diff options
-rw-r--r-- | sys/dev/pci/files.pci | 7 | ||||
-rw-r--r-- | sys/dev/pci/if_tl.c | 3271 | ||||
-rw-r--r-- | sys/dev/pci/if_tlreg.h | 850 | ||||
-rw-r--r-- | sys/dev/pci/pcidevs | 36 |
4 files changed, 4149 insertions, 15 deletions
diff --git a/sys/dev/pci/files.pci b/sys/dev/pci/files.pci index 086a91c693f..ca0c57f02a0 100644 --- a/sys/dev/pci/files.pci +++ b/sys/dev/pci/files.pci @@ -1,4 +1,4 @@ -# $OpenBSD: files.pci,v 1.26 1998/09/28 01:59:56 jason Exp $ +# $OpenBSD: files.pci,v 1.27 1998/10/10 03:55:05 jason Exp $ # $NetBSD: files.pci,v 1.20 1996/09/24 17:47:15 christos Exp $ # # Config.new file and device description for machine-independent PCI code. @@ -91,6 +91,11 @@ device fxp: ether, ifnet, mii, ifmedia attach fxp at pci file dev/pci/if_fxp.c fxp +# Texas Instruments ThunderLAN +device tl: ether, ifnet, mii, ifmedia +attach tl at pci +file dev/pci/if_tl.c tl + # S3 SonicVibes (S3 617) device sv: audio, auconv, mulaw attach sv at pci diff --git a/sys/dev/pci/if_tl.c b/sys/dev/pci/if_tl.c new file mode 100644 index 00000000000..31a39b173f0 --- /dev/null +++ b/sys/dev/pci/if_tl.c @@ -0,0 +1,3271 @@ +/* $OpenBSD: if_tl.c,v 1.1 1998/10/10 03:55:05 jason Exp $ */ + +/* + * Copyright (c) 1997, 1998 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD: if_tl.c,v 1.18 1998/10/08 15:45:36 wpaul Exp $ + */ + +/* + * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x. + * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller, + * the National Semiconductor DP83840A physical interface and the + * Microchip Technology 24Cxx series serial EEPROM. + * + * Written using the following four documents: + * + * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com) + * National Semiconductor DP83840A data sheet (www.national.com) + * Microchip Technology 24C02C data sheet (www.microchip.com) + * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com) + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Electrical Engineering Department + * Columbia University, New York City + */ + +/* + * Some notes about the ThunderLAN: + * + * The ThunderLAN controller is a single chip containing PCI controller + * logic, approximately 3K of on-board SRAM, a LAN controller, and media + * independent interface (MII) bus. The MII allows the ThunderLAN chip to + * control up to 32 different physical interfaces (PHYs). The ThunderLAN + * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller + * to act as a complete ethernet interface. + * + * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards + * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec + * in full or half duplex. Some of the Compaq Deskpro machines use a + * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters + * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in + * concert with the ThunderLAN's internal PHY to provide full 10/100 + * support. This is cheaper than using a standalone external PHY for both + * 10/100 modes and letting the ThunderLAN's internal PHY go to waste. + * A serial EEPROM is also attached to the ThunderLAN chip to provide + * power-up default register settings and for storing the adapter's + * station address. Although not supported by this driver, the ThunderLAN + * chip can also be connected to token ring PHYs. + * + * The ThunderLAN has a set of registers which can be used to issue + * commands, acknowledge interrupts, and to manipulate other internal + * registers on its DIO bus. The primary registers can be accessed + * using either programmed I/O (inb/outb) or via PCI memory mapping, + * depending on how the card is configured during the PCI probing + * phase. It is even possible to have both PIO and memory mapped + * access turned on at the same time. + * + * Frame reception and transmission with the ThunderLAN chip is done + * using frame 'lists.' A list structure looks more or less like this: + * + * struct tl_frag { + * u_int32_t fragment_address; + * u_int32_t fragment_size; + * }; + * struct tl_list { + * u_int32_t forward_pointer; + * u_int16_t cstat; + * u_int16_t frame_size; + * struct tl_frag fragments[10]; + * }; + * + * The forward pointer in the list header can be either a 0 or the address + * of another list, which allows several lists to be linked together. Each + * list contains up to 10 fragment descriptors. This means the chip allows + * ethernet frames to be broken up into up to 10 chunks for transfer to + * and from the SRAM. Note that the forward pointer and fragment buffer + * addresses are physical memory addresses, not virtual. Note also that + * a single ethernet frame can not span lists: if the host wants to + * transmit a frame and the frame data is split up over more than 10 + * buffers, the frame has to collapsed before it can be transmitted. + * + * To receive frames, the driver sets up a number of lists and populates + * the fragment descriptors, then it sends an RX GO command to the chip. + * When a frame is received, the chip will DMA it into the memory regions + * specified by the fragment descriptors and then trigger an RX 'end of + * frame interrupt' when done. The driver may choose to use only one + * fragment per list; this may result is slighltly less efficient use + * of memory in exchange for improving performance. + * + * To transmit frames, the driver again sets up lists and fragment + * descriptors, only this time the buffers contain frame data that + * is to be DMA'ed into the chip instead of out of it. Once the chip + * has transfered the data into its on-board SRAM, it will trigger a + * TX 'end of frame' interrupt. It will also generate an 'end of channel' + * interrupt when it reaches the end of the list. + */ + +/* + * Some notes about this driver: + * + * The ThunderLAN chip provides a couple of different ways to organize + * reception, transmission and interrupt handling. The simplest approach + * is to use one list each for transmission and reception. In this mode, + * the ThunderLAN will generate two interrupts for every received frame + * (one RX EOF and one RX EOC) and two for each transmitted frame (one + * TX EOF and one TX EOC). This may make the driver simpler but it hurts + * performance to have to handle so many interrupts. + * + * Initially I wanted to create a circular list of receive buffers so + * that the ThunderLAN chip would think there was an infinitely long + * receive channel and never deliver an RXEOC interrupt. However this + * doesn't work correctly under heavy load: while the manual says the + * chip will trigger an RXEOF interrupt each time a frame is copied into + * memory, you can't count on the chip waiting around for you to acknowledge + * the interrupt before it starts trying to DMA the next frame. The result + * is that the chip might traverse the entire circular list and then wrap + * around before you have a chance to do anything about it. Consequently, + * the receive list is terminated (with a 0 in the forward pointer in the + * last element). Each time an RXEOF interrupt arrives, the used list + * is shifted to the end of the list. This gives the appearance of an + * infinitely large RX chain so long as the driver doesn't fall behind + * the chip and allow all of the lists to be filled up. + * + * If all the lists are filled, the adapter will deliver an RX 'end of + * channel' interrupt when it hits the 0 forward pointer at the end of + * the chain. The RXEOC handler then cleans out the RX chain and resets + * the list head pointer in the ch_parm register and restarts the receiver. + * + * For frame transmission, it is possible to program the ThunderLAN's + * transmit interrupt threshold so that the chip can acknowledge multiple + * lists with only a single TX EOF interrupt. This allows the driver to + * queue several frames in one shot, and only have to handle a total + * two interrupts (one TX EOF and one TX EOC) no matter how many frames + * are transmitted. Frame transmission is done directly out of the + * mbufs passed to the tl_start() routine via the interface send queue. + * The driver simply sets up the fragment descriptors in the transmit + * lists to point to the mbuf data regions and sends a TX GO command. + * + * Note that since the RX and TX lists themselves are always used + * only by the driver, the are malloc()ed once at driver initialization + * time and never free()ed. + * + * Also, in order to remain as platform independent as possible, this + * driver uses memory mapped register access to manipulate the card + * as opposed to programmed I/O. This avoids the use of the inb/outb + * (and related) instructions which are specific to the i386 platform. + * + * Using these techniques, this driver achieves very high performance + * by minimizing the amount of interrupts generated during large + * transfers and by completely avoiding buffer copies. Frame transfer + * to and from the ThunderLAN chip is performed entirely by the chip + * itself thereby reducing the load on the host CPU. + */ + +#include "bpfilter.h" + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> + +#include <net/if.h> +#if defined(__FreeBSD__) +#include <net/if_arp.h> +#include <net/ethernet.h> +#endif + +#if defined(__OpenBSD__) +#include <sys/device.h> +#ifdef INET +#include <netinet/in.h> +#include <netinet/in_systm.h> +#include <netinet/in_var.h> +#include <netinet/ip.h> +#include <netinet/if_ether.h> +#endif +#endif +#include <net/if_dl.h> +#include <net/if_media.h> + +#if NBPFILTER > 0 +#include <net/bpf.h> +#endif + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#if defined(__FreeBSD__) +#include <machine/clock.h> /* for DELAY */ +#include <pci/pcireg.h> +#include <pci/pcivar.h> +#endif + +#if defined(__OpenBSD__) +#include <dev/pci/pcireg.h> +#include <dev/pci/pcivar.h> +#include <dev/pci/pcidevs.h> + +#define bootverbose 0 +#endif + +/* + * Default to using PIO register access mode to pacify certain + * laptop docking stations with built-in ThunderLAN chips that + * don't seem to handle memory mapped mode properly. + */ +#define TL_USEIOSPACE + +/* #define TL_BACKGROUND_AUTONEG */ + +#if defined(__FreeBSD__) +#include <pci/if_tlreg.h> +#endif + +#if defined(__OpenBSD__) +#include <dev/pci/if_tlreg.h> +#endif + +#if !defined(lint) && !defined(__OpenBSD__) +static char rcsid[] = + "$FreeBSD: if_tl.c,v 1.18 1998/10/08 15:45:36 wpaul Exp $"; +#endif + +#ifdef TL_DEBUG +#define EV_TXEOC 2 +#define EV_TXEOF 3 +#define EV_RXEOC 4 +#define EV_RXEOF 5 +#define EV_START_TX 6 +#define EV_START_Q 7 +#define EV_SETMODE 8 +#define EV_AUTONEG_XMIT 9 +#define EV_AUTONEG_FIN 10 +#define EV_START_TX_REAL 11 +#define EV_WATCHDOG 12 +#define EV_INIT 13 + +static void evset(struct tl_softc *, int); +static void evshow(struct tl_softc *); + +static void evset(sc, e) + struct tl_softc *sc; + int e; +{ + int i; + + for (i = 19; i > 0; i--) + sc->tl_event[i] = sc->tl_event[i - 1]; + sc->tl_event[0] = e; + + return; +} + +static void evshow(sc) + struct tl_softc *sc; +{ + int i; + + printf("tl%d: events: ", sc->tl_unit); + for (i = 0; i < 20; i++) + printf(" %d", sc->tl_event[i]); + printf("\n"); + + return; +} +#endif + +#ifdef __FreeBSD__ +/* + * Various supported device vendors/types and their names. + */ + +static struct tl_type tl_devs[] = { + { TI_VENDORID, TI_DEVICEID_THUNDERLAN, + "Texas Instruments ThunderLAN" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10, + "Compaq Netelligent 10" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100, + "Compaq Netelligent 10/100" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT, + "Compaq Netelligent 10/100 Proliant" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL, + "Compaq Netelligent 10/100 Dual Port" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED, + "Compaq NetFlex-3/P Integrated" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P, + "Compaq NetFlex-3/P" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC, + "Compaq NetFlex 3/P w/ BNC" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED, + "Compaq Netelligent 10/100 TX Embedded UTP" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX, + "Compaq Netelligent 10 T/2 PCI UTP/Coax" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP, + "Compaq Netelligent 10/100 TX UTP" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183, + "Olicom OC-2183/2185" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325, + "Olicom OC-2325" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326, + "Olicom OC-2326 10/100 TX UTP" }, + { 0, 0, NULL } +}; +#endif + +/* + * Various supported PHY vendors/types and their names. Note that + * this driver will work with pretty much any MII-compliant PHY, + * so failure to positively identify the chip is not a fatal error. + */ + +static struct tl_type tl_phys[] = { + { TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" }, + { TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" }, + { NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"}, + { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" }, + { INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" }, + { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" }, + { 0, 0, "<MII-compliant physical interface>" } +}; + +#ifdef __FreeBSD__ +static unsigned long tl_count; + +static char *tl_probe __P((pcici_t, pcidi_t)); +static void tl_attach __P((pcici_t, int)); +#else +static int tl_probe __P((struct device *, void *, void *)); +static void tl_attach __P((struct device *, struct device *, void *)); +static void tl_wait_up __P((void *)); +#endif + +static int tl_attach_phy __P((struct tl_softc *)); +static int tl_intvec_rxeoc __P((void *, u_int32_t)); +static int tl_intvec_txeoc __P((void *, u_int32_t)); +static int tl_intvec_txeof __P((void *, u_int32_t)); +static int tl_intvec_rxeof __P((void *, u_int32_t)); +static int tl_intvec_adchk __P((void *, u_int32_t)); +static int tl_intvec_netsts __P((void *, u_int32_t)); + +static int tl_newbuf __P((struct tl_softc *, + struct tl_chain_onefrag *)); +static void tl_stats_update __P((void *)); +static int tl_encap __P((struct tl_softc *, struct tl_chain *, + struct mbuf *)); + +#if defined(__FreeBSD__) +static void tl_intr __P((void *)); +#else +static int tl_intr __P((void *)); +#endif +static void tl_start __P((struct ifnet *)); +static int tl_ioctl __P((struct ifnet *, u_long, caddr_t)); +static void tl_init __P((void *)); +static void tl_stop __P((struct tl_softc *)); +static void tl_watchdog __P((struct ifnet *)); +#ifdef __FreeBSD__ +static void tl_shutdown __P((int, void *)); +#else +static void tl_shutdown __P((void *)); +#endif +static int tl_ifmedia_upd __P((struct ifnet *)); +static void tl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); + +static u_int8_t tl_eeprom_putbyte __P((struct tl_softc *, u_int8_t)); +static u_int8_t tl_eeprom_getbyte __P((struct tl_softc *, + u_int8_t, u_int8_t *)); +static int tl_read_eeprom __P((struct tl_softc *, caddr_t, int, int)); + +static void tl_mii_sync __P((struct tl_softc *)); +static void tl_mii_send __P((struct tl_softc *, u_int32_t, int)); +static int tl_mii_readreg __P((struct tl_softc *, struct tl_mii_frame *)); +static int tl_mii_writereg __P((struct tl_softc *, struct tl_mii_frame *)); +static u_int16_t tl_phy_readreg __P((struct tl_softc *, int)); +static void tl_phy_writereg __P((struct tl_softc *, u_int16_t, u_int16_t)); + +static void tl_autoneg __P((struct tl_softc *, int, int)); +static void tl_setmode __P((struct tl_softc *, int)); +static int tl_calchash __P((unsigned char *)); +static void tl_setmulti __P((struct tl_softc *)); +static void tl_setfilt __P((struct tl_softc *, u_int8_t *, int)); +static void tl_softreset __P((struct tl_softc *, int)); +static void tl_hardreset __P((struct tl_softc *)); +static int tl_list_rx_init __P((struct tl_softc *)); +static int tl_list_tx_init __P((struct tl_softc *)); + +static u_int8_t tl_dio_read8 __P((struct tl_softc *, u_int8_t)); +static u_int16_t tl_dio_read16 __P((struct tl_softc *, u_int8_t)); +static u_int32_t tl_dio_read32 __P((struct tl_softc *, u_int8_t)); +static void tl_dio_write8 __P((struct tl_softc *, u_int8_t, u_int8_t)); +static void tl_dio_write16 __P((struct tl_softc *, u_int8_t, u_int16_t)); +static void tl_dio_write32 __P((struct tl_softc *, u_int8_t, u_int32_t)); +static void tl_dio_setbit __P((struct tl_softc *, u_int8_t, u_int8_t)); +static void tl_dio_clrbit __P((struct tl_softc *, u_int8_t, u_int8_t)); +static void tl_dio_setbit16 __P((struct tl_softc *, u_int8_t, u_int16_t)); +static void tl_dio_clrbit16 __P((struct tl_softc *, u_int8_t, u_int16_t)); + +static u_int8_t tl_dio_read8(sc, reg) + struct tl_softc *sc; + u_int8_t reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3))); +} + +static u_int16_t tl_dio_read16(sc, reg) + struct tl_softc *sc; + u_int8_t reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3))); +} + +static u_int32_t tl_dio_read32(sc, reg) + struct tl_softc *sc; + u_int8_t reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3))); +} + +static void tl_dio_write8(sc, reg, val) + struct tl_softc *sc; + u_int8_t reg; + u_int8_t val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void tl_dio_write16(sc, reg, val) + struct tl_softc *sc; + u_int8_t reg; + u_int16_t val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void tl_dio_write32(sc, reg, val) + struct tl_softc *sc; + u_int8_t reg; + u_int32_t val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void tl_dio_setbit(sc, reg, bit) + struct tl_softc *sc; + u_int8_t reg; + u_int8_t bit; +{ + u_int8_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); + f |= bit; + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void tl_dio_clrbit(sc, reg, bit) + struct tl_softc *sc; + u_int8_t reg; + u_int8_t bit; +{ + u_int8_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); + f &= ~bit; + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void tl_dio_setbit16(sc, reg, bit) + struct tl_softc *sc; + u_int8_t reg; + u_int16_t bit; +{ + u_int16_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); + f |= bit; + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void tl_dio_clrbit16(sc, reg, bit) + struct tl_softc *sc; + u_int8_t reg; + u_int16_t bit; +{ + u_int16_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); + f &= ~bit; + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +/* + * Send an instruction or address to the EEPROM, check for ACK. + */ +static u_int8_t tl_eeprom_putbyte(sc, byte) + struct tl_softc *sc; + u_int8_t byte; +{ + register int i, ack = 0; + + /* + * Make sure we're in TX mode. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); + + /* + * Feed in each bit and stobe the clock. + */ + for (i = 0x80; i; i >>= 1) { + if (byte & i) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); + } else { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); + } + DELAY(1); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + } + + /* + * Turn off TX mode. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); + + /* + * Check for ack. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA; + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + + return(ack); +} + +/* + * Read a byte of data stored in the EEPROM at address 'addr.' + */ +static u_int8_t tl_eeprom_getbyte(sc, addr, dest) + struct tl_softc *sc; + u_int8_t addr; + u_int8_t *dest; +{ + register int i; + u_int8_t byte = 0; + + tl_dio_write8(sc, TL_NETSIO, 0); + + EEPROM_START; + + /* + * Send write control code to EEPROM. + */ + if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { + printf("tl%d: failed to send write command, status: %x\n", + sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + /* + * Send address of byte we want to read. + */ + if (tl_eeprom_putbyte(sc, addr)) { + printf("tl%d: failed to send address, status: %x\n", + sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + EEPROM_STOP; + EEPROM_START; + /* + * Send read control code to EEPROM. + */ + if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) { + printf("tl%d: failed to send write command, status: %x\n", + sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + /* + * Start reading bits from EEPROM. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); + for (i = 0x80; i; i >>= 1) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA) + byte |= i; + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + } + + EEPROM_STOP; + + /* + * No ACK generated for read, so just return byte. + */ + + *dest = byte; + + return(0); +} + +/* + * Read a sequence of bytes from the EEPROM. + */ +static int tl_read_eeprom(sc, dest, off, cnt) + struct tl_softc *sc; + caddr_t dest; + int off; + int cnt; +{ + int err = 0, i; + u_int8_t byte = 0; + + for (i = 0; i < cnt; i++) { + err = tl_eeprom_getbyte(sc, off + i, &byte); + if (err) + break; + *(dest + i) = byte; + } + + return(err ? 1 : 0); +} + +static void tl_mii_sync(sc) + struct tl_softc *sc; +{ + register int i; + + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + for (i = 0; i < 32; i++) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + + return; +} + +static void tl_mii_send(sc, bits, cnt) + struct tl_softc *sc; + u_int32_t bits; + int cnt; +{ + int i; + + for (i = (0x1 << (cnt - 1)); i; i >>= 1) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + if (bits & i) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA); + } else { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA); + } + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } +} + +static int tl_mii_readreg(sc, frame) + struct tl_softc *sc; + struct tl_mii_frame *frame; + +{ + int i, ack, s; + int minten = 0; + + s = splimp(); + + tl_mii_sync(sc); + + /* + * Set up frame for RX. + */ + frame->mii_stdelim = TL_MII_STARTDELIM; + frame->mii_opcode = TL_MII_READOP; + frame->mii_turnaround = 0; + frame->mii_data = 0; + + /* + * Turn off MII interrupt by forcing MINTEN low. + */ + minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; + if (minten) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + /* + * Turn on data xmit. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* + * Send command/address info. + */ + tl_mii_send(sc, frame->mii_stdelim, 2); + tl_mii_send(sc, frame->mii_opcode, 2); + tl_mii_send(sc, frame->mii_phyaddr, 5); + tl_mii_send(sc, frame->mii_regaddr, 5); + + /* + * Turn off xmit. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* Idle bit */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* Check for ack */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA; + + /* Complete the cycle */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* + * Now try reading data bits. If the ack failed, we still + * need to clock through 16 cycles to keep the PHYs in sync. + */ + if (ack) { + for(i = 0; i < 16; i++) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + goto fail; + } + + for (i = 0x8000; i; i >>= 1) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + if (!ack) { + if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA) + frame->mii_data |= i; + } + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + +fail: + + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* Reenable interrupts */ + if (minten) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + splx(s); + + if (ack) + return(1); + return(0); +} + +static int tl_mii_writereg(sc, frame) + struct tl_softc *sc; + struct tl_mii_frame *frame; + +{ + int s; + int minten; + + tl_mii_sync(sc); + + s = splimp(); + /* + * Set up frame for TX. + */ + + frame->mii_stdelim = TL_MII_STARTDELIM; + frame->mii_opcode = TL_MII_WRITEOP; + frame->mii_turnaround = TL_MII_TURNAROUND; + + /* + * Turn off MII interrupt by forcing MINTEN low. + */ + minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; + if (minten) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + /* + * Turn on data output. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + tl_mii_send(sc, frame->mii_stdelim, 2); + tl_mii_send(sc, frame->mii_opcode, 2); + tl_mii_send(sc, frame->mii_phyaddr, 5); + tl_mii_send(sc, frame->mii_regaddr, 5); + tl_mii_send(sc, frame->mii_turnaround, 2); + tl_mii_send(sc, frame->mii_data, 16); + + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* + * Turn off xmit. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* Reenable interrupts */ + if (minten) + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + splx(s); + + return(0); +} + +static u_int16_t tl_phy_readreg(sc, reg) + struct tl_softc *sc; + int reg; +{ + struct tl_mii_frame frame; + + bzero((char *)&frame, sizeof(frame)); + + frame.mii_phyaddr = sc->tl_phy_addr; + frame.mii_regaddr = reg; + tl_mii_readreg(sc, &frame); + + /* Reenable MII interrupts, just in case. */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + return(frame.mii_data); +} + +static void tl_phy_writereg(sc, reg, data) + struct tl_softc *sc; + u_int16_t reg; + u_int16_t data; +{ + struct tl_mii_frame frame; + + bzero((char *)&frame, sizeof(frame)); + + frame.mii_phyaddr = sc->tl_phy_addr; + frame.mii_regaddr = reg; + frame.mii_data = data; + + tl_mii_writereg(sc, &frame); + + /* Reenable MII interrupts, just in case. */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + return; +} + +/* + * Initiate autonegotiation with a link partner. + * + * Note that the Texas Instruments ThunderLAN programmer's guide + * fails to mention one very important point about autonegotiation. + * Autonegotiation is done largely by the PHY, independent of the + * ThunderLAN chip itself: the PHY sets the flags in the BMCR + * register to indicate what modes were selected and if link status + * is good. In fact, the PHY does pretty much all of the work itself, + * except for one small detail. + * + * The PHY may negotiate a full-duplex of half-duplex link, and set + * the PHY_BMCR_DUPLEX bit accordingly, but the ThunderLAN's 'NetCommand' + * register _also_ has a half-duplex/full-duplex bit, and you MUST ALSO + * SET THIS BIT MANUALLY TO CORRESPOND TO THE MODE SELECTED FOR THE PHY! + * In other words, both the ThunderLAN chip and the PHY have to be + * programmed for full-duplex mode in order for full-duplex to actually + * work. So in order for autonegotiation to really work right, we have + * to wait for the link to come up, check the BMCR register, then set + * the ThunderLAN for full or half-duplex as needed. + * + * I struggled for two days to figure this out, so I'm making a point + * of drawing attention to this fact. I think it's very strange that + * the ThunderLAN doesn't automagically track the duplex state of the + * PHY, but there you have it. + * + * Also when, using a National Semiconductor DP83840A PHY, we have to + * allow a full three seconds for autonegotiation to complete. So what + * we do is flip the autonegotiation restart bit, then set a timeout + * to wake us up in three seconds to check the link state. + * + * Note that there are some versions of the Olicom 2326 that use a + * Micro Linear ML6692 100BaseTX PHY. This particular PHY is designed + * to provide 100BaseTX support only, but can be used with a controller + * that supports an internal 10Mbps PHY to provide a complete + * 10/100Mbps solution. However, the ML6692 does not have vendor and + * device ID registers, and hence always shows up with a vendor/device + * ID of 0. + * + * We detect this configuration by checking the phy vendor ID in the + * softc structure. If it's a zero, and we're negotiating a high-speed + * mode, then we turn off the internal PHY. If it's a zero and we've + * negotiated a high-speed mode, we turn on the internal PHY. Note + * that to make things even more fun, we have to make extra sure that + * the loopback bit in the internal PHY's control register is turned + * off. + */ +static void tl_autoneg(sc, flag, verbose) + struct tl_softc *sc; + int flag; + int verbose; +{ + u_int16_t phy_sts = 0, media = 0, advert, ability; + struct ifnet *ifp; + struct ifmedia *ifm; + + ifm = &sc->ifmedia; + ifp = &sc->arpcom.ac_if; + + /* + * First, see if autoneg is supported. If not, there's + * no point in continuing. + */ + phy_sts = tl_phy_readreg(sc, PHY_BMSR); + if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { + if (verbose) + printf("tl%d: autonegotiation not supported\n", + sc->tl_unit); + return; + } + + switch (flag) { + case TL_FLAG_FORCEDELAY: + /* + * XXX Never use this option anywhere but in the probe + * routine: making the kernel stop dead in its tracks + * for three whole seconds after we've gone multi-user + * is really bad manners. + */ + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + phy_sts = tl_phy_readreg(sc, PHY_BMCR); + phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; + tl_phy_writereg(sc, PHY_BMCR, phy_sts); + DELAY(5000000); + break; + case TL_FLAG_SCHEDDELAY: +#ifdef TL_DEBUG + evset(sc, EV_AUTONEG_XMIT); +#endif + /* + * Wait for the transmitter to go idle before starting + * an autoneg session, otherwise tl_start() may clobber + * our timeout, and we don't want to allow transmission + * during an autoneg session since that can screw it up. + */ + if (!sc->tl_txeoc) { + sc->tl_want_auto = 1; + return; + } + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + phy_sts = tl_phy_readreg(sc, PHY_BMCR); + phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; + tl_phy_writereg(sc, PHY_BMCR, phy_sts); + ifp->if_timer = 10; + sc->tl_autoneg = 1; + sc->tl_want_auto = 0; + return; + case TL_FLAG_DELAYTIMEO: +#ifdef TL_DEBUG + evset(sc, EV_AUTONEG_FIN); +#endif + ifp->if_timer = 0; + sc->tl_autoneg = 0; + break; + default: + printf("tl%d: invalid autoneg flag: %d\n", sc->tl_unit, flag); + return; + } + + /* + * Read the BMSR register twice: the LINKSTAT bit is a + * latching bit. + */ + tl_phy_readreg(sc, PHY_BMSR); + phy_sts = tl_phy_readreg(sc, PHY_BMSR); + if (phy_sts & PHY_BMSR_AUTONEGCOMP) { + if (verbose) + printf("tl%d: autoneg complete, ", sc->tl_unit); + phy_sts = tl_phy_readreg(sc, PHY_BMSR); + } else { + if (verbose) + printf("tl%d: autoneg not complete, ", sc->tl_unit); + } + + /* Link is good. Report modes and set duplex mode. */ + if (phy_sts & PHY_BMSR_LINKSTAT) { + if (verbose) + printf("link status good "); + + advert = tl_phy_readreg(sc, TL_PHY_ANAR); + ability = tl_phy_readreg(sc, TL_PHY_LPAR); + media = tl_phy_readreg(sc, PHY_BMCR); + + /* + * Be sure to turn off the ISOLATE and + * LOOPBACK bits in the control register, + * otherwise we may not be able to communicate. + */ + media &= ~(PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); + /* Set the DUPLEX bit in the NetCmd register accordingly. */ + if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { + ifm->ifm_media = IFM_ETHER|IFM_100_T4; + media |= PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + if (verbose) + printf("(100baseT4)\n"); + } else if (advert & PHY_ANAR_100BTXFULL && + ability & PHY_ANAR_100BTXFULL) { + ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; + media |= PHY_BMCR_SPEEDSEL; + media |= PHY_BMCR_DUPLEX; + if (verbose) + printf("(full-duplex, 100Mbps)\n"); + } else if (advert & PHY_ANAR_100BTXHALF && + ability & PHY_ANAR_100BTXHALF) { + ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; + media |= PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + if (verbose) + printf("(half-duplex, 100Mbps)\n"); + } else if (advert & PHY_ANAR_10BTFULL && + ability & PHY_ANAR_10BTFULL) { + ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; + media &= ~PHY_BMCR_SPEEDSEL; + media |= PHY_BMCR_DUPLEX; + if (verbose) + printf("(full-duplex, 10Mbps)\n"); + } else { + ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; + media &= ~PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + if (verbose) + printf("(half-duplex, 10Mbps)\n"); + } + + if (media & PHY_BMCR_DUPLEX) + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + else + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + + media &= ~PHY_BMCR_AUTONEGENBL; + tl_phy_writereg(sc, PHY_BMCR, media); + } else { + if (verbose) + printf("no carrier\n"); + } + + tl_init(sc); + + if (sc->tl_tx_pend) { + sc->tl_autoneg = 0; + sc->tl_tx_pend = 0; + tl_start(ifp); + } + + return; +} + +/* + * Set speed and duplex mode. Also program autoneg advertisements + * accordingly. + */ +static void tl_setmode(sc, media) + struct tl_softc *sc; + int media; +{ + u_int16_t bmcr; + + bmcr = tl_phy_readreg(sc, PHY_BMCR); + + bmcr &= ~(PHY_BMCR_SPEEDSEL|PHY_BMCR_DUPLEX|PHY_BMCR_AUTONEGENBL| + PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); + + if (IFM_SUBTYPE(media) == IFM_LOOP) + bmcr |= PHY_BMCR_LOOPBK; + + if (IFM_SUBTYPE(media) == IFM_AUTO) + bmcr |= PHY_BMCR_AUTONEGENBL; + + /* + * The ThunderLAN's internal PHY has an AUI transceiver + * that can be selected. This is usually attached to a + * 10base2/BNC port. In order to activate this port, we + * have to set the AUISEL bit in the internal PHY's + * special control register. + */ + if (IFM_SUBTYPE(media) == IFM_10_5) { + u_int16_t addr, ctl; + addr = sc->tl_phy_addr; + sc->tl_phy_addr = TL_PHYADDR_MAX; + ctl = tl_phy_readreg(sc, TL_PHY_CTL); + ctl |= PHY_CTL_AUISEL; + tl_phy_writereg(sc, TL_PHY_CTL, ctl); + tl_phy_writereg(sc, PHY_BMCR, bmcr); + sc->tl_phy_addr = addr; + bmcr |= PHY_BMCR_ISOLATE; + } else { + u_int16_t addr, ctl; + addr = sc->tl_phy_addr; + sc->tl_phy_addr = TL_PHYADDR_MAX; + ctl = tl_phy_readreg(sc, TL_PHY_CTL); + ctl &= ~PHY_CTL_AUISEL; + tl_phy_writereg(sc, TL_PHY_CTL, ctl); + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); + sc->tl_phy_addr = addr; + bmcr &= ~PHY_BMCR_ISOLATE; + } + + if (IFM_SUBTYPE(media) == IFM_100_TX) { + bmcr |= PHY_BMCR_SPEEDSEL; + if ((media & IFM_GMASK) == IFM_FDX) { + bmcr |= PHY_BMCR_DUPLEX; + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } else { + bmcr &= ~PHY_BMCR_DUPLEX; + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } + } + + if (IFM_SUBTYPE(media) == IFM_10_T) { + bmcr &= ~PHY_BMCR_SPEEDSEL; + if ((media & IFM_GMASK) == IFM_FDX) { + bmcr |= PHY_BMCR_DUPLEX; + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } else { + bmcr &= ~PHY_BMCR_DUPLEX; + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } + } + + tl_phy_writereg(sc, PHY_BMCR, bmcr); + + tl_init(sc); + + return; +} + +/* + * Calculate the hash of a MAC address for programming the multicast hash + * table. This hash is simply the address split into 6-bit chunks + * XOR'd, e.g. + * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555 + * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210 + * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then + * the folded 24-bit value is split into 6-bit portions and XOR'd. + */ +static int tl_calchash(addr) + unsigned char *addr; +{ + int t; + + t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 | + (addr[2] ^ addr[5]); + return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f; +} + +/* + * The ThunderLAN has a perfect MAC address filter in addition to + * the multicast hash filter. The perfect filter can be programmed + * with up to four MAC addresses. The first one is always used to + * hold the station address, which leaves us free to use the other + * three for multicast addresses. + */ +static void tl_setfilt(sc, addr, slot) + struct tl_softc *sc; + u_int8_t *addr; + int slot; +{ + int i; + u_int16_t regaddr; + + regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN); + + for (i = 0; i < ETHER_ADDR_LEN; i++) + tl_dio_write8(sc, regaddr + i, *(addr + i)); + + return; +} + +/* + * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly + * linked list. This is fine, except addresses are added from the head + * end of the list. We want to arrange for 224.0.0.1 (the "all hosts") + * group to always be in the perfect filter, but as more groups are added, + * the 224.0.0.1 entry (which is always added first) gets pushed down + * the list and ends up at the tail. So after 3 or 4 multicast groups + * are added, the all-hosts entry gets pushed out of the perfect filter + * and into the hash table. + * + * Because the multicast list is a doubly-linked list as opposed to a + * circular queue, we don't have the ability to just grab the tail of + * the list and traverse it backwards. Instead, we have to traverse + * the list once to find the tail, then traverse it again backwards to + * update the multicast filter. + */ +static void tl_setmulti(sc) + struct tl_softc *sc; +{ + struct ifnet *ifp; + u_int32_t hashes[2] = { 0, 0 }; + int h, i; +#ifdef __FreeBSD__ + struct ifmultiaddr *ifma; +#else + struct arpcom *ac = &sc->arpcom; + struct ether_multistep step; + struct ether_multi *enm; +#endif + u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; + ifp = &sc->arpcom.ac_if; + + /* First, zot all the existing filters. */ + for (i = 1; i < 4; i++) + tl_setfilt(sc, dummy, i); + tl_dio_write32(sc, TL_HASH1, 0); + tl_dio_write32(sc, TL_HASH2, 0); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI) { + hashes[0] = 0xFFFFFFFF; + hashes[1] = 0xFFFFFFFF; + } else { +#ifdef __FreeBSD__ + i = 1; + /* First find the tail of the list. */ + for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; + ifma = ifma->ifma_link.le_next) { + if (ifma->ifma_link.le_next == NULL) + break; + } + /* Now traverse the list backwards. */ + for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs; + ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first three multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < 4) { + tl_setfilt(sc, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); + i++; + continue; + } + + h = tl_calchash( + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + if (h < 32) + hashes[0] |= (1 << h); + else + hashes[1] |= (1 << (h - 32)); + } +#else + i = 1; + ETHER_FIRST_MULTI(step, ac, enm); + while (enm != NULL) { + if (i < 4) { + tl_setfilt(sc, enm->enm_addrlo, i); + i++; + continue; + } + + h = tl_calchash(enm->enm_addrlo); + if (h < 32) + hashes[0] |= (1 << h); + else + hashes[1] |= (1 << (h - 32)); + + ETHER_NEXT_MULTI(step, enm); + } +#endif + } + + tl_dio_write32(sc, TL_HASH1, hashes[0]); + tl_dio_write32(sc, TL_HASH2, hashes[1]); + + return; +} + +/* + * This routine is recommended by the ThunderLAN manual to insure that + * the internal PHY is powered up correctly. It also recommends a one + * second pause at the end to 'wait for the clocks to start' but in my + * experience this isn't necessary. + */ +static void tl_hardreset(sc) + struct tl_softc *sc; +{ + int i; + u_int16_t old_addr, flags; + + old_addr = sc->tl_phy_addr; + + for (i = 0; i < TL_PHYADDR_MAX + 1; i++) { + sc->tl_phy_addr = i; + tl_mii_sync(sc); + } + + flags = PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE|PHY_BMCR_PWRDOWN; + + for (i = 0; i < TL_PHYADDR_MAX + 1; i++) { + sc->tl_phy_addr = i; + tl_phy_writereg(sc, PHY_BMCR, flags); + } + + sc->tl_phy_addr = TL_PHYADDR_MAX; + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); + + DELAY(50000); + + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); + + tl_mii_sync(sc); + + while(tl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); + + sc->tl_phy_addr = old_addr; + + return; +} + +static void tl_softreset(sc, internal) + struct tl_softc *sc; + int internal; +{ + u_int32_t cmd, dummy, i; + + /* Assert the adapter reset bit. */ + CMD_SET(sc, TL_CMD_ADRST); + /* Turn off interrupts */ + CMD_SET(sc, TL_CMD_INTSOFF); + + /* First, clear the stats registers. */ + for (i = 0; i < 5; i++) + dummy = tl_dio_read32(sc, TL_TXGOODFRAMES); + + /* Clear Areg and Hash registers */ + for (i = 0; i < 8; i++) + tl_dio_write32(sc, TL_AREG0_B5, 0x00000000); + + /* + * Set up Netconfig register. Enable one channel and + * one fragment mode. + */ + tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG); + if (internal) { + tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); + } else { + tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); + } + + /* Set PCI burst size */ + tl_dio_write8(sc, TL_BSIZEREG, 0x33); + + /* + * Load adapter irq pacing timer and tx threshold. + * We make the transmit threshold 1 initially but we may + * change that later. + */ + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd |= TL_CMD_NES; + cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK); + CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR)); + CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003)); + + /* Unreset the MII */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST); + + /* Clear status register */ + tl_dio_setbit16(sc, TL_NETSTS, TL_STS_MIRQ); + tl_dio_setbit16(sc, TL_NETSTS, TL_STS_HBEAT); + tl_dio_setbit16(sc, TL_NETSTS, TL_STS_TXSTOP); + tl_dio_setbit16(sc, TL_NETSTS, TL_STS_RXSTOP); + + /* Enable network status interrupts for everything. */ + tl_dio_setbit(sc, TL_NETMASK, TL_MASK_MASK7|TL_MASK_MASK6| + TL_MASK_MASK5|TL_MASK_MASK4); + + /* Take the adapter out of reset */ + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP); + + /* Wait for things to settle down a little. */ + DELAY(500); + + return; +} + +#ifdef __FreeBSD__ +/* + * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs + * against our list and return its name if we find a match. + */ +static char * +tl_probe(config_id, device_id) + pcici_t config_id; + pcidi_t device_id; +{ + struct tl_type *t; + + t = tl_devs; + + while(t->tl_name != NULL) { + if ((device_id & 0xFFFF) == t->tl_vid && + ((device_id >> 16) & 0xFFFF) == t->tl_did) + return(t->tl_name); + t++; + } + + return(NULL); +} +#endif + +/* + * Do the interface setup and attach for a PHY on a particular + * ThunderLAN chip. Also also set up interrupt vectors. + */ +static int tl_attach_phy(sc) + struct tl_softc *sc; +{ + int phy_ctl; + struct tl_type *p = tl_phys; + int media = IFM_ETHER|IFM_100_TX|IFM_FDX; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + sc->tl_phy_did = tl_phy_readreg(sc, TL_PHY_DEVID); + sc->tl_phy_vid = tl_phy_readreg(sc, TL_PHY_VENID); + sc->tl_phy_sts = tl_phy_readreg(sc, TL_PHY_GENSTS); + phy_ctl = tl_phy_readreg(sc, TL_PHY_GENCTL); + + /* + * PHY revision numbers tend to vary a bit. Our algorithm here + * is to check everything but the 8 least significant bits. + */ + while(p->tl_vid) { + if (sc->tl_phy_vid == p->tl_vid && + (sc->tl_phy_did | 0x000F) == p->tl_did) { + sc->tl_pinfo = p; + break; + } + p++; + } + if (sc->tl_pinfo == NULL) { + sc->tl_pinfo = &tl_phys[PHY_UNKNOWN]; + } + + if (sc->tl_phy_sts & PHY_BMSR_100BT4 || + sc->tl_phy_sts & PHY_BMSR_100BTXFULL || + sc->tl_phy_sts & PHY_BMSR_100BTXHALF) + ifp->if_baudrate = 100000000; + else + ifp->if_baudrate = 10000000; + + if (bootverbose) { + printf("tl%d: phy at mii address %d\n", sc->tl_unit, + sc->tl_phy_addr); + + printf("tl%d: %s ", sc->tl_unit, sc->tl_pinfo->tl_name); + } + + if (sc->tl_phy_sts & PHY_BMSR_100BT4 || + sc->tl_phy_sts & PHY_BMSR_100BTXHALF || + sc->tl_phy_sts & PHY_BMSR_100BTXHALF) { + if (bootverbose) + printf("10/100Mbps "); + } else { + media &= ~IFM_100_TX; + media |= IFM_10_T; + if (bootverbose) + printf("10Mbps "); + } + + if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL || + sc->tl_phy_sts & PHY_BMSR_10BTFULL) { + if (bootverbose) + printf("full duplex "); + } else { + if (bootverbose) + printf("half duplex "); + media &= ~IFM_FDX; + } + + if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) { + media = IFM_ETHER|IFM_AUTO; + if (bootverbose) + printf("autonegotiating\n"); + } else + if (bootverbose) + printf("\n"); + + /* If this isn't a known PHY, print the PHY indentifier info. */ + if (sc->tl_pinfo->tl_vid == 0 && bootverbose) + printf("tl%d: vendor id: %04x product id: %04x\n", + sc->tl_unit, sc->tl_phy_vid, sc->tl_phy_did); + + /* Set up ifmedia data and callbacks. */ + ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts); + + /* + * All ThunderLANs support at least 10baseT half duplex. + * They also support AUI selection if used in 10Mb/s modes. + */ + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); + + /* Some ThunderLAN PHYs support autonegotiation. */ + if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); + + /* Some support 10baseT full duplex. */ + if (sc->tl_phy_sts & PHY_BMSR_10BTFULL) + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); + + /* Some support 100BaseTX half duplex. */ + if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF) + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); + if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF) + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); + + /* Some support 100BaseTX full duplex. */ + if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL) + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); + + /* Some also support 100BaseT4. */ + if (sc->tl_phy_sts & PHY_BMSR_100BT4) + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); + + /* Set default media. */ + ifmedia_set(&sc->ifmedia, media); + + /* + * Kick off an autonegotiation session if this PHY supports it. + * This is necessary to make sure the chip's duplex mode matches + * the PHY's duplex mode. It may not: once enabled, the PHY may + * autonegotiate full-duplex mode with its link partner, but the + * ThunderLAN chip defaults to half-duplex and stays there unless + * told otherwise. + */ + if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) { + tl_init(sc); +#ifdef TL_BACKGROUND_AUTONEG + tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); +#else + tl_autoneg(sc, TL_FLAG_FORCEDELAY, 1); +#endif + } + + return(0); +} + +#ifdef __FreeBSD__ +static void +tl_attach(config_id, unit) + pcici_t config_id; + int unit; +{ + int s, i, phys = 0; +#ifndef TL_USEIOSPACE + vm_offset_t pbase, vbase; +#endif + u_int32_t command; + u_int16_t did, vid; + struct tl_type *t; + struct ifnet *ifp; + struct tl_softc *sc; + unsigned int round; + caddr_t roundptr; + + s = splimp(); + + vid = pci_cfgread(config_id, PCIR_VENDOR, 2); + did = pci_cfgread(config_id, PCIR_DEVICE, 2); + + t = tl_devs; + while(t->tl_name != NULL) { + if (vid == t->tl_vid && did == t->tl_did) + break; + t++; + } + + if (t->tl_name == NULL) { + printf("tl%d: unknown device!?\n", unit); + goto fail; + } + + /* First, allocate memory for the softc struct. */ + sc = malloc(sizeof(struct tl_softc), M_DEVBUF, M_NOWAIT); + if (sc == NULL) { + printf("tl%d: no memory for softc struct!\n", unit); + goto fail; + } + + bzero(sc, sizeof(struct tl_softc)); + + /* + * Map control/status registers. + */ + command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); + command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); + pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command); + command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); + +#ifdef TL_USEIOSPACE + if (!(command & PCIM_CMD_PORTEN)) { + printf("tl%d: failed to enable I/O ports!\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + + sc->iobase = pci_conf_read(config_id, TL_PCI_LOIO) & 0xFFFFFFFC; +#else + if (!(command & PCIM_CMD_MEMEN)) { + printf("tl%d: failed to enable memory mapping!\n", unit); + goto fail; + } + + if (!pci_map_mem(config_id, TL_PCI_LOMEM, &vbase, &pbase)) { + printf ("tl%d: couldn't map memory\n", unit); + goto fail; + } + + sc->csr = (volatile caddr_t)vbase; +#endif + +#ifdef notdef + /* + * The ThunderLAN manual suggests jacking the PCI latency + * timer all the way up to its maximum value. I'm not sure + * if this is really necessary, but what the manual wants, + * the manual gets. + */ + command = pci_conf_read(config_id, TL_PCI_LATENCY_TIMER); + command |= 0x0000FF00; + pci_conf_write(config_id, TL_PCI_LATENCY_TIMER, command); +#endif + + /* Allocate interrupt */ + if (!pci_map_int(config_id, tl_intr, sc, &net_imask)) { + printf("tl%d: couldn't map interrupt\n", unit); + goto fail; + } + + /* + * Now allocate memory for the TX and RX lists. Note that + * we actually allocate 8 bytes more than we really need: + * this is because we need to adjust the final address to + * be aligned on a quadword (64-bit) boundary in order to + * make the chip happy. If the list structures aren't properly + * aligned, DMA fails and the chip generates an adapter check + * interrupt and has to be reset. If you set up the softc struct + * just right you can sort of obtain proper alignment 'by chance.' + * But I don't want to depend on this, so instead the alignment + * is forced here. + */ + sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8, + M_DEVBUF, M_NOWAIT); + + if (sc->tl_ldata_ptr == NULL) { + free(sc, M_DEVBUF); + printf("tl%d: no memory for list buffers!\n", unit); + goto fail; + } + + /* + * Convoluted but satisfies my ANSI sensibilities. GCC lets + * you do casts on the LHS of an assignment, but ANSI doesn't + * allow that. + */ + sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr; + round = (unsigned int)sc->tl_ldata_ptr & 0xF; + roundptr = sc->tl_ldata_ptr; + for (i = 0; i < 8; i++) { + if (round % 8) { + round++; + roundptr++; + } else + break; + } + sc->tl_ldata = (struct tl_list_data *)roundptr; + + bzero(sc->tl_ldata, sizeof(struct tl_list_data)); + + sc->tl_unit = unit; + sc->tl_dinfo = t; + if (t->tl_vid == COMPAQ_VENDORID) + sc->tl_eeaddr = TL_EEPROM_EADDR; + if (t->tl_vid == OLICOM_VENDORID) + sc->tl_eeaddr = TL_EEPROM_EADDR_OC; + + /* Reset the adapter. */ + tl_softreset(sc, 1); + tl_hardreset(sc); + tl_softreset(sc, 1); + + /* + * Get station address from the EEPROM. + */ + if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, + sc->tl_eeaddr, ETHER_ADDR_LEN)) { + printf("tl%d: failed to read station address\n", unit); + goto fail; + } + + /* + * XXX Olicom, in its desire to be different from the + * rest of the world, has done strange things with the + * encoding of the station address in the EEPROM. First + * of all, they store the address at offset 0xF8 rather + * than at 0x83 like the ThunderLAN manual suggests. + * Second, they store the address in three 16-bit words in + * network byte order, as opposed to storing it sequentially + * like all the other ThunderLAN cards. In order to get + * the station address in a form that matches what the Olicom + * diagnostic utility specifies, we have to byte-swap each + * word. To make things even more confusing, neither 00:00:28 + * nor 00:00:24 appear in the IEEE OUI database. + */ + if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) { + for (i = 0; i < ETHER_ADDR_LEN; i += 2) { + u_int16_t *p; + p = (u_int16_t *)&sc->arpcom.ac_enaddr[i]; + *p = ntohs(*p); + } + } + + /* + * A ThunderLAN chip was detected. Inform the world. + */ + printf("tl%d: Ethernet address: %6D\n", unit, + sc->arpcom.ac_enaddr, ":"); + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_unit = sc->tl_unit; + ifp->if_name = "tl"; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = tl_ioctl; + ifp->if_output = ether_output; + ifp->if_start = tl_start; + ifp->if_watchdog = tl_watchdog; + ifp->if_init = tl_init; + ifp->if_mtu = ETHERMTU; + callout_handle_init(&sc->tl_stat_ch); + + /* Reset the adapter again. */ + tl_softreset(sc, 1); + tl_hardreset(sc); + tl_softreset(sc, 1); + + /* + * Now attach the ThunderLAN's PHYs. There will always + * be at least one PHY; if the PHY address is 0x1F, then + * it's the internal one. + */ + + for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) { + sc->tl_phy_addr = i; + if (bootverbose) + printf("tl%d: looking for phy at addr %x\n", unit, i); + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + while(tl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); + sc->tl_phy_sts = tl_phy_readreg(sc, PHY_BMSR); + if (bootverbose) + printf("tl%d: status: %x\n", unit, sc->tl_phy_sts); + if (!sc->tl_phy_sts) + continue; + if (tl_attach_phy(sc)) { + printf("tl%d: failed to attach a phy %d\n", unit, i); + goto fail; + } + phys++; + if (phys && i != TL_PHYADDR_MAX) + break; + } + + if (!phys) { + printf("tl%d: no physical interfaces attached!\n", unit); + goto fail; + } + + tl_intvec_adchk((void *)sc, 0); + tl_stop(sc); + + /* + * Attempt to clear any stray interrupts + * that may be lurking. + */ + tl_intr((void *)sc); + + /* + * Call MI attach routines. + */ + if_attach(ifp); + ether_ifattach(ifp); + +#if NBPFILTER > 0 + bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); +#endif + + at_shutdown(tl_shutdown, sc, SHUTDOWN_POST_SYNC); + +fail: + splx(s); + return; +} +#endif + +/* + * Initialize the transmit lists. + */ +static int tl_list_tx_init(sc) + struct tl_softc *sc; +{ + struct tl_chain_data *cd; + struct tl_list_data *ld; + int i; + + cd = &sc->tl_cdata; + ld = sc->tl_ldata; + for (i = 0; i < TL_TX_LIST_CNT; i++) { + cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i]; + if (i == (TL_TX_LIST_CNT - 1)) + cd->tl_tx_chain[i].tl_next = NULL; + else + cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1]; + } + + cd->tl_tx_free = &cd->tl_tx_chain[0]; + cd->tl_tx_tail = cd->tl_tx_head = NULL; + sc->tl_txeoc = 1; + + return(0); +} + +/* + * Initialize the RX lists and allocate mbufs for them. + */ +static int tl_list_rx_init(sc) + struct tl_softc *sc; +{ + struct tl_chain_data *cd; + struct tl_list_data *ld; + int i; + + cd = &sc->tl_cdata; + ld = sc->tl_ldata; + + for (i = 0; i < TL_TX_LIST_CNT; i++) { + cd->tl_rx_chain[i].tl_ptr = + (struct tl_list_onefrag *)&ld->tl_rx_list[i]; + if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS) + return(ENOBUFS); + if (i == (TL_TX_LIST_CNT - 1)) { + cd->tl_rx_chain[i].tl_next = NULL; + ld->tl_rx_list[i].tlist_fptr = 0; + } else { + cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1]; + ld->tl_rx_list[i].tlist_fptr = + vtophys(&ld->tl_rx_list[i + 1]); + } + } + + cd->tl_rx_head = &cd->tl_rx_chain[0]; + cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; + + return(0); +} + +static int tl_newbuf(sc, c) + struct tl_softc *sc; + struct tl_chain_onefrag *c; +{ + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("tl%d: no memory for rx list -- packet dropped!", + sc->tl_unit); + return(ENOBUFS); + } + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + printf("tl%d: no memory for rx list -- packet dropped!", + sc->tl_unit); + m_freem(m_new); + return(ENOBUFS); + } + + c->tl_mbuf = m_new; + c->tl_next = NULL; + c->tl_ptr->tlist_frsize = MCLBYTES; + c->tl_ptr->tlist_cstat = TL_CSTAT_READY; + c->tl_ptr->tlist_fptr = 0; + c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t)); + c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; + + return(0); +} +/* + * Interrupt handler for RX 'end of frame' condition (EOF). This + * tells us that a full ethernet frame has been captured and we need + * to handle it. + * + * Reception is done using 'lists' which consist of a header and a + * series of 10 data count/data address pairs that point to buffers. + * Initially you're supposed to create a list, populate it with pointers + * to buffers, then load the physical address of the list into the + * ch_parm register. The adapter is then supposed to DMA the received + * frame into the buffers for you. + * + * To make things as fast as possible, we have the chip DMA directly + * into mbufs. This saves us from having to do a buffer copy: we can + * just hand the mbufs directly to ether_input(). Once the frame has + * been sent on its way, the 'list' structure is assigned a new buffer + * and moved to the end of the RX chain. As long we we stay ahead of + * the chip, it will always think it has an endless receive channel. + * + * If we happen to fall behind and the chip manages to fill up all of + * the buffers, it will generate an end of channel interrupt and wait + * for us to empty the chain and restart the receiver. + */ +static int tl_intvec_rxeof(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r = 0, total_len = 0; + struct ether_header *eh; + struct mbuf *m; + struct ifnet *ifp; + struct tl_chain_onefrag *cur_rx; + + sc = xsc; + ifp = &sc->arpcom.ac_if; + +#ifdef TL_DEBUG + evset(sc, EV_RXEOF); +#endif + + while(sc->tl_cdata.tl_rx_head->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP){ + r++; + cur_rx = sc->tl_cdata.tl_rx_head; + sc->tl_cdata.tl_rx_head = cur_rx->tl_next; + m = cur_rx->tl_mbuf; + total_len = cur_rx->tl_ptr->tlist_frsize; + + if (tl_newbuf(sc, cur_rx) == ENOBUFS) { + ifp->if_ierrors++; + cur_rx->tl_ptr->tlist_frsize = MCLBYTES; + cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY; + cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; + continue; + } + + sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr = + vtophys(cur_rx->tl_ptr); + sc->tl_cdata.tl_rx_tail->tl_next = cur_rx; + sc->tl_cdata.tl_rx_tail = cur_rx; + + eh = mtod(m, struct ether_header *); + m->m_pkthdr.rcvif = ifp; + + /* + * Note: when the ThunderLAN chip is in 'capture all + * frames' mode, it will receive its own transmissions. + * We drop don't need to process our own transmissions, + * so we drop them here and continue. + */ + /*if (ifp->if_flags & IFF_PROMISC && */ + if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr, + ETHER_ADDR_LEN)) { + m_freem(m); + continue; + } + +#if NBPFILTER > 0 + /* + * Handle BPF listeners. Let the BPF user see the packet, but + * don't pass it up to the ether_input() layer unless it's + * a broadcast packet, multicast packet, matches our ethernet + * address or the interface is in promiscuous mode. If we don't + * want the packet, just forget it. We leave the mbuf in place + * since it can be used again later. + */ + if (ifp->if_bpf) { + m->m_pkthdr.len = m->m_len = total_len; +#ifdef __FreeBSD__ + bpf_mtap(ifp, m); +#else + bpf_mtap(ifp->if_bpf, m); +#endif + if (ifp->if_flags & IFF_PROMISC && + (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, + ETHER_ADDR_LEN) && + (eh->ether_dhost[0] & 1) == 0)) { + m_freem(m); + continue; + } + } +#endif + /* Remove header from mbuf and pass it on. */ + m->m_pkthdr.len = m->m_len = + total_len - sizeof(struct ether_header); + m->m_data += sizeof(struct ether_header); + ether_input(ifp, eh, m); + } + + return(r); +} + +/* + * The RX-EOC condition hits when the ch_parm address hasn't been + * initialized or the adapter reached a list with a forward pointer + * of 0 (which indicates the end of the chain). In our case, this means + * the card has hit the end of the receive buffer chain and we need to + * empty out the buffers and shift the pointer back to the beginning again. + */ +static int tl_intvec_rxeoc(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r; + + sc = xsc; + +#ifdef TL_DEBUG + evset(sc, EV_RXEOC); +#endif + + /* Flush out the receive queue and ack RXEOF interrupts. */ + r = tl_intvec_rxeof(xsc, type); + CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000))); + r = 1; + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr)); + r |= (TL_CMD_GO|TL_CMD_RT); + return(r); +} + +static int tl_intvec_txeof(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r = 0; + struct tl_chain *cur_tx; + + sc = xsc; + +#ifdef TL_DEBUG + evset(sc, EV_TXEOF); +#endif + + /* + * Go through our tx list and free mbufs for those + * frames that have been sent. + */ + while (sc->tl_cdata.tl_tx_head != NULL) { + cur_tx = sc->tl_cdata.tl_tx_head; + if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) + break; + sc->tl_cdata.tl_tx_head = cur_tx->tl_next; + + r++; + m_freem(cur_tx->tl_mbuf); + cur_tx->tl_mbuf = NULL; + + cur_tx->tl_next = sc->tl_cdata.tl_tx_free; + sc->tl_cdata.tl_tx_free = cur_tx; + if (!cur_tx->tl_ptr->tlist_fptr) + break; + } + + return(r); +} + +/* + * The transmit end of channel interrupt. The adapter triggers this + * interrupt to tell us it hit the end of the current transmit list. + * + * A note about this: it's possible for a condition to arise where + * tl_start() may try to send frames between TXEOF and TXEOC interrupts. + * You have to avoid this since the chip expects things to go in a + * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC. + * When the TXEOF handler is called, it will free all of the transmitted + * frames and reset the tx_head pointer to NULL. However, a TXEOC + * interrupt should be received and acknowledged before any more frames + * are queued for transmission. If tl_statrt() is called after TXEOF + * resets the tx_head pointer but _before_ the TXEOC interrupt arrives, + * it could attempt to issue a transmit command prematurely. + * + * To guard against this, tl_start() will only issue transmit commands + * if the tl_txeoc flag is set, and only the TXEOC interrupt handler + * can set this flag once tl_start() has cleared it. + */ +static int tl_intvec_txeoc(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + struct ifnet *ifp; + u_int32_t cmd; + + sc = xsc; + ifp = &sc->arpcom.ac_if; + + /* Clear the timeout timer. */ + ifp->if_timer = 0; + +#ifdef TL_DEBUG + evset(sc, EV_TXEOC); +#endif + + if (sc->tl_cdata.tl_tx_head == NULL) { + ifp->if_flags &= ~IFF_OACTIVE; + sc->tl_cdata.tl_tx_tail = NULL; + sc->tl_txeoc = 1; + /* + * If we just drained the TX queue and + * there's an autoneg request waiting, set + * it in motion. This will block the transmitter + * until the autoneg session completes which will + * no doubt piss off any processes waiting to + * transmit, but that's the way the ball bounces. + */ + if (sc->tl_want_auto) + tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); + } else { + sc->tl_txeoc = 0; + /* First we have to ack the EOC interrupt. */ + CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type); + /* Then load the address of the next TX list. */ + CSR_WRITE_4(sc, TL_CH_PARM, + vtophys(sc->tl_cdata.tl_tx_head->tl_ptr)); + /* Restart TX channel. */ + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd &= ~TL_CMD_RT; + cmd |= TL_CMD_GO|TL_CMD_INTSON; + CMD_PUT(sc, cmd); + return(0); + } + + return(1); +} + +static int tl_intvec_adchk(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + u_int16_t bmcr, ctl; + + sc = xsc; + + if (type) + printf("tl%d: adapter check: %x\n", sc->tl_unit, + CSR_READ_4(sc, TL_CH_PARM)); +#ifdef TL_DEBUG + evshow(sc); +#endif + + /* + * Before resetting the adapter, try reading the PHY + * settings so we can put them back later. This is + * necessary to keep the chip operating at the same + * speed and duplex settings after the reset completes. + */ + bmcr = tl_phy_readreg(sc, PHY_BMCR); + ctl = tl_phy_readreg(sc, TL_PHY_CTL); + tl_softreset(sc, 1); + tl_phy_writereg(sc, PHY_BMCR, bmcr); + tl_phy_writereg(sc, TL_PHY_CTL, ctl); + if (bmcr & PHY_BMCR_DUPLEX) { + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } else { + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } + tl_stop(sc); + tl_init(sc); + CMD_SET(sc, TL_CMD_INTSON); + + return(0); +} + +static int tl_intvec_netsts(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + u_int16_t netsts; + + sc = xsc; + + netsts = tl_dio_read16(sc, TL_NETSTS); + tl_dio_write16(sc, TL_NETSTS, netsts); + + printf("tl%d: network status: %x\n", sc->tl_unit, netsts); + + return(1); +} + +#ifdef __FreeBSD__ +static void tl_intr(xsc) +#else +static int tl_intr(xsc) +#endif + void *xsc; +{ + struct tl_softc *sc; + struct ifnet *ifp; + int r = 0; + u_int32_t type = 0; + u_int16_t ints = 0; + u_int8_t ivec = 0; + + sc = xsc; + + /* Disable interrupts */ + ints = CSR_READ_2(sc, TL_HOST_INT); + CSR_WRITE_2(sc, TL_HOST_INT, ints); + type = (ints << 16) & 0xFFFF0000; + ivec = (ints & TL_VEC_MASK) >> 5; + ints = (ints & TL_INT_MASK) >> 2; + + ifp = &sc->arpcom.ac_if; + + switch(ints) { + case (TL_INTR_INVALID): +#ifdef DIAGNOSTIC + if (sc->tl_empty_intr == 0) + printf("tl%d: got an invalid interrupt!\n", sc->tl_unit); +#endif + /* Re-enable interrupts but don't ack this one. */ + CMD_PUT(sc, type); + r = 0; + break; + case (TL_INTR_TXEOF): + r = tl_intvec_txeof((void *)sc, type); + break; + case (TL_INTR_TXEOC): + r = tl_intvec_txeoc((void *)sc, type); + break; + case (TL_INTR_STATOFLOW): + tl_stats_update(sc); + r = 1; + break; + case (TL_INTR_RXEOF): + r = tl_intvec_rxeof((void *)sc, type); + break; + case (TL_INTR_DUMMY): + printf("tl%d: got a dummy interrupt\n", sc->tl_unit); + r = 1; + break; + case (TL_INTR_ADCHK): + if (ivec) + r = tl_intvec_adchk((void *)sc, type); + else + r = tl_intvec_netsts((void *)sc, type); + break; + case (TL_INTR_RXEOC): + r = tl_intvec_rxeoc((void *)sc, type); + break; + default: + printf("tl%d: bogus interrupt type\n", sc->tl_unit); + break; + } + + /* Re-enable interrupts */ + if (r) { + CMD_PUT(sc, TL_CMD_ACK | r | type); + } + + if (ifp->if_snd.ifq_head != NULL) + tl_start(ifp); + +#if defined(__FreeBSD__) + return; +#else + return r; +#endif +} + +static void tl_stats_update(xsc) + void *xsc; +{ + struct tl_softc *sc; + struct ifnet *ifp; + struct tl_stats tl_stats; + u_int32_t *p; + + bzero((char *)&tl_stats, sizeof(struct tl_stats)); + + sc = xsc; + ifp = &sc->arpcom.ac_if; + + p = (u_int32_t *)&tl_stats; + + CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + + ifp->if_opackets += tl_tx_goodframes(tl_stats); + ifp->if_collisions += tl_stats.tl_tx_single_collision + + tl_stats.tl_tx_multi_collision; + ifp->if_ipackets += tl_rx_goodframes(tl_stats); + ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors + + tl_rx_overrun(tl_stats); + ifp->if_oerrors += tl_tx_underrun(tl_stats); + +#ifdef __FreeBSD__ + sc->tl_stat_ch = timeout(tl_stats_update, sc, hz); +#else + timeout(tl_stats_update, sc, hz); +#endif + + return; +} + +/* + * Encapsulate an mbuf chain in a list by coupling the mbuf data + * pointers to the fragment pointers. + */ +static int tl_encap(sc, c, m_head) + struct tl_softc *sc; + struct tl_chain *c; + struct mbuf *m_head; +{ + int frag = 0; + struct tl_frag *f = NULL; + int total_len; + struct mbuf *m; + + /* + * Start packing the mbufs in this chain into + * the fragment pointers. Stop when we run out + * of fragments or hit the end of the mbuf chain. + */ + m = m_head; + total_len = 0; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == TL_MAXFRAGS) + break; + total_len+= m->m_len; + c->tl_ptr->tl_frag[frag].tlist_dadr = + vtophys(mtod(m, vm_offset_t)); + c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len; + frag++; + } + } + + /* + * Handle special cases. + * Special case #1: we used up all 10 fragments, but + * we have more mbufs left in the chain. Copy the + * data into an mbuf cluster. Note that we don't + * bother clearing the values in the other fragment + * pointers/counters; it wouldn't gain us anything, + * and would waste cycles. + */ + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("tl%d: no memory for tx list", sc->tl_unit); + return(1); + } + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + printf("tl%d: no memory for tx list", + sc->tl_unit); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->tl_ptr->tl_frag[0]; + f->tlist_dadr = vtophys(mtod(m_new, caddr_t)); + f->tlist_dcnt = total_len = m_new->m_len; + frag = 1; + } + + /* + * Special case #2: the frame is smaller than the minimum + * frame size. We have to pad it to make the chip happy. + */ + if (total_len < TL_MIN_FRAMELEN) { + if (frag == TL_MAXFRAGS) + printf("tl%d: all frags filled but " + "frame still to small!\n", sc->tl_unit); + f = &c->tl_ptr->tl_frag[frag]; + f->tlist_dcnt = TL_MIN_FRAMELEN - total_len; + f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad); + total_len += f->tlist_dcnt; + frag++; + } + + c->tl_mbuf = m_head; + c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG; + c->tl_ptr->tlist_frsize = total_len; + c->tl_ptr->tlist_cstat = TL_CSTAT_READY; + c->tl_ptr->tlist_fptr = 0; + + return(0); +} + +/* + * Main transmit routine. To avoid having to do mbuf copies, we put pointers + * to the mbuf data regions directly in the transmit lists. We also save a + * copy of the pointers since the transmit list fragment pointers are + * physical addresses. + */ +static void tl_start(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + struct mbuf *m_head = NULL; + u_int32_t cmd; + struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx; + + sc = ifp->if_softc; + + if (sc->tl_autoneg) { + sc->tl_tx_pend = 1; + return; + } + + /* + * Check for an available queue slot. If there are none, + * punt. + */ + if (sc->tl_cdata.tl_tx_free == NULL) { + ifp->if_flags |= IFF_OACTIVE; + return; + } + + start_tx = sc->tl_cdata.tl_tx_free; + + while(sc->tl_cdata.tl_tx_free != NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + /* Pick a chain member off the free list. */ + cur_tx = sc->tl_cdata.tl_tx_free; + sc->tl_cdata.tl_tx_free = cur_tx->tl_next; + + cur_tx->tl_next = NULL; + + /* Pack the data into the list. */ + tl_encap(sc, cur_tx, m_head); + + /* Chain it together */ + if (prev != NULL) { + prev->tl_next = cur_tx; + prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr); + } + prev = cur_tx; + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ +#if NBPFILTER > 0 + if (ifp->if_bpf) +#ifdef __FreeBSD__ + bpf_mtap(ifp, cur_tx->tl_mbuf); +#else + bpf_mtap(ifp->if_bpf, cur_tx->tl_mbuf); +#endif +#endif + } + + /* + * That's all we can stands, we can't stands no more. + * If there are no other transfers pending, then issue the + * TX GO command to the adapter to start things moving. + * Otherwise, just leave the data in the queue and let + * the EOF/EOC interrupt handler send. + */ + if (sc->tl_cdata.tl_tx_head == NULL) { + sc->tl_cdata.tl_tx_head = start_tx; + sc->tl_cdata.tl_tx_tail = cur_tx; +#ifdef TL_DEBUG + evset(sc, EV_START_TX); +#endif + + if (sc->tl_txeoc) { +#ifdef TL_DEBUG + evset(sc, EV_START_TX_REAL); +#endif + sc->tl_txeoc = 0; + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr)); + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd &= ~TL_CMD_RT; + cmd |= TL_CMD_GO|TL_CMD_INTSON; + CMD_PUT(sc, cmd); + } + } else { +#ifdef TL_DEBUG + evset(sc, EV_START_Q); +#endif + sc->tl_cdata.tl_tx_tail->tl_next = start_tx; + sc->tl_cdata.tl_tx_tail = start_tx; + } + + /* + * Set a timeout in case the chip goes out to lunch. + */ + ifp->if_timer = 10; + + return; +} + +static void tl_init(xsc) + void *xsc; +{ + struct tl_softc *sc = xsc; + struct ifnet *ifp = &sc->arpcom.ac_if; + int s; + u_int16_t phy_sts; + + if (sc->tl_autoneg) + return; + + s = splimp(); + + ifp = &sc->arpcom.ac_if; + +#ifdef TL_DEBUG + evset(sc, EV_INIT); +#endif + + /* + * Cancel pending I/O. + */ + tl_stop(sc); + + /* + * Set 'capture all frames' bit for promiscuous mode. + */ + if (ifp->if_flags & IFF_PROMISC) + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); + else + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); + + /* + * Set capture broadcast bit to capture broadcast frames. + */ + if (ifp->if_flags & IFF_BROADCAST) + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX); + else + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX); + + /* Init our MAC address */ + tl_setfilt(sc, sc->arpcom.ac_enaddr, 0); + + /* Init multicast filter, if needed. */ + tl_setmulti(sc); + + /* Init circular RX list. */ + if (tl_list_rx_init(sc) == ENOBUFS) { + printf("tl%d: initialization failed: no " + "memory for rx buffers\n", sc->tl_unit); + tl_stop(sc); + return; + } + + /* Init TX pointers. */ + tl_list_tx_init(sc); + + /* + * Enable PHY interrupts. + */ + phy_sts = tl_phy_readreg(sc, TL_PHY_CTL); + phy_sts |= PHY_CTL_INTEN; + tl_phy_writereg(sc, TL_PHY_CTL, phy_sts); + + /* Enable MII interrupts. */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + /* Enable PCI interrupts. */ + CMD_SET(sc, TL_CMD_INTSON); + + /* Load the address of the rx list */ + CMD_SET(sc, TL_CMD_RT); + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0])); + + /* + * XXX This is a kludge to handle adapters with the Micro Linear + * ML6692 100BaseTX PHY, which only supports 100Mbps modes and + * relies on the controller's internal 10Mbps PHY to provide + * 10Mbps modes. The ML6692 always shows up with a vendor/device ID + * of 0 (it doesn't actually have vendor/device ID registers) + * so we use that property to detect it. In theory there ought to + * be a better way to 'spot the looney' but I can't find one. + */ + if (!sc->tl_phy_vid) { + u_int8_t addr = 0; + u_int16_t bmcr; + + bmcr = tl_phy_readreg(sc, PHY_BMCR); + addr = sc->tl_phy_addr; + sc->tl_phy_addr = TL_PHYADDR_MAX; + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + if (bmcr & PHY_BMCR_SPEEDSEL) + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); + else + tl_phy_writereg(sc, PHY_BMCR, bmcr); + sc->tl_phy_addr = addr; + } + + /* Send the RX go command */ + CMD_SET(sc, TL_CMD_GO|TL_CMD_RT); + +#ifdef __FreeBSD__ + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; +#endif + + (void)splx(s); + + /* Start the stats update counter */ +#ifdef __FreeBSD__ + sc->tl_stat_ch = timeout(tl_stats_update, sc, hz); +#else + timeout(tl_stats_update, sc, hz); + timeout(tl_wait_up, sc, 2 * hz); +#endif + + return; +} + +/* + * Set media options. + */ +static int tl_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + struct ifmedia *ifm; + + sc = ifp->if_softc; + ifm = &sc->ifmedia; + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return(EINVAL); + + if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) + tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); + else + tl_setmode(sc, ifm->ifm_media); + + return(0); +} + +/* + * Report current media status. + */ +static void tl_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + u_int16_t phy_ctl; + u_int16_t phy_sts; + struct tl_softc *sc; + + sc = ifp->if_softc; + + ifmr->ifm_active = IFM_ETHER; + + phy_ctl = tl_phy_readreg(sc, PHY_BMCR); + phy_sts = tl_phy_readreg(sc, TL_PHY_CTL); + + if (phy_sts & PHY_CTL_AUISEL) + ifmr->ifm_active = IFM_ETHER|IFM_10_5; + + if (phy_ctl & PHY_BMCR_LOOPBK) + ifmr->ifm_active = IFM_ETHER|IFM_LOOP; + + if (phy_ctl & PHY_BMCR_SPEEDSEL) + ifmr->ifm_active = IFM_ETHER|IFM_100_TX; + else + ifmr->ifm_active = IFM_ETHER|IFM_10_T; + + if (phy_ctl & PHY_BMCR_DUPLEX) { + ifmr->ifm_active |= IFM_FDX; + ifmr->ifm_active &= ~IFM_HDX; + } else { + ifmr->ifm_active &= ~IFM_FDX; + ifmr->ifm_active |= IFM_HDX; + } + + return; +} + +static int tl_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct tl_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; +#ifdef __OpenBSD__ + struct ifaddr *ifa = (struct ifaddr *)data; +#endif + int s, error = 0; + + s = splimp(); + +#ifdef __OpenBSD__ + if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { + splx(s); + return error; + } +#endif + + switch(command) { +#ifdef __FreeBSD__ + case SIOCSIFADDR: + case SIOCGIFADDR: + case SIOCSIFMTU: + error = ether_ioctl(ifp, command, data); + break; +#else + case SIOCSIFADDR: + ifp->if_flags |= IFF_UP; + switch (ifa->ifa_addr->sa_family) { +#ifdef INET + case AF_INET: + tl_init(sc); + arp_ifinit(&sc->arpcom, ifa); + break; +#endif /* INET */ + default: + tl_init(sc); + break; + } +#endif + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + tl_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) { + tl_stop(sc); + } + } + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + tl_setmulti(sc); + error = 0; + break; + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); + break; + default: + error = EINVAL; + break; + } + + (void)splx(s); + + return(error); +} + +static void tl_watchdog(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + u_int16_t bmsr; + + sc = ifp->if_softc; + +#ifdef TL_DEBUG + evset(sc, EV_WATCHDOG); +#endif + + if (sc->tl_autoneg) { + tl_autoneg(sc, TL_FLAG_DELAYTIMEO, 1); + return; + } + + /* Check that we're still connected. */ + tl_phy_readreg(sc, PHY_BMSR); + bmsr = tl_phy_readreg(sc, PHY_BMSR); + if (!(bmsr & PHY_BMSR_LINKSTAT)) { + printf("tl%d: no carrier\n", sc->tl_unit); + tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); + } else + printf("tl%d: device timeout\n", sc->tl_unit); + + ifp->if_oerrors++; + +#ifdef TL_DEBUG + evshow(sc); +#endif + + tl_init(sc); + + return; +} + +/* + * Stop the adapter and free any mbufs allocated to the + * RX and TX lists. + */ +static void tl_stop(sc) + struct tl_softc *sc; +{ + register int i; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + /* Stop the stats updater. */ +#ifdef __FreeBSD__ + untimeout(tl_stats_update, sc, sc->tl_stat_ch); +#else + untimeout(tl_stats_update, sc); + untimeout(tl_wait_up, sc); +#endif + + /* Stop the transmitter */ + CMD_CLR(sc, TL_CMD_RT); + CMD_SET(sc, TL_CMD_STOP); + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* Stop the receiver */ + CMD_SET(sc, TL_CMD_RT); + CMD_SET(sc, TL_CMD_STOP); + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* + * Disable host interrupts. + */ + CMD_SET(sc, TL_CMD_INTSOFF); + + /* + * Disable MII interrupts. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + /* + * Clear list pointer. + */ + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* + * Free the RX lists. + */ + for (i = 0; i < TL_RX_LIST_CNT; i++) { + if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) { + m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf); + sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL; + } + } + bzero((char *)&sc->tl_ldata->tl_rx_list, + sizeof(sc->tl_ldata->tl_rx_list)); + + /* + * Free the TX list buffers. + */ + for (i = 0; i < TL_TX_LIST_CNT; i++) { + if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) { + m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf); + sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL; + } + } + bzero((char *)&sc->tl_ldata->tl_tx_list, + sizeof(sc->tl_ldata->tl_tx_list)); + + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + + return; +} + +#ifdef __FreeBSD__ +/* + * Stop all chip I/O so that the kernel's probe routines don't + * get confused by errant DMAs when rebooting. + */ +static void tl_shutdown(howto, xsc) + int howto; + void *xsc; +{ + struct tl_softc *sc; + + sc = xsc; + + tl_stop(sc); + + return; +} + + +static struct pci_device tl_device = { + "tl", + tl_probe, + tl_attach, + &tl_count, + NULL +}; +DATA_SET(pcidevice_set, tl_device); +#endif + +#ifdef __OpenBSD__ +static int +tl_probe(parent, match, aux) + struct device *parent; + void *match; + void *aux; +{ + struct pci_attach_args *pa = (struct pci_attach_args *) aux; + + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) { + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TI_TLAN) + return 1; + return 0; + } + + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) { + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_N100TX) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_Nunknown) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_N10T) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_IntNF3P) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_DPNet100TX) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_IntPL100TX) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_DP4000) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_N10T2) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_N10_TX_UTP) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_NF3P) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_COMPAQ_NF3P_BNC) + return 1; + return 0; + } + + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) { + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_OLICOM_OC2183) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_OLICOM_OC2325) + return 1; + if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_OLICOM_OC2326) + return 1; + return 0; + } + + return 0; +} + +static void +tl_attach(parent, self, aux) + struct device *parent, *self; + void *aux; +{ + struct tl_softc *sc = (struct tl_softc *)self; + struct pci_attach_args *pa = aux; + pci_chipset_tag_t pc = pa->pa_pc; + pci_intr_handle_t ih; + const char *intrstr = NULL; + struct ifnet *ifp = &sc->arpcom.ac_if; + bus_addr_t iobase; + bus_size_t iosize; + u_int32_t command; + u_int round; + u_int8_t *roundptr; + int i, phys; + + /* + * Map control/status registers. + */ + command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); + command |= PCI_COMMAND_IO_ENABLE | + PCI_COMMAND_MEM_ENABLE | + PCI_COMMAND_MASTER_ENABLE; + pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); + command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); + +#ifdef TL_USEIOSPACE + if (!(command & PCI_COMMAND_IO_ENABLE)) { + printf(": failed to enable I/O ports\n"); + return; + } + if (pci_io_find(pc, pa->pa_tag, TL_PCI_LOIO, &iobase, &iosize)) { + printf(": failed to find i/o space\n"); + return; + } + if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sc_sh)) { + printf(": failed map i/o space\n"); + return; + } + sc->sc_st = pa->pa_iot; +#else + if (!(command & PCI_COMMAND_MEM_ENABLE)) { + printf(": failed to enable memory mapping\n"); + return; + } + if (pci_mem_find(pc, pa->pa_tag, TL_PCI_LOMEM, &iobase, &iosize, NULL)){ + printf(": failed to find memory space\n"); + return; + } + if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sc_sh)) { + printf(": failed map memory space\n"); + return; + } + sc->sc_st = pa->pa_memt; +#endif + + /* + * Manual wants the PCI latency timer jacked up to 0xff + */ + command = pci_conf_read(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER); + command |= 0x0000ff00; + pci_conf_write(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER, command); + + /* + * Allocate our interrupt. + */ + if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, + pa->pa_intrline, &ih)) { + printf(": couldn't map interrupt\n"); + return; + } + intrstr = pci_intr_string(pc, ih); + sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, tl_intr, sc, + self->dv_xname); + if (sc->sc_ih == NULL) { + printf(": could not establish interrupt"); + if (intrstr != NULL) + printf(" at %s", intrstr); + printf("\n"); + return; + } + printf(": %s", intrstr); + + sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8, + M_DEVBUF, M_NOWAIT); + if (sc->tl_ldata_ptr == NULL) { + printf("\n%s: no memory for list buffers\n", + sc->sc_dev.dv_xname); + return; + } + bzero(sc->tl_ldata_ptr, sizeof(struct tl_list_data) + 8); + + sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr; + round = (unsigned int)sc->tl_ldata_ptr & 0xF; + roundptr = sc->tl_ldata_ptr; + for (i = 0; i < 8; i++) { + if (round % 8) { + round++; + roundptr++; + } else + break; + } + sc->tl_ldata = (struct tl_list_data *)roundptr; + + sc->tl_unit = sc->sc_dev.dv_unit; + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) + sc->tl_eeaddr = TL_EEPROM_EADDR; + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) + sc->tl_eeaddr = TL_EEPROM_EADDR_OC; + + /* + * Reset adapter. + */ + tl_softreset(sc, 1); + tl_hardreset(sc); + DELAY(1000000); + tl_softreset(sc, 1); + + /* + * Get station address from the EEPROM. + */ + if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, + sc->tl_eeaddr, ETHER_ADDR_LEN)) { + printf("\n%s: failed to read station address\n", + sc->sc_dev.dv_xname); + return; + } + + if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) { + for (i = 0; i < ETHER_ADDR_LEN; i += 2) { + u_int16_t *p; + + p = (u_int16_t *)&sc->arpcom.ac_enaddr[i]; + *p = ntohs(*p); + } + } + + printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = tl_ioctl; + ifp->if_output = ether_output; + ifp->if_start = tl_start; + ifp->if_watchdog = tl_watchdog; + ifp->if_baudrate = 10000000; + bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); + + /* + * Reset adapter (again). + */ + tl_softreset(sc, 1); + tl_hardreset(sc); + DELAY(1000000); + tl_softreset(sc, 1); + + for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) { + sc->tl_phy_addr = i; + if (bootverbose) + printf("%s: looking for phy at addr %x\n", + sc->sc_dev.dv_xname, i); + tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + while(tl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); + sc->tl_phy_sts = tl_phy_readreg(sc, PHY_BMSR); + if (bootverbose) + printf("%s: status: %x\n", sc->sc_dev.dv_xname, + sc->tl_phy_sts); + if (!sc->tl_phy_sts) + continue; + if (tl_attach_phy(sc)) { + printf("%s: failed to attach a phy %d\n", + sc->sc_dev.dv_xname, i); + return; + } + phys++; + if (phys && i != TL_PHYADDR_MAX) + break; + } + if (!phys) { + printf("%s: no physical interfaces found\n", + sc->sc_dev.dv_xname); + return; + } + + tl_intvec_adchk((void *)sc, 0); + tl_stop(sc); + + /* + * Attempt to clear stray interrupts + */ + sc->tl_empty_intr = 1; + tl_intr((void *)sc); + sc->tl_empty_intr = 0; + + /* + * Attach us everywhere. + */ + if_attach(ifp); + ether_ifattach(ifp); + +#if NBPFILTER > 0 + bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, + DLT_EN10MB, sizeof(struct ether_header)); +#endif + shutdownhook_establish(tl_shutdown, sc); +} + +void +tl_wait_up(xsc) + void *xsc; +{ + struct tl_softc *sc = xsc; + struct ifnet *ifp = &sc->arpcom.ac_if; + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; +} + +static void +tl_shutdown(xsc) + void *xsc; +{ + struct tl_softc *sc = xsc; + + tl_stop(sc); +} + +struct cfattach tl_ca = { + sizeof(struct tl_softc), tl_probe, tl_attach +}; + +struct cfdriver tl_cd = { + 0, "tl", DV_IFNET +}; +#endif diff --git a/sys/dev/pci/if_tlreg.h b/sys/dev/pci/if_tlreg.h new file mode 100644 index 00000000000..85ecdfa58b0 --- /dev/null +++ b/sys/dev/pci/if_tlreg.h @@ -0,0 +1,850 @@ +/* + * Copyright (c) 1997, 1998 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $Id: if_tlreg.h,v 1.1 1998/10/10 03:55:05 jason Exp $ + */ + + +struct tl_type { + u_int16_t tl_vid; + u_int16_t tl_did; + char *tl_name; +}; + +/* + * ThunderLAN TX/RX list format. The TX and RX lists are pretty much + * identical: the list begins with a 32-bit forward pointer which points + * at the next list in the chain, followed by 16 bits for the total + * frame size, and a 16 bit status field. This is followed by a series + * of 10 32-bit data count/data address pairs that point to the fragments + * that make up the complete frame. + */ + +#define TL_MAXFRAGS 10 +#define TL_RX_LIST_CNT 10 +#define TL_TX_LIST_CNT 10 +#define TL_MIN_FRAMELEN 64 + +struct tl_frag { + u_int32_t tlist_dcnt; + u_int32_t tlist_dadr; +}; + +struct tl_list { + u_int32_t tlist_fptr; /* phys address of next list */ + u_int16_t tlist_cstat; /* status word */ + u_int16_t tlist_frsize; /* size of data in frame */ + struct tl_frag tl_frag[TL_MAXFRAGS]; +}; + +/* + * This is a special case of an RX list. By setting the One_Frag + * bit in the NETCONFIG register, the driver can force the ThunderLAN + * chip to use only one fragment when DMAing RX frames. + */ + +struct tl_list_onefrag { + u_int32_t tlist_fptr; + u_int16_t tlist_cstat; + u_int16_t tlist_frsize; + struct tl_frag tl_frag; +}; + +struct tl_list_data { + struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT]; + struct tl_list tl_tx_list[TL_TX_LIST_CNT]; + unsigned char tl_pad[TL_MIN_FRAMELEN]; +}; + +struct tl_chain { + struct tl_list *tl_ptr; + struct mbuf *tl_mbuf; + struct tl_chain *tl_next; +}; + +struct tl_chain_onefrag { + struct tl_list_onefrag *tl_ptr; + struct mbuf *tl_mbuf; + struct tl_chain_onefrag *tl_next; +}; + +struct tl_chain_data { + struct tl_chain_onefrag tl_rx_chain[TL_RX_LIST_CNT]; + struct tl_chain tl_tx_chain[TL_TX_LIST_CNT]; + + struct tl_chain_onefrag *tl_rx_head; + struct tl_chain_onefrag *tl_rx_tail; + + struct tl_chain *tl_tx_head; + struct tl_chain *tl_tx_tail; + struct tl_chain *tl_tx_free; +}; + +struct tl_softc { +#ifdef __OpenBSD__ + struct device sc_dev; /* generic device structure */ + void * sc_ih; /* interrupt handler cookie */ + bus_space_tag_t sc_st; /* bus space tag */ + bus_space_handle_t sc_sh; /* bus space handle */ +#endif + struct arpcom arpcom; /* interface info */ + struct ifmedia ifmedia; /* media info */ +#ifdef __FreeBSD__ +#ifdef TL_USEIOSPACE + u_int32_t iobase; +#else + volatile caddr_t csr; /* pointer to register map */ +#endif +#endif + struct tl_type *tl_dinfo; /* ThunderLAN adapter info */ + struct tl_type *tl_pinfo; /* PHY info struct */ + u_int8_t tl_ctlr; /* chip number */ + u_int8_t tl_unit; /* interface number */ + u_int8_t tl_eeaddr; + u_int8_t tl_empty_intr; /* expecting empty interrupt */ + u_int8_t tl_phy_addr; /* PHY address */ + u_int8_t tl_tx_pend; /* TX pending */ + u_int8_t tl_want_auto; /* autoneg scheduled */ + u_int8_t tl_autoneg; /* autoneg in progress */ + u_int16_t tl_phy_sts; /* PHY status */ + u_int16_t tl_phy_vid; /* PHY vendor ID */ + u_int16_t tl_phy_did; /* PHY device ID */ + caddr_t tl_ldata_ptr; + struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */ + struct tl_chain_data tl_cdata; + int tl_txeoc; +#ifdef TL_DEBUG + u_int8_t tl_event[20]; +#endif +#ifdef __FreeBSD__ + struct callout_handle tl_stat_ch; +#endif +}; + +/* + * Transmit interrupt threshold. + */ +#define TX_THR 0x00000001 + +#define TL_FLAG_FORCEDELAY 1 +#define TL_FLAG_SCHEDDELAY 2 +#define TL_FLAG_DELAYTIMEO 3 + +/* + * The ThunderLAN supports up to 32 PHYs. + */ +#define TL_PHYADDR_MIN 0x00 +#define TL_PHYADDR_MAX 0x1F + +#define PHY_UNKNOWN 6 + +#define TL_PHYS_IDLE -1 + +/* + * General constants that are fun to know. + * + * The ThunderLAN controller is made by Texas Instruments. The + * manual indicates that if the EEPROM checksum fails, the PCI + * vendor and device ID registers will be loaded with TI-specific + * values. + */ +#define TI_VENDORID 0x104C +#define TI_DEVICEID_THUNDERLAN 0x0500 + +/* + * Known PHY Ids. According to the Level 1 documentation (which is + * very nice, incidentally), here's how they work: + * + * The PHY identifier register #1 is composed of bits 3 through 18 + * of the OUI. (First 16-bit word.) + * The PHY identifier register #2 is composed of bits 19 through 24 + * if the OUI. + * This is followed by 6 bits containing the manufacturer's model + * number. + * Lastly, there are 4 bits for the manufacturer's revision number. + * + * Honestly, there are a lot of these that don't make any sense; the + * only way to be really sure is to look at the data sheets. + */ + +/* + * Texas Instruments PHY identifiers + * + * The ThunderLAN manual has a curious and confusing error in it. + * In chapter 7, which describes PHYs, it says that TI PHYs have + * the following ID codes, where xx denotes a revision: + * + * 0x4000501xx internal 10baseT PHY + * 0x4000502xx TNETE211 100VG-AnyLan PMI + * + * The problem here is that these are not valid 32-bit hex numbers: + * there's one digit too many. My guess is that they mean the internal + * 10baseT PHY is 0x4000501x and the TNETE211 is 0x4000502x since these + * are the only numbers that make sense. + */ +#define TI_PHY_VENDORID 0x4000 +#define TI_PHY_10BT 0x501F +#define TI_PHY_100VGPMI 0x502F + +/* + * These ID values are for the NS DP83840A 10/100 PHY + */ +#define NS_PHY_VENDORID 0x2000 +#define NS_PHY_83840A 0x5C0F + +/* + * Level 1 10/100 PHY + */ +#define LEVEL1_PHY_VENDORID 0x7810 +#define LEVEL1_PHY_LXT970 0x000F + +/* + * Intel 82555 10/100 PHY + */ +#define INTEL_PHY_VENDORID 0x0A28 +#define INTEL_PHY_82555 0x015F + +/* + * SEEQ 80220 10/100 PHY + */ +#define SEEQ_PHY_VENDORID 0x0016 +#define SEEQ_PHY_80220 0xF83F + +/* + * These are the PCI vendor and device IDs for Compaq ethernet + * adapters based on the ThunderLAN controller. + */ +#define COMPAQ_VENDORID 0x0E11 +#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32 +#define COMPAQ_DEVICEID_NETEL_UNKNOWN 0xAE33 +#define COMPAQ_DEVICEID_NETEL_10 0xAE34 +#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35 +#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40 +#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43 +#define COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED 0xB011 +#define COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX 0xB012 +#define COMPAQ_DEVICEID_NETEL_10_100_TX_UTP 0xB030 +#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130 +#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150 + +/* + * These are the PCI vendor and device IDs for Olicom + * adapters based on the ThunderLAN controller. + */ +#define OLICOM_VENDORID 0x108D +#define OLICOM_DEVICEID_OC2183 0x0013 +#define OLICOM_DEVICEID_OC2325 0x0012 +#define OLICOM_DEVICEID_OC2326 0x0014 + +/* + * PCI low memory base and low I/O base + */ +#define TL_PCI_LOIO 0x10 +#define TL_PCI_LOMEM 0x14 + +/* + * PCI latency timer (it's actually 0x0D, but we want a value + * that's longword aligned). + */ +#define TL_PCI_LATENCY_TIMER 0x0C + +#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */ +#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */ +#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */ + +/* + * Interrupt types + */ +#define TL_INTR_INVALID 0x0 +#define TL_INTR_TXEOF 0x1 +#define TL_INTR_STATOFLOW 0x2 +#define TL_INTR_RXEOF 0x3 +#define TL_INTR_DUMMY 0x4 +#define TL_INTR_TXEOC 0x5 +#define TL_INTR_ADCHK 0x6 +#define TL_INTR_RXEOC 0x7 + +#define TL_INT_MASK 0x001C +#define TL_VEC_MASK 0x1FE0 +/* + * Host command register bits + */ +#define TL_CMD_GO 0x80000000 +#define TL_CMD_STOP 0x40000000 +#define TL_CMD_ACK 0x20000000 +#define TL_CMD_CHSEL7 0x10000000 +#define TL_CMD_CHSEL6 0x08000000 +#define TL_CMD_CHSEL5 0x04000000 +#define TL_CMD_CHSEL4 0x02000000 +#define TL_CMD_CHSEL3 0x01000000 +#define TL_CMD_CHSEL2 0x00800000 +#define TL_CMD_CHSEL1 0x00400000 +#define TL_CMD_CHSEL0 0x00200000 +#define TL_CMD_EOC 0x00100000 +#define TL_CMD_RT 0x00080000 +#define TL_CMD_NES 0x00040000 +#define TL_CMD_ZERO0 0x00020000 +#define TL_CMD_ZERO1 0x00010000 +#define TL_CMD_ADRST 0x00008000 +#define TL_CMD_LDTMR 0x00004000 +#define TL_CMD_LDTHR 0x00002000 +#define TL_CMD_REQINT 0x00001000 +#define TL_CMD_INTSOFF 0x00000800 +#define TL_CMD_INTSON 0x00000400 +#define TL_CMD_RSVD0 0x00000200 +#define TL_CMD_RSVD1 0x00000100 +#define TL_CMD_ACK7 0x00000080 +#define TL_CMD_ACK6 0x00000040 +#define TL_CMD_ACK5 0x00000020 +#define TL_CMD_ACK4 0x00000010 +#define TL_CMD_ACK3 0x00000008 +#define TL_CMD_ACK2 0x00000004 +#define TL_CMD_ACK1 0x00000002 +#define TL_CMD_ACK0 0x00000001 + +#define TL_CMD_CHSEL_MASK 0x01FE0000 +#define TL_CMD_ACK_MASK 0xFF + +/* + * EEPROM address where station address resides. + */ +#define TL_EEPROM_EADDR 0x83 +#define TL_EEPROM_EADDR2 0x99 +#define TL_EEPROM_EADDR3 0xAF +#define TL_EEPROM_EADDR_OC 0xF8 /* Olicom cards use a different + address than Compaqs. */ +/* + * ThunderLAN host command register offsets. + * (Can be accessed either by IO ports or memory map.) + */ +#define TL_HOSTCMD 0x00 +#define TL_CH_PARM 0x04 +#define TL_DIO_ADDR 0x08 +#define TL_HOST_INT 0x0A +#define TL_DIO_DATA 0x0C + +/* + * ThunderLAN internal registers + */ +#define TL_NETCMD 0x00 +#define TL_NETSIO 0x01 +#define TL_NETSTS 0x02 +#define TL_NETMASK 0x03 + +#define TL_NETCONFIG 0x04 +#define TL_MANTEST 0x06 + +#define TL_VENID_LSB 0x08 +#define TL_VENID_MSB 0x09 +#define TL_DEVID_LSB 0x0A +#define TL_DEVID_MSB 0x0B + +#define TL_REVISION 0x0C +#define TL_SUBCLASS 0x0D +#define TL_MINLAT 0x0E +#define TL_MAXLAT 0x0F + +#define TL_AREG0_B5 0x10 +#define TL_AREG0_B4 0x11 +#define TL_AREG0_B3 0x12 +#define TL_AREG0_B2 0x13 + +#define TL_AREG0_B1 0x14 +#define TL_AREG0_B0 0x15 +#define TL_AREG1_B5 0x16 +#define TL_AREG1_B4 0x17 + +#define TL_AREG1_B3 0x18 +#define TL_AREG1_B2 0x19 +#define TL_AREG1_B1 0x1A +#define TL_AREG1_B0 0x1B + +#define TL_AREG2_B5 0x1C +#define TL_AREG2_B4 0x1D +#define TL_AREG2_B3 0x1E +#define TL_AREG2_B2 0x1F + +#define TL_AREG2_B1 0x20 +#define TL_AREG2_B0 0x21 +#define TL_AREG3_B5 0x22 +#define TL_AREG3_B4 0x23 + +#define TL_AREG3_B3 0x24 +#define TL_AREG3_B2 0x25 +#define TL_AREG3_B1 0x26 +#define TL_AREG3_B0 0x27 + +#define TL_HASH1 0x28 +#define TL_HASH2 0x2C +#define TL_TXGOODFRAMES 0x30 +#define TL_TXUNDERRUN 0x33 +#define TL_RXGOODFRAMES 0x34 +#define TL_RXOVERRUN 0x37 +#define TL_DEFEREDTX 0x38 +#define TL_CRCERROR 0x3A +#define TL_CODEERROR 0x3B +#define TL_MULTICOLTX 0x3C +#define TL_SINGLECOLTX 0x3E +#define TL_EXCESSIVECOL 0x40 +#define TL_LATECOL 0x41 +#define TL_CARRIERLOSS 0x42 +#define TL_ACOMMIT 0x43 +#define TL_LDREG 0x44 +#define TL_BSIZEREG 0x45 +#define TL_MAXRX 0x46 + +/* + * ThunderLAN SIO register bits + */ +#define TL_SIO_MINTEN 0x80 +#define TL_SIO_ECLOK 0x40 +#define TL_SIO_ETXEN 0x20 +#define TL_SIO_EDATA 0x10 +#define TL_SIO_NMRST 0x08 +#define TL_SIO_MCLK 0x04 +#define TL_SIO_MTXEN 0x02 +#define TL_SIO_MDATA 0x01 + +/* + * Thunderlan NETCONFIG bits + */ +#define TL_CFG_RCLKTEST 0x8000 +#define TL_CFG_TCLKTEST 0x4000 +#define TL_CFG_BITRATE 0x2000 +#define TL_CFG_RXCRC 0x1000 +#define TL_CFG_PEF 0x0800 +#define TL_CFG_ONEFRAG 0x0400 +#define TL_CFG_ONECHAN 0x0200 +#define TL_CFG_MTEST 0x0100 +#define TL_CFG_PHYEN 0x0080 +#define TL_CFG_MACSEL6 0x0040 +#define TL_CFG_MACSEL5 0x0020 +#define TL_CFG_MACSEL4 0x0010 +#define TL_CFG_MACSEL3 0x0008 +#define TL_CFG_MACSEL2 0x0004 +#define TL_CFG_MACSEL1 0x0002 +#define TL_CFG_MACSEL0 0x0001 + +/* + * ThunderLAN NETSTS bits + */ +#define TL_STS_MIRQ 0x80 +#define TL_STS_HBEAT 0x40 +#define TL_STS_TXSTOP 0x20 +#define TL_STS_RXSTOP 0x10 + +/* + * ThunderLAN NETCMD bits + */ +#define TL_CMD_NRESET 0x80 +#define TL_CMD_NWRAP 0x40 +#define TL_CMD_CSF 0x20 +#define TL_CMD_CAF 0x10 +#define TL_CMD_NOBRX 0x08 +#define TL_CMD_DUPLEX 0x04 +#define TL_CMD_TRFRAM 0x02 +#define TL_CMD_TXPACE 0x01 + +/* + * ThunderLAN NETMASK bits + */ +#define TL_MASK_MASK7 0x80 +#define TL_MASK_MASK6 0x40 +#define TL_MASK_MASK5 0x20 +#define TL_MASK_MASK4 0x10 + +/* + * MII frame format + */ +#ifdef ANSI_DOESNT_ALLOW_BITFIELDS +struct tl_mii_frame { + u_int16_t mii_stdelim:2, + mii_opcode:2, + mii_phyaddr:5, + mii_regaddr:5, + mii_turnaround:2; + u_int16_t mii_data; +}; +#else +struct tl_mii_frame { + u_int8_t mii_stdelim; + u_int8_t mii_opcode; + u_int8_t mii_phyaddr; + u_int8_t mii_regaddr; + u_int8_t mii_turnaround; + u_int16_t mii_data; +}; +#endif +/* + * MII constants + */ +#define TL_MII_STARTDELIM 0x01 +#define TL_MII_READOP 0x02 +#define TL_MII_WRITEOP 0x01 +#define TL_MII_TURNAROUND 0x02 + +#define TL_LAST_FRAG 0x80000000 +#define TL_CSTAT_UNUSED 0x8000 +#define TL_CSTAT_FRAMECMP 0x4000 +#define TL_CSTAT_READY 0x3000 +#define TL_CSTAT_UNUSED13 0x2000 +#define TL_CSTAT_UNUSED12 0x1000 +#define TL_CSTAT_EOC 0x0800 +#define TL_CSTAT_RXERROR 0x0400 +#define TL_CSTAT_PASSCRC 0x0200 +#define TL_CSTAT_DPRIO 0x0100 + +#define TL_FRAME_MASK 0x00FFFFFF +#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK) +#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24) +#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK) +#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24) + +struct tl_stats { + u_int32_t tl_txstat; + u_int32_t tl_rxstat; + u_int16_t tl_deferred; + u_int8_t tl_crc_errors; + u_int8_t tl_code_errors; + u_int16_t tl_tx_multi_collision; + u_int16_t tl_tx_single_collision; + u_int8_t tl_excessive_collision; + u_int8_t tl_late_collision; + u_int8_t tl_carrier_loss; + u_int8_t acommit; +}; + +/* + * register space access macros + */ +#ifdef __FreeBSD__ +#ifdef TL_USEIOSPACE +#define CSR_WRITE_4(sc, reg, val) \ + outl(sc->iobase + (u_int32_t)(reg), val) +#define CSR_WRITE_2(sc, reg, val) \ + outw(sc->iobase + (u_int32_t)(reg), val) +#define CSR_WRITE_1(sc, reg, val) \ + outb(sc->iobase + (u_int32_t)(reg), val) + +#define CSR_READ_4(sc, reg) \ + inl(sc->iobase + (u_int32_t)(reg)) +#define CSR_READ_2(sc, reg) \ + inw(sc->iobase + (u_int32_t)(reg)) +#define CSR_READ_1(sc, reg) \ + inb(sc->iobase + (u_int32_t)(reg)) +#else +#define CSR_WRITE_4(sc, reg, val) \ + ((*(u_int32_t*)((sc)->csr + (u_int32_t)(reg))) = (u_int32_t)(val)) +#define CSR_WRITE_2(sc, reg, val) \ + ((*(u_int16_t*)((sc)->csr + (u_int32_t)(reg))) = (u_int16_t)(val)) +#define CSR_WRITE_1(sc, reg, val) \ + ((*(u_int8_t*)((sc)->csr + (u_int32_t)(reg))) = (u_int8_t)(val)) + +#define CSR_READ_4(sc, reg) \ + (*(u_int32_t *)((sc)->csr + (u_int32_t)(reg))) +#define CSR_READ_2(sc, reg) \ + (*(u_int16_t *)((sc)->csr + (u_int32_t)(reg))) +#define CSR_READ_1(sc, reg) \ + (*(u_int8_t *)((sc)->csr + (u_int32_t)(reg))) +#endif +#endif /* FreeBSD */ + +#ifdef __OpenBSD__ +#define CSR_WRITE_4(sc, csr, val) \ + bus_space_write_4((sc)->sc_st, (sc)->sc_sh, csr, (val)) +#define CSR_WRITE_2(sc, csr, val) \ + bus_space_write_2((sc)->sc_st, (sc)->sc_sh, csr, (val)) +#define CSR_WRITE_1(sc, csr, val) \ + bus_space_write_1((sc)->sc_st, (sc)->sc_sh, csr, (val)) + +#define CSR_READ_4(sc, csr) \ + bus_space_read_4((sc)->sc_st, (sc)->sc_sh, csr) +#define CSR_READ_2(sc, csr) \ + bus_space_read_2((sc)->sc_st, (sc)->sc_sh, csr) +#define CSR_READ_1(sc, csr) \ + bus_space_read_1((sc)->sc_st, (sc)->sc_sh, csr) +#endif + + +#define CMD_PUT(sc, x) CSR_WRITE_4(sc, TL_HOSTCMD, x) +#define CMD_SET(sc, x) \ + CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) | (x)) +#define CMD_CLR(sc, x) \ + CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) & ~(x)) + +/* + * ThunderLAN adapters typically have a serial EEPROM containing + * configuration information. The main reason we're interested in + * it is because it also contains the adapters's station address. + * + * Access to the EEPROM is a bit goofy since it is a serial device: + * you have to do reads and writes one bit at a time. The state of + * the DATA bit can only change while the CLOCK line is held low. + * Transactions work basically like this: + * + * 1) Send the EEPROM_START sequence to prepare the EEPROM for + * accepting commands. This pulls the clock high, sets + * the data bit to 0, enables transmission to the EEPROM, + * pulls the data bit up to 1, then pulls the clock low. + * The idea is to do a 0 to 1 transition of the data bit + * while the clock pin is held high. + * + * 2) To write a bit to the EEPROM, set the TXENABLE bit, then + * set the EDATA bit to send a 1 or clear it to send a 0. + * Finally, set and then clear ECLOK. Strobing the clock + * transmits the bit. After 8 bits have been written, the + * EEPROM should respond with an ACK, which should be read. + * + * 3) To read a bit from the EEPROM, clear the TXENABLE bit, + * then set ECLOK. The bit can then be read by reading EDATA. + * ECLOCK should then be cleared again. This can be repeated + * 8 times to read a whole byte, after which the + * + * 4) We need to send the address byte to the EEPROM. For this + * we have to send the write control byte to the EEPROM to + * tell it to accept data. The byte is 0xA0. The EEPROM should + * ack this. The address byte can be send after that. + * + * 5) Now we have to tell the EEPROM to send us data. For that we + * have to transmit the read control byte, which is 0xA1. This + * byte should also be acked. We can then read the data bits + * from the EEPROM. + * + * 6) When we're all finished, send the EEPROM_STOP sequence. + * + * Note that we use the ThunderLAN's NetSio register to access the + * EEPROM, however there is an alternate method. There is a PCI NVRAM + * register at PCI offset 0xB4 which can also be used with minor changes. + * The difference is that access to PCI registers via pci_conf_read() + * and pci_conf_write() is done using programmed I/O, which we want to + * avoid. + */ + +/* + * Note that EEPROM_START leaves transmission enabled. + */ +#define EEPROM_START \ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock pin high */\ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Set DATA bit to 1 */ \ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit to write bit */\ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA bit to 0 again */\ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */ + +/* + * EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so + * that no further data can be written to the EEPROM I/O pin. + */ +#define EEPROM_STOP \ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit */ \ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA to 0 */ \ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock high */ \ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit */ \ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Toggle DATA to 1 */ \ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit. */ \ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */ + + +/* + * These are the register definitions for the PHY (physical layer + * interface chip). + * The ThunderLAN chip has a built-in 10Mb/sec PHY which may be used + * in some configurations. The Compaq 10/100 cards based on the ThunderLAN + * use a National Semiconductor DP83840A PHY. The generic BMCR and BMSR + * layouts for both PHYs are identical, however some of the bits are not + * used by the ThunderLAN's internal PHY (most notably those dealing with + * switching between 10 and 100Mb/sec speeds). Since Both PHYs use the + * same bits, we #define them with generic names here. + */ +/* + * PHY BMCR Basic Mode Control Register + */ +#define PHY_BMCR 0x00 +#define PHY_BMCR_RESET 0x8000 +#define PHY_BMCR_LOOPBK 0x4000 +#define PHY_BMCR_SPEEDSEL 0x2000 +#define PHY_BMCR_AUTONEGENBL 0x1000 +#define PHY_BMCR_RSVD0 0x0800 /* write as zero */ +#define PHY_BMCR_PWRDOWN 0x0800 /* tlan internal PHY only */ +#define PHY_BMCR_ISOLATE 0x0400 +#define PHY_BMCR_AUTONEGRSTR 0x0200 +#define PHY_BMCR_DUPLEX 0x0100 +#define PHY_BMCR_COLLTEST 0x0080 +#define PHY_BMCR_RSVD1 0x0040 /* write as zero, don't care */ +#define PHY_BMCR_RSVD2 0x0020 /* write as zero, don't care */ +#define PHY_BMCR_RSVD3 0x0010 /* write as zero, don't care */ +#define PHY_BMCR_RSVD4 0x0008 /* write as zero, don't care */ +#define PHY_BMCR_RSVD5 0x0004 /* write as zero, don't care */ +#define PHY_BMCR_RSVD6 0x0002 /* write as zero, don't care */ +#define PHY_BMCR_RSVD7 0x0001 /* write as zero, don't care */ +/* + * RESET: 1 == software reset, 0 == normal operation + * Resets status and control registers to default values. + * Relatches all hardware config values. + * + * LOOPBK: 1 == loopback operation enabled, 0 == normal operation + * + * SPEEDSEL: 1 == 100Mb/s, 0 == 10Mb/s + * Link speed is selected byt his bit or if auto-negotiation if bit + * 12 (AUTONEGENBL) is set (in which case the value of this register + * is ignored). + * + * AUTONEGENBL: 1 == Autonegotiation enabled, 0 == Autonegotiation disabled + * Bits 8 and 13 are ignored when autoneg is set, otherwise bits 8 and 13 + * determine speed and mode. Should be cleared and then set if PHY configured + * for no autoneg on startup. + * + * ISOLATE: 1 == isolate PHY from MII, 0 == normal operation + * + * AUTONEGRSTR: 1 == restart autonegotiation, 0 = normal operation + * + * DUPLEX: 1 == full duplex mode, 0 == half duplex mode + * + * COLLTEST: 1 == collision test enabled, 0 == normal operation + */ + +/* + * PHY, BMSR Basic Mode Status Register + */ +#define PHY_BMSR 0x01 +#define PHY_BMSR_100BT4 0x8000 +#define PHY_BMSR_100BTXFULL 0x4000 +#define PHY_BMSR_100BTXHALF 0x2000 +#define PHY_BMSR_10BTFULL 0x1000 +#define PHY_BMSR_10BTHALF 0x0800 +#define PHY_BMSR_RSVD1 0x0400 /* write as zero, don't care */ +#define PHY_BMSR_RSVD2 0x0200 /* write as zero, don't care */ +#define PHY_BMSR_RSVD3 0x0100 /* write as zero, don't care */ +#define PHY_BMSR_RSVD4 0x0080 /* write as zero, don't care */ +#define PHY_BMSR_MFPRESUP 0x0040 +#define PHY_BMSR_AUTONEGCOMP 0x0020 +#define PHY_BMSR_REMFAULT 0x0010 +#define PHY_BMSR_CANAUTONEG 0x0008 +#define PHY_BMSR_LINKSTAT 0x0004 +#define PHY_BMSR_JABBER 0x0002 +#define PHY_BMSR_EXTENDED 0x0001 + +#define PHY_CTL_IGLINK 0x8000 +#define PHY_CTL_SWAPOL 0x4000 +#define PHY_CTL_AUISEL 0x2000 +#define PHY_CTL_SQEEN 0x1000 +#define PHY_CTL_MTEST 0x0800 +#define PHY_CTL_NFEW 0x0004 +#define PHY_CTL_INTEN 0x0002 +#define PHY_CTL_TINT 0x0001 + +#define TL_PHY_GENCTL 0x00 +#define TL_PHY_GENSTS 0x01 + +/* + * PHY Generic Identifier Register, hi bits + */ +#define TL_PHY_VENID 0x02 + +/* + * PHY Generic Identifier Register, lo bits + */ +#define TL_PHY_DEVID 0x03 + +#define TL_PHY_ANAR 0x04 +#define TL_PHY_LPAR 0x05 +#define TL_PHY_ANEXP 0x06 + +#define TL_PHY_PHYID 0x10 +#define TL_PHY_CTL 0x11 +#define TL_PHY_STS 0x12 + +#define TL_LPAR_RMFLT 0x2000 +#define TL_LPAR_RSVD0 0x1000 +#define TL_LPAR_RSVD1 0x0800 +#define TL_LPAR_100BT4 0x0400 +#define TL_LPAR_100BTXFULL 0x0200 +#define TL_LPAR_100BTXHALF 0x0100 +#define TL_LPAR_10BTFULL 0x0080 +#define TL_LPAR_10BTHALF 0x0040 + +/* + * PHY Antoneg advertisement register. + */ +#define PHY_ANAR TL_PHY_ANAR +#define PHY_ANAR_NEXTPAGE 0x8000 +#define PHY_ANAR_RSVD0 0x4000 +#define PHY_ANAR_TLRFLT 0x2000 +#define PHY_ANAR_RSVD1 0x1000 +#define PHY_RSVD_RSDV2 0x0800 +#define PHY_RSVD_RSVD3 0x0400 +#define PHY_ANAR_100BT4 0x0200 +#define PHY_ANAR_100BTXFULL 0x0100 +#define PHY_ANAR_100BTXHALF 0x0080 +#define PHY_ANAR_10BTFULL 0x0040 +#define PHY_ANAR_10BTHALF 0x0020 +#define PHY_ANAR_PROTO4 0x0010 +#define PHY_ANAR_PROTO3 0x0008 +#define PHY_ANAR_PROTO2 0x0004 +#define PHY_AHAR_PROTO1 0x0002 +#define PHY_AHAR_PROTO0 0x0001 + +/* + * DP83840 PHY, PCS Confifguration Register + */ +#define TL_DP83840_PCS 0x17 +#define TL_DP83840_PCS_LED4_MODE 0x0002 +#define TL_DP83840_PCS_F_CONNECT 0x0020 +#define TL_DP83840_PCS_BIT8 0x0100 +#define TL_DP83840_PCS_BIT10 0x0400 + +/* + * DP83840 PHY, PAR register + */ +#define TL_DP83840_PAR 0x19 + +#define PAR_RSVD0 0x8000 +#define PAR_RSVD1 0x4000 +#define PAR_RSVD2 0x2000 +#define PAR_RSVD3 0x1000 +#define PAR_DIS_CRS_JAB 0x0800 +#define PAR_AN_EN_STAT 0x0400 +#define PAR_RSVD4 0x0200 +#define PAR_FEFI_EN 0x0100 +#define PAR_DUPLEX_STAT 0x0080 +#define PAR_SPEED_10 0x0040 +#define PAR_CIM_STATUS 0x0020 +#define PAR_PHYADDR4 0x0010 +#define PAR_PHYADDR3 0x0008 +#define PAR_PHYADDR2 0x0004 +#define PAR_PHYADDR1 0x0002 +#define PAR_PHYADDR0 0x0001 + + +/* + * Microchip Technology 24Cxx EEPROM control bytes + */ +#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */ +#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */ diff --git a/sys/dev/pci/pcidevs b/sys/dev/pci/pcidevs index 37d60fe7a64..a015b9f48ee 100644 --- a/sys/dev/pci/pcidevs +++ b/sys/dev/pci/pcidevs @@ -1,4 +1,4 @@ -$OpenBSD: pcidevs,v 1.92 1998/10/09 00:15:34 deraadt Exp $ +$OpenBSD: pcidevs,v 1.93 1998/10/10 03:55:05 jason Exp $ /* $NetBSD: pcidevs,v 1.30 1997/06/24 06:20:24 thorpej Exp $ */ @@ -707,22 +707,25 @@ product COGENT EM110TX 0x1400 EX110TX PCI Fast Ethernet Adapter /* Compaq products */ product COMPAQ PCI_EISA_BRIDGE 0x0001 PCI-EISA Bridge -product COMPAQ PCI_ISA_BRIDGE 0x0002 PCI-ISA Bridge -product COMPAQ TRIFLEX1 0x1000 Triflex Host-PCI Bridge -product COMPAQ TRIFLEX2 0x2000 Triflex Host-PCI Bridge +product COMPAQ PCI_ISA_BRIDGE 0x0002 PCI-ISA Bridge +product COMPAQ TRIFLEX1 0x1000 Triflex Host-PCI Bridge +product COMPAQ TRIFLEX2 0x2000 Triflex Host-PCI Bridge product COMPAQ QVISION_V0 0x3032 QVision product COMPAQ QVISION_1280P 0x3033 QVision 1280/p product COMPAQ QVISION_V2 0x3034 QVision -product COMPAQ TRIFLEX4 0x4000 Triflex Host-PCI Bridge -product COMPAQ USB 0x7020 USB Controller -product COMPAQ N100TX 0xae32 Netelligent 10/100 TX -product COMPAQ N10T 0xae34 Netelligent 10 T -product COMPAQ IntNF3P 0xae35 Integrated NetFlex 3/P -product COMPAQ IntPL100TX 0xae43 ProLiant Integrated Netelligent 10/100 TX -product COMPAQ DPNet100TX 0xae40 Dual Port Netelligent 10/100 TX -product COMPAQ DP4000 0xb011 Deskpro 4000 5233MMX -product COMPAQ NF3P 0xf130 NetFlex 3/P -product COMPAQ NF3P_BNC 0xf150 NetFlex 3/P w/ BNC +product COMPAQ TRIFLEX4 0x4000 Triflex Host-PCI Bridge +product COMPAQ USB 0x7020 USB Controller +product COMPAQ N100TX 0xae32 Netelligent 10/100 TX +product COMPAQ Nunknown 0xae33 Netelligent unknown +product COMPAQ N10T 0xae34 Netelligent 10 T +product COMPAQ IntNF3P 0xae35 Integrated NetFlex 3/P +product COMPAQ DPNet100TX 0xae40 Dual Port Netelligent 10/100 TX +product COMPAQ IntPL100TX 0xae43 ProLiant Integrated Netelligent 10/100 TX +product COMPAQ DP4000 0xb011 Deskpro 4000 5233MMX +product COMPAQ N10T2 0xb012 Netelligent 10 T/2 PCI UTP/Coax +product COMPAQ N10_TX_UTP 0xb030 Netelligent 10/100 TX UTP +product COMPAQ NF3P 0xf130 NetFlex 3/P +product COMPAQ NF3P_BNC 0xf150 NetFlex 3/P w/ BNC /* Compex */ product COMPEX COMPEXE 0x1401 Compex Ethernet @@ -943,6 +946,11 @@ product NUMBER9 I128_2 0x2339 Imagine-128 II /* Oak Technologies products */ product OAKTECH OTI1007 0x0107 OTI107 +/* Olicom */ +product OLICOM OC2183 0x0013 OC2183 +product OLICOM OC2325 0x0012 OC2325 +product OLICOM OC2326 0x0014 OC2326 + /* Opti products */ product OPTI 82C557 0xc557 82C557 Host Bridge product OPTI 82C558 0xc558 82C558 PCI-ISA Bridge |