ * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
+ * out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ usec_delay(150);
+
+ if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+ /* Wait for FW to finish PHY configuration. */
+ ret_val = em_get_phy_cfg_done(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
+ em_release_software_semaphore(hw);
+
+ if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
+ ret_val = em_init_lcd_from_nvm(hw);
+
+ return ret_val;
}
-
/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
+ * Resets the PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets bit 15 of the MII Control regiser
+ *****************************************************************************/
int32_t
em_phy_reset(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- switch (hw->phy_type) {
- case em_phy_igp:
- case em_phy_igp_2:
- case em_phy_igp_3:
- case em_phy_ife:
- ret_val = em_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
- break;
- }
-
- if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
- em_phy_init_script(hw);
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_phy_reset");
+ /*
+ * In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset.
+ */
+ ret_val = em_check_phy_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+
+ switch (hw->phy_type) {
+ case em_phy_igp:
+ case em_phy_igp_2:
+ case em_phy_igp_3:
+ case em_phy_ife:
+ ret_val = em_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= MII_CR_RESET;
+ ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(1);
+ break;
+ }
+
+ if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
+ em_phy_init_script(hw);
+
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
+ * Work-around for 82566 Kumeran PCS lock loss:
+ * On link status change (i.e. PCI reset, speed change) and link is up and
+ * speed is gigabit-
+ * 0) if workaround is optionally disabled do nothing
+ * 1) wait 1ms for Kumeran link to come up
+ * 2) check Kumeran Diagnostic register PCS lock loss bit
+ * 3) if not set the link is locked (all is good), otherwise...
+ * 4) reset the PHY
+ * 5) repeat up to 10 times
+ * Note: this is only called for IGP3 copper when speed is 1gb.
+ *
+ * hw - struct containing variables accessed by shared code
+ *****************************************************************************/
STATIC int32_t
em_kumeran_lock_loss_workaround(struct em_hw *hw)
{
- int32_t ret_val;
- int32_t reg;
- int32_t cnt;
- uint16_t phy_data;
-
- if (hw->kmrn_lock_loss_workaround_disabled)
- return E1000_SUCCESS;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
- if (phy_data & MII_SR_LINK_STATUS) {
- for (cnt = 0; cnt < 10; cnt++) {
- /* read once to clear */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return E1000_SUCCESS;
-
- /* Issue PHY reset */
- em_phy_hw_reset(hw);
- msec_delay_irq(5);
- }
- /* Disable GigE link negotiation */
- reg = E1000_READ_REG(hw, PHY_CTRL);
- E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* unable to acquire PCS lock */
- return E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ int32_t reg;
+ int32_t cnt;
+ uint16_t phy_data;
+ if (hw->kmrn_lock_loss_workaround_disabled)
+ return E1000_SUCCESS;
+ /*
+ * Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouled up link stability
+ */
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ for (cnt = 0; cnt < 10; cnt++) {
+ /* read once to clear */
+ ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ /* and again to get new status */
+ ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* check for PCS lock */
+ if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+ return E1000_SUCCESS;
+
+ /* Issue PHY reset */
+ em_phy_hw_reset(hw);
+ msec_delay_irq(5);
+ }
+ /* Disable GigE link negotiation */
+ reg = E1000_READ_REG(hw, PHY_CTRL);
+ E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE
+ | E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+ /* unable to acquire PCS lock */
+ return E1000_ERR_PHY;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
-* Reads and matches the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Reads and matches the expected PHY address for known PHY IDs
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
STATIC int32_t
em_match_gig_phy(struct em_hw *hw)
{
- int32_t phy_init_status, ret_val;
- uint16_t phy_id_high, phy_id_low;
- boolean_t match = FALSE;
-
- DEBUGFUNC("em_match_gig_phy");
-
- ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
-
- hw->phy_id = (uint32_t) (phy_id_high << 16);
- usec_delay(20);
- ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
-
- hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
- switch (hw->mac_type) {
- case em_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
- break;
- case em_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82573:
- if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
- break;
- case em_82574:
- if (hw->phy_id == BME1000_E_PHY_ID) match = TRUE;
- break;
- case em_80003es2lan:
- if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
- if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
- if (hw->phy_id == BME1000_E_PHY_ID) match = TRUE;
- break;
- case em_icp_xxxx:
- if (hw->phy_id == M88E1141_E_PHY_ID) match = TRUE;
- break;
- default:
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = em_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
+ int32_t phy_init_status, ret_val;
+ uint16_t phy_id_high, phy_id_low;
+ boolean_t match = FALSE;
+ DEBUGFUNC("em_match_gig_phy");
+
+ ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ usec_delay(20);
+ ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+ hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+ switch (hw->mac_type) {
+ case em_82543:
+ if (hw->phy_id == M88E1000_E_PHY_ID)
+ match = TRUE;
+ break;
+ case em_82544:
+ if (hw->phy_id == M88E1000_I_PHY_ID)
+ match = TRUE;
+ break;
+ case em_82540:
+ case em_82545:
+ case em_82545_rev_3:
+ case em_82546:
+ case em_82546_rev_3:
+ if (hw->phy_id == M88E1011_I_PHY_ID)
+ match = TRUE;
+ break;
+ case em_82541:
+ case em_82541_rev_2:
+ case em_82547:
+ case em_82547_rev_2:
+ if (hw->phy_id == IGP01E1000_I_PHY_ID)
+ match = TRUE;
+ break;
+ case em_82573:
+ if (hw->phy_id == M88E1111_I_PHY_ID)
+ match = TRUE;
+ break;
+ case em_82574:
+ if (hw->phy_id == BME1000_E_PHY_ID)
+ match = TRUE;
+ break;
+ case em_80003es2lan:
+ if (hw->phy_id == GG82563_E_PHY_ID)
+ match = TRUE;
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ if (hw->phy_id == IGP03E1000_E_PHY_ID)
+ match = TRUE;
+ if (hw->phy_id == IFE_E_PHY_ID)
+ match = TRUE;
+ if (hw->phy_id == IFE_PLUS_E_PHY_ID)
+ match = TRUE;
+ if (hw->phy_id == IFE_C_E_PHY_ID)
+ match = TRUE;
+ if (hw->phy_id == BME1000_E_PHY_ID)
+ match = TRUE;
+ break;
+ case em_icp_xxxx:
+ if (hw->phy_id == M88E1141_E_PHY_ID)
+ match = TRUE;
+ break;
+ default:
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ phy_init_status = em_set_phy_type(hw);
+
+ if ((match) && (phy_init_status == E1000_SUCCESS)) {
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
}
/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Probes the expected PHY address for known PHY IDs
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
STATIC int32_t
em_detect_gig_phy(struct em_hw *hw)
{
- int32_t ret_val;
-
- DEBUGFUNC("em_detect_gig_phy");
-
- if (hw->phy_id != 0)
- return E1000_SUCCESS;
-
- /* default phy address, most phys reside here, but not all (ICH10) */
- if (hw->mac_type != em_icp_xxxx)
- hw->phy_addr = 1;
- else
- hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */
-
- /* The 82571 firmware may still be configuring the PHY. In this
- * case, we cannot access the PHY until the configuration is done. So
- * we explicitly set the PHY values. */
- if (hw->mac_type == em_82571 ||
- hw->mac_type == em_82572 ||
- hw->mac_type == em_82575) {
- hw->phy_id = IGP01E1000_I_PHY_ID;
- hw->phy_type = em_phy_igp_2;
- return E1000_SUCCESS;
- }
-
- /* Some of the fiber cards dont have a phy, so we must exit cleanly here */
- if ((hw->media_type == em_media_type_fiber) &&
- (hw->mac_type == em_82542_rev2_0 ||
- hw->mac_type == em_82542_rev2_1 ||
- hw->mac_type == em_82543 ||
- hw->mac_type == em_82574 ||
- hw->mac_type == em_82573 ||
- hw->mac_type == em_82574 ||
- hw->mac_type == em_80003es2lan)) {
- hw->phy_type = em_phy_undefined;
- return E1000_SUCCESS;
- }
-
- /* Up to 82543 (incl), we need reset the phy, or it might not get
- * detected */
- if (hw->mac_type <= em_82543) {
- ret_val = em_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work-
- * around that forces PHY page 0 to be set or the reads fail. The rest of
- * the code in this routine uses em_read_phy_reg to read the PHY ID.
- * So for ESB-2 we need to have this set so our reads won't fail. If the
- * attached PHY is not a em_phy_gg82563, the routines below will figure
- * this out as well. */
- if (hw->mac_type == em_80003es2lan)
- hw->phy_type = em_phy_gg82563;
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- for (hw->phy_addr = 1; (hw->phy_addr < 4); hw->phy_addr++) {
- ret_val = em_match_gig_phy(hw);
- if (ret_val == E1000_SUCCESS)
- return E1000_SUCCESS;
- }
- return -E1000_ERR_PHY;
+ int32_t ret_val;
+ DEBUGFUNC("em_detect_gig_phy");
+
+ if (hw->phy_id != 0)
+ return E1000_SUCCESS;
+
+ /* default phy address, most phys reside here, but not all (ICH10) */
+ if (hw->mac_type != em_icp_xxxx)
+ hw->phy_addr = 1;
+ else
+ hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */
+
+ /*
+ * The 82571 firmware may still be configuring the PHY. In this
+ * case, we cannot access the PHY until the configuration is done.
+ * So we explicitly set the PHY values.
+ */
+ if (hw->mac_type == em_82571 ||
+ hw->mac_type == em_82572 ||
+ hw->mac_type == em_82575) {
+ hw->phy_id = IGP01E1000_I_PHY_ID;
+ hw->phy_type = em_phy_igp_2;
+ return E1000_SUCCESS;
+ }
+ /*
+ * Some of the fiber cards dont have a phy, so we must exit cleanly
+ * here
+ */
+ if ((hw->media_type == em_media_type_fiber) &&
+ (hw->mac_type == em_82542_rev2_0 ||
+ hw->mac_type == em_82542_rev2_1 ||
+ hw->mac_type == em_82543 ||
+ hw->mac_type == em_82574 ||
+ hw->mac_type == em_82573 ||
+ hw->mac_type == em_82574 ||
+ hw->mac_type == em_80003es2lan)) {
+ hw->phy_type = em_phy_undefined;
+ return E1000_SUCCESS;
+ }
+ /*
+ * Up to 82543 (incl), we need reset the phy, or it might not get
+ * detected
+ */
+ if (hw->mac_type <= em_82543) {
+ ret_val = em_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ /*
+ * ESB-2 PHY reads require em_phy_gg82563 to be set because of a
+ * work- around that forces PHY page 0 to be set or the reads fail.
+ * The rest of the code in this routine uses em_read_phy_reg to read
+ * the PHY ID. So for ESB-2 we need to have this set so our reads
+ * won't fail. If the attached PHY is not a em_phy_gg82563, the
+ * routines below will figure this out as well.
+ */
+ if (hw->mac_type == em_80003es2lan)
+ hw->phy_type = em_phy_gg82563;
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ for (hw->phy_addr = 1; (hw->phy_addr < 4); hw->phy_addr++) {
+ ret_val = em_match_gig_phy(hw);
+ if (ret_val == E1000_SUCCESS)
+ return E1000_SUCCESS;
+ }
+ return -E1000_ERR_PHY;
}
/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+ * Resets the PHY's DSP
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
em_phy_reset_dsp(struct em_hw *hw)
{
- int32_t ret_val;
- DEBUGFUNC("em_phy_reset_dsp");
-
- do {
- if (hw->phy_type != em_phy_gg82563) {
- ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if (ret_val) break;
- }
- ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if (ret_val) break;
- ret_val = E1000_SUCCESS;
- } while (0);
-
- return ret_val;
+ int32_t ret_val;
+ DEBUGFUNC("em_phy_reset_dsp");
+
+ do {
+ if (hw->phy_type != em_phy_gg82563) {
+ ret_val = em_write_phy_reg(hw, 29, 0x001d);
+ if (ret_val)
+ break;
+ }
+ ret_val = em_write_phy_reg(hw, 30, 0x00c1);
+ if (ret_val)
+ break;
+ ret_val = em_write_phy_reg(hw, 30, 0x0000);
+ if (ret_val)
+ break;
+ ret_val = E1000_SUCCESS;
+ } while (0);
+
+ return ret_val;
}
/******************************************************************************
@@ -4411,190 +4529,203 @@ em_phy_reset_dsp(struct em_hw *hw)
int32_t
em_init_eeprom_params(struct em_hw *hw)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd = E1000_READ_REG(hw, EECD);
- int32_t ret_val = E1000_SUCCESS;
- uint16_t eeprom_size;
-
- DEBUGFUNC("em_init_eeprom_params");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- eeprom->type = em_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_icp_xxxx:
- case em_82546:
- case em_82546_rev_3:
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82571:
- case em_82572:
- case em_82575:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82573:
- case em_82574:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = TRUE;
- if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
- eeprom->type = em_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
- break;
- case em_80003es2lan:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = FALSE;
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- {
- int32_t i = 0;
- uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
- eeprom->type = em_eeprom_ich8;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
- /* Zero the shadow RAM structure. But don't load it from NVM
- * so as to save time for driver init */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
- ICH_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
- hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
-
- hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
- break;
- }
- default:
- break;
- }
-
- if (eeprom->type == em_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if (hw->mac_type <= em_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if (eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd = E1000_READ_REG(hw, EECD);
+ int32_t ret_val = E1000_SUCCESS;
+ uint16_t eeprom_size;
+ DEBUGFUNC("em_init_eeprom_params");
+
+ switch (hw->mac_type) {
+ case em_82542_rev2_0:
+ case em_82542_rev2_1:
+ case em_82543:
+ case em_82544:
+ eeprom->type = em_eeprom_microwire;
+ eeprom->word_size = 64;
+ eeprom->opcode_bits = 3;
+ eeprom->address_bits = 6;
+ eeprom->delay_usec = 50;
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case em_82540:
+ case em_82545:
+ case em_82545_rev_3:
+ case em_icp_xxxx:
+ case em_82546:
+ case em_82546_rev_3:
+ eeprom->type = em_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_SIZE) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case em_82541:
+ case em_82541_rev_2:
+ case em_82547:
+ case em_82547_rev_2:
+ if (eecd & E1000_EECD_TYPE) {
+ eeprom->type = em_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ } else {
+ eeprom->type = em_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ }
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case em_82571:
+ case em_82572:
+ case em_82575:
+ eeprom->type = em_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case em_82573:
+ case em_82574:
+ eeprom->type = em_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = TRUE;
+ eeprom->use_eewr = TRUE;
+ if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
+ eeprom->type = em_eeprom_flash;
+ eeprom->word_size = 2048;
+ /*
+ * Ensure that the Autonomous FLASH update bit is
+ * cleared due to Flash update issue on parts which
+ * use a FLASH for NVM.
+ */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+ break;
+ case em_80003es2lan:
+ eeprom->type = em_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = TRUE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ {
+ int32_t i = 0;
+ uint32_t flash_size =
+ E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
+ eeprom->type = em_eeprom_ich8;
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+ /*
+ * Zero the shadow RAM structure. But don't load it
+ * from NVM so as to save time for driver init
+ */
+ if (hw->eeprom_shadow_ram != NULL) {
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ hw->eeprom_shadow_ram[i].modified =
+ FALSE;
+ hw->eeprom_shadow_ram[i].eeprom_word =
+ 0xFFFF;
+ }
+ }
+ hw->flash_base_addr = (flash_size &
+ ICH_GFPREG_BASE_MASK) * ICH_FLASH_SECTOR_SIZE;
+
+ hw->flash_bank_size = ((flash_size >> 16) &
+ ICH_GFPREG_BASE_MASK) + 1;
+ hw->flash_bank_size -= (flash_size &
+ ICH_GFPREG_BASE_MASK);
+
+ hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
+
+ hw->flash_bank_size /= 2 * sizeof(uint16_t);
+
+ break;
+ }
+ default:
+ break;
+ }
+
+ if (eeprom->type == em_eeprom_spi) {
+ /*
+ * eeprom_size will be an enum [0..8] that maps to eeprom
+ * sizes 128B to 32KB (incremented by powers of 2).
+ */
+ if (hw->mac_type <= em_82547_rev_2) {
+ /* Set to default value for initial eeprom read. */
+ eeprom->word_size = 64;
+ ret_val = em_read_eeprom(hw, EEPROM_CFG, 1,
+ &eeprom_size);
+ if (ret_val)
+ return ret_val;
+ eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >>
+ EEPROM_SIZE_SHIFT;
+ /*
+ * 256B eeprom size was not supported in earlier
+ * hardware, so we bump eeprom_size up one to ensure
+ * that "1" (which maps to 256B) is never the result
+ * used in the shifting logic below.
+ */
+ if (eeprom_size)
+ eeprom_size++;
+ } else {
+ eeprom_size = (uint16_t) (
+ (eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ }
+
+ eeprom->word_size = 1 <<
+ (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+ }
+ return ret_val;
}
/******************************************************************************
@@ -4604,16 +4735,16 @@ em_init_eeprom_params(struct em_hw *hw)
* eecd - EECD's current value
*****************************************************************************/
static void
-em_raise_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
+em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd)
{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
+ /*
+ * Raise the clock input to the EEPROM (by setting the SK bit), and
+ * then wait <delay> microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->eeprom.delay_usec);
}
/******************************************************************************
@@ -4623,16 +4754,16 @@ em_raise_ee_clk(struct em_hw *hw,
* eecd - EECD's current value
*****************************************************************************/
static void
-em_lower_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
+em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd)
{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
+ /*
+ * Lower the clock input to the EEPROM (by clearing the SK bit), and
+ * then wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->eeprom.delay_usec);
}
/******************************************************************************
@@ -4643,51 +4774,51 @@ em_lower_ee_clk(struct em_hw *hw,
* count - number of bits to shift out
*****************************************************************************/
static void
-em_shift_out_ee_bits(struct em_hw *hw,
- uint16_t data,
- uint16_t count)
+em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint32_t mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == em_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(eeprom->delay_usec);
-
- em_raise_ee_clk(hw, &eecd);
- em_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while (mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ uint32_t mask;
+ /*
+ * We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eeprom->type == em_eeprom_microwire) {
+ eecd &= ~E1000_EECD_DO;
+ } else if (eeprom->type == em_eeprom_spi) {
+ eecd |= E1000_EECD_DO;
+ }
+ do {
+ /*
+ * A "1" is shifted out to the EEPROM by setting bit "DI" to
+ * a "1", and then raising and then lowering the clock (the
+ * SK bit controls the clock input to the EEPROM). A "0" is
+ * shifted out to the EEPROM by setting "DI" to "0" and then
+ * raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(eeprom->delay_usec);
+
+ em_raise_ee_clk(hw, &eecd);
+ em_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while (mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
@@ -4696,41 +4827,39 @@ em_shift_out_ee_bits(struct em_hw *hw,
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
-em_shift_in_ee_bits(struct em_hw *hw,
- uint16_t count)
+em_shift_in_ee_bits(struct em_hw *hw, uint16_t count)
{
- uint32_t eecd;
- uint32_t i;
- uint16_t data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+ /*
+ * In order to read a register from the EEPROM, we need to shift
+ * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
+ * the clock input to the EEPROM (setting the SK bit), and then
+ * reading the value of the "DO" bit. During this "shifting in"
+ * process the "DI" bit should always be clear.
+ */
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = E1000_READ_REG(hw, EECD);
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
- for (i = 0; i < count; i++) {
- data = data << 1;
- em_raise_ee_clk(hw, &eecd);
+ for (i = 0; i < count; i++) {
+ data = data << 1;
+ em_raise_ee_clk(hw, &eecd);
- eecd = E1000_READ_REG(hw, EECD);
+ eecd = E1000_READ_REG(hw, EECD);
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
+ eecd &= ~(E1000_EECD_DI);
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
- em_lower_ee_clk(hw, &eecd);
- }
+ em_lower_ee_clk(hw, &eecd);
+ }
- return data;
+ return data;
}
-
/******************************************************************************
* Prepares EEPROM for access
*
@@ -4742,55 +4871,52 @@ em_shift_in_ee_bits(struct em_hw *hw,
static int32_t
em_acquire_eeprom(struct em_hw *hw)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i=0;
-
- DEBUGFUNC("em_acquire_eeprom");
-
- if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
- eecd = E1000_READ_REG(hw, EECD);
-
- if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) {
- /* Request EEPROM Access */
- if (hw->mac_type > em_82544) {
- eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- DEBUGOUT("Could not acquire EEPROM grant\n");
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return -E1000_ERR_EEPROM;
- }
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == em_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- usec_delay(1);
- }
-
- return E1000_SUCCESS;
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd, i = 0;
+ DEBUGFUNC("em_acquire_eeprom");
+
+ if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+ return -E1000_ERR_SWFW_SYNC;
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) {
+ /* Request EEPROM Access */
+ if (hw->mac_type > em_82544) {
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while ((!(eecd & E1000_EECD_GNT)) &&
+ (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+ i++;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if (!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+ return -E1000_ERR_EEPROM;
+ }
+ }
+ }
+
+ /* Setup EEPROM for Read/Write */
+ if (eeprom->type == em_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ } else if (eeprom->type == em_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(1);
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -4801,45 +4927,44 @@ em_acquire_eeprom(struct em_hw *hw)
static void
em_standby_eeprom(struct em_hw *hw)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- }
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if (eeprom->type == em_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+ } else if (eeprom->type == em_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(eeprom->delay_usec);
+ }
}
/******************************************************************************
@@ -4850,47 +4975,44 @@ em_standby_eeprom(struct em_hw *hw)
static void
em_release_eeprom(struct em_hw *hw)
{
- uint32_t eecd;
-
- DEBUGFUNC("em_release_eeprom");
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->eeprom.type == em_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- usec_delay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == em_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if (hw->mac_type > em_82544) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
-
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+ uint32_t eecd;
+ DEBUGFUNC("em_release_eeprom");
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if (hw->eeprom.type == em_eeprom_spi) {
+ eecd |= E1000_EECD_CS; /* Pull CS high */
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ usec_delay(hw->eeprom.delay_usec);
+ } else if (hw->eeprom.type == em_eeprom_microwire) {
+ /* cleanup eeprom */
+
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->eeprom.delay_usec);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->eeprom.delay_usec);
+ }
+ /* Stop requesting EEPROM access */
+ if (hw->mac_type > em_82544) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+ em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
}
/******************************************************************************
@@ -4901,39 +5023,37 @@ em_release_eeprom(struct em_hw *hw)
STATIC int32_t
em_spi_eeprom_ready(struct em_hw *hw)
{
- uint16_t retry_count = 0;
- uint8_t spi_stat_reg;
-
- DEBUGFUNC("em_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- retry_count += 5;
-
- em_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- DEBUGOUT("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
+ uint16_t retry_count = 0;
+ uint8_t spi_stat_reg;
+ DEBUGFUNC("em_spi_eeprom_ready");
+ /*
+ * Read "Status Register" repeatedly until the LSB is cleared. The
+ * EEPROM will signal that the command has been completed by clearing
+ * bit 0 of the internal status register. If it's not cleared within
+ * 5 milliseconds, then error out.
+ */
+ retry_count = 0;
+ do {
+ em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+ hw->eeprom.opcode_bits);
+ spi_stat_reg = (uint8_t) em_shift_in_ee_bits(hw, 8);
+ if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ retry_count += 5;
+
+ em_standby_eeprom(hw);
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
+ /*
+ * ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+ * only 0-5mSec on 5V devices)
+ */
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+ DEBUGOUT("SPI EEPROM Status error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -4945,97 +5065,99 @@ em_spi_eeprom_ready(struct em_hw *hw)
* words - number of words to read
*****************************************************************************/
int32_t
-em_read_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_read_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
-
- DEBUGFUNC("em_read_eeprom");
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- em_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
- return -E1000_ERR_EEPROM;
- }
-
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
- hw->eeprom.use_eerd == FALSE) {
- /* Prepare the EEPROM for bit-bang reading */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Eerd register EEPROM access requires no eeprom aquire/release */
- if (eeprom->use_eerd == TRUE)
- return em_read_eeprom_eerd(hw, offset, words, data);
-
- /* ICH EEPROM access is done via the ICH flash controller */
- if (eeprom->type == em_eeprom_ich8)
- return em_read_eeprom_ich8(hw, offset, words, data);
-
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should relase it */
- if (eeprom->type == em_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (em_spi_eeprom_ready(hw)) {
- em_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = em_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == em_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = em_shift_in_ee_bits(hw, 16);
- em_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- em_release_eeprom(hw);
-
- return E1000_SUCCESS;
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t i = 0;
+ DEBUGFUNC("em_read_eeprom");
+
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ em_init_eeprom_params(hw);
+ /*
+ * A check for invalid values: offset too large, too many words, and
+ * not enough words.
+ */
+ if ((offset >= eeprom->word_size) ||
+ (words > eeprom->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT2("\"words\" parameter out of bounds. Words = %d,"
+ " size = %d\n", offset, eeprom->word_size);
+ return -E1000_ERR_EEPROM;
+ }
+ /*
+ * EEPROM's that don't use EERD to read require us to bit-bang the
+ * SPI directly. In this case, we need to acquire the EEPROM so that
+ * FW or other port software does not interrupt.
+ */
+ if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
+ hw->eeprom.use_eerd == FALSE) {
+ /* Prepare the EEPROM for bit-bang reading */
+ if (em_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+ }
+ /* Eerd register EEPROM access requires no eeprom aquire/release */
+ if (eeprom->use_eerd == TRUE)
+ return em_read_eeprom_eerd(hw, offset, words, data);
+
+ /* ICH EEPROM access is done via the ICH flash controller */
+ if (eeprom->type == em_eeprom_ich8)
+ return em_read_eeprom_ich8(hw, offset, words, data);
+ /*
+ * Set up the SPI or Microwire EEPROM for bit-bang reading. We have
+ * acquired the EEPROM at this point, so any returns should relase it
+ */
+ if (eeprom->type == em_eeprom_spi) {
+ uint16_t word_in;
+ uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+ if (em_spi_eeprom_ready(hw)) {
+ em_release_eeprom(hw);
+ return -E1000_ERR_EEPROM;
+ }
+ em_standby_eeprom(hw);
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((eeprom->address_bits == 8) && (offset >= 128))
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+ em_shift_out_ee_bits(hw, (uint16_t) (offset * 2),
+ eeprom->address_bits);
+ /*
+ * Read the data. The address of the eeprom internally
+ * increments with each byte (spi) being read, saving on the
+ * overhead of eeprom setup and tear-down. The address
+ * counter will roll over if reading beyond the size of the
+ * eeprom, thus allowing the entire memory to be read
+ * starting from any offset.
+ */
+ for (i = 0; i < words; i++) {
+ word_in = em_shift_in_ee_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+ } else if (eeprom->type == em_eeprom_microwire) {
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+ em_shift_out_ee_bits(hw, (uint16_t) (offset + i),
+ eeprom->address_bits);
+ /*
+ * Read the data. For microwire, each word requires
+ * the overhead of eeprom setup and tear-down.
+ */
+ data[i] = em_shift_in_ee_bits(hw, 16);
+ em_standby_eeprom(hw);
+ }
+ }
+ /* End this read operation */
+ em_release_eeprom(hw);
+
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5047,29 +5169,27 @@ em_read_eeprom(struct em_hw *hw,
* words - number of words to read
*****************************************************************************/
STATIC int32_t
-em_read_eeprom_eerd(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- uint32_t i, eerd = 0;
- int32_t error = 0;
+ uint32_t i, eerd = 0;
+ int32_t error = 0;
+ for (i = 0; i < words; i++) {
+ eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+ E1000_EEPROM_RW_REG_START;
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
+ E1000_WRITE_REG(hw, EERD, eerd);
+ error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
- E1000_WRITE_REG(hw, EERD, eerd);
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+ if (error) {
+ break;
+ }
+ data[i] = (E1000_READ_REG(hw, EERD) >>
+ E1000_EEPROM_RW_REG_DATA);
- if (error) {
- break;
- }
- data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
+ }
- }
-
- return error;
+ return error;
}
/******************************************************************************
@@ -5081,39 +5201,35 @@ em_read_eeprom_eerd(struct em_hw *hw,
* words - number of words to read
*****************************************************************************/
STATIC int32_t
-em_write_eeprom_eewr(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- uint32_t register_value = 0;
- uint32_t i = 0;
- int32_t error = 0;
-
- if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
-
- for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
- E1000_EEPROM_RW_REG_START;
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if (error) {
- break;
- }
-
- E1000_WRITE_REG(hw, EEWR, register_value);
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if (error) {
- break;
- }
- }
-
- em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return error;
+ uint32_t register_value = 0;
+ uint32_t i = 0;
+ int32_t error = 0;
+ if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+ return -E1000_ERR_SWFW_SYNC;
+
+ for (i = 0; i < words; i++) {
+ register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
+ ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) |
+ E1000_EEPROM_RW_REG_START;
+
+ error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+ if (error) {
+ break;
+ }
+ E1000_WRITE_REG(hw, EEWR, register_value);
+
+ error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+
+ if (error) {
+ break;
+ }
+ }
+
+ em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+ return error;
}
/******************************************************************************
@@ -5124,55 +5240,53 @@ em_write_eeprom_eewr(struct em_hw *hw,
STATIC int32_t
em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
{
- uint32_t attempts = 100000;
- uint32_t i, reg = 0;
- int32_t done = E1000_ERR_EEPROM;
-
- for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ)
- reg = E1000_READ_REG(hw, EERD);
- else
- reg = E1000_READ_REG(hw, EEWR);
-
- if (reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- return done;
+ uint32_t attempts = 100000;
+ uint32_t i, reg = 0;
+ int32_t done = E1000_ERR_EEPROM;
+ for (i = 0; i < attempts; i++) {
+ if (eerd == E1000_EEPROM_POLL_READ)
+ reg = E1000_READ_REG(hw, EERD);
+ else
+ reg = E1000_READ_REG(hw, EEWR);
+
+ if (reg & E1000_EEPROM_RW_REG_DONE) {
+ done = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(5);
+ }
+
+ return done;
}
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
+/******************************************************************************
+ * Description: Determines if the onboard NVM is FLASH or EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
STATIC boolean_t
em_is_onboard_nvm_eeprom(struct em_hw *hw)
{
- uint32_t eecd = 0;
-
- DEBUGFUNC("em_is_onboard_nvm_eeprom");
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- return FALSE;
-
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
-
- /* If both bits are set, device is Flash type */
- if (eecd == 0x03) {
- return FALSE;
- }
- }
- return TRUE;
+ uint32_t eecd = 0;
+ DEBUGFUNC("em_is_onboard_nvm_eeprom");
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ return FALSE;
+
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Isolate bits 15 & 16 */
+ eecd = ((eecd >> 15) & 0x03);
+
+ /* If both bits are set, device is Flash type */
+ if (eecd == 0x03) {
+ return FALSE;
+ }
+ }
+ return TRUE;
}
/******************************************************************************
@@ -5187,65 +5301,68 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw)
int32_t
em_validate_eeprom_checksum(struct em_hw *hw)
{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
- uint16_t checksum_reg;
-
- DEBUGFUNC("em_validate_eeprom_checksum");
-
- checksum_reg = hw->mac_type != em_icp_xxxx
- ? EEPROM_CHECKSUM_REG
- : EEPROM_CHECKSUM_REG_ICP_xxxx;
-
- if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) &&
- (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed. */
- em_read_eeprom(hw, 0x10, 1, &eeprom_data);
- if ((eeprom_data & 0x10) == 0) {
- /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
- * has already been fixed. If the checksum is still wrong and this
- * bit is a 1, we need to return bad checksum. Otherwise, we need
- * to set this bit to a 1 and update the checksum. */
- em_read_eeprom(hw, 0x23, 1, &eeprom_data);
- if ((eeprom_data & 0x8000) == 0) {
- eeprom_data |= 0x8000;
- em_write_eeprom(hw, 0x23, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
- }
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /* Drivers must allocate the shadow ram structure for the
- * EEPROM checksum to be updated. Otherwise, this bit as well
- * as the checksum must both be set correctly for this
- * validation to pass.
- */
- em_read_eeprom(hw, 0x19, 1, &eeprom_data);
- if ((eeprom_data & 0x40) == 0) {
- eeprom_data |= 0x40;
- em_write_eeprom(hw, 0x19, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
-
- for (i = 0; i < (checksum_reg + 1); i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if (checksum == (uint16_t) EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- DEBUGOUT("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+ uint16_t checksum_reg;
+ DEBUGFUNC("em_validate_eeprom_checksum");
+
+ checksum_reg = hw->mac_type != em_icp_xxxx ?
+ EEPROM_CHECKSUM_REG :
+ EEPROM_CHECKSUM_REG_ICP_xxxx;
+
+ if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) &&
+ (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
+ /*
+ * Check bit 4 of word 10h. If it is 0, firmware is done
+ * updating 10h-12h. Checksum may need to be fixed.
+ */
+ em_read_eeprom(hw, 0x10, 1, &eeprom_data);
+ if ((eeprom_data & 0x10) == 0) {
+ /*
+ * Read 0x23 and check bit 15. This bit is a 1 when
+ * the checksum has already been fixed. If the
+ * checksum is still wrong and this bit is a 1, we
+ * need to return bad checksum. Otherwise, we need
+ * to set this bit to a 1 and update the checksum.
+ */
+ em_read_eeprom(hw, 0x23, 1, &eeprom_data);
+ if ((eeprom_data & 0x8000) == 0) {
+ eeprom_data |= 0x8000;
+ em_write_eeprom(hw, 0x23, 1, &eeprom_data);
+ em_update_eeprom_checksum(hw);
+ }
+ }
+ }
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /*
+ * Drivers must allocate the shadow ram structure for the
+ * EEPROM checksum to be updated. Otherwise, this bit as
+ * well as the checksum must both be set correctly for this
+ * validation to pass.
+ */
+ em_read_eeprom(hw, 0x19, 1, &eeprom_data);
+ if ((eeprom_data & 0x40) == 0) {
+ eeprom_data |= 0x40;
+ em_write_eeprom(hw, 0x19, 1, &eeprom_data);
+ em_update_eeprom_checksum(hw);
+ }
+ }
+ for (i = 0; i < (checksum_reg + 1); i++) {
+ if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if (checksum == (uint16_t) EEPROM_SUM)
+ return E1000_SUCCESS;
+ else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
}
/******************************************************************************
@@ -5259,35 +5376,36 @@ em_validate_eeprom_checksum(struct em_hw *hw)
int32_t
em_update_eeprom_checksum(struct em_hw *hw)
{
- uint32_t ctrl_ext;
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_update_eeprom_checksum");
-
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (uint16_t) EEPROM_SUM - checksum;
- if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- DEBUGOUT("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- } else if (hw->eeprom.type == em_eeprom_flash) {
- em_commit_shadow_ram(hw);
- } else if (hw->eeprom.type == em_eeprom_ich8) {
- em_commit_shadow_ram(hw);
- /* Reload the EEPROM, or else modifications will not appear
- * until after next adapter reset. */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- msec_delay(10);
- }
- return E1000_SUCCESS;
+ uint32_t ctrl_ext;
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+ DEBUGFUNC("em_update_eeprom_checksum");
+
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+ checksum = (uint16_t) EEPROM_SUM - checksum;
+ if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ DEBUGOUT("EEPROM Write Error\n");
+ return -E1000_ERR_EEPROM;
+ } else if (hw->eeprom.type == em_eeprom_flash) {
+ em_commit_shadow_ram(hw);
+ } else if (hw->eeprom.type == em_eeprom_ich8) {
+ em_commit_shadow_ram(hw);
+ /*
+ * Reload the EEPROM, or else modifications will not appear
+ * until after next adapter reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ msec_delay(10);
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5302,51 +5420,48 @@ em_update_eeprom_checksum(struct em_hw *hw)
* EEPROM will most likely contain an invalid checksum.
*****************************************************************************/
int32_t
-em_write_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_write_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- int32_t status = 0;
-
- DEBUGFUNC("em_write_eeprom");
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- em_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* 82573/4 writes only through eewr */
- if (eeprom->use_eewr == TRUE)
- return em_write_eeprom_eewr(hw, offset, words, data);
-
- if (eeprom->type == em_eeprom_ich8)
- return em_write_eeprom_ich8(hw, offset, words, data);
-
- /* Prepare the EEPROM for writing */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if (eeprom->type == em_eeprom_microwire) {
- status = em_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = em_write_eeprom_spi(hw, offset, words, data);
- msec_delay(10);
- }
-
- /* Done with writing */
- em_release_eeprom(hw);
-
- return status;
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ int32_t status = 0;
+ DEBUGFUNC("em_write_eeprom");
+
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ em_init_eeprom_params(hw);
+ /*
+ * A check for invalid values: offset too large, too many words, and
+ * not enough words.
+ */
+ if ((offset >= eeprom->word_size) ||
+ (words > eeprom->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("\"words\" parameter out of bounds\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* 82573/4 writes only through eewr */
+ if (eeprom->use_eewr == TRUE)
+ return em_write_eeprom_eewr(hw, offset, words, data);
+
+ if (eeprom->type == em_eeprom_ich8)
+ return em_write_eeprom_ich8(hw, offset, words, data);
+
+ /* Prepare the EEPROM for writing */
+ if (em_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+
+ if (eeprom->type == em_eeprom_microwire) {
+ status = em_write_eeprom_microwire(hw, offset, words, data);
+ } else {
+ status = em_write_eeprom_spi(hw, offset, words, data);
+ msec_delay(10);
+ }
+
+ /* Done with writing */
+ em_release_eeprom(hw);
+
+ return status;
}
/******************************************************************************
@@ -5359,60 +5474,62 @@ em_write_eeprom(struct em_hw *hw,
*
*****************************************************************************/
STATIC int32_t
-em_write_eeprom_spi(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint16_t widx = 0;
-
- DEBUGFUNC("em_write_eeprom_spi");
-
- while (widx < words) {
- uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
- if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
- em_standby_eeprom(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
- eeprom->address_bits);
-
- /* Send the data */
-
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- uint16_t word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- em_shift_out_ee_bits(hw, word_out, 16);
- widx++;
-
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if ((((offset + widx)*2) % eeprom->page_size) == 0) {
- em_standby_eeprom(hw);
- break;
- }
- }
- }
-
- return E1000_SUCCESS;
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint16_t widx = 0;
+ DEBUGFUNC("em_write_eeprom_spi");
+
+ while (widx < words) {
+ uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
+ if (em_spi_eeprom_ready(hw))
+ return -E1000_ERR_EEPROM;
+
+ em_standby_eeprom(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode ) */
+ em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+ eeprom->opcode_bits);
+
+ em_standby_eeprom(hw);
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((eeprom->address_bits == 8) && (offset >= 128))
+ write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+ em_shift_out_ee_bits(hw, (uint16_t) ((offset + widx) * 2),
+ eeprom->address_bits);
+
+ /* Send the data */
+ /*
+ * Loop to allow for up to whole page write (32 bytes) of
+ * eeprom
+ */
+ while (widx < words) {
+ uint16_t word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ em_shift_out_ee_bits(hw, word_out, 16);
+ widx++;
+ /*
+ * Some larger eeprom sizes are capable of a 32-byte
+ * PAGE WRITE operation, while the smaller eeproms
+ * are capable of an 8-byte PAGE WRITE operation.
+ * Break the inner loop to pass new address
+ */
+ if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+ em_standby_eeprom(hw);
+ break;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5425,80 +5542,78 @@ em_write_eeprom_spi(struct em_hw *hw,
*
*****************************************************************************/
STATIC int32_t
-em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
+em_write_eeprom_microwire(struct em_hw *hw, uint16_t offset, uint16_t words,
+ uint16_t *data)
{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint16_t words_written = 0;
- uint16_t i = 0;
-
- DEBUGFUNC("em_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- em_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- em_shift_out_ee_bits(hw, data[words_written], 16);
+ struct em_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ uint16_t words_written = 0;
+ uint16_t i = 0;
+ DEBUGFUNC("em_write_eeprom_microwire");
+ /*
+ * Send the write enable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 11). It's less work to
+ * include the 11 of the dummy address as part of the opcode than it
+ * is to shift it over the correct number of bits for the address.
+ * This puts the EEPROM into write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+ (uint16_t) (eeprom->opcode_bits + 2));
+
+ em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2));
+
+ /* Prepare the EEPROM */
+ em_standby_eeprom(hw);
+
+ while (words_written < words) {
+ /* Send the Write command (3-bit opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+
+ em_shift_out_ee_bits(hw, (uint16_t) (offset + words_written),
+ eeprom->address_bits);
+
+ /* Send the data */
+ em_shift_out_ee_bits(hw, data[words_written], 16);
+ /*
+ * Toggle the CS line. This in effect tells the EEPROM to
+ * execute the previous command.
+ */
+ em_standby_eeprom(hw);
+ /*
+ * Read DO repeatedly until it is high (equal to '1'). The
+ * EEPROM will signal that the command has been completed by
+ * raising the DO signal. If DO does not go high in 10
+ * milliseconds, then error out.
+ */
+ for (i = 0; i < 200; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+ if (i == 200) {
+ DEBUGOUT("EEPROM Write did not complete\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Recover from write */
+ em_standby_eeprom(hw);
+
+ words_written++;
+ }
+ /*
+ * Send the write disable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 10). It's less work to
+ * include the 10 of the dummy address as part of the opcode than it
+ * is to shift it over the correct number of bits for the address.
+ * This takes the EEPROM out of write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+ (uint16_t) (eeprom->opcode_bits + 2));
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- em_standby_eeprom(hw);
+ em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2));
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for (i = 0; i < 200; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if (eecd & E1000_EECD_DO) break;
- usec_delay(50);
- }
- if (i == 200) {
- DEBUGOUT("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- em_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5514,160 +5629,183 @@ em_write_eeprom_microwire(struct em_hw *hw,
STATIC int32_t
em_commit_shadow_ram(struct em_hw *hw)
{
- uint32_t attempts = 100000;
- uint32_t eecd = 0;
- uint32_t flop = 0;
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
- uint32_t old_bank_offset = 0;
- uint32_t new_bank_offset = 0;
- uint8_t low_byte = 0;
- uint8_t high_byte = 0;
- boolean_t sector_write_failed = FALSE;
-
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
-
- /* If STM opcode located in bits 15:8 of flop, reset firmware */
- if ((flop & 0xFF00) == E1000_STM_OPCODE) {
- E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
- }
-
- /* Perform the flash update */
- E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
- }
-
- if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) &&
- hw->eeprom_shadow_ram != NULL) {
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written */
- if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
- new_bank_offset = hw->flash_bank_size * 2;
- old_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 1);
- } else {
- old_bank_offset = hw->flash_bank_size * 2;
- new_bank_offset = 0;
- em_erase_ich8_4k_segment(hw, 0);
- }
-
- sector_write_failed = FALSE;
- /* Loop for every byte in the shadow RAM,
- * which is in units of words. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (hw->eeprom_shadow_ram[i].modified == TRUE) {
- low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
-
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- else {
- high_byte =
- (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
- usec_delay(100);
- }
- } else {
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &low_byte);
- usec_delay(100);
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
-
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
- else {
- em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &high_byte);
- usec_delay(100);
- }
- }
-
- /* If the write of the low byte was successful, go ahread and
- * write the high byte while checking to make sure that if it
- * is the signature byte, then it is handled properly */
- if (sector_write_failed == FALSE) {
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress */
- if (i == E1000_ICH_NVM_SIG_WORD)
- high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
-
- error = em_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset + 1, high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
-
- } else {
- /* If the write failed then break from the loop and
- * return an error */
- break;
- }
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (sector_write_failed == FALSE) {
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- em_read_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- &high_byte);
- high_byte &= 0xBF;
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- if (error == E1000_SUCCESS) {
- error = em_verify_write_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
- }
-
- /* Clear the now not used entry in the cache */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
- }
-
- return error;
+ uint32_t attempts = 100000;
+ uint32_t eecd = 0;
+ uint32_t flop = 0;
+ uint32_t i = 0;
+ int32_t error = E1000_SUCCESS;
+ uint32_t old_bank_offset = 0;
+ uint32_t new_bank_offset = 0;
+ uint8_t low_byte = 0;
+ uint8_t high_byte = 0;
+ boolean_t sector_write_failed = FALSE;
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ /*
+ * The flop register will be used to determine if flash type
+ * is STM
+ */
+ flop = E1000_READ_REG(hw, FLOP);
+ for (i = 0; i < attempts; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if ((eecd & E1000_EECD_FLUPD) == 0) {
+ break;
+ }
+ usec_delay(5);
+ }
+
+ if (i == attempts) {
+ return -E1000_ERR_EEPROM;
+ }
+ /*
+ * If STM opcode located in bits 15:8 of flop, reset firmware
+ */
+ if ((flop & 0xFF00) == E1000_STM_OPCODE) {
+ E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
+ }
+ /* Perform the flash update */
+ E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
+
+ for (i = 0; i < attempts; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if ((eecd & E1000_EECD_FLUPD) == 0) {
+ break;
+ }
+ usec_delay(5);
+ }
+
+ if (i == attempts) {
+ return -E1000_ERR_EEPROM;
+ }
+ }
+ if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) &&
+ hw->eeprom_shadow_ram != NULL) {
+ /*
+ * We're writing to the opposite bank so if we're on bank 1,
+ * write to bank 0 etc. We also need to erase the segment
+ * that is going to be written
+ */
+ if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
+ new_bank_offset = hw->flash_bank_size * 2;
+ old_bank_offset = 0;
+ em_erase_ich8_4k_segment(hw, 1);
+ } else {
+ old_bank_offset = hw->flash_bank_size * 2;
+ new_bank_offset = 0;
+ em_erase_ich8_4k_segment(hw, 0);
+ }
+
+ sector_write_failed = FALSE;
+ /*
+ * Loop for every byte in the shadow RAM, which is in units
+ * of words.
+ */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /*
+ * Determine whether to write the value stored in the
+ * other NVM bank or a modified value stored in the
+ * shadow RAM
+ */
+ if (hw->eeprom_shadow_ram[i].modified == TRUE) {
+ low_byte = (uint8_t)
+ hw->eeprom_shadow_ram[i].eeprom_word;
+ usec_delay(100);
+ error = em_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset, low_byte);
+
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ else {
+ high_byte = (uint8_t)
+ (hw->eeprom_shadow_ram
+ [i].eeprom_word >> 8);
+ usec_delay(100);
+ }
+ } else {
+ em_read_ich8_byte(hw, (i << 1) +
+ old_bank_offset, &low_byte);
+ usec_delay(100);
+ error = em_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset, low_byte);
+
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ else {
+ em_read_ich8_byte(hw, (i << 1) +
+ old_bank_offset + 1, &high_byte);
+ usec_delay(100);
+ }
+ }
+ /*
+ * If the write of the low byte was successful, go
+ * ahread and write the high byte while checking to
+ * make sure that if it is the signature byte, then
+ * it is handled properly
+ */
+ if (sector_write_failed == FALSE) {
+ /*
+ * If the word is 0x13, then make sure the
+ * signature bits (15:14) are 11b until the
+ * commit has completed. This will allow us
+ * to write 10b which indicates the signature
+ * is valid. We want to do this after the
+ * write has completed so that we don't mark
+ * the segment valid while the write is still
+ * in progress
+ */
+ if (i == E1000_ICH_NVM_SIG_WORD)
+ high_byte = E1000_ICH_NVM_SIG_MASK |
+ high_byte;
+
+ error = em_verify_write_ich8_byte(hw, (i << 1)
+ + new_bank_offset + 1, high_byte);
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+
+ } else {
+ /*
+ * If the write failed then break from the
+ * loop and return an error
+ */
+ break;
+ }
+ }
+ /*
+ * Don't bother writing the segment valid bits if sector
+ * programming failed.
+ */
+ if (sector_write_failed == FALSE) {
+ /*
+ * Finally validate the new segment by setting bit
+ * 15:14 to 10b in word 0x13 , this can be done
+ * without an erase as well since these bits are 11
+ * to start with and we need to change bit 14 to 0b
+ */
+ em_read_ich8_byte(hw, E1000_ICH_NVM_SIG_WORD * 2 + 1 +
+ new_bank_offset, &high_byte);
+ high_byte &= 0xBF;
+ error = em_verify_write_ich8_byte(hw,
+ E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+ high_byte);
+ /*
+ * And invalidate the previously valid segment by
+ * setting its signature word (0x13) high_byte to 0b.
+ * This can be done without an erase because flash
+ * erase sets all bits to 1's. We can write 1's to
+ * 0's without an erase
+ */
+ if (error == E1000_SUCCESS) {
+ error = em_verify_write_ich8_byte(hw,
+ E1000_ICH_NVM_SIG_WORD * 2 + 1 +
+ old_bank_offset, 0);
+ }
+ /* Clear the now not used entry in the cache */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ hw->eeprom_shadow_ram[i].modified = FALSE;
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+ }
+ }
+ }
+ return error;
}
/******************************************************************************
@@ -5677,31 +5815,29 @@ em_commit_shadow_ram(struct em_hw *hw)
* part_num - Adapter's part number
*****************************************************************************/
int32_t
-em_read_part_num(struct em_hw *hw,
- uint32_t *part_num)
+em_read_part_num(struct em_hw *hw, uint32_t *part_num)
{
- uint16_t offset = EEPROM_PBA_BYTE_1;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_read_part_num");
-
- /* Get word 0 from EEPROM */
- if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 0 in upper half of part_num */
- *part_num = (uint32_t) (eeprom_data << 16);
-
- /* Get word 1 from EEPROM */
- if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 1 in lower half of part_num */
- *part_num |= eeprom_data;
-
- return E1000_SUCCESS;
+ uint16_t offset = EEPROM_PBA_BYTE_1;
+ uint16_t eeprom_data;
+ DEBUGFUNC("em_read_part_num");
+
+ /* Get word 0 from EEPROM */
+ if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 0 in upper half of part_num */
+ *part_num = (uint32_t) (eeprom_data << 16);
+
+ /* Get word 1 from EEPROM */
+ if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 1 in lower half of part_num */
+ *part_num |= eeprom_data;
+
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5711,45 +5847,44 @@ em_read_part_num(struct em_hw *hw,
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
-em_read_mac_addr(struct em_hw * hw)
+em_read_mac_addr(struct em_hw *hw)
{
- uint16_t offset;
- uint16_t eeprom_data, i;
- uint16_t ia_base_addr = 0;
-
- DEBUGFUNC("em_read_mac_addr");
-
- if(hw->mac_type == em_icp_xxxx) {
- ia_base_addr = (uint16_t)
- EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num);
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
- hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case em_82546:
- case em_82546_rev_3:
- case em_82571:
- case em_82575:
- case em_80003es2lan:
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
- hw->perm_mac_addr[5] ^= 0x01;
- break;
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
+ uint16_t offset;
+ uint16_t eeprom_data, i;
+ uint16_t ia_base_addr = 0;
+ DEBUGFUNC("em_read_mac_addr");
+
+ if (hw->mac_type == em_icp_xxxx) {
+ ia_base_addr = (uint16_t)
+ EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num);
+ }
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data)
+ < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+ hw->perm_mac_addr[i + 1] = (uint8_t) (eeprom_data >> 8);
+ }
+
+ switch (hw->mac_type) {
+ default:
+ break;
+ case em_82546:
+ case em_82546_rev_3:
+ case em_82571:
+ case em_82575:
+ case em_80003es2lan:
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ hw->perm_mac_addr[5] ^= 0x01;
+ break;
+ }
+
+ for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -5764,38 +5899,38 @@ em_read_mac_addr(struct em_hw * hw)
STATIC void
em_init_rx_addrs(struct em_hw *hw)
{
- uint32_t i;
- uint32_t rar_num;
-
- DEBUGFUNC("em_init_rx_addrs");
-
- /* Setup the receive address. */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- em_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
-
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
- rar_num -= 1;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- rar_num = E1000_RAR_ENTRIES_ICH8LAN;
- if (hw->mac_type == em_ich8lan)
- rar_num -= 1;
-
- /* Zero out the other 15 receive addresses. */
- DEBUGOUT("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
- }
+ uint32_t i;
+ uint32_t rar_num;
+ DEBUGFUNC("em_init_rx_addrs");
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ em_rar_set(hw, hw->mac_addr, 0);
+
+ rar_num = E1000_RAR_ENTRIES;
+ /*
+ * Reserve a spot for the Locally Administered Address to work around
+ * an 82571 issue in which a reset on one port will reload the MAC on
+ * the other port.
+ */
+ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
+ rar_num -= 1;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ rar_num = E1000_RAR_ENTRIES_ICH8LAN;
+ if (hw->mac_type == em_ich8lan)
+ rar_num -= 1;
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for (i = 1; i < rar_num; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ }
}
/******************************************************************************
@@ -5813,88 +5948,86 @@ em_init_rx_addrs(struct em_hw *hw)
* multicast table.
*****************************************************************************/
void
-em_mc_addr_list_update(struct em_hw *hw,
- uint8_t *mc_addr_list,
- uint32_t mc_addr_count,
- uint32_t pad,
- uint32_t rar_used_count)
+em_mc_addr_list_update(struct em_hw *hw, uint8_t *mc_addr_list,
+ uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count)
{
- uint32_t hash_value;
- uint32_t i;
- uint32_t num_rar_entry;
- uint32_t num_mta_entry;
-
- DEBUGFUNC("em_mc_addr_list_update");
-
- /* Set the new number of MC addresses that we are being requested to use. */
- hw->num_mc_addrs = mc_addr_count;
-
- /* Clear RAR[1-15] */
- DEBUGOUT(" Clearing RAR[1-15]\n");
- num_rar_entry = E1000_RAR_ENTRIES;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
- if (hw->mac_type == em_ich8lan)
- num_rar_entry -= 1;
-
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
- num_rar_entry -= 1;
-
- for (i = rar_used_count; i < num_rar_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Clear the MTA */
- DEBUGOUT(" Clearing MTA\n");
- num_mta_entry = E1000_NUM_MTA_REGISTERS;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
-
- for (i = 0; i < num_mta_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Add the new addresses */
- for (i = 0; i < mc_addr_count; i++) {
- DEBUGOUT(" Adding the multicast addresses:\n");
- DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
- hash_value = em_hash_mc_addr(hw,
- mc_addr_list +
- (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
- DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
- /* Place this multicast address in the RAR if there is room, *
- * else put it in the MTA
- */
- if (rar_used_count < num_rar_entry) {
- em_rar_set(hw,
- mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
- rar_used_count);
- rar_used_count++;
- } else {
- em_mta_set(hw, hash_value);
- }
- }
- DEBUGOUT("MC Update Complete\n");
+ uint32_t hash_value;
+ uint32_t i;
+ uint32_t num_rar_entry;
+ uint32_t num_mta_entry;
+ DEBUGFUNC("em_mc_addr_list_update");
+ /*
+ * Set the new number of MC addresses that we are being requested to
+ * use.
+ */
+ hw->num_mc_addrs = mc_addr_count;
+
+ /* Clear RAR[1-15] */
+ DEBUGOUT(" Clearing RAR[1-15]\n");
+ num_rar_entry = E1000_RAR_ENTRIES;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
+ if (hw->mac_type == em_ich8lan)
+ num_rar_entry -= 1;
+ /*
+ * Reserve a spot for the Locally Administered Address to work around
+ * an 82571 issue in which a reset on one port will reload the MAC on
+ * the other port.
+ */
+ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
+ num_rar_entry -= 1;
+
+ for (i = rar_used_count; i < num_rar_entry; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Clear the MTA */
+ DEBUGOUT(" Clearing MTA\n");
+ num_mta_entry = E1000_NUM_MTA_REGISTERS;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
+
+ for (i = 0; i < num_mta_entry; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Add the new addresses */
+ for (i = 0; i < mc_addr_count; i++) {
+ DEBUGOUT(" Adding the multicast addresses:\n");
+ DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+ hash_value = em_hash_mc_addr(hw, mc_addr_list +
+ (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+ DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+ /*
+ * Place this multicast address in the RAR if there is room, *
+ * else put it in the MTA
+ */
+ if (rar_used_count < num_rar_entry) {
+ em_rar_set(hw, mc_addr_list +
+ (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+ rar_used_count);
+ rar_used_count++;
+ } else {
+ em_mta_set(hw, hash_value);
+ }
+ }
+ DEBUGOUT("MC Update Complete\n");
}
/******************************************************************************
@@ -5904,72 +6037,79 @@ em_mc_addr_list_update(struct em_hw *hw,
* mc_addr - the multicast address to hash
*****************************************************************************/
uint32_t
-em_hash_mc_addr(struct em_hw *hw,
- uint8_t *mc_addr)
+em_hash_mc_addr(struct em_hw *hw, uint8_t *mc_addr)
{
- uint32_t hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /* [47:38] i.e. 0x158 for above example address */
- hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
- } else {
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- }
- break;
- case 1:
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /* [46:37] i.e. 0x2B1 for above example address */
- hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
- } else {
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
- }
- break;
- case 2:
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /*[45:36] i.e. 0x163 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- } else {
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- }
- break;
- case 3:
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /* [43:34] i.e. 0x18D for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- } else {
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
- }
- break;
- }
-
- hash_value &= 0xFFF;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- hash_value &= 0x3FF;
-
- return hash_value;
+ uint32_t hash_value = 0;
+ /*
+ * The portion of the address that is used for the hash table is
+ * determined by the mc_filter_type setting.
+ */
+ switch (hw->mc_filter_type) {
+ /*
+ * [0] [1] [2] [3] [4] [5] 01 AA 00 12 34 56 LSB
+ * MSB
+ */
+ case 0:
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /* [47:38] i.e. 0x158 for above example address */
+ hash_value = ((mc_addr[4] >> 6) |
+ (((uint16_t) mc_addr[5]) << 2));
+ } else {
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) |
+ (((uint16_t) mc_addr[5]) << 4));
+ }
+ break;
+ case 1:
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /* [46:37] i.e. 0x2B1 for above example address */
+ hash_value = ((mc_addr[4] >> 5) |
+ (((uint16_t) mc_addr[5]) << 3));
+ } else {
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) |
+ (((uint16_t) mc_addr[5]) << 5));
+ }
+ break;
+ case 2:
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /* [45:36] i.e. 0x163 for above example address */
+ hash_value = ((mc_addr[4] >> 4) |
+ (((uint16_t) mc_addr[5]) << 4));
+ } else {
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) |
+ (((uint16_t) mc_addr[5]) << 6));
+ }
+ break;
+ case 3:
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /* [43:34] i.e. 0x18D for above example address */
+ hash_value = ((mc_addr[4] >> 2) |
+ (((uint16_t) mc_addr[5]) << 6));
+ } else {
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) |
+ (((uint16_t) mc_addr[5]) << 8));
+ }
+ break;
+ }
+
+ hash_value &= 0xFFF;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ hash_value &= 0x3FF;
+
+ return hash_value;
}
/******************************************************************************
@@ -5979,47 +6119,46 @@ em_hash_mc_addr(struct em_hw *hw,
* hash_value - Multicast address hash value
*****************************************************************************/
void
-em_mta_set(struct em_hw *hw,
- uint32_t hash_value)
+em_mta_set(struct em_hw *hw, uint32_t hash_value)
{
- uint32_t hash_bit, hash_reg;
- uint32_t mta;
- uint32_t temp;
-
- /* The MTA is a register array of 128 32-bit registers.
- * It is treated like an array of 4096 bits. We want to set
- * bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The register is determined by the
- * upper 7 bits of the hash value and the bit within that
- * register are determined by the lower 5 bits of the value.
- */
- hash_reg = (hash_value >> 5) & 0x7F;
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- hash_reg &= 0x1F;
-
- hash_bit = hash_value & 0x1F;
-
- mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
- mta |= (1 << hash_bit);
-
- /* If we are on an 82544 and we are trying to write an odd offset
- * in the MTA, save off the previous entry before writing and
- * restore the old value after writing.
- */
- if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
- E1000_WRITE_FLUSH(hw);
- } else {
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_FLUSH(hw);
- }
+ uint32_t hash_bit, hash_reg;
+ uint32_t mta;
+ uint32_t temp;
+ /*
+ * The MTA is a register array of 128 32-bit registers. It is treated
+ * like an array of 4096 bits. We want to set bit
+ * BitArray[hash_value]. So we figure out what register the bit is
+ * in, read it, OR in the new bit, then write back the new value.
+ * The register is determined by the upper 7 bits of the hash value
+ * and the bit within that register are determined by the lower 5
+ * bits of the value.
+ */
+ hash_reg = (hash_value >> 5) & 0x7F;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ hash_reg &= 0x1F;
+
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+ /*
+ * If we are on an 82544 and we are trying to write an odd offset in
+ * the MTA, save off the previous entry before writing and restore
+ * the old value after writing.
+ */
+ if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
+ }
}
/******************************************************************************
@@ -6030,54 +6169,50 @@ em_mta_set(struct em_hw *hw,
* index - Receive address register to write
*****************************************************************************/
void
-em_rar_set(struct em_hw *hw,
- uint8_t *addr,
- uint32_t index)
+em_rar_set(struct em_hw *hw, uint8_t *addr, uint32_t index)
{
- uint32_t rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((uint32_t) addr[0] |
- ((uint32_t) addr[1] << 8) |
- ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
- rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
-
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
- * unit hang.
- *
- * Description:
- * If there are any Rx frames queued up or otherwise present in the HW
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
- * hang. To work around this issue, we have to disable receives and
- * flush out all Rx frames before we enable RSS. To do so, we modify we
- * redirect all Rx traffic to manageability and then reset the HW.
- * This flushes away Rx frames, and (since the redirections to
- * manageability persists across resets) keeps new ones from coming in
- * while we work. Then, we clear the Address Valid AV bit for all MAC
- * addresses and undo the re-direction to manageability.
- * Now, frames are coming in again, but the MAC won't accept them, so
- * far so good. We now proceed to initialize RSS (if necessary) and
- * configure the Rx unit. Last, we re-enable the AV bits and continue
- * on our merry way.
- */
- switch (hw->mac_type) {
- case em_82571:
- case em_82572:
- case em_80003es2lan:
- if (hw->leave_av_bit_off == TRUE)
- break;
- default:
- /* Indicate to hardware the Address is Valid. */
- rar_high |= E1000_RAH_AV;
- break;
- }
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH(hw);
+ uint32_t rar_low, rar_high;
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) |
+ ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+ rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
+ /*
+ * Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+ * unit hang.
+ *
+ * Description: If there are any Rx frames queued up or otherwise
+ * present in the HW before RSS is enabled, and then we enable RSS,
+ * the HW Rx unit will hang. To work around this issue, we have to
+ * disable receives and flush out all Rx frames before we enable RSS.
+ * To do so, we modify we redirect all Rx traffic to manageability
+ * and then reset the HW. This flushes away Rx frames, and (since the
+ * redirections to manageability persists across resets) keeps new
+ * ones from coming in while we work. Then, we clear the Address
+ * Valid AV bit for all MAC addresses and undo the re-direction to
+ * manageability. Now, frames are coming in again, but the MAC won't
+ * accept them, so far so good. We now proceed to initialize RSS (if
+ * necessary) and configure the Rx unit. Last, we re-enable the AV
+ * bits and continue on our merry way.
+ */
+ switch (hw->mac_type) {
+ case em_82571:
+ case em_82572:
+ case em_80003es2lan:
+ if (hw->leave_av_bit_off == TRUE)
+ break;
+ default:
+ /* Indicate to hardware the Address is Valid. */
+ rar_high |= E1000_RAH_AV;
+ break;
+ }
+
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+ E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
@@ -6088,117 +6223,117 @@ em_rar_set(struct em_hw *hw,
STATIC void
em_clear_vfta(struct em_hw *hw)
{
- uint32_t offset;
- uint32_t vfta_value = 0;
- uint32_t vfta_offset = 0;
- uint32_t vfta_bit_in_reg = 0;
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- return;
-
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying a single VLAN
- * ID. The following operations determine which 32b entry
- * (i.e. offset) into the array we want to set the VLAN ID
- * (i.e. bit) of the manageability unit. */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH(hw);
- }
+ uint32_t offset;
+ uint32_t vfta_value = 0;
+ uint32_t vfta_offset = 0;
+ uint32_t vfta_bit_in_reg = 0;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ return;
+
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) {
+ if (hw->mng_cookie.vlan_id != 0) {
+ /*
+ * The VFTA is a 4096b bit-field, each identifying a
+ * single VLAN ID. The following operations
+ * determine which 32b entry (i.e. offset) into the
+ * array we want to set the VLAN ID (i.e. bit) of the
+ * manageability unit.
+ */
+ vfta_offset = (hw->mng_cookie.vlan_id >>
+ E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
+
+ vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ }
+ }
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /*
+ * If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of
+ * the manageability unit
+ */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH(hw);
+ }
}
STATIC int32_t
-em_id_led_init(struct em_hw * hw)
+em_id_led_init(struct em_hw *hw)
{
- uint32_t ledctl;
- const uint32_t ledctl_mask = 0x000000FF;
- const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- uint16_t eeprom_data, i, temp;
- const uint16_t led_mask = 0x0F;
-
- DEBUGFUNC("em_id_led_init");
-
- if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = E1000_READ_REG(hw, LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if ((hw->mac_type == em_82573) &&
- (eeprom_data == ID_LED_RESERVED_82573))
- eeprom_data = ID_LED_DEFAULT_82573;
- else if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- eeprom_data = ID_LED_DEFAULT_ICH8LAN;
- else
- eeprom_data = ID_LED_DEFAULT;
- }
-
- for (i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
+ uint32_t ledctl;
+ const uint32_t ledctl_mask = 0x000000FF;
+ const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ uint16_t eeprom_data, i, temp;
+ const uint16_t led_mask = 0x0F;
+ DEBUGFUNC("em_id_led_init");
+
+ if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) {
+ /* Nothing to do */
+ return E1000_SUCCESS;
+ }
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ hw->ledctl_default = ledctl;
+ hw->ledctl_mode1 = hw->ledctl_default;
+ hw->ledctl_mode2 = hw->ledctl_default;
+
+ if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if ((hw->mac_type == em_82573) &&
+ (eeprom_data == ID_LED_RESERVED_82573))
+ eeprom_data = ID_LED_DEFAULT_82573;
+ else if ((eeprom_data == ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) {
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ eeprom_data = ID_LED_DEFAULT_ICH8LAN;
+ else
+ eeprom_data = ID_LED_DEFAULT;
+ }
+ for (i = 0; i < 4; i++) {
+ temp = (eeprom_data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -6209,103 +6344,103 @@ em_id_led_init(struct em_hw * hw)
void
em_clear_hw_cntrs(struct em_hw *hw)
{
- volatile uint32_t temp;
-
- temp = E1000_READ_REG(hw, CRCERRS);
- temp = E1000_READ_REG(hw, SYMERRS);
- temp = E1000_READ_REG(hw, MPC);
- temp = E1000_READ_REG(hw, SCC);
- temp = E1000_READ_REG(hw, ECOL);
- temp = E1000_READ_REG(hw, MCC);
- temp = E1000_READ_REG(hw, LATECOL);
- temp = E1000_READ_REG(hw, COLC);
- temp = E1000_READ_REG(hw, DC);
- temp = E1000_READ_REG(hw, SEC);
- temp = E1000_READ_REG(hw, RLEC);
- temp = E1000_READ_REG(hw, XONRXC);
- temp = E1000_READ_REG(hw, XONTXC);
- temp = E1000_READ_REG(hw, XOFFRXC);
- temp = E1000_READ_REG(hw, XOFFTXC);
- temp = E1000_READ_REG(hw, FCRUC);
-
- if (hw->mac_type != em_ich8lan &&
- hw->mac_type != em_ich9lan &&
- hw->mac_type != em_ich10lan) {
- temp = E1000_READ_REG(hw, PRC64);
- temp = E1000_READ_REG(hw, PRC127);
- temp = E1000_READ_REG(hw, PRC255);
- temp = E1000_READ_REG(hw, PRC511);
- temp = E1000_READ_REG(hw, PRC1023);
- temp = E1000_READ_REG(hw, PRC1522);
- }
-
- temp = E1000_READ_REG(hw, GPRC);
- temp = E1000_READ_REG(hw, BPRC);
- temp = E1000_READ_REG(hw, MPRC);
- temp = E1000_READ_REG(hw, GPTC);
- temp = E1000_READ_REG(hw, GORCL);
- temp = E1000_READ_REG(hw, GORCH);
- temp = E1000_READ_REG(hw, GOTCL);
- temp = E1000_READ_REG(hw, GOTCH);
- temp = E1000_READ_REG(hw, RNBC);
- temp = E1000_READ_REG(hw, RUC);
- temp = E1000_READ_REG(hw, RFC);
- temp = E1000_READ_REG(hw, ROC);
- temp = E1000_READ_REG(hw, RJC);
- temp = E1000_READ_REG(hw, TORL);
- temp = E1000_READ_REG(hw, TORH);
- temp = E1000_READ_REG(hw, TOTL);
- temp = E1000_READ_REG(hw, TOTH);
- temp = E1000_READ_REG(hw, TPR);
- temp = E1000_READ_REG(hw, TPT);
-
- if (hw->mac_type != em_ich8lan &&
- hw->mac_type != em_ich9lan &&
- hw->mac_type != em_ich10lan) {
- temp = E1000_READ_REG(hw, PTC64);
- temp = E1000_READ_REG(hw, PTC127);
- temp = E1000_READ_REG(hw, PTC255);
- temp = E1000_READ_REG(hw, PTC511);
- temp = E1000_READ_REG(hw, PTC1023);
- temp = E1000_READ_REG(hw, PTC1522);
- }
-
- temp = E1000_READ_REG(hw, MPTC);
- temp = E1000_READ_REG(hw, BPTC);
-
- if (hw->mac_type < em_82543) return;
-
- temp = E1000_READ_REG(hw, ALGNERRC);
- temp = E1000_READ_REG(hw, RXERRC);
- temp = E1000_READ_REG(hw, TNCRS);
- temp = E1000_READ_REG(hw, CEXTERR);
- temp = E1000_READ_REG(hw, TSCTC);
- temp = E1000_READ_REG(hw, TSCTFC);
-
- if (hw->mac_type <= em_82544
- || hw->mac_type == em_icp_xxxx) return;
-
- temp = E1000_READ_REG(hw, MGTPRC);
- temp = E1000_READ_REG(hw, MGTPDC);
- temp = E1000_READ_REG(hw, MGTPTC);
-
- if (hw->mac_type <= em_82547_rev_2) return;
-
- temp = E1000_READ_REG(hw, IAC);
- temp = E1000_READ_REG(hw, ICRXOC);
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan)
- return;
-
- temp = E1000_READ_REG(hw, ICRXPTC);
- temp = E1000_READ_REG(hw, ICRXATC);
- temp = E1000_READ_REG(hw, ICTXPTC);
- temp = E1000_READ_REG(hw, ICTXATC);
- temp = E1000_READ_REG(hw, ICTXQEC);
- temp = E1000_READ_REG(hw, ICTXQMTC);
- temp = E1000_READ_REG(hw, ICRXDMTC);
+ volatile uint32_t temp;
+ temp = E1000_READ_REG(hw, CRCERRS);
+ temp = E1000_READ_REG(hw, SYMERRS);
+ temp = E1000_READ_REG(hw, MPC);
+ temp = E1000_READ_REG(hw, SCC);
+ temp = E1000_READ_REG(hw, ECOL);
+ temp = E1000_READ_REG(hw, MCC);
+ temp = E1000_READ_REG(hw, LATECOL);
+ temp = E1000_READ_REG(hw, COLC);
+ temp = E1000_READ_REG(hw, DC);
+ temp = E1000_READ_REG(hw, SEC);
+ temp = E1000_READ_REG(hw, RLEC);
+ temp = E1000_READ_REG(hw, XONRXC);
+ temp = E1000_READ_REG(hw, XONTXC);
+ temp = E1000_READ_REG(hw, XOFFRXC);
+ temp = E1000_READ_REG(hw, XOFFTXC);
+ temp = E1000_READ_REG(hw, FCRUC);
+
+ if (hw->mac_type != em_ich8lan &&
+ hw->mac_type != em_ich9lan &&
+ hw->mac_type != em_ich10lan) {
+ temp = E1000_READ_REG(hw, PRC64);
+ temp = E1000_READ_REG(hw, PRC127);
+ temp = E1000_READ_REG(hw, PRC255);
+ temp = E1000_READ_REG(hw, PRC511);
+ temp = E1000_READ_REG(hw, PRC1023);
+ temp = E1000_READ_REG(hw, PRC1522);
+ }
+ temp = E1000_READ_REG(hw, GPRC);
+ temp = E1000_READ_REG(hw, BPRC);
+ temp = E1000_READ_REG(hw, MPRC);
+ temp = E1000_READ_REG(hw, GPTC);
+ temp = E1000_READ_REG(hw, GORCL);
+ temp = E1000_READ_REG(hw, GORCH);
+ temp = E1000_READ_REG(hw, GOTCL);
+ temp = E1000_READ_REG(hw, GOTCH);
+ temp = E1000_READ_REG(hw, RNBC);
+ temp = E1000_READ_REG(hw, RUC);
+ temp = E1000_READ_REG(hw, RFC);
+ temp = E1000_READ_REG(hw, ROC);
+ temp = E1000_READ_REG(hw, RJC);
+ temp = E1000_READ_REG(hw, TORL);
+ temp = E1000_READ_REG(hw, TORH);
+ temp = E1000_READ_REG(hw, TOTL);
+ temp = E1000_READ_REG(hw, TOTH);
+ temp = E1000_READ_REG(hw, TPR);
+ temp = E1000_READ_REG(hw, TPT);
+
+ if (hw->mac_type != em_ich8lan &&
+ hw->mac_type != em_ich9lan &&
+ hw->mac_type != em_ich10lan) {
+ temp = E1000_READ_REG(hw, PTC64);
+ temp = E1000_READ_REG(hw, PTC127);
+ temp = E1000_READ_REG(hw, PTC255);
+ temp = E1000_READ_REG(hw, PTC511);
+ temp = E1000_READ_REG(hw, PTC1023);
+ temp = E1000_READ_REG(hw, PTC1522);
+ }
+ temp = E1000_READ_REG(hw, MPTC);
+ temp = E1000_READ_REG(hw, BPTC);
+
+ if (hw->mac_type < em_82543)
+ return;
+
+ temp = E1000_READ_REG(hw, ALGNERRC);
+ temp = E1000_READ_REG(hw, RXERRC);
+ temp = E1000_READ_REG(hw, TNCRS);
+ temp = E1000_READ_REG(hw, CEXTERR);
+ temp = E1000_READ_REG(hw, TSCTC);
+ temp = E1000_READ_REG(hw, TSCTFC);
+
+ if (hw->mac_type <= em_82544
+ || hw->mac_type == em_icp_xxxx)
+ return;
+
+ temp = E1000_READ_REG(hw, MGTPRC);
+ temp = E1000_READ_REG(hw, MGTPDC);
+ temp = E1000_READ_REG(hw, MGTPTC);
+
+ if (hw->mac_type <= em_82547_rev_2)
+ return;
+
+ temp = E1000_READ_REG(hw, IAC);
+ temp = E1000_READ_REG(hw, ICRXOC);
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan)
+ return;
+
+ temp = E1000_READ_REG(hw, ICRXPTC);
+ temp = E1000_READ_REG(hw, ICRXATC);
+ temp = E1000_READ_REG(hw, ICTXPTC);
+ temp = E1000_READ_REG(hw, ICTXATC);
+ temp = E1000_READ_REG(hw, ICTXQEC);
+ temp = E1000_READ_REG(hw, ICTXQMTC);
+ temp = E1000_READ_REG(hw, ICRXDMTC);
}
/******************************************************************************
@@ -6316,76 +6451,76 @@ em_clear_hw_cntrs(struct em_hw *hw)
* mac_addr - The Ethernet destination address of the frame in question
*****************************************************************************/
void
-em_tbi_adjust_stats(struct em_hw *hw,
- struct em_hw_stats *stats,
- uint32_t frame_len,
- uint8_t *mac_addr)
+em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats,
+ uint32_t frame_len, uint8_t *mac_addr)
{
- uint64_t carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if (*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if (frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if (stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if (frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if (frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if (frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if (frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if (frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if (frame_len == 1522) {
- stats->prc1522++;
- }
+ uint64_t carry_bit;
+ /* First adjust the frame length. */
+ frame_len--;
+ /*
+ * We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount the
+ * packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ carry_bit = 0x80000000 & stats->gorcl;
+ stats->gorcl += frame_len;
+ /*
+ * If the high bit of Gorcl (the low 32 bits of the Good Octets
+ * Received Count) was one before the addition, AND it is zero after,
+ * then we lost the carry out, need to add one to Gorch (Good Octets
+ * Received Count High). This could be simplified if all environments
+ * supported 64-bit integers.
+ */
+ if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ stats->gorch++;
+ /*
+ * Is this a broadcast or multicast? Check broadcast first, since
+ * the test for a multicast frame will test positive on a broadcast
+ * frame.
+ */
+ if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if (*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ if (frame_len == hw->max_frame_size) {
+ /*
+ * In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if (stats->roc > 0)
+ stats->roc--;
+ }
+ /*
+ * Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if (frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if (frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if (frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if (frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if (frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if (frame_len == 1522) {
+ stats->prc1522++;
+ }
}
/******************************************************************************
@@ -6396,77 +6531,75 @@ em_tbi_adjust_stats(struct em_hw *hw,
void
em_get_bus_info(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t pci_ex_link_status;
- uint32_t status;
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->bus_type = em_bus_type_unknown;
- hw->bus_speed = em_bus_speed_unknown;
- hw->bus_width = em_bus_width_unknown;
- break;
- case em_icp_xxxx:
- hw->bus_type = em_bus_type_cpp;
- hw->bus_speed = em_bus_speed_unknown;
- hw->bus_width = em_bus_width_unknown;
- break;
- case em_82571:
- case em_82572:
- case em_82573:
- case em_82574:
- case em_82575:
- case em_80003es2lan:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- ret_val = em_read_pcie_cap_reg(hw,
- PCI_EX_LINK_STATUS,
- &pci_ex_link_status);
- if (ret_val)
- hw->bus_width = em_bus_width_unknown;
- else
- hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
- PCI_EX_LINK_WIDTH_SHIFT;
- break;
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- hw->bus_width = em_bus_width_pciex_1;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- em_bus_type_pcix : em_bus_type_pci;
-
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
- em_bus_speed_66 : em_bus_speed_120;
- } else if (hw->bus_type == em_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- em_bus_speed_66 : em_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = em_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = em_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = em_bus_speed_133;
- break;
- default:
- hw->bus_speed = em_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- em_bus_width_64 : em_bus_width_32;
- break;
- }
+ int32_t ret_val;
+ uint16_t pci_ex_link_status;
+ uint32_t status;
+ switch (hw->mac_type) {
+ case em_82542_rev2_0:
+ case em_82542_rev2_1:
+ hw->bus_type = em_bus_type_unknown;
+ hw->bus_speed = em_bus_speed_unknown;
+ hw->bus_width = em_bus_width_unknown;
+ break;
+ case em_icp_xxxx:
+ hw->bus_type = em_bus_type_cpp;
+ hw->bus_speed = em_bus_speed_unknown;
+ hw->bus_width = em_bus_width_unknown;
+ break;
+ case em_82571:
+ case em_82572:
+ case em_82573:
+ case em_82574:
+ case em_82575:
+ case em_80003es2lan:
+ hw->bus_type = em_bus_type_pci_express;
+ hw->bus_speed = em_bus_speed_2500;
+ ret_val = em_read_pcie_cap_reg(hw, PCI_EX_LINK_STATUS,
+ &pci_ex_link_status);
+ if (ret_val)
+ hw->bus_width = em_bus_width_unknown;
+ else
+ hw->bus_width = (pci_ex_link_status &
+ PCI_EX_LINK_WIDTH_MASK) >> PCI_EX_LINK_WIDTH_SHIFT;
+ break;
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ hw->bus_type = em_bus_type_pci_express;
+ hw->bus_speed = em_bus_speed_2500;
+ hw->bus_width = em_bus_width_pciex_1;
+ break;
+ default:
+ status = E1000_READ_REG(hw, STATUS);
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ em_bus_type_pcix : em_bus_type_pci;
+
+ if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
+ em_bus_speed_66 : em_bus_speed_120;
+ } else if (hw->bus_type == em_bus_type_pci) {
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+ em_bus_speed_66 : em_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ hw->bus_speed = em_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ hw->bus_speed = em_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ hw->bus_speed = em_bus_speed_133;
+ break;
+ default:
+ hw->bus_speed = em_bus_speed_reserved;
+ break;
+ }
+ }
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
+ em_bus_width_64 : em_bus_width_32;
+ break;
+ }
}
/******************************************************************************
@@ -6478,15 +6611,12 @@ em_get_bus_info(struct em_hw *hw)
* value - value to write
*****************************************************************************/
STATIC void
-em_write_reg_io(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
+em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value)
{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- em_io_write(hw, io_data, value);
+ unsigned long io_addr = hw->io_base;
+ unsigned long io_data = hw->io_base + 4;
+ em_io_write(hw, io_addr, offset);
+ em_io_write(hw, io_data, value);
}
/******************************************************************************
@@ -6505,179 +6635,186 @@ em_write_reg_io(struct em_hw *hw,
* For IGP phy's, the function calculates the range by the AGC registers.
*****************************************************************************/
STATIC int32_t
-em_get_cable_length(struct em_hw *hw,
- uint16_t *min_length,
- uint16_t *max_length)
+em_get_cable_length(struct em_hw *hw, uint16_t *min_length,
+ uint16_t *max_length)
{
- int32_t ret_val;
- uint16_t agc_value = 0;
- uint16_t i, phy_data;
- uint16_t cable_length;
-
- DEBUGFUNC("em_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if (hw->phy_type == em_phy_m88 ||
- hw->phy_type == em_phy_oem) {
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case em_cable_length_50:
- *min_length = 0;
- *max_length = em_igp_cable_length_50;
- break;
- case em_cable_length_50_80:
- *min_length = em_igp_cable_length_50;
- *max_length = em_igp_cable_length_80;
- break;
- case em_cable_length_80_110:
- *min_length = em_igp_cable_length_80;
- *max_length = em_igp_cable_length_110;
- break;
- case em_cable_length_110_140:
- *min_length = em_igp_cable_length_110;
- *max_length = em_igp_cable_length_140;
- break;
- case em_cable_length_140:
- *min_length = em_igp_cable_length_140;
- *max_length = em_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == em_phy_gg82563) {
- ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
- switch (cable_length) {
- case em_gg_cable_length_60:
- *min_length = 0;
- *max_length = em_igp_cable_length_60;
- break;
- case em_gg_cable_length_60_115:
- *min_length = em_igp_cable_length_60;
- *max_length = em_igp_cable_length_115;
- break;
- case em_gg_cable_length_115_150:
- *min_length = em_igp_cable_length_115;
- *max_length = em_igp_cable_length_150;
- break;
- case em_gg_cable_length_150:
- *min_length = em_igp_cable_length_150;
- *max_length = em_igp_cable_length_180;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
- uint16_t cur_agc_value;
- uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Value bound check. */
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc_value;
-
- /* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc_value;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = em_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- } else if (hw->phy_type == em_phy_igp_2 ||
- hw->phy_type == em_phy_igp_3) {
- uint16_t cur_agc_index, max_agc_index = 0;
- uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
- uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
- {IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Getting bits 15:9, which represent the combination of course and
- * fine gain values. The result is a number that can be put into
- * the lookup table to obtain the approximate cable length. */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (em_igp_2_cable_length_table[min_agc_index] >
- em_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (em_igp_2_cable_length_table[max_agc_index] <
- em_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += em_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
- em_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- *max_length = agc_value + IGP02E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t agc_value = 0;
+ uint16_t i, phy_data;
+ uint16_t cable_length;
+ DEBUGFUNC("em_get_cable_length");
+
+ *min_length = *max_length = 0;
+
+ /* Use old method for Phy older than IGP */
+ if (hw->phy_type == em_phy_m88 ||
+ hw->phy_type == em_phy_oem) {
+
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ /* Convert the enum value to ranged values */
+ switch (cable_length) {
+ case em_cable_length_50:
+ *min_length = 0;
+ *max_length = em_igp_cable_length_50;
+ break;
+ case em_cable_length_50_80:
+ *min_length = em_igp_cable_length_50;
+ *max_length = em_igp_cable_length_80;
+ break;
+ case em_cable_length_80_110:
+ *min_length = em_igp_cable_length_80;
+ *max_length = em_igp_cable_length_110;
+ break;
+ case em_cable_length_110_140:
+ *min_length = em_igp_cable_length_110;
+ *max_length = em_igp_cable_length_140;
+ break;
+ case em_cable_length_140:
+ *min_length = em_igp_cable_length_140;
+ *max_length = em_igp_cable_length_170;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+ } else if (hw->phy_type == em_phy_gg82563) {
+ ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+ switch (cable_length) {
+ case em_gg_cable_length_60:
+ *min_length = 0;
+ *max_length = em_igp_cable_length_60;
+ break;
+ case em_gg_cable_length_60_115:
+ *min_length = em_igp_cable_length_60;
+ *max_length = em_igp_cable_length_115;
+ break;
+ case em_gg_cable_length_115_150:
+ *min_length = em_igp_cable_length_115;
+ *max_length = em_igp_cable_length_150;
+ break;
+ case em_gg_cable_length_150:
+ *min_length = em_igp_cable_length_150;
+ *max_length = em_igp_cable_length_180;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+ } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
+ uint16_t cur_agc_value;
+ uint16_t min_agc_value =
+ IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D};
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = em_read_phy_reg(hw, agc_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ cur_agc_value = phy_data >>
+ IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Value bound check. */
+ if ((cur_agc_value >=
+ IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc_value == 0))
+ return -E1000_ERR_PHY;
+
+ agc_value += cur_agc_value;
+
+ /* Update minimal AGC value. */
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM *
+ em_igp_cable_length_50) {
+ agc_value -= min_agc_value;
+
+ /*
+ * Get the average length of the remaining 3 channels
+ */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Get the average length of all the 4 channels. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ /* Set the range of the calculated length. */
+ *min_length = ((em_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) > 0) ?
+ (em_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) : 0;
+ *max_length = em_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+ } else if (hw->phy_type == em_phy_igp_2 ||
+ hw->phy_type == em_phy_igp_3) {
+ uint16_t cur_agc_index, max_agc_index = 0;
+ uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
+ uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+ {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C, IGP02E1000_PHY_AGC_D};
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = em_read_phy_reg(hw, agc_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ /*
+ * Getting bits 15:9, which represent the combination
+ * of course and fine gain values. The result is a
+ * number that can be put into the lookup table to
+ * obtain the approximate cable length.
+ */
+ cur_agc_index = (phy_data >>
+ IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE)
+ || (cur_agc_index == 0))
+ return -E1000_ERR_PHY;
+
+ /* Remove min & max AGC values from calculation. */
+ if (em_igp_2_cable_length_table[min_agc_index] >
+ em_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (em_igp_2_cable_length_table[max_agc_index] <
+ em_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += em_igp_2_cable_length_table
+ [cur_agc_index];
+ }
+
+ agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
+ em_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+ /*
+ * Calculate cable length with the error range of +/- 10
+ * meters.
+ */
+ *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ *max_length = agc_value + IGP02E1000_AGC_RANGE;
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -6698,36 +6835,35 @@ em_get_cable_length(struct em_hw *hw,
STATIC int32_t
em_check_downshift(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_downshift");
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_3 ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if ((hw->phy_type == em_phy_m88) ||
- (hw->phy_type == em_phy_gg82563) ||
- (hw->phy_type == em_phy_oem)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- } else if (hw->phy_type == em_phy_ife) {
- /* em_phy_ife supports 10/100 speed only */
- hw->speed_downgraded = FALSE;
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_check_downshift");
+
+ if (hw->phy_type == em_phy_igp ||
+ hw->phy_type == em_phy_igp_3 ||
+ hw->phy_type == em_phy_igp_2) {
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ hw->speed_downgraded = (phy_data &
+ IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+ } else if ((hw->phy_type == em_phy_m88) ||
+ (hw->phy_type == em_phy_gg82563) ||
+ (hw->phy_type == em_phy_oem)) {
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+ M88E1000_PSSR_DOWNSHIFT_SHIFT;
+ } else if (hw->phy_type == em_phy_ife) {
+ /* em_phy_ife supports 10/100 speed only */
+ hw->speed_downgraded = FALSE;
+ }
+ return E1000_SUCCESS;
}
/*****************************************************************************
@@ -6741,185 +6877,189 @@ em_check_downshift(struct em_hw *hw)
* E1000_SUCCESS at any other case.
*
****************************************************************************/
-
STATIC int32_t
-em_config_dsp_after_link_change(struct em_hw *hw,
- boolean_t link_up)
+em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up)
{
- int32_t ret_val;
- uint16_t phy_data, phy_saved_data, speed, duplex, i;
- uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
- uint16_t min_length, max_length;
-
- DEBUGFUNC("em_config_dsp_after_link_change");
-
- if (hw->phy_type != em_phy_igp)
- return E1000_SUCCESS;
-
- if (link_up) {
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (speed == SPEED_1000) {
-
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- if ((hw->dsp_config_state == em_dsp_config_enabled) &&
- min_length >= em_igp_cable_length_50) {
-
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
- hw->dsp_config_state = em_dsp_config_activated;
- }
-
- if ((hw->ffe_config_state == em_ffe_config_enabled) &&
- (min_length < em_igp_cable_length_50)) {
-
- uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- uint32_t idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- usec_delay(1000);
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = em_ffe_config_active;
-
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- return ret_val;
- break;
- }
-
- if (idle_errs)
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if (hw->dsp_config_state == em_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->dsp_config_state = em_dsp_config_enabled;
- }
-
- if (hw->ffe_config_state == em_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->ffe_config_state = em_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t phy_data, phy_saved_data, speed, duplex, i;
+ uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_PARAM_A, IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C, IGP01E1000_PHY_AGC_PARAM_D};
+ uint16_t min_length, max_length;
+ DEBUGFUNC("em_config_dsp_after_link_change");
+
+ if (hw->phy_type != em_phy_igp)
+ return E1000_SUCCESS;
+
+ if (link_up) {
+ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed == SPEED_1000) {
+
+ ret_val = em_get_cable_length(hw, &min_length, &max_length);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->dsp_config_state == em_dsp_config_enabled) &&
+ min_length >= em_igp_cable_length_50) {
+
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM;
+ i++) {
+ ret_val = em_read_phy_reg(hw,
+ dsp_reg_array[i], &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &=
+ ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val = em_write_phy_reg(hw,
+ dsp_reg_array[i], phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ hw->dsp_config_state = em_dsp_config_activated;
+ }
+ if ((hw->ffe_config_state == em_ffe_config_enabled) &&
+ (min_length < em_igp_cable_length_50)) {
+
+ uint16_t ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ uint32_t idle_errs = 0;
+ /* clear previous idle error counts */
+ ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
+ usec_delay(1000);
+ ret_val = em_read_phy_reg(hw,
+ PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ idle_errs += (phy_data &
+ SR_1000T_IDLE_ERROR_CNT);
+ if (idle_errs >
+ SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ hw->ffe_config_state =
+ em_ffe_config_active;
+
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if (ret_val)
+ return ret_val;
+ break;
+ }
+ if (idle_errs)
+ ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ }
+ }
+ } else {
+ if (hw->dsp_config_state == em_dsp_config_activated) {
+ /*
+ * Save off the current value of register 0x2F5B to
+ * be restored at the end of the routines.
+ */
+ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ /* Disable the PHY transmitter */
+ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ if (ret_val)
+ return ret_val;
+
+ msec_delay_irq(20);
+
+ ret_val = em_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if (ret_val)
+ return ret_val;
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |=
+ IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val = em_write_phy_reg(hw,
+ dsp_reg_array[i], phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = em_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ return ret_val;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ hw->dsp_config_state = em_dsp_config_enabled;
+ }
+ if (hw->ffe_config_state == em_ffe_config_active) {
+ /*
+ * Save off the current value of register 0x2F5B to
+ * be restored at the end of the routines.
+ */
+ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ /* Disable the PHY transmitter */
+ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ if (ret_val)
+ return ret_val;
+
+ msec_delay_irq(20);
+
+ ret_val = em_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ return ret_val;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ hw->ffe_config_state = em_ffe_config_enabled;
+ }
+ }
+ return E1000_SUCCESS;
}
/*****************************************************************************
@@ -6933,32 +7073,32 @@ em_config_dsp_after_link_change(struct em_hw *hw,
static int32_t
em_set_phy_mode(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_set_phy_mode");
-
- if ((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
- ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if (ret_val)
- return ret_val;
-
- hw->phy_reset_disable = FALSE;
- }
- }
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+ DEBUGFUNC("em_set_phy_mode");
+
+ if ((hw->mac_type == em_82545_rev_3) &&
+ (hw->media_type == em_media_type_copper)) {
+ ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+ &eeprom_data);
+ if (ret_val) {
+ return ret_val;
+ }
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_PHY_PAGE_SELECT, 0x000B);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_write_phy_reg(hw,
+ M88E1000_PHY_GEN_CONTROL, 0x8104);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_reset_disable = FALSE;
+ }
+ }
+ return E1000_SUCCESS;
}
/*****************************************************************************
@@ -6974,127 +7114,133 @@ em_set_phy_mode(struct em_hw *hw)
* E1000_SUCCESS at any other case.
*
****************************************************************************/
-
STATIC int32_t
-em_set_d3_lplu_state(struct em_hw *hw,
- boolean_t active)
+em_set_d3_lplu_state(struct em_hw *hw, boolean_t active)
{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d3_lplu_state");
-
- if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
- && hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- /* MAC writes into PHY register based on the state transition
- * and start auto-negotiation. SW driver can overwrite the settings
- * in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if (hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
+ uint32_t phy_ctrl = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_set_d3_lplu_state");
+
+ if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
+ && hw->phy_type != em_phy_igp_3)
+ return E1000_SUCCESS;
+ /*
+ * During driver activity LPLU should not be used or it will attain
+ * link from the lowest speeds starting from 10Mbps. The capability
+ * is used for Dx transitions and states
+ */
+ if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
+ ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ /*
+ * MAC writes into PHY register based on the state transition
+ * and start auto-negotiation. SW driver can overwrite the
+ * settings in CSR PHY power control E1000_PHY_CTRL register.
+ */
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ } else {
+ ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (!active) {
+ if (hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = em_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (hw->smart_speed == em_smart_speed_on) {
+ ret_val = em_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->smart_speed == em_smart_speed_off) {
+ ret_val = em_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+ || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+
+ if (hw->mac_type == em_82541_rev_2 ||
+ hw->mac_type == em_82547_rev_2) {
+ phy_data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = em_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* When LPLU is enabled we should disable SmartSpeed */
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ }
+ return E1000_SUCCESS;
}
/*****************************************************************************
@@ -7110,97 +7256,98 @@ em_set_d3_lplu_state(struct em_hw *hw,
* E1000_SUCCESS at any other case.
*
****************************************************************************/
-
STATIC int32_t
-em_set_d0_lplu_state(struct em_hw *hw,
- boolean_t active)
+em_set_d0_lplu_state(struct em_hw *hw, boolean_t active)
{
- uint32_t phy_ctrl = 0;
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d0_lplu_state");
-
- if (hw->mac_type <= em_82547_rev_2)
- return E1000_SUCCESS;
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
-
- } else {
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
+ uint32_t phy_ctrl = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("em_set_d0_lplu_state");
+
+ if (hw->mac_type <= em_82547_rev_2)
+ return E1000_SUCCESS;
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+ } else {
+ ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (!active) {
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = em_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (hw->smart_speed == em_smart_speed_on) {
+ ret_val = em_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->smart_speed == em_smart_speed_off) {
+ ret_val = em_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else {
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+ } else {
+ phy_data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = em_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* When LPLU is enabled we should disable SmartSpeed */
+ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ }
+ return E1000_SUCCESS;
}
/******************************************************************************
@@ -7211,85 +7358,81 @@ em_set_d0_lplu_state(struct em_hw *hw,
static int32_t
em_set_vco_speed(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t default_page = 0;
- uint16_t phy_data;
-
- DEBUGFUNC("em_set_vco_speed");
-
- switch (hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t default_page = 0;
+ uint16_t phy_data;
+ DEBUGFUNC("em_set_vco_speed");
+
+ switch (hw->mac_type) {
+ case em_82545_rev_3:
+ case em_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ /* Set PHY register 30, page 5, bit 8 to 0 */
+
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+ if (ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
}
-
/*****************************************************************************
* This function reads the cookie from ARC ram.
*
* returns: - E1000_SUCCESS .
****************************************************************************/
STATIC int32_t
-em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
+em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer)
{
- uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
- uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
- length = (length >> 2);
- offset = (offset >> 2);
-
- for (i = 0; i < length; i++) {
- *((uint32_t *) buffer + i) =
- E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
- }
- return E1000_SUCCESS;
+ uint8_t i;
+ uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
+ uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
+ length = (length >> 2);
+ offset = (offset >> 2);
+
+ for (i = 0; i < length; i++) {
+ *((uint32_t *) buffer + i) =
+ E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
+ }
+ return E1000_SUCCESS;
}
-
/*****************************************************************************
* This function checks whether the HOST IF is enabled for command operaton
* and also checks whether the previous command is completed.
@@ -7300,30 +7443,29 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
* - E1000_SUCCESS for success.
****************************************************************************/
STATIC int32_t
-em_mng_enable_host_if(struct em_hw * hw)
+em_mng_enable_host_if(struct em_hw *hw)
{
- uint32_t hicr;
- uint8_t i;
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return E1000_SUCCESS;
+ uint32_t hicr;
+ uint8_t i;
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+ return E1000_SUCCESS;
}
/*****************************************************************************
@@ -7334,21 +7476,20 @@ em_mng_enable_host_if(struct em_hw * hw)
boolean_t
em_check_mng_mode(struct em_hw *hw)
{
- uint32_t fwsm;
-
- fwsm = E1000_READ_REG(hw, FWSM);
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
- } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
-
- return FALSE;
+ uint32_t fwsm;
+ fwsm = E1000_READ_REG(hw, FWSM);
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return TRUE;
+ } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return TRUE;
+
+ return FALSE;
}
/*****************************************************************************
@@ -7359,16 +7500,15 @@ em_check_mng_mode(struct em_hw *hw)
STATIC uint8_t
em_calculate_mng_checksum(char *buffer, uint32_t length)
{
- uint8_t sum = 0;
- uint32_t i;
-
- if (!buffer)
- return 0;
+ uint8_t sum = 0;
+ uint32_t i;
+ if (!buffer)
+ return 0;
- for (i=0; i < length; i++)
- sum += buffer[i];
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
- return (uint8_t) (0 - sum);
+ return (uint8_t) (0 - sum);
}
/*****************************************************************************
@@ -7379,124 +7519,123 @@ em_calculate_mng_checksum(char *buffer, uint32_t length)
boolean_t
em_enable_tx_pkt_filtering(struct em_hw *hw)
{
- /* called in init as well as watchdog timer functions */
-
- int32_t ret_val, checksum;
- boolean_t tx_filter = FALSE;
- struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
- uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
- if (em_check_mng_mode(hw)) {
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_host_if_read_cookie(hw, buffer);
- if (ret_val == E1000_SUCCESS) {
- checksum = hdr->checksum;
- hdr->checksum = 0;
- if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
- checksum == em_calculate_mng_checksum((char *)buffer,
- E1000_MNG_DHCP_COOKIE_LENGTH)) {
- if (hdr->status &
- E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- }
- }
-
- hw->tx_pkt_filtering = tx_filter;
- return tx_filter;
+ /* called in init as well as watchdog timer functions */
+ int32_t ret_val, checksum;
+ boolean_t tx_filter = FALSE;
+ struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
+ uint8_t *buffer = (uint8_t *) & (hw->mng_cookie);
+ if (em_check_mng_mode(hw)) {
+ ret_val = em_mng_enable_host_if(hw);
+ if (ret_val == E1000_SUCCESS) {
+ ret_val = em_host_if_read_cookie(hw, buffer);
+ if (ret_val == E1000_SUCCESS) {
+ checksum = hdr->checksum;
+ hdr->checksum = 0;
+ if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
+ checksum == em_calculate_mng_checksum(
+ (char *) buffer,
+ E1000_MNG_DHCP_COOKIE_LENGTH)) {
+ if (hdr->status &
+ E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
+ tx_filter = TRUE;
+ } else
+ tx_filter = TRUE;
+ } else
+ tx_filter = TRUE;
+ }
+ }
+ hw->tx_pkt_filtering = tx_filter;
+ return tx_filter;
}
-
static int32_t
em_polarity_reversal_workaround(struct em_hw *hw)
{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
- msec_delay_irq(100);
- }
-
- /* Recommended delay time after link has been lost */
- msec_delay_irq(1000);
-
- /* Now we will re-enable the transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay_irq(100);
- }
- return E1000_SUCCESS;
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t i;
+ /* Polarity reversal workaround for forced 10F/10H links. */
+
+ /* Disable the transmitter on the PHY */
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ return ret_val;
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ return ret_val;
+
+ /* This loop will early-out if the NO link condition has been met. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+ break;
+ msec_delay_irq(100);
+ }
+
+ /* Recommended delay time after link has been lost */
+ msec_delay_irq(1000);
+
+ /* Now we will re-enable the transmitter on the PHY */
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if (ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if (ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ return ret_val;
+
+ /* This loop will early-out if the link condition has been met. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ msec_delay_irq(100);
+ }
+ return E1000_SUCCESS;
}
-/***************************************************************************
+/******************************************************************************
*
* Disables PCI-Express master access.
*
@@ -7504,25 +7643,25 @@ em_polarity_reversal_workaround(struct em_hw *hw)
*
* returns: - none.
*
- ***************************************************************************/
+ *****************************************************************************/
STATIC void
em_set_pci_express_master_disable(struct em_hw *hw)
{
- uint32_t ctrl;
+ uint32_t ctrl;
+ DEBUGFUNC("em_set_pci_express_master_disable");
- DEBUGFUNC("em_set_pci_express_master_disable");
+ if (hw->bus_type != em_bus_type_pci_express)
+ return;
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
}
-/*******************************************************************************
+/******************************************************************************
*
- * Disables PCI-Express master access and verifies there are no pending requests
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests
*
* hw: Struct containing variables accessed by shared code
*
@@ -7534,32 +7673,31 @@ em_set_pci_express_master_disable(struct em_hw *hw)
int32_t
em_disable_pciex_master(struct em_hw *hw)
{
- int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
-
- DEBUGFUNC("em_disable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- em_set_pci_express_master_disable(hw);
-
- while (timeout) {
- if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- else
- usec_delay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
+ int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
+ DEBUGFUNC("em_disable_pciex_master");
+
+ if (hw->bus_type != em_bus_type_pci_express)
+ return E1000_SUCCESS;
+
+ em_set_pci_express_master_disable(hw);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ else
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ return -E1000_ERR_MASTER_REQUESTS_PENDING;
+ }
+ return E1000_SUCCESS;
}
-/*******************************************************************************
+/******************************************************************************
*
* Check for EEPROM Auto Read bit done.
*
@@ -7572,44 +7710,46 @@ em_disable_pciex_master(struct em_hw *hw)
STATIC int32_t
em_get_auto_rd_done(struct em_hw *hw)
{
- int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
- DEBUGFUNC("em_get_auto_rd_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay(5);
- break;
- case em_82571:
- case em_82572:
- case em_82573:
- case em_82574:
- case em_82575:
- case em_80003es2lan:
- case em_ich8lan:
- case em_ich9lan:
- case em_ich10lan:
- while (timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
- break;
- else msec_delay(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
- * Need to wait for PHY configuration completion before accessing NVM
- * and PHY. */
- if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574))
- msec_delay(25);
-
- return E1000_SUCCESS;
+ int32_t timeout = AUTO_READ_DONE_TIMEOUT;
+ DEBUGFUNC("em_get_auto_rd_done");
+
+ switch (hw->mac_type) {
+ default:
+ msec_delay(5);
+ break;
+ case em_82571:
+ case em_82572:
+ case em_82573:
+ case em_82574:
+ case em_82575:
+ case em_80003es2lan:
+ case em_ich8lan:
+ case em_ich9lan:
+ case em_ich10lan:
+ while (timeout) {
+ if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
+ break;
+ else
+ msec_delay(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Auto read by HW from EEPROM has not"
+ " completed.\n");
+ return -E1000_ERR_RESET;
+ }
+ break;
+ }
+ /*
+ * PHY configuration from NVM just starts after EECD_AUTO_RD sets to
+ * high. Need to wait for PHY configuration completion before
+ * accessing NVM and PHY.
+ */
+ if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574))
+ msec_delay(25);
+
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7624,38 +7764,38 @@ em_get_auto_rd_done(struct em_hw *hw)
STATIC int32_t
em_get_phy_cfg_done(struct em_hw *hw)
{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
- DEBUGFUNC("em_get_phy_cfg_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay_irq(10);
- break;
- case em_80003es2lan:
- /* Separate *_CFG_DONE_* bit for each port */
- if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
- cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* FALLTHROUGH */
- case em_82571:
- case em_82572:
- case em_82575:
- while (timeout) {
- if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
- break;
- else
- msec_delay(1);
- timeout--;
- }
- if (!timeout) {
- DEBUGOUT("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
+ int32_t timeout = PHY_CFG_TIMEOUT;
+ uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+ DEBUGFUNC("em_get_phy_cfg_done");
+
+ switch (hw->mac_type) {
+ default:
+ msec_delay_irq(10);
+ break;
+ case em_80003es2lan:
+ /* Separate *_CFG_DONE_* bit for each port */
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+ /* FALLTHROUGH */
+ case em_82571:
+ case em_82572:
+ case em_82575:
+ while (timeout) {
+ if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+ break;
+ else
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed."
+ "\n");
+ return -E1000_ERR_RESET;
+ }
+ break;
+ }
+
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7672,43 +7812,41 @@ em_get_phy_cfg_done(struct em_hw *hw)
STATIC int32_t
em_get_hw_eeprom_semaphore(struct em_hw *hw)
{
- int32_t timeout;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return E1000_SUCCESS;
-
- if (hw->mac_type == em_80003es2lan) {
- /* Get the SW semaphore. */
- if (em_get_software_semaphore(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
- if (swsm & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- timeout--;
- }
-
- if (!timeout) {
- /* Release semaphores */
- em_put_hw_eeprom_semaphore(hw);
- DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
+ int32_t timeout;
+ uint32_t swsm;
+ DEBUGFUNC("em_get_hw_eeprom_semaphore");
+
+ if (!hw->eeprom_semaphore_present)
+ return E1000_SUCCESS;
+
+ if (hw->mac_type == em_80003es2lan) {
+ /* Get the SW semaphore. */
+ if (em_get_software_semaphore(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+ }
+ /* Get the FW semaphore. */
+ timeout = hw->eeprom.word_size + 1;
+ while (timeout) {
+ swsm = E1000_READ_REG(hw, SWSM);
+ swsm |= E1000_SWSM_SWESMBI;
+ E1000_WRITE_REG(hw, SWSM, swsm);
+ /* if we managed to set the bit we got the semaphore. */
+ swsm = E1000_READ_REG(hw, SWSM);
+ if (swsm & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ timeout--;
+ }
+
+ if (!timeout) {
+ /* Release semaphores */
+ em_put_hw_eeprom_semaphore(hw);
+ DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set."
+ "\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7722,20 +7860,19 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw)
STATIC void
em_put_hw_eeprom_semaphore(struct em_hw *hw)
{
- uint32_t swsm;
-
- DEBUGFUNC("em_put_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return;
-
- swsm = E1000_READ_REG(hw, SWSM);
- if (hw->mac_type == em_80003es2lan) {
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- } else
- swsm &= ~(E1000_SWSM_SWESMBI);
- E1000_WRITE_REG(hw, SWSM, swsm);
+ uint32_t swsm;
+ DEBUGFUNC("em_put_hw_eeprom_semaphore");
+
+ if (!hw->eeprom_semaphore_present)
+ return;
+
+ swsm = E1000_READ_REG(hw, SWSM);
+ if (hw->mac_type == em_80003es2lan) {
+ /* Release both semaphores. */
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+ } else
+ swsm &= ~(E1000_SWSM_SWESMBI);
+ E1000_WRITE_REG(hw, SWSM, swsm);
}
/***************************************************************************
@@ -7751,29 +7888,30 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw)
STATIC int32_t
em_get_software_semaphore(struct em_hw *hw)
{
- int32_t timeout = hw->eeprom.word_size + 1;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_software_semaphore");
-
- if (hw->mac_type != em_80003es2lan)
- return E1000_SUCCESS;
-
- while (timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- /* If SMBI bit cleared, it is now set and we hold the semaphore */
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
+ int32_t timeout = hw->eeprom.word_size + 1;
+ uint32_t swsm;
+ DEBUGFUNC("em_get_software_semaphore");
+
+ if (hw->mac_type != em_80003es2lan)
+ return E1000_SUCCESS;
+
+ while (timeout) {
+ swsm = E1000_READ_REG(hw, SWSM);
+ /*
+ * If SMBI bit cleared, it is now set and we hold the
+ * semaphore
+ */
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ return -E1000_ERR_RESET;
+ }
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7786,17 +7924,16 @@ em_get_software_semaphore(struct em_hw *hw)
STATIC void
em_release_software_semaphore(struct em_hw *hw)
{
- uint32_t swsm;
-
- DEBUGFUNC("em_release_software_semaphore");
+ uint32_t swsm;
+ DEBUGFUNC("em_release_software_semaphore");
- if (hw->mac_type != em_80003es2lan)
- return;
+ if (hw->mac_type != em_80003es2lan)
+ return;
- swsm = E1000_READ_REG(hw, SWSM);
- /* Release the SW semaphores.*/
- swsm &= ~E1000_SWSM_SMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
+ swsm = E1000_READ_REG(hw, SWSM);
+ /* Release the SW semaphores. */
+ swsm &= ~E1000_SWSM_SMBI;
+ E1000_WRITE_REG(hw, SWSM, swsm);
}
/******************************************************************************
@@ -7813,21 +7950,19 @@ em_release_software_semaphore(struct em_hw *hw)
int32_t
em_check_phy_reset_block(struct em_hw *hw)
{
- uint32_t manc = 0;
- uint32_t fwsm = 0;
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- fwsm = E1000_READ_REG(hw, FWSM);
- return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
- : E1000_BLK_PHY_RESET;
- }
-
- if (hw->mac_type > em_82547_rev_2)
- manc = E1000_READ_REG(hw, MANC);
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
+ uint32_t manc = 0;
+ uint32_t fwsm = 0;
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ fwsm = E1000_READ_REG(hw, FWSM);
+ return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS :
+ E1000_BLK_PHY_RESET;
+ }
+ if (hw->mac_type > em_82547_rev_2)
+ manc = E1000_READ_REG(hw, MANC);
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
/******************************************************************************
@@ -7842,34 +7977,30 @@ em_check_phy_reset_block(struct em_hw *hw)
STATIC int32_t
em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
{
- uint32_t gcr_reg = 0;
-
- DEBUGFUNC("em_set_pci_ex_no_snoop");
-
- if (hw->bus_type == em_bus_type_unknown)
- em_get_bus_info(hw);
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- if (no_snoop) {
- gcr_reg = E1000_READ_REG(hw, GCR);
- gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
- gcr_reg |= no_snoop;
- E1000_WRITE_REG(hw, GCR, gcr_reg);
- }
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- uint32_t ctrl_ext;
-
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- return E1000_SUCCESS;
+ uint32_t gcr_reg = 0;
+ DEBUGFUNC("em_set_pci_ex_no_snoop");
+
+ if (hw->bus_type == em_bus_type_unknown)
+ em_get_bus_info(hw);
+
+ if (hw->bus_type != em_bus_type_pci_express)
+ return E1000_SUCCESS;
+
+ if (no_snoop) {
+ gcr_reg = E1000_READ_REG(hw, GCR);
+ gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
+ gcr_reg |= no_snoop;
+ E1000_WRITE_REG(hw, GCR, gcr_reg);
+ }
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ uint32_t ctrl_ext;
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7884,33 +8015,31 @@ em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
STATIC int32_t
em_get_software_flag(struct em_hw *hw)
{
- int32_t timeout = PHY_CFG_TIMEOUT;
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_get_software_flag");
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- while (timeout) {
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("FW or HW locks the resource too long.\n");
- return -E1000_ERR_CONFIG;
- }
- }
-
- return E1000_SUCCESS;
+ int32_t timeout = PHY_CFG_TIMEOUT;
+ uint32_t extcnf_ctrl;
+ DEBUGFUNC("em_get_software_flag");
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+ break;
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("FW or HW locks the resource too long.\n");
+ return -E1000_ERR_CONFIG;
+ }
+ }
+ return E1000_SUCCESS;
}
/***************************************************************************
@@ -7925,22 +8054,19 @@ em_get_software_flag(struct em_hw *hw)
STATIC void
em_release_software_flag(struct em_hw *hw)
{
- uint32_t extcnf_ctrl;
-
- DEBUGFUNC("em_release_software_flag");
-
- if (hw->mac_type == em_ich8lan ||
- hw->mac_type == em_ich9lan ||
- hw->mac_type == em_ich10lan) {
- extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- }
-
- return;
+ uint32_t extcnf_ctrl;
+ DEBUGFUNC("em_release_software_flag");
+
+ if (hw->mac_type == em_ich8lan ||
+ hw->mac_type == em_ich9lan ||
+ hw->mac_type == em_ich10lan) {
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+ }
+ return;
}
-
/******************************************************************************
* Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
* register.
@@ -7952,47 +8078,50 @@ em_release_software_flag(struct em_hw *hw)
*****************************************************************************/
STATIC int32_t
em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
+ uint16_t *data)
{
- int32_t error = E1000_SUCCESS;
- uint32_t flash_bank = 0;
- uint32_t act_offset = 0;
- uint32_t bank_offset = 0;
- uint16_t word = 0;
- uint16_t i = 0;
-
- /* We need to know which is the valid flash bank. In the event
- * that we didn't allocate eeprom_shadow_ram, we may not be
- * managing flash_bank. So it cannot be trusted and needs
- * to be updated with each read.
- */
- /* Value of bit 22 corresponds to the flash bank we're on. */
- flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
- /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
- bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- for (i = 0; i < words; i++) {
- if (hw->eeprom_shadow_ram != NULL &&
- hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
- data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
- } else {
- /* The NVM part needs a byte offset, hence * 2 */
- act_offset = bank_offset + ((offset + i) * 2);
- error = em_read_ich8_word(hw, act_offset, &word);
- if (error != E1000_SUCCESS)
- break;
- data[i] = word;
- }
- }
-
- em_release_software_flag(hw);
-
- return error;
+ int32_t error = E1000_SUCCESS;
+ uint32_t flash_bank = 0;
+ uint32_t act_offset = 0;
+ uint32_t bank_offset = 0;
+ uint16_t word = 0;
+ uint16_t i = 0;
+ /*
+ * We need to know which is the valid flash bank. In the event that
+ * we didn't allocate eeprom_shadow_ram, we may not be managing
+ * flash_bank. So it cannot be trusted and needs to be updated with
+ * each read.
+ */
+ /* Value of bit 22 corresponds to the flash bank we're on. */
+ flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
+ /*
+ * Adjust offset appropriately if we're on bank 1 - adjust for word
+ * size
+ */
+ bank_offset = flash_bank * (hw->flash_bank_size * 2);
+
+ error = em_get_software_flag(hw);
+ if (error != E1000_SUCCESS)
+ return error;
+
+ for (i = 0; i < words; i++) {
+ if (hw->eeprom_shadow_ram != NULL &&
+ hw->eeprom_shadow_ram[offset + i].modified == TRUE) {
+ data[i] =
+ hw->eeprom_shadow_ram[offset + i].eeprom_word;
+ } else {
+ /* The NVM part needs a byte offset, hence * 2 */
+ act_offset = bank_offset + ((offset + i) * 2);
+ error = em_read_ich8_word(hw, act_offset, &word);
+ if (error != E1000_SUCCESS)
+ break;
+ data[i] = word;
+ }
+ }
+
+ em_release_software_flag(hw);
+
+ return error;
}
/******************************************************************************
@@ -8008,43 +8137,45 @@ em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
*****************************************************************************/
STATIC int32_t
em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
- uint16_t *data)
+ uint16_t *data)
{
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
-
- error = em_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- /* A driver can write to the NVM only if it has eeprom_shadow_ram
- * allocated. Subsequent reads to the modified words are read from
- * this cached structure as well. Writes will only go into this
- * cached structure unless it's followed by a call to
- * em_update_eeprom_checksum() where it will commit the changes
- * and clear the "modified" field.
- */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < words; i++) {
- if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
- hw->eeprom_shadow_ram[offset+i].modified = TRUE;
- hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
- } else {
- error = -E1000_ERR_EEPROM;
- break;
- }
- }
- } else {
- /* Drivers have the option to not allocate eeprom_shadow_ram as long
- * as they don't perform any NVM writes. An attempt in doing so
- * will result in this error.
- */
- error = -E1000_ERR_EEPROM;
- }
-
- em_release_software_flag(hw);
-
- return error;
+ uint32_t i = 0;
+ int32_t error = E1000_SUCCESS;
+ error = em_get_software_flag(hw);
+ if (error != E1000_SUCCESS)
+ return error;
+ /*
+ * A driver can write to the NVM only if it has eeprom_shadow_ram
+ * allocated. Subsequent reads to the modified words are read from
+ * this cached structure as well. Writes will only go into this
+ * cached structure unless it's followed by a call to
+ * em_update_eeprom_checksum() where it will commit the changes and
+ * clear the "modified" field.
+ */
+ if (hw->eeprom_shadow_ram != NULL) {
+ for (i = 0; i < words; i++) {
+ if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
+ hw->eeprom_shadow_ram[offset + i].modified =
+ TRUE;
+ hw->eeprom_shadow_ram[offset + i].eeprom_word =
+ data[i];
+ } else {
+ error = -E1000_ERR_EEPROM;
+ break;
+ }
+ }
+ } else {
+ /*
+ * Drivers have the option to not allocate eeprom_shadow_ram
+ * as long as they don't perform any NVM writes. An attempt
+ * in doing so will result in this error.
+ */
+ error = -E1000_ERR_EEPROM;
+ }
+
+ em_release_software_flag(hw);
+
+ return error;
}
/******************************************************************************
@@ -8056,95 +8187,106 @@ em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
STATIC int32_t
em_ich8_cycle_init(struct em_hw *hw)
{
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- int32_t i = 0;
-
- DEBUGFUNC("em_ich8_cycle_init");
-
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* May be check the Flash Des Valid bit in Hw status */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
- return error;
- }
-
- /* Clear FCERR in Hw status by writing 1 */
- /* Clear DAEL in Hw status by writing a 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress bit to check
- * against, in order to start a new cycle or FDONE bit should be changed
- * in the hardware so that it is 1 after harware reset, which can then be
- * used as an indication whether a cycle is in progress or has been
- * completed .. we should also have some software semaphore mechanism to
- * guard FDONE or the cycle in progress bit so that two threads access to
- * those bits can be sequentiallized or a way so that 2 threads dont
- * start the cycle at the same time */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /* There is no cycle running at present, so we can start a cycle */
- /* Begin by setting Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- error = E1000_SUCCESS;
- } else {
- /* otherwise poll for sometime so the current cycle has a chance
- * to end before giving up. */
- for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- error = E1000_SUCCESS;
- break;
- }
- usec_delay(1);
- }
- if (error == E1000_SUCCESS) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- } else {
- DEBUGOUT("Flash controller busy, cannot get access");
- }
- }
- return error;
+ union ich8_hws_flash_status hsfsts;
+ int32_t error = E1000_ERR_EEPROM;
+ int32_t i = 0;
+ DEBUGFUNC("em_ich8_cycle_init");
+
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /* May be check the Flash Des Valid bit in Hw status */
+ if (hsfsts.hsf_status.fldesvalid == 0) {
+ DEBUGOUT("Flash descriptor invalid. SW Sequencing must be"
+ " used.");
+ return error;
+ }
+ /* Clear FCERR in Hw status by writing 1 */
+ /* Clear DAEL in Hw status by writing a 1 */
+ hsfsts.hsf_status.flcerr = 1;
+ hsfsts.hsf_status.dael = 1;
+
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+ /*
+ * Either we should have a hardware SPI cycle in progress bit to
+ * check against, in order to start a new cycle or FDONE bit should
+ * be changed in the hardware so that it is 1 after harware reset,
+ * which can then be used as an indication whether a cycle is in
+ * progress or has been completed .. we should also have some
+ * software semaphore mechanism to guard FDONE or the cycle in
+ * progress bit so that two threads access to those bits can be
+ * sequentiallized or a way so that 2 threads dont start the cycle at
+ * the same time
+ */
+
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ /*
+ * There is no cycle running at present, so we can start a
+ * cycle
+ */
+ /* Begin by setting Flash Cycle Done. */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
+ hsfsts.regval);
+ error = E1000_SUCCESS;
+ } else {
+ /*
+ * otherwise poll for sometime so the current cycle has a
+ * chance to end before giving up.
+ */
+ for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ error = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(1);
+ }
+ if (error == E1000_SUCCESS) {
+ /*
+ * Successful in waiting for previous cycle to
+ * timeout, now set the Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
+ hsfsts.regval);
+ } else {
+ DEBUGOUT("Flash controller busy, cannot get access");
+ }
+ }
+ return error;
}
/******************************************************************************
* This function starts a flash cycle and waits for its completion
*
* hw - The pointer to the hw structure
- ****************************************************************************/
+ *****************************************************************************/
STATIC int32_t
em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- int32_t error = E1000_ERR_EEPROM;
- uint32_t i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- usec_delay(1);
- i++;
- } while (i < timeout);
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
- error = E1000_SUCCESS;
- }
- return error;
+ union ich8_hws_flash_ctrl hsflctl;
+ union ich8_hws_flash_status hsfsts;
+ int32_t error = E1000_ERR_EEPROM;
+ uint32_t i = 0;
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcgo = 1;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ /* wait till FDONE bit is set to 1 */
+ do {
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcdone == 1)
+ break;
+ usec_delay(1);
+ i++;
+ } while (i < timeout);
+ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
+ error = E1000_SUCCESS;
+ }
+ return error;
}
/******************************************************************************
@@ -8156,74 +8298,84 @@ em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
* data - Pointer to the word to store the value read.
*****************************************************************************/
STATIC int32_t
-em_read_ich8_data(struct em_hw *hw, uint32_t index,
- uint32_t size, uint16_t* data)
+em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
+ uint16_t *data)
{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_read_ich8_data");
-
- if (size < 1 || size > 2 || data == 0x0 ||
- index > ICH_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- /* TODO: TBD maybe check the index against the size of flash */
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
- * sequence a few more times, else read in (shift in) the Flash Data0,
- * the order is least significant byte first msb to lsb */
- if (error == E1000_SUCCESS) {
- flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
- if (size == 1) {
- *data = (uint8_t)(flash_data & 0x000000FF);
- } else if (size == 2) {
- *data = (uint16_t)(flash_data & 0x0000FFFF);
- }
- break;
- } else {
- /* If we've gotten here, then things are probably completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ uint32_t flash_data = 0;
+ int32_t error = -E1000_ERR_EEPROM;
+ int32_t count = 0;
+ DEBUGFUNC("em_read_ich8_data");
+
+ if (size < 1 || size > 2 || data == 0x0 ||
+ index > ICH_FLASH_LINEAR_ADDR_MASK)
+ return error;
+
+ flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
+ hw->flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+ /*
+ * Write the last 24 bits of index into Flash Linear address
+ * field in Flash Address
+ */
+ /* TODO: TBD maybe check the index against the size of flash */
+
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR,
+ flash_linear_address);
+
+ error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
+ /*
+ * Check if FCERR is set to 1, if set to 1, clear it and try
+ * the whole sequence a few more times, else read in (shift
+ * in) the Flash Data0, the order is least significant byte
+ * first msb to lsb
+ */
+ if (error == E1000_SUCCESS) {
+ flash_data = E1000_READ_ICH_FLASH_REG(hw,
+ ICH_FLASH_FDATA0);
+ if (size == 1) {
+ *data = (uint8_t) (flash_data & 0x000000FF);
+ } else if (size == 2) {
+ *data = (uint16_t) (flash_data & 0x0000FFFF);
+ }
+ break;
+ } else {
+ /*
+ * If we've gotten here, then things are probably
+ * completely hosed, but if the error condition is
+ * detected, it won't hurt to give it another
+ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle did not"
+ " complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+ return error;
}
/******************************************************************************
@@ -8236,70 +8388,78 @@ em_read_ich8_data(struct em_hw *hw, uint32_t index,
*****************************************************************************/
STATIC int32_t
em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
- uint16_t data)
+ uint16_t data)
{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- uint32_t flash_data = 0;
- int32_t error = -E1000_ERR_EEPROM;
- int32_t count = 0;
-
- DEBUGFUNC("em_write_ich8_data");
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- index > ICH_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- usec_delay(1);
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- if (size == 1)
- flash_data = (uint32_t)data & 0x00FF;
- else
- flash_data = (uint32_t)data;
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
- * sequence a few more times else done */
- error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
- if (error == E1000_SUCCESS) {
- break;
- } else {
- /* If we're here, then things are most likely completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ uint32_t flash_data = 0;
+ int32_t error = -E1000_ERR_EEPROM;
+ int32_t count = 0;
+ DEBUGFUNC("em_write_ich8_data");
+
+ if (size < 1 || size > 2 || data > size * 0xff ||
+ index > ICH_FLASH_LINEAR_ADDR_MASK)
+ return error;
+
+ flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
+ hw->flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+ /*
+ * Write the last 24 bits of index into Flash Linear address
+ * field in Flash Address
+ */
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR,
+ flash_linear_address);
+
+ if (size == 1)
+ flash_data = (uint32_t) data & 0x00FF;
+ else
+ flash_data = (uint32_t) data;
+
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+ /*
+ * check if FCERR is set to 1 , if set to 1, clear it and try
+ * the whole sequence a few more times else done
+ */
+ error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
+ if (error == E1000_SUCCESS) {
+ break;
+ } else {
+ /*
+ * If we're here, then things are most likely
+ * completely hosed, but if the error condition is
+ * detected, it won't hurt to give it another
+ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle did not"
+ " complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+ return error;
}
/******************************************************************************
@@ -8310,17 +8470,15 @@ em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
* data - Pointer to a byte to store the value read.
*****************************************************************************/
STATIC int32_t
-em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
+em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data)
{
- int32_t status = E1000_SUCCESS;
- uint16_t word = 0;
-
- status = em_read_ich8_data(hw, index, 1, &word);
- if (status == E1000_SUCCESS) {
- *data = (uint8_t)word;
- }
-
- return status;
+ int32_t status = E1000_SUCCESS;
+ uint16_t word = 0;
+ status = em_read_ich8_data(hw, index, 1, &word);
+ if (status == E1000_SUCCESS) {
+ *data = (uint8_t) word;
+ }
+ return status;
}
/******************************************************************************
@@ -8335,27 +8493,27 @@ em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
STATIC int32_t
em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
{
- int32_t error = E1000_SUCCESS;
- int32_t program_retries = 0;
-
- DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
-
- error = em_write_ich8_byte(hw, index, byte);
-
- if (error != E1000_SUCCESS) {
- for (program_retries = 0; program_retries < 100; program_retries++) {
- DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
- error = em_write_ich8_byte(hw, index, byte);
- usec_delay(100);
- if (error == E1000_SUCCESS)
- break;
- }
- }
-
- if (program_retries == 100)
- error = E1000_ERR_EEPROM;
-
- return error;
+ int32_t error = E1000_SUCCESS;
+ int32_t program_retries = 0;
+ DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
+
+ error = em_write_ich8_byte(hw, index, byte);
+
+ if (error != E1000_SUCCESS) {
+ for (program_retries = 0; program_retries < 100;
+ program_retries++) {
+ DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n",
+ byte, index);
+ error = em_write_ich8_byte(hw, index, byte);
+ usec_delay(100);
+ if (error == E1000_SUCCESS)
+ break;
+ }
+ }
+ if (program_retries == 100)
+ error = E1000_ERR_EEPROM;
+
+ return error;
}
/******************************************************************************
@@ -8368,12 +8526,11 @@ em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
STATIC int32_t
em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
{
- int32_t status = E1000_SUCCESS;
- uint16_t word = (uint16_t)data;
-
- status = em_write_ich8_data(hw, index, 1, word);
+ int32_t status = E1000_SUCCESS;
+ uint16_t word = (uint16_t) data;
+ status = em_write_ich8_data(hw, index, 1, word);
- return status;
+ return status;
}
/******************************************************************************
@@ -8386,12 +8543,11 @@ em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
STATIC int32_t
em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
{
- int32_t status = E1000_SUCCESS;
- status = em_read_ich8_data(hw, index, 2, data);
- return status;
+ int32_t status = E1000_SUCCESS;
+ status = em_read_ich8_data(hw, index, 2, data);
+ return status;
}
-
/******************************************************************************
* Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
* based.
@@ -8406,154 +8562,171 @@ em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
int32_t
em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank)
{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- uint32_t flash_linear_address;
- int32_t count = 0;
- int32_t error = E1000_ERR_EEPROM;
- int32_t iteration;
- int32_t sub_sector_size = 0;
- int32_t bank_size;
- int32_t j = 0;
- int32_t error_flag = 0;
-
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
- /* 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector can be
- * calculated as bank * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as bank * 4096
- * 10: The HW sector is 8K bytes
- * 11: The Hw sector size is 64K bytes */
- if (hsfsts.hsf_status.berasesz == 0x0) {
- /* Hw sector size 256 */
- sub_sector_size = ICH_FLASH_SEG_SIZE_256;
- bank_size = ICH_FLASH_SECTOR_SIZE;
- iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
- } else if (hsfsts.hsf_status.berasesz == 0x1) {
- bank_size = ICH_FLASH_SEG_SIZE_4K;
- iteration = 1;
- } else if (hsfsts.hsf_status.berasesz == 0x2) {
- if (hw->mac_type == em_ich9lan) {
- uint32_t gfpreg, sector_base_addr, sector_end_addr;
-
- gfpreg = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
- /*
- * sector_X_addr is a "sector"-aligned address (4096 bytes)
- * Add 1 to sector_end_addr since this sector is included in
- * the overall size.
- */
- sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK;
- sector_end_addr = ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
-
- /*
- * find total size of the NVM, then cut in half since the total
- * size represents two separate NVM banks.
- */
- bank_size = (sector_end_addr - sector_base_addr)
- << ICH_FLASH_SECT_ADDR_SHIFT;
- bank_size /= 2;
- /* Word align */
- bank_size = (bank_size / sizeof(uint16_t)) * sizeof(uint16_t);
-
- sub_sector_size = ICH_FLASH_SEG_SIZE_8K;
- iteration = bank_size / ICH_FLASH_SEG_SIZE_8K;
- } else {
- return error;
- }
- } else if (hsfsts.hsf_status.berasesz == 0x3) {
- bank_size = ICH_FLASH_SEG_SIZE_64K;
- iteration = 1;
- } else {
- return error;
- }
-
- for (j = 0; j < iteration ; j++) {
- do {
- count++;
- /* Steps */
- error = em_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS) {
- error_flag = 1;
- break;
- }
-
- /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
- * Control */
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of an index within the block into Flash
- * Linear address field in Flash Address. This probably needs to
- * be calculated here based off the on-chip erase sector size and
- * the software bank size (4, 8 or 64 KBytes) */
- flash_linear_address = bank * bank_size + j * sub_sector_size;
- flash_linear_address += hw->flash_base_addr;
- flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- error = em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
- /* Check if FCERR is set to 1. If 1, clear it and try the whole
- * sequence a few more times else Done */
- if (error == E1000_SUCCESS) {
- break;
- } else {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* repeat for some time before giving up */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- error_flag = 1;
- break;
- }
- }
- } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
- if (error_flag == 1)
- break;
- }
- if (error_flag != 1)
- error = E1000_SUCCESS;
- return error;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ uint32_t flash_linear_address;
+ int32_t count = 0;
+ int32_t error = E1000_ERR_EEPROM;
+ int32_t iteration;
+ int32_t sub_sector_size = 0;
+ int32_t bank_size;
+ int32_t j = 0;
+ int32_t error_flag = 0;
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ /*
+ * Determine HW Sector size: Read BERASE bits of Hw flash Status
+ * register
+ */
+ /*
+ * 00: The Hw sector is 256 bytes, hence we need to erase 16
+ * consecutive sectors. The start index for the nth Hw sector can be
+ * calculated as bank * 4096 + n * 256 01: The Hw sector is 4K bytes,
+ * hence we need to erase 1 sector. The start index for the nth Hw
+ * sector can be calculated as bank * 4096 10: The HW sector is 8K
+ * bytes 11: The Hw sector size is 64K bytes
+ */
+ if (hsfsts.hsf_status.berasesz == 0x0) {
+ /* Hw sector size 256 */
+ sub_sector_size = ICH_FLASH_SEG_SIZE_256;
+ bank_size = ICH_FLASH_SECTOR_SIZE;
+ iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
+ } else if (hsfsts.hsf_status.berasesz == 0x1) {
+ bank_size = ICH_FLASH_SEG_SIZE_4K;
+ iteration = 1;
+ } else if (hsfsts.hsf_status.berasesz == 0x2) {
+ if (hw->mac_type == em_ich9lan) {
+ uint32_t gfpreg, sector_base_addr, sector_end_addr;
+ gfpreg = E1000_READ_ICH_FLASH_REG(hw,
+ ICH_FLASH_GFPREG);
+ /*
+ * sector_X_addr is a "sector"-aligned address (4096 bytes)
+ * Add 1 to sector_end_addr since this sector is included in
+ * the overall size.
+ */
+ sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK;
+ sector_end_addr =
+ ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
+
+ /*
+ * find total size of the NVM, then cut in half since the total
+ * size represents two separate NVM banks.
+ */
+ bank_size = (sector_end_addr - sector_base_addr)
+ << ICH_FLASH_SECT_ADDR_SHIFT;
+ bank_size /= 2;
+ /* Word align */
+ bank_size =
+ (bank_size / sizeof(uint16_t)) * sizeof(uint16_t);
+
+ sub_sector_size = ICH_FLASH_SEG_SIZE_8K;
+ iteration = bank_size / ICH_FLASH_SEG_SIZE_8K;
+ } else {
+ return error;
+ }
+ } else if (hsfsts.hsf_status.berasesz == 0x3) {
+ bank_size = ICH_FLASH_SEG_SIZE_64K;
+ iteration = 1;
+ } else {
+ return error;
+ }
+
+ for (j = 0; j < iteration; j++) {
+ do {
+ count++;
+ /* Steps */
+ error = em_ich8_cycle_init(hw);
+ if (error != E1000_SUCCESS) {
+ error_flag = 1;
+ break;
+ }
+ /*
+ * Write a value 11 (block Erase) in Flash Cycle
+ * field in Hw flash Control
+ */
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+ /*
+ * Write the last 24 bits of an index within the
+ * block into Flash Linear address field in Flash
+ * Address. This probably needs to be calculated
+ * here based off the on-chip erase sector size and
+ * the software bank size (4, 8 or 64 KBytes)
+ */
+ flash_linear_address =
+ bank * bank_size + j * sub_sector_size;
+ flash_linear_address += hw->flash_base_addr;
+ flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
+
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR,
+ flash_linear_address);
+
+ error =
+ em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
+ /*
+ * Check if FCERR is set to 1. If 1, clear it and
+ * try the whole sequence a few more times else Done
+ */
+ if (error == E1000_SUCCESS) {
+ break;
+ } else {
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /*
+ * repeat for some time before giving
+ * up
+ */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ error_flag = 1;
+ break;
+ }
+ }
+ } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
+ if (error_flag == 1)
+ break;
+ }
+ if (error_flag != 1)
+ error = E1000_SUCCESS;
+ return error;
}
-
STATIC int32_t
-em_init_lcd_from_nvm_config_region(struct em_hw *hw,
- uint32_t cnf_base_addr, uint32_t cnf_size)
+em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr,
+ uint32_t cnf_size)
{
- uint32_t ret_val = E1000_SUCCESS;
- uint16_t word_addr, reg_data, reg_addr;
- uint16_t i;
-
- /* cnf_base_addr is in DWORD */
- word_addr = (uint16_t)(cnf_base_addr << 1);
-
- /* cnf_size is returned in size of dwords */
- for (i = 0; i < cnf_size; i++) {
- ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
- if (ret_val)
- return ret_val;
-
- ret_val = em_get_software_flag(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
-
- ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
- em_release_software_flag(hw);
- }
-
- return ret_val;
+ uint32_t ret_val = E1000_SUCCESS;
+ uint16_t word_addr, reg_data, reg_addr;
+ uint16_t i;
+ /* cnf_base_addr is in DWORD */
+ word_addr = (uint16_t) (cnf_base_addr << 1);
+
+ /* cnf_size is returned in size of dwords */
+ for (i = 0; i < cnf_size; i++) {
+ ret_val =
+ em_read_eeprom(hw, (word_addr + i * 2), 1, &reg_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val =
+ em_read_eeprom(hw, (word_addr + i * 2 + 1), 1, &reg_addr);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = em_get_software_flag(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
+
+ ret_val =
+ em_write_phy_reg_ex(hw, (uint32_t) reg_addr, reg_data);
+
+ em_release_software_flag(hw);
+ }
+
+ return ret_val;
}
/******************************************************************************
@@ -8567,55 +8740,55 @@ em_init_lcd_from_nvm_config_region(struct em_hw *hw,
STATIC int32_t
em_init_lcd_from_nvm(struct em_hw *hw)
{
- uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask;
-
- if (hw->phy_type != em_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Check if SW needs configure the PHY */
- if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
- (hw->device_id == E1000_DEV_ID_ICH8_IGP_M))
- sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
- else
- sw_cfg_mask = FEXTNVM_SW_CONFIG;
-
- reg_data = E1000_READ_REG(hw, FEXTNVM);
- if (!(reg_data & sw_cfg_mask))
- return E1000_SUCCESS;
-
- /* Wait for basic configuration completes before proceeding*/
- loop = 0;
- do {
- reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
- usec_delay(100);
- loop++;
- } while ((!reg_data) && (loop < 50));
-
- /* Clear the Init Done bit for the next init event */
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
- E1000_WRITE_REG(hw, STATUS, reg_data);
-
- /* Make sure HW does not configure LCD from PHY extended configuration
- before SW configuration */
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
- reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
- cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
- cnf_size >>= 16;
- if (cnf_size) {
- reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
- cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
- /* cnf_base_addr is in DWORD */
- cnf_base_addr >>= 16;
-
- /* Configure LCD from extended configuration region. */
- ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
- cnf_size);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
+ uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask;
+ if (hw->phy_type != em_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* Check if SW needs configure the PHY */
+ if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+ (hw->device_id == E1000_DEV_ID_ICH8_IGP_M))
+ sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
+ else
+ sw_cfg_mask = FEXTNVM_SW_CONFIG;
+
+ reg_data = E1000_READ_REG(hw, FEXTNVM);
+ if (!(reg_data & sw_cfg_mask))
+ return E1000_SUCCESS;
+
+ /* Wait for basic configuration completes before proceeding */
+ loop = 0;
+ do {
+ reg_data =
+ E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
+ usec_delay(100);
+ loop++;
+ } while ((!reg_data) && (loop < 50));
+
+ /* Clear the Init Done bit for the next init event */
+ reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
+ E1000_WRITE_REG(hw, STATUS, reg_data);
+ /*
+ * Make sure HW does not configure LCD from PHY extended
+ * configuration before SW configuration
+ */
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+ if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
+ reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
+ cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
+ cnf_size >>= 16;
+ if (cnf_size) {
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+ cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
+ /* cnf_base_addr is in DWORD */
+ cnf_base_addr >>= 16;
+
+ /* Configure LCD from extended configuration region. */
+ ret_val = em_init_lcd_from_nvm_config_region(hw,
+ cnf_base_addr, cnf_size);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ return E1000_SUCCESS;
}