summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--sys/dev/pci/files.pci8
-rw-r--r--sys/dev/pci/if_em.c2612
-rw-r--r--sys/dev/pci/if_em.h189
-rw-r--r--sys/dev/pci/if_em_hw.c3567
-rw-r--r--sys/dev/pci/if_em_hw.h1784
-rw-r--r--sys/dev/pci/if_em_osdep.h131
6 files changed, 8290 insertions, 1 deletions
diff --git a/sys/dev/pci/files.pci b/sys/dev/pci/files.pci
index 3bb17a3d590..908da3c0032 100644
--- a/sys/dev/pci/files.pci
+++ b/sys/dev/pci/files.pci
@@ -1,4 +1,4 @@
-# $OpenBSD: files.pci,v 1.142 2002/08/05 19:02:19 mickey Exp $
+# $OpenBSD: files.pci,v 1.143 2002/09/24 18:56:01 nate Exp $
# $NetBSD: files.pci,v 1.20 1996/09/24 17:47:15 christos Exp $
#
# Config file and device description for machine-independent PCI code.
@@ -274,6 +274,12 @@ file dev/pci/if_xl_pci.c xl_pci
attach fxp at pci with fxp_pci
file dev/pci/if_fxp_pci.c fxp_pci
+# Intel Pro/1000
+device em: ether, ifnet, ifmedia
+attach em at pci
+file dev/pci/if_em.c em
+file dev/pci/if_em_hw.c em
+
# DEC/Intel 21143 and "tulip" clone ethernet
attach dc at pci with dc_pci
file dev/pci/if_dc_pci.c dc_pci
diff --git a/sys/dev/pci/if_em.c b/sys/dev/pci/if_em.c
new file mode 100644
index 00000000000..f83e9f099d1
--- /dev/null
+++ b/sys/dev/pci/if_em.c
@@ -0,0 +1,2612 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+
+#include "bpfilter.h"
+#include "vlan.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/device.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#ifdef INET
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/in_var.h>
+#include <netinet/ip.h>
+#include <netinet/if_ether.h>
+#endif
+
+#if NVLAN > 0
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+#endif
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#endif
+
+#include <uvm/uvm_extern.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcidevs.h>
+
+#include <dev/pci/if_em.h>
+
+/*********************************************************************
+ * Set this to one to display debug statistics
+ *********************************************************************/
+int em_display_debug_stats = 0;
+
+/*********************************************************************
+ * Linked list of board private structures for all NICs found
+ *********************************************************************/
+#if 0
+struct em_softc *em_em_softc_list = NULL;
+#endif
+
+/*********************************************************************
+ * Driver version
+ *********************************************************************/
+
+char em_driver_version[] = "1.3.14";
+
+
+/*********************************************************************
+ * PCI Device ID Table
+ *********************************************************************/
+struct em_device
+{
+ u_int16_t vendor_id;
+ u_int16_t device_id;
+ int match;
+};
+
+struct em_device em_devs[] =
+{
+ /* Intel(R) PRO/1000 Network Connection */
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_SC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_SC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LX, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_SC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_SC, 2},
+ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_LX, 2},
+};
+
+/*********************************************************************
+ * Function prototypes
+ *********************************************************************/
+int em_probe(struct device *, void *, void *);
+void em_attach(struct device *, struct device *, void *);
+
+#if 0
+int em_detach(void *);
+int em_shutdown(void *);
+#endif
+int em_intr(void *);
+void em_start(struct ifnet *);
+int em_ioctl(struct ifnet *, IOCTL_CMD_TYPE, caddr_t);
+void em_watchdog(struct ifnet *);
+void em_init(void *);
+void em_stop(void *);
+void em_media_status(struct ifnet *, struct ifmediareq *);
+int em_media_change(struct ifnet *);
+void em_identify_hardware(struct em_softc *);
+int em_allocate_pci_resources(struct em_softc *);
+void em_free_pci_resources(struct em_softc *);
+void em_local_timer(void *);
+int em_hardware_init(struct em_softc *);
+void em_setup_interface(struct em_softc *);
+int em_setup_transmit_structures(struct em_softc *);
+void em_initialize_transmit_unit(struct em_softc *);
+int em_setup_receive_structures(struct em_softc *);
+void em_initialize_receive_unit(struct em_softc *);
+void em_enable_intr(struct em_softc *);
+void em_disable_intr(struct em_softc *);
+void em_free_transmit_structures(struct em_softc *);
+void em_free_receive_structures(struct em_softc *);
+void em_update_stats_counters(struct em_softc *);
+void em_clean_transmit_interrupts(struct em_softc *);
+int em_allocate_receive_structures(struct em_softc *);
+int em_allocate_transmit_structures(struct em_softc *);
+void em_process_receive_interrupts(struct em_softc *);
+void em_receive_checksum(struct em_softc *,
+ struct em_rx_desc * rx_desc,
+ struct mbuf *);
+#if 0
+void em_transmit_checksum_setup(struct em_softc *,
+ struct mbuf *,
+ struct em_tx_buffer *,
+ u_int32_t *,
+ u_int32_t *);
+#endif /* 0 */
+void em_set_promisc(struct em_softc *);
+void em_disable_promisc(struct em_softc *);
+void em_set_multi(struct em_softc *);
+void em_print_hw_stats(struct em_softc *);
+void em_print_link_status(struct em_softc *);
+int em_get_buf(struct em_rx_buffer *, struct em_softc *,
+ struct mbuf *);
+void em_enable_vlans(struct em_softc *em_softc);
+
+
+int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm,
+ bus_size_t size);
+void em_free_dma(struct em_softc *sc, struct em_dmamap *emm);
+
+/*********************************************************************
+ * FreeBSD Device Interface Entry Points
+ *********************************************************************/
+
+struct cfattach em_ca = {
+ sizeof(struct em_softc), em_probe, em_attach
+};
+
+struct cfdriver em_cd = {
+ 0, "em", DV_IFNET
+};
+
+/*********************************************************************
+ * Device identification routine
+ *
+ * em_probe determines if the driver should be loaded on
+ * adapter based on PCI vendor/device id of the adapter.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+int
+em_probe(struct device *parent, void *match, void *aux)
+{
+ struct pci_attach_args *pa = (struct pci_attach_args *)aux;
+ int i;
+
+ INIT_DEBUGOUT("em_probe: begin");
+
+ for (i = 0; i < sizeof(em_devs) / sizeof(em_devs[0]); i++) {
+ if (PCI_VENDOR(pa->pa_id) == em_devs[i].vendor_id &&
+ PCI_PRODUCT(pa->pa_id) == em_devs[i].device_id)
+ return (em_devs[i].match);
+ }
+
+ return (0);
+}
+
+/*********************************************************************
+ * Device initialization routine
+ *
+ * The attach entry point is called when the driver is being loaded.
+ * This routine identifies the type of hardware, allocates all resources
+ * and initializes the hardware.
+ *
+ *********************************************************************/
+
+void
+em_attach(struct device *parent, struct device *self, void *aux)
+{
+ struct pci_attach_args *pa = aux;
+#if 0
+ pci_chipset_tag_t pc = pa->pa_pc;
+#endif
+ struct em_softc *sc = (struct em_softc *)self;
+ int s;
+ int tsize, rsize;
+
+ INIT_DEBUGOUT("em_attach: begin");
+ s = splimp();
+
+ sc->osdep.em_pa = *pa;
+
+ timeout_set(&sc->em_timeout, em_local_timer, sc);
+
+ /* Determine hardware revision */
+ em_identify_hardware(sc);
+
+ /* Parameters (to be read from user) */
+ sc->num_tx_desc = MAX_TXD;
+ sc->num_rx_desc = MAX_RXD;
+ sc->tx_int_delay = TIDV;
+ sc->rx_int_delay = RIDV;
+ sc->hw.autoneg = DO_AUTO_NEG;
+ sc->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
+ sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ sc->hw.tbi_compatibility_en = TRUE;
+ sc->rx_buffer_len = EM_RXBUFFER_2048;
+
+ sc->hw.fc_high_water = FC_DEFAULT_HI_THRESH;
+ sc->hw.fc_low_water = FC_DEFAULT_LO_THRESH;
+ sc->hw.fc_pause_time = FC_DEFAULT_TX_TIMER;
+ sc->hw.fc_send_xon = TRUE;
+ sc->hw.fc = em_fc_full;
+
+ /* Set the max frame size assuming standard ethernet sized frames */
+ sc->hw.max_frame_size =
+ ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
+
+ sc->hw.min_frame_size =
+ MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
+
+ /* This controls when hardware reports transmit completion status. */
+ if ((EM_REPORT_TX_EARLY == 0) || (EM_REPORT_TX_EARLY == 1)) {
+ sc->hw.report_tx_early = EM_REPORT_TX_EARLY;
+ } else {
+ if (sc->hw.mac_type < em_82543) {
+ sc->hw.report_tx_early = 0;
+ } else {
+ sc->hw.report_tx_early = 1;
+ }
+ }
+
+ if (em_allocate_pci_resources(sc)) {
+ printf("%s: Allocation of PCI resources failed\n",
+ sc->sc_dv.dv_xname);
+ em_free_pci_resources(sc);
+ splx(s);
+ return;
+ }
+
+ tsize = EM_ROUNDUP(sc->num_tx_desc *
+ sizeof(struct em_tx_desc), 4096);
+
+ /* Allocate Transmit Descriptor ring */
+ if(em_malloc_dma(sc, &sc->osdep.em_tx, tsize)) {
+ printf("%s: Unable to allocate TxDescriptor memory\n",
+ sc->sc_dv.dv_xname);
+ em_free_pci_resources(sc);
+ splx(s);
+ return;
+ }
+
+ sc->tx_desc_base = (struct em_tx_desc *)sc->osdep.em_tx.emm_kva;
+
+ rsize = EM_ROUNDUP(sc->num_rx_desc *
+ sizeof(struct em_rx_desc), 4096);
+
+ /* Allocate Receive Descriptor ring */
+ if(em_malloc_dma(sc, &sc->osdep.em_rx, rsize)) {
+ printf("%s: Unable to allocate rx_desc memory\n",
+ sc->sc_dv.dv_xname);
+ em_free_pci_resources(sc);
+ em_free_dma(sc, &sc->osdep.em_tx);
+ splx(s);
+ return;
+ }
+
+ sc->rx_desc_base = (struct em_rx_desc *)sc->osdep.em_rx.emm_kva;
+
+ /* Initialize the hardware */
+ if (em_hardware_init(sc)) {
+ printf("%s: Unable to initialize the hardware\n",
+ sc->sc_dv.dv_xname);
+ em_free_pci_resources(sc);
+ em_free_dma(sc, &sc->osdep.em_tx);
+ em_free_dma(sc, &sc->osdep.em_rx);
+ splx(s);
+ return;
+ }
+
+ /* Copy the permanent MAC address out of the EEPROM */
+ if (em_read_mac_addr(&sc->hw) < 0) {
+ printf("%s: EEPROM read error while reading mac address\n",
+ sc->sc_dv.dv_xname);
+ return;
+ }
+
+ memcpy((char *)&sc->arpcom.ac_enaddr, sc->hw.mac_addr,
+ ETH_LENGTH_OF_ADDRESS);
+
+ /* Setup OS specific network interface */
+ em_setup_interface(sc);
+
+ /* Initialize statistics */
+ em_clear_hw_cntrs(&sc->hw);
+ em_update_stats_counters(sc);
+ sc->hw.get_link_status = 1;
+ em_check_for_link(&sc->hw);
+
+ /* Print the link status */
+ if (sc->link_active == 1) {
+ em_get_speed_and_duplex(&sc->hw, &sc->link_speed,
+ &sc->link_duplex);
+ }
+
+ INIT_DEBUGOUT("em_attach: end");
+ splx(s);
+}
+
+/*********************************************************************
+ * Device removal routine
+ *
+ * The detach entry point is called when the driver is being removed.
+ * This routine stops the em_softc and deallocates all the resources
+ * that were allocated for driver operation.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+#if 0
+int
+em_detach(void* arg)
+{
+ struct em_softc *sc = arg;
+ struct ifnet *ifp = &sc->arpcom.ac_if;
+ int s;
+
+ INIT_DEBUGOUT("em_detach: begin");
+ s = splimp();
+
+ em_stop(sc);
+ em_phy_hw_reset(&sc->hw);
+ if_detach(ifp);
+ ether_ifdetach(ifp);
+ em_free_pci_resources(sc);
+
+ /* Free Transmit Descriptor ring */
+ if (sc->tx_desc_base) {
+ em_free_dma(sc, &sc->osdep.em_tx);
+ sc->tx_desc_base = NULL;
+ }
+
+ /* Free Receive Descriptor ring */
+ if (sc->rx_desc_base) {
+ em_free_dma(sc, &sc->osdep.em_rx);
+ sc->rx_desc_base = NULL;
+ }
+
+#if 0
+ /* Remove from the em_softc list */
+ if (em_em_softc_list == sc)
+ em_em_softc_list = sc->next;
+ if (sc->next != NULL)
+ sc->next->prev = sc->prev;
+ if (sc->prev != NULL)
+ sc->prev->next = sc->next;
+#endif /* 0 */
+
+ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
+ ifp->if_timer = 0;
+
+ splx(s);
+ return(0);
+}
+
+int
+em_shutdown(void* arg)
+{
+ struct em_softc *sc = arg;
+ em_stop(sc);
+ return(0);
+}
+
+#endif /* 0 */
+
+/*********************************************************************
+ * Transmit entry point
+ *
+ * em_start is called by the stack to initiate a transmit.
+ * The driver will remain in this routine as long as there are
+ * packets to transmit and transmit resources are available.
+ * In case resources are not available stack is notified and
+ * the packet is requeued.
+ **********************************************************************/
+
+void
+em_start(struct ifnet *ifp)
+{
+ int i, s;
+ struct mbuf *m_head;
+ u_int32_t txd_upper;
+ u_int32_t txd_lower;
+ struct em_tx_buffer *tx_buffer;
+ struct em_tx_desc *current_tx_desc = NULL;
+ struct em_softc * sc = ifp->if_softc;
+
+ if (!sc->link_active)
+ return;
+
+ s = splimp();
+
+ for(;;) {
+ struct ifvlan *ifv = NULL;
+
+ IFQ_POLL(&ifp->if_snd, m_head);
+
+ if (m_head == NULL) break;
+
+ if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD)
+ em_clean_transmit_interrupts(sc);
+
+ if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD) {
+ ifp->if_flags |= IFF_OACTIVE;
+ sc->no_tx_desc_avail++;
+ break;
+ }
+
+ tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list);
+ if (!tx_buffer) {
+ sc->no_tx_buffer_avail1++;
+ /*
+ * OK so we should not get here but I've seen
+ * it so let us try to clean up and then try
+ * to get a tx_buffer again and only break if
+ * we still don't get one.
+ */
+ em_clean_transmit_interrupts(sc);
+ tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list);
+ if (!tx_buffer) {
+ ifp->if_flags |= IFF_OACTIVE;
+ sc->no_tx_buffer_avail2++;
+ break;
+ }
+ }
+
+ IFQ_DEQUEUE(&ifp->if_snd, m_head);
+
+ SIMPLEQ_REMOVE_HEAD(&sc->free_tx_buffer_list, tx_buffer,
+ em_tx_entry);
+
+ tx_buffer->num_tx_desc_used = 0;
+ tx_buffer->m_head = m_head;
+#if 0
+ if (ifp->if_hwassist > 0) {
+ em_transmit_checksum_setup(sc, m_head, tx_buffer,
+ &txd_upper, &txd_lower);
+ } else {
+#endif
+ txd_upper = 0;
+ txd_lower = 0;
+#if 0
+ }
+#endif
+
+ /* Find out if we are in vlan mode */
+ if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) ==
+ (M_PROTO1|M_PKTHDR) &&
+ m_head->m_pkthdr.rcvif != NULL &&
+ m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
+ ifv = m_head->m_pkthdr.rcvif->if_softc;
+
+ if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat,
+ tx_buffer->dmamap,
+ m_head, BUS_DMA_NOWAIT))
+ return;
+
+ for (i = 0; i < tx_buffer->dmamap->dm_nsegs; i++) {
+ bus_addr_t addr= tx_buffer->dmamap->dm_segs[i].ds_addr;
+ bus_size_t len = tx_buffer->dmamap->dm_segs[i].ds_len;
+
+ current_tx_desc = sc->next_avail_tx_desc;
+ current_tx_desc->buffer_addr = htole64(addr);
+
+ current_tx_desc->lower.data = htole32(txd_lower | len);
+ current_tx_desc->upper.data = htole32(txd_upper);
+
+ if (current_tx_desc == sc->last_tx_desc)
+ sc->next_avail_tx_desc =
+ sc->first_tx_desc;
+ else
+ sc->next_avail_tx_desc++;
+
+ sc->num_tx_desc_avail--;
+ tx_buffer->num_tx_desc_used++;
+ }
+
+ /* Put this tx_buffer at the end in the "in use" list */
+ SIMPLEQ_INSERT_TAIL(&sc->used_tx_buffer_list, tx_buffer,
+ em_tx_entry);
+
+ if (ifv != NULL) {
+ /* Tell hardware to add tag */
+ current_tx_desc->lower.data |=
+ htole32(E1000_TXD_CMD_VLE);
+
+ /* Set the vlan id */
+ current_tx_desc->upper.fields.special =
+ htole16(ifv->ifv_tag);
+ }
+
+ /*
+ * Last Descriptor of Packet needs End Of Packet
+ * (EOP), Report Status (RS) and append Ethernet CRC
+ * (IFCS) bits set.
+ */
+ current_tx_desc->lower.data |=
+ htole32(sc->txd_cmd|E1000_TXD_CMD_EOP);
+
+#if NBPFILTER > 0
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ if (ifp->if_bpf)
+ bpf_mtap(ifp->if_bpf, m_head);
+#endif
+
+ /*
+ * Advance the Transmit Descriptor Tail (Tdt), this
+ * tells the E1000 that this frame is available to
+ * transmit.
+ */
+ E1000_WRITE_REG(&sc->hw, TDT,
+ (((_BSD_PTRDIFF_T_) sc->next_avail_tx_desc -
+ (_BSD_PTRDIFF_T_) sc->first_tx_desc) >> 4));
+ } /* end of while loop */
+
+ splx(s);
+
+ /* Set timeout in case chip has problems transmitting */
+ ifp->if_timer = EM_TX_TIMEOUT;
+
+ return;
+}
+
+/*********************************************************************
+ * Ioctl entry point
+ *
+ * em_ioctl is called when the user wants to configure the
+ * interface.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+int
+em_ioctl(struct ifnet *ifp, IOCTL_CMD_TYPE command, caddr_t data)
+{
+ int s, error = 0;
+ struct ifreq *ifr = (struct ifreq *) data;
+ struct ifaddr *ifa = (struct ifaddr *)data;
+ struct em_softc * sc = ifp->if_softc;
+
+ s = splimp();
+
+ if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
+ splx(s);
+ return (error);
+ }
+
+ switch (command) {
+ case SIOCSIFADDR:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFADDR (Set Interface "
+ "Addr)");
+ ifp->if_flags |= IFF_UP;
+ switch (ifa->ifa_addr->sa_family) {
+#ifdef INET
+ case AF_INET:
+ em_init(sc);
+ arp_ifinit(&sc->arpcom, ifa);
+ break;
+#endif /* INET */
+ default:
+ em_init(sc);
+ break;
+ }
+ break;
+ case SIOCSIFMTU:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
+ if (ifr->ifr_mtu > MAX_JUMBO_FRAME_SIZE - ETHER_HDR_LEN) {
+ error = EINVAL;
+ } else {
+ ifp->if_mtu = ifr->ifr_mtu;
+ sc->hw.max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ em_init(sc);
+ }
+ break;
+ case SIOCSIFFLAGS:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface "
+ "Flags)");
+ if (ifp->if_flags & IFF_UP) {
+ if (ifp->if_flags & IFF_RUNNING &&
+ ifp->if_flags & IFF_PROMISC) {
+ em_set_promisc(sc);
+ } else if (ifp->if_flags & IFF_RUNNING &&
+ !(ifp->if_flags & IFF_PROMISC)) {
+ em_disable_promisc(sc);
+ } else
+ em_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING) {
+ em_stop(sc);
+ }
+ }
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
+#if 0
+ if (ifp->if_flags & IFF_RUNNING) {
+ em_disable_intr(sc);
+ em_set_multi(sc);
+ if (sc->hw.mac_type == em_82542_rev2_0)
+ em_initialize_receive_unit(sc);
+ em_enable_intr(sc);
+ }
+ break;
+#endif /* 0 */
+ error = (command == SIOCADDMULTI)
+ ? ether_addmulti(ifr, &sc->arpcom)
+ : ether_delmulti(ifr, &sc->arpcom);
+
+ if (error == ENETRESET) {
+ if (ifp->if_flags & IFF_RUNNING) {
+ em_disable_intr(sc);
+ em_set_multi(sc);
+ if (sc->hw.mac_type == em_82542_rev2_0)
+ em_initialize_receive_unit(sc);
+ em_enable_intr(sc);
+ }
+ error = 0;
+ }
+ break;
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface "
+ "Media)");
+ error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
+ break;
+#if 0
+ case SIOCSIFCAP:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+ if (mask & IFCAP_HWCSUM) {
+ if (IFCAP_HWCSUM & ifp->if_capenable)
+ ifp->if_capenable &= ~IFCAP_HWCSUM;
+ else
+ ifp->if_capenable |= IFCAP_HWCSUM;
+ if (ifp->if_flags & IFF_RUNNING)
+ em_init(sc);
+ }
+ break;
+#endif /* 0 */
+ default:
+ IOCTL_DEBUGOUT1("ioctl received: UNKNOWN (0x%d)\n",
+ (int)command);
+ error = EINVAL;
+ }
+
+ splx(s);
+ return(error);
+}
+
+void
+em_set_promisc(struct em_softc * sc)
+{
+
+ u_int32_t reg_rctl;
+ struct ifnet *ifp = &sc->arpcom.ac_if;
+
+ reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
+
+ if (ifp->if_flags & IFF_PROMISC) {
+ reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+ } else if (ifp->if_flags & IFF_ALLMULTI) {
+ reg_rctl |= E1000_RCTL_MPE;
+ reg_rctl &= ~E1000_RCTL_UPE;
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+ }
+
+ return;
+}
+
+void
+em_disable_promisc(struct em_softc * sc)
+{
+ u_int32_t reg_rctl;
+
+ reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
+
+ reg_rctl &= (~E1000_RCTL_UPE);
+ reg_rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+
+ return;
+}
+
+
+/*********************************************************************
+ * Multicast Update
+ *
+ * This routine is called whenever multicast address list is updated.
+ *
+ **********************************************************************/
+
+void
+em_set_multi(struct em_softc * sc)
+{
+ u_int32_t reg_rctl = 0;
+ u_int8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
+ u_int16_t pci_cmd_word;
+#if 0
+ struct ifmultiaddr *ifma;
+#endif
+ int mcnt = 0;
+ struct pci_attach_args *pa = &sc->osdep.em_pa;
+#if 0
+ struct ifnet *ifp = &sc->arpcom.ac_if;
+#endif
+
+ IOCTL_DEBUGOUT("em_set_multi: begin");
+
+ if (sc->hw.mac_type == em_82542_rev2_0) {
+ reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
+ if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ pci_cmd_word = sc->hw.pci_cmd_word &
+ ~CMD_MEM_WRT_INVALIDATE;
+ pci_conf_write(pa->pa_pc, pa->pa_tag,
+ PCI_COMMAND_STATUS_REG, pci_cmd_word);
+ }
+ reg_rctl |= E1000_RCTL_RST;
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+ msec_delay(5);
+ }
+
+#if 0
+#if __FreeBSD_version < 500000
+ LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+#else
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+#endif
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
+ mcnt++;
+ }
+#endif /* 0 */
+
+ if (mcnt > MAX_NUM_MULTICAST_ADDRESSES) {
+ reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
+ reg_rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+ } else
+ em_mc_addr_list_update(&sc->hw, mta, mcnt, 0);
+
+ if (sc->hw.mac_type == em_82542_rev2_0) {
+ reg_rctl = E1000_READ_REG(&sc->hw, RCTL);
+ reg_rctl &= ~E1000_RCTL_RST;
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+ msec_delay(5);
+ if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ pci_conf_write(pa->pa_pc, pa->pa_tag,
+ PCI_COMMAND_STATUS_REG,
+ sc->hw.pci_cmd_word);
+ }
+ }
+
+ return;
+}
+
+/*********************************************************************
+ * Watchdog entry point
+ *
+ * This routine is called whenever hardware quits transmitting.
+ *
+ **********************************************************************/
+
+void
+em_watchdog(struct ifnet *ifp)
+{
+ struct em_softc * sc;
+ sc = ifp->if_softc;
+
+ /* If we are in this routine because of pause frames, then
+ * don't reset the hardware.
+ */
+ if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_TXOFF) {
+ ifp->if_timer = EM_TX_TIMEOUT;
+ return;
+ }
+
+ printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname);
+
+ ifp->if_flags &= ~IFF_RUNNING;
+
+ em_stop(sc);
+ em_init(sc);
+
+ ifp->if_oerrors++;
+ return;
+}
+
+/*********************************************************************
+ * Timer routine
+ *
+ * This routine checks for link status and updates statistics.
+ *
+ **********************************************************************/
+
+void
+em_local_timer(void *arg)
+{
+ int s;
+ struct ifnet *ifp;
+ struct em_softc * sc = arg;
+ ifp = &sc->arpcom.ac_if;
+
+ s = splimp();
+
+ em_check_for_link(&sc->hw);
+ em_print_link_status(sc);
+ em_update_stats_counters(sc);
+ if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING) {
+ em_print_hw_stats(sc);
+ }
+ timeout_add(&sc->em_timeout, 2*hz);
+
+ splx(s);
+ return;
+}
+
+void
+em_print_link_status(struct em_softc * sc)
+{
+ if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) {
+ if (sc->link_active == 0) {
+ em_get_speed_and_duplex(&sc->hw,
+ &sc->link_speed,
+ &sc->link_duplex);
+ printf("%s: Link is up %d Mbps %s\n",
+ sc->sc_dv.dv_xname,
+ sc->link_speed,
+ ((sc->link_duplex == FULL_DUPLEX) ?
+ "Full Duplex" : "Half Duplex"));
+ sc->link_active = 1;
+ }
+ } else {
+ if (sc->link_active == 1) {
+ sc->link_speed = 0;
+ sc->link_duplex = 0;
+ printf("%s: Link is Down\n", sc->sc_dv.dv_xname);
+ sc->link_active = 0;
+ }
+ }
+
+ return;
+}
+
+/*********************************************************************
+ * Init entry point
+ *
+ * This routine is used in two ways. It is used by the stack as
+ * init entry point in network interface structure. It is also used
+ * by the driver as a hw/sw initialization routine to get to a
+ * consistent state.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+void
+em_init(void *arg)
+{
+ int s;
+ struct ifnet *ifp;
+ struct em_softc * sc= arg;
+
+ INIT_DEBUGOUT("em_init: begin");
+
+ s = splimp();
+
+ em_stop(sc);
+
+ /* Initialize the hardware */
+ if (em_hardware_init(sc)) {
+ printf("%s: Unable to initialize the hardware\n",
+ sc->sc_dv.dv_xname);
+ splx(s);
+ return;
+ }
+
+ em_enable_vlans(sc);
+
+ /* Prepare transmit descriptors and buffers */
+ if (em_setup_transmit_structures(sc)) {
+ printf("%s: Could not setup transmit structures\n",
+ sc->sc_dv.dv_xname);
+ em_stop(sc);
+ splx(s);
+ return;
+ }
+ em_initialize_transmit_unit(sc);
+
+ /* Setup Multicast table */
+ em_set_multi(sc);
+
+ /* Prepare receive descriptors and buffers */
+ if (em_setup_receive_structures(sc)) {
+ printf("%s: Could not setup receive structures\n",
+ sc->sc_dv.dv_xname);
+ em_stop(sc);
+ splx(s);
+ return;
+ }
+ em_initialize_receive_unit(sc);
+
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+#if 0
+ if (sc->hw.mac_type >= em_82543) {
+ if (ifp->if_capenable & IFCAP_TXCSUM)
+ ifp->if_hwassist = EM_CHECKSUM_FEATURES;
+ else
+ ifp->if_hwassist = 0;
+ }
+#endif /* 0 */
+
+ timeout_add(&sc->em_timeout, 2*hz);
+ em_clear_hw_cntrs(&sc->hw);
+ em_enable_intr(sc);
+
+ splx(s);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the em_softc by issuing a
+ * global reset on the MAC and deallocates TX/RX buffers.
+ *
+ **********************************************************************/
+
+void
+em_stop(void *arg)
+{
+ struct ifnet *ifp;
+ struct em_softc * sc = arg;
+ ifp = &sc->arpcom.ac_if;
+
+ INIT_DEBUGOUT("em_stop: begin\n");
+ em_disable_intr(sc);
+ em_reset_hw(&sc->hw);
+ timeout_del(&sc->em_timeout);
+ em_free_transmit_structures(sc);
+ em_free_receive_structures(sc);
+
+
+ /* Tell the stack that the interface is no longer active */
+ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Interrupt Service routine
+ *
+ **********************************************************************/
+
+int
+em_intr(void *arg)
+{
+ u_int32_t loop_cnt = EM_MAX_INTR;
+ u_int32_t reg_icr;
+ struct ifnet *ifp;
+ struct em_softc *sc= arg;
+
+ ifp = &sc->arpcom.ac_if;
+
+ em_disable_intr(sc);
+ while (loop_cnt > 0 &&
+ (reg_icr = E1000_READ_REG(&sc->hw, ICR)) != 0) {
+
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ timeout_del(&sc->em_timeout);
+ sc->hw.get_link_status = 1;
+ em_check_for_link(&sc->hw);
+ em_print_link_status(sc);
+ timeout_add(&sc->em_timeout, 2*hz);
+ }
+
+ if (ifp->if_flags & IFF_RUNNING) {
+ em_process_receive_interrupts(sc);
+ em_clean_transmit_interrupts(sc);
+ }
+ loop_cnt--;
+ }
+
+ em_enable_intr(sc);
+
+ if (ifp->if_flags & IFF_RUNNING && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
+ em_start(ifp);
+
+ return (EM_MAX_INTR != loop_cnt);
+}
+
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called whenever the user queries the status of
+ * the interface using ifconfig.
+ *
+ **********************************************************************/
+void
+em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct em_softc * sc= ifp->if_softc;
+
+ INIT_DEBUGOUT("em_media_status: begin");
+
+ em_check_for_link(&sc->hw);
+ if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) {
+ if (sc->link_active == 0) {
+ em_get_speed_and_duplex(&sc->hw,
+ &sc->link_speed,
+ &sc->link_duplex);
+ sc->link_active = 1;
+ }
+ } else {
+ if (sc->link_active == 1) {
+ sc->link_speed = 0;
+ sc->link_duplex = 0;
+ sc->link_active = 0;
+ }
+ }
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!sc->link_active)
+ return;
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if (sc->hw.media_type == em_media_type_fiber) {
+ ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
+ } else {
+ switch (sc->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+#if __FreeBSD_version < 500000
+ ifmr->ifm_active |= IFM_1000_TX;
+#else
+ ifmr->ifm_active |= IFM_1000_T;
+#endif
+ break;
+ }
+ if (sc->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called when the user changes speed/duplex using
+ * media/mediopt option with ifconfig.
+ *
+ **********************************************************************/
+int
+em_media_change(struct ifnet *ifp)
+{
+ struct em_softc * sc = ifp->if_softc;
+ struct ifmedia *ifm = &sc->media;
+
+ INIT_DEBUGOUT("em_media_change: begin");
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return(EINVAL);
+
+ switch (IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ sc->hw.autoneg = DO_AUTO_NEG;
+ sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ break;
+ case IFM_1000_SX:
+#if __FreeBSD_version < 500000
+ case IFM_1000_TX:
+#else
+ case IFM_1000_T:
+#endif
+ sc->hw.autoneg = DO_AUTO_NEG;
+ sc->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case IFM_100_TX:
+ sc->hw.autoneg = FALSE;
+ sc->hw.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ sc->hw.forced_speed_duplex = em_100_full;
+ else
+ sc->hw.forced_speed_duplex = em_100_half;
+ break;
+ case IFM_10_T:
+ sc->hw.autoneg = FALSE;
+ sc->hw.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ sc->hw.forced_speed_duplex = em_10_full;
+ else
+ sc->hw.forced_speed_duplex = em_10_half;
+ break;
+ default:
+ printf("%s: Unsupported media type\n", sc->sc_dv.dv_xname);
+ }
+
+ em_init(sc);
+
+ return(0);
+}
+/* Section end: Other registered entry points */
+
+
+/*********************************************************************
+ *
+ * Determine hardware revision.
+ *
+ **********************************************************************/
+void
+em_identify_hardware(struct em_softc * sc)
+{
+ u_int32_t reg;
+ struct pci_attach_args *pa = &sc->osdep.em_pa;
+
+ /* Make sure our PCI config space has the necessary stuff set */
+ sc->hw.pci_cmd_word = pci_conf_read(pa->pa_pc, pa->pa_tag,
+ PCI_COMMAND_STATUS_REG);
+ if (!((sc->hw.pci_cmd_word & PCI_COMMAND_MASTER_ENABLE) &&
+ (sc->hw.pci_cmd_word & PCI_COMMAND_MEM_ENABLE))) {
+ printf("%s: Memory Access and/or Bus Master bits not set!\n",
+ sc->sc_dv.dv_xname);
+ sc->hw.pci_cmd_word |=
+ (PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE);
+ pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
+ sc->hw.pci_cmd_word);
+ }
+
+ /* Save off the information about this board */
+ sc->hw.vendor_id = PCI_VENDOR(pa->pa_id);
+ sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
+
+ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG);
+ sc->hw.revision_id = PCI_REVISION(reg);
+
+ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
+
+ sc->hw.subsystem_vendor_id = PCI_VENDOR(reg);
+ sc->hw.subsystem_id = PCI_PRODUCT(reg);
+
+ /* Set MacType, etc. based on this PCI info */
+ switch (sc->hw.device_id) {
+ case E1000_DEV_ID_82542:
+ sc->hw.mac_type = (sc->hw.revision_id == 3) ?
+ em_82542_rev2_1 : em_82542_rev2_0;
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ sc->hw.mac_type = em_82543;
+ break;
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ sc->hw.mac_type = em_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ sc->hw.mac_type = em_82540;
+ break;
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545EM_COPPER:
+ sc->hw.mac_type = em_82545;
+ break;
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ sc->hw.mac_type = em_82546;
+ break;
+ default:
+ INIT_DEBUGOUT1("Unknown device id 0x%x", sc->hw.device_id);
+ }
+ return;
+}
+
+int
+em_allocate_pci_resources(struct em_softc * sc)
+{
+ int i, val, rid;
+ pci_intr_handle_t ih;
+ const char *intrstr = NULL;
+ struct pci_attach_args *pa = &sc->osdep.em_pa;
+ pci_chipset_tag_t pc = pa->pa_pc;
+
+ val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_MMBA);
+ if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) {
+ printf(": mmba isn't memory");
+ return (ENXIO);
+ }
+ if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE(val), 0,
+ &sc->osdep.em_btag, &sc->osdep.em_bhandle,
+ &sc->osdep.em_membase, &sc->osdep.em_memsize, 0)) {
+ printf(": can't find mem space");
+ return (ENXIO);
+ }
+
+#if 0
+ if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_32BIT, 0,
+ &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase,
+ &sc->osdep.em_memsize, 0) &&
+ pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_64BIT, 0,
+ &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase,
+ &sc->osdep.em_memsize, 0)) {
+ printf(": can't find mem space");
+ return (ENXIO);
+ }
+#endif /* 0 */
+
+ if (sc->hw.mac_type > em_82543) {
+ /* Figure our where our IO BAR is ? */
+ rid = EM_MMBA;
+ for (i = 0; i < 5; i++) {
+ val = pci_conf_read(pa->pa_pc, pa->pa_tag, rid);
+ if (val & 0x00000001) {
+ sc->io_rid = rid;
+ break;
+ }
+ rid += 4;
+ }
+ if (pci_mapreg_map(pa, rid, PCI_MAPREG_TYPE_IO, 0,
+ &sc->osdep.em_iobtag,
+ &sc->osdep.em_iobhandle,
+ &sc->osdep.em_iobase,
+ &sc->osdep.em_iosize, 0)) {
+ printf(": can't find io space");
+ return (ENXIO);
+ }
+ }
+
+ if (pci_intr_map(pa, &ih)) {
+ printf(": couldn't map interrupt\n");
+ return (ENXIO);
+ }
+
+ intrstr = pci_intr_string(pc, ih);
+ sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, em_intr, sc,
+ sc->sc_dv.dv_xname);
+ if (sc->sc_intrhand == NULL) {
+ printf(": couldn't establish interrupt");
+ if (intrstr != NULL)
+ printf(" at %s", intrstr);
+ printf("\n");
+ return (ENXIO);
+ }
+ printf(": %s\n", intrstr);
+
+ sc->hw.back = &sc->osdep;
+
+ return(0);
+}
+
+void
+em_free_pci_resources(struct em_softc* sc)
+{
+ struct pci_attach_args *pa = &sc->osdep.em_pa;
+ pci_chipset_tag_t pc = pa->pa_pc;
+
+ if(sc->sc_intrhand)
+ pci_intr_disestablish(pc, sc->sc_intrhand);
+ sc->sc_intrhand = 0;
+
+ if(sc->osdep.em_iobase)
+ bus_space_unmap(sc->osdep.em_iobtag, sc->osdep.em_iobhandle,
+ sc->osdep.em_iosize);
+ sc->osdep.em_iobase = 0;
+
+ if(sc->osdep.em_membase)
+ bus_space_unmap(sc->osdep.em_btag, sc->osdep.em_bhandle,
+ sc->osdep.em_memsize);
+ sc->osdep.em_membase = 0;
+
+}
+
+/*********************************************************************
+ *
+ * Initialize the hardware to a configuration as specified by the
+ * em_softc structure. The controller is reset, the EEPROM is
+ * verified, the MAC address is set, then the shared initialization
+ * routines are called.
+ *
+ **********************************************************************/
+int
+em_hardware_init(struct em_softc * sc)
+{
+ /* Issue a global reset */
+ em_reset_hw(&sc->hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (em_validate_eeprom_checksum(&sc->hw) < 0) {
+ printf("%s: The EEPROM Checksum Is Not Valid\n",
+ sc->sc_dv.dv_xname);
+ return(EIO);
+ }
+
+ if (em_read_part_num(&sc->hw, &(sc->part_num)) < 0) {
+ printf("%s: EEPROM read error while reading part number\n",
+ sc->sc_dv.dv_xname);
+ return(EIO);
+ }
+
+ if (em_init_hw(&sc->hw) < 0) {
+ printf("%s: Hardware Initialization Failed",
+ sc->sc_dv.dv_xname);
+ return(EIO);
+ }
+
+ em_check_for_link(&sc->hw);
+ if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU)
+ sc->link_active = 1;
+ else
+ sc->link_active = 0;
+
+ if (sc->link_active) {
+ em_get_speed_and_duplex(&sc->hw,
+ &sc->link_speed,
+ &sc->link_duplex);
+ } else {
+ sc->link_speed = 0;
+ sc->link_duplex = 0;
+ }
+
+ return(0);
+}
+
+/*********************************************************************
+ *
+ * Setup networking device structure and register an interface.
+ *
+ **********************************************************************/
+void
+em_setup_interface(struct em_softc * sc)
+{
+ struct ifnet *ifp;
+ INIT_DEBUGOUT("em_setup_interface: begin");
+
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_output = ether_output;
+ ifp->if_baudrate = 1000000000;
+#if 0
+ ifp->if_init = em_init;
+#endif
+ ifp->if_softc = sc;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = em_ioctl;
+ ifp->if_start = em_start;
+ ifp->if_watchdog = em_watchdog;
+ IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
+ IFQ_SET_READY(&ifp->if_snd);
+
+ bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
+
+
+#if 0
+ if (sc->hw.mac_type >= em_82543) {
+ ifp->if_capabilities = IFCAP_HWCSUM;
+ ifp->if_capenable = ifp->if_capabilities;
+ }
+#endif /* 0 */
+
+ /*
+ * Specify the media types supported by this em_softc and register
+ * callbacks to update media and link information
+ */
+ ifmedia_init(&sc->media, IFM_IMASK, em_media_change,
+ em_media_status);
+ if (sc->hw.media_type == em_media_type_fiber) {
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX,
+ 0, NULL);
+ } else {
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX,
+ 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
+ 0, NULL);
+#if __FreeBSD_version < 500000
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX, 0, NULL);
+#else
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
+#endif
+ }
+ ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
+ ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
+
+ if_attach(ifp);
+ ether_ifattach(ifp);
+
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for tx_buffer structures. The tx_buffer stores all
+ * the information needed to transmit a packet on the wire.
+ *
+ **********************************************************************/
+int
+em_allocate_transmit_structures(struct em_softc * sc)
+{
+ if (!(sc->tx_buffer_area =
+ (struct em_tx_buffer *) malloc(sizeof(struct em_tx_buffer) *
+ sc->num_tx_desc, M_DEVBUF,
+ M_NOWAIT))) {
+ printf("%s: Unable to allocate tx_buffer memory\n",
+ sc->sc_dv.dv_xname);
+ return ENOMEM;
+ }
+
+ bzero(sc->tx_buffer_area,
+ sizeof(struct em_tx_buffer) * sc->num_tx_desc);
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Allocate and initialize transmit structures.
+ *
+ **********************************************************************/
+int
+em_setup_transmit_structures(struct em_softc* sc)
+{
+ struct em_tx_buffer *tx_buffer;
+ int i;
+
+ if (em_allocate_transmit_structures(sc))
+ return ENOMEM;
+
+ sc->first_tx_desc = sc->tx_desc_base;
+ sc->last_tx_desc =
+ sc->first_tx_desc + (sc->num_tx_desc - 1);
+
+
+ SIMPLEQ_INIT(&sc->free_tx_buffer_list);
+ SIMPLEQ_INIT(&sc->used_tx_buffer_list);
+
+ tx_buffer = sc->tx_buffer_area;
+
+ /* Setup the linked list of the tx_buffer's */
+ for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) {
+ bzero((void *) tx_buffer, sizeof(struct em_tx_buffer));
+ if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat, MCLBYTES, 32,
+ MCLBYTES, 0, BUS_DMA_NOWAIT,
+ &tx_buffer->dmamap))
+ return ENOBUFS;
+ SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list,
+ tx_buffer, em_tx_entry);
+ }
+
+ bzero((void *) sc->first_tx_desc,
+ (sizeof(struct em_tx_desc)) * sc->num_tx_desc);
+
+ /* Setup TX descriptor pointers */
+ sc->next_avail_tx_desc = sc->first_tx_desc;
+ sc->oldest_used_tx_desc = sc->first_tx_desc;
+
+ /* Set number of descriptors available */
+ sc->num_tx_desc_avail = sc->num_tx_desc;
+
+ /* Set checksum context */
+ sc->active_checksum_context = OFFLOAD_NONE;
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+em_initialize_transmit_unit(struct em_softc * sc)
+{
+ u_int32_t reg_tctl;
+ u_int32_t reg_tipg = 0;
+
+ /* Setup the Base and Length of the Tx Descriptor Ring */
+ E1000_WRITE_REG(&sc->hw, TDBAL,
+ sc->osdep.em_tx.emm_dmamap->dm_segs[0].ds_addr);
+ E1000_WRITE_REG(&sc->hw, TDBAH, 0);
+ E1000_WRITE_REG(&sc->hw, TDLEN,
+ sc->num_tx_desc *
+ sizeof(struct em_tx_desc));
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(&sc->hw, TDH, 0);
+ E1000_WRITE_REG(&sc->hw, TDT, 0);
+
+
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(&sc->hw, TDBAL),
+ E1000_READ_REG(&sc->hw, TDLEN));
+
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ switch (sc->hw.mac_type) {
+ case em_82543:
+ case em_82544:
+ case em_82540:
+ case em_82545:
+ case em_82546:
+ if (sc->hw.media_type == em_media_type_fiber)
+ reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ case em_82542_rev2_0:
+ case em_82542_rev2_1:
+ reg_tipg = DEFAULT_82542_TIPG_IPGT;
+ reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ default:
+ printf("%s: Invalid mac type detected\n", sc->sc_dv.dv_xname);
+ }
+ E1000_WRITE_REG(&sc->hw, TIPG, reg_tipg);
+ E1000_WRITE_REG(&sc->hw, TIDV, sc->tx_int_delay);
+
+ /* Program the Transmit Control Register */
+ reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+ if (sc->link_duplex == 1) {
+ reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+ } else {
+ reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+ }
+ E1000_WRITE_REG(&sc->hw, TCTL, reg_tctl);
+
+ /* Setup Transmit Descriptor Settings for this adapter */
+ sc->txd_cmd = E1000_TXD_CMD_IFCS;
+
+ if (sc->tx_int_delay > 0)
+ sc->txd_cmd |= E1000_TXD_CMD_IDE;
+
+ if (sc->hw.report_tx_early == 1)
+ sc->txd_cmd |= E1000_TXD_CMD_RS;
+ else
+ sc->txd_cmd |= E1000_TXD_CMD_RPS;
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Free all transmit related data structures.
+ *
+ **********************************************************************/
+void
+em_free_transmit_structures(struct em_softc* sc)
+{
+ struct em_tx_buffer *tx_buffer;
+ int i;
+
+ INIT_DEBUGOUT("free_transmit_structures: begin");
+
+ if (sc->tx_buffer_area != NULL) {
+ tx_buffer = sc->tx_buffer_area;
+ for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) {
+ if (tx_buffer->m_head != NULL)
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ }
+ if (sc->tx_buffer_area != NULL) {
+ free(sc->tx_buffer_area, M_DEVBUF);
+ sc->tx_buffer_area = NULL;
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * The offload context needs to be set when we transfer the first
+ * packet of a particular protocol (TCP/UDP). We change the
+ * context only if the protocol type changes.
+ *
+ **********************************************************************/
+#if 0
+void
+em_transmit_checksum_setup(struct em_softc * sc,
+ struct mbuf *mp,
+ struct em_tx_buffer *tx_buffer,
+ u_int32_t *txd_upper,
+ u_int32_t *txd_lower)
+{
+ struct em_context_desc *TXD;
+ struct em_tx_desc * current_tx_desc;
+ if (mp->m_pkthdr.csum_flags) {
+
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
+ *txd_upper = E1000_TXD_POPTS_TXSM << 8;
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ if (sc->active_checksum_context == OFFLOAD_TCP_IP)
+ return;
+ else
+ sc->active_checksum_context = OFFLOAD_TCP_IP;
+
+ } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
+ *txd_upper = E1000_TXD_POPTS_TXSM << 8;
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ if (sc->active_checksum_context == OFFLOAD_UDP_IP)
+ return;
+ else
+ sc->active_checksum_context = OFFLOAD_UDP_IP;
+ } else {
+ *txd_upper = 0;
+ *txd_lower = 0;
+ return;
+ }
+ } else {
+ *txd_upper = 0;
+ *txd_lower = 0;
+ return;
+ }
+
+ /* If we reach this point, the checksum offload context
+ * needs to be reset.
+ */
+ current_tx_desc = sc->next_avail_tx_desc;
+ TXD = (struct em_context_desc *)current_tx_desc;
+
+ TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
+ TXD->lower_setup.ip_fields.ipcso =
+ ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
+ TXD->lower_setup.ip_fields.ipcse =
+ ETHER_HDR_LEN + sizeof(struct ip) - 1;
+
+ TXD->upper_setup.tcp_fields.tucss =
+ ETHER_HDR_LEN + sizeof(struct ip);
+ TXD->upper_setup.tcp_fields.tucse = 0;
+
+ if (sc->active_checksum_context == OFFLOAD_TCP_IP) {
+ TXD->upper_setup.tcp_fields.tucso =
+ ETHER_HDR_LEN + sizeof(struct ip) +
+ offsetof(struct tcphdr, th_sum);
+ } else if (sc->active_checksum_context == OFFLOAD_UDP_IP) {
+ TXD->upper_setup.tcp_fields.tucso =
+ ETHER_HDR_LEN + sizeof(struct ip) +
+ offsetof(struct udphdr, uh_sum);
+ }
+
+ TXD->tcp_seg_setup.data = 0;
+ TXD->cmd_and_length = E1000_TXD_CMD_DEXT;
+
+ if (current_tx_desc == sc->last_tx_desc)
+ sc->next_avail_tx_desc = sc->first_tx_desc;
+ else
+ sc->next_avail_tx_desc++;
+
+ sc->num_tx_desc_avail--;
+
+ tx_buffer->num_tx_desc_used++;
+ return;
+}
+#endif /* 0 */
+
+
+/*********************************************************************
+ *
+ * Get a buffer from system mbuf buffer pool.
+ *
+ **********************************************************************/
+int
+em_get_buf(struct em_rx_buffer *rx_buffer, struct em_softc *sc,
+ struct mbuf *mp)
+{
+ struct mbuf *nmp;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ if (mp == NULL) {
+ MGETHDR(nmp, M_DONTWAIT, MT_DATA);
+ if (nmp == NULL) {
+ sc->mbuf_alloc_failed++;
+ return(ENOBUFS);
+ }
+ MCLGET(nmp, M_DONTWAIT);
+ if ((nmp->m_flags & M_EXT) == 0) {
+ m_freem(nmp);
+ sc->mbuf_cluster_failed++;
+ return(ENOBUFS);
+ }
+ nmp->m_len = nmp->m_pkthdr.len = MCLBYTES;
+ } else {
+ nmp = mp;
+ nmp->m_len = nmp->m_pkthdr.len = MCLBYTES;
+ nmp->m_data = nmp->m_ext.ext_buf;
+ nmp->m_next = NULL;
+ }
+
+ if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat,
+ rx_buffer->dmamap,
+ nmp, BUS_DMA_NOWAIT))
+ return(ENOBUFS);
+
+ if (ifp->if_mtu <= ETHERMTU)
+ m_adj(nmp, ETHER_ALIGN);
+
+ rx_buffer->m_head = nmp;
+ rx_buffer->buffer_addr =
+ rx_buffer->dmamap->dm_segs[0].ds_addr + ETHER_ALIGN;
+
+ return(0);
+}
+
+/*********************************************************************
+ *
+ * Allocate memory for rx_buffer structures. Since we use one
+ * rx_buffer per received packet, the maximum number of rx_buffer's
+ * that we'll need is equal to the number of receive descriptors
+ * that we've allocated.
+ *
+ **********************************************************************/
+int
+em_allocate_receive_structures(struct em_softc* sc)
+{
+ int i;
+ struct em_rx_buffer *rx_buffer;
+
+ if (!(sc->rx_buffer_area =
+ (struct em_rx_buffer *) malloc(sizeof(struct em_rx_buffer) *
+ sc->num_rx_desc, M_DEVBUF,
+ M_NOWAIT))) {
+ printf("%s: Unable to allocate rx_buffer memory\n",
+ sc->sc_dv.dv_xname);
+ return(ENOMEM);
+ }
+
+ bzero(sc->rx_buffer_area,
+ sizeof(struct em_rx_buffer) * sc->num_rx_desc);
+
+ for (i = 0, rx_buffer = sc->rx_buffer_area;
+ i < sc->num_rx_desc; i++, rx_buffer++) {
+
+ if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat,
+ MCLBYTES, 1, MCLBYTES, 0,
+ BUS_DMA_NOWAIT,
+ &rx_buffer->dmamap))
+ return ENOBUFS;
+
+ if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) {
+ rx_buffer->m_head = NULL;
+ return(ENOBUFS);
+ }
+ }
+
+ return(0);
+}
+
+/*********************************************************************
+ *
+ * Allocate and initialize receive structures.
+ *
+ **********************************************************************/
+int
+em_setup_receive_structures(struct em_softc * sc)
+{
+ struct em_rx_buffer *rx_buffer;
+ struct em_rx_desc *rx_desc;
+ int i;
+
+ if (em_allocate_receive_structures(sc))
+ return ENOMEM;
+
+ SIMPLEQ_INIT(&sc->rx_buffer_list);
+
+ sc->first_rx_desc =
+ (struct em_rx_desc *) sc->rx_desc_base;
+ sc->last_rx_desc =
+ sc->first_rx_desc + (sc->num_rx_desc - 1);
+
+ rx_buffer = (struct em_rx_buffer *) sc->rx_buffer_area;
+
+ bzero((void *) sc->first_rx_desc,
+ (sizeof(struct em_rx_desc)) * sc->num_rx_desc);
+
+ /* Build a linked list of rx_buffer's */
+ for (i = 0, rx_desc = sc->first_rx_desc;
+ i < sc->num_rx_desc;
+ i++, rx_buffer++, rx_desc++) {
+ if (rx_buffer->m_head == NULL)
+ printf("%s: Receive buffer memory not allocated",
+ sc->sc_dv.dv_xname);
+ else {
+ rx_desc->buffer_addr = htole64(rx_buffer->buffer_addr);
+ SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list,
+ rx_buffer, em_rx_entry);
+ }
+ }
+
+ /* Setup our descriptor pointers */
+ sc->next_rx_desc_to_check = sc->first_rx_desc;
+
+ return(0);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+void
+em_initialize_receive_unit(struct em_softc * sc)
+{
+ u_int32_t reg_rctl;
+#if 0
+ u_int32_t reg_rxcsum;
+#endif
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /*
+ * Make sure receives are disabled while setting up the
+ * descriptor ring
+ */
+ E1000_WRITE_REG(&sc->hw, RCTL, 0);
+
+ /* Set the Receive Delay Timer Register */
+ E1000_WRITE_REG(&sc->hw, RDTR,
+ sc->rx_int_delay | E1000_RDT_FPDB);
+
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ E1000_WRITE_REG(&sc->hw, RDBAL,
+ sc->osdep.em_rx.emm_dmamap->dm_segs[0].ds_addr);
+ E1000_WRITE_REG(&sc->hw, RDBAH, 0);
+ E1000_WRITE_REG(&sc->hw, RDLEN, sc->num_rx_desc *
+ sizeof(struct em_rx_desc));
+
+ /* Setup the HW Rx Head and Tail Descriptor Pointers */
+ E1000_WRITE_REG(&sc->hw, RDH, 0);
+ E1000_WRITE_REG(&sc->hw, RDT,
+ (((_BSD_PTRDIFF_T_) sc->last_rx_desc -
+ (_BSD_PTRDIFF_T_) sc->first_rx_desc) >> 4));
+
+ /* Setup the Receive Control Register */
+ reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (sc->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ if (sc->hw.tbi_compatibility_on == TRUE)
+ reg_rctl |= E1000_RCTL_SBP;
+
+
+ switch (sc->rx_buffer_len) {
+ default:
+ case EM_RXBUFFER_2048:
+ reg_rctl |= E1000_RCTL_SZ_2048;
+ break;
+ case EM_RXBUFFER_4096:
+ reg_rctl |= E1000_RCTL_SZ_4096|E1000_RCTL_BSEX|E1000_RCTL_LPE;
+ break;
+ case EM_RXBUFFER_8192:
+ reg_rctl |= E1000_RCTL_SZ_8192|E1000_RCTL_BSEX|E1000_RCTL_LPE;
+ break;
+ case EM_RXBUFFER_16384:
+ reg_rctl |= E1000_RCTL_SZ_16384|E1000_RCTL_BSEX|E1000_RCTL_LPE;
+ break;
+ }
+
+ if (ifp->if_mtu > ETHERMTU)
+ reg_rctl |= E1000_RCTL_LPE;
+
+#if 0
+ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
+ if ((sc->hw.mac_type >= em_82543) &&
+ (ifp->if_capenable & IFCAP_RXCSUM)) {
+ reg_rxcsum = E1000_READ_REG(&sc->hw, RXCSUM);
+ reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(&sc->hw, RXCSUM, reg_rxcsum);
+ }
+#endif /* 0 */
+
+ /* Enable Receives */
+ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Free receive related data structures.
+ *
+ **********************************************************************/
+void
+em_free_receive_structures(struct em_softc * sc)
+{
+ struct em_rx_buffer *rx_buffer;
+ int i;
+
+ INIT_DEBUGOUT("free_receive_structures: begin");
+
+ if (sc->rx_buffer_area != NULL) {
+ rx_buffer = sc->rx_buffer_area;
+ for (i = 0; i < sc->num_rx_desc; i++, rx_buffer++) {
+ if (rx_buffer->m_head != NULL)
+ m_freem(rx_buffer->m_head);
+ rx_buffer->m_head = NULL;
+ }
+ }
+ if (sc->rx_buffer_area != NULL) {
+ free(sc->rx_buffer_area, M_DEVBUF);
+ sc->rx_buffer_area = NULL;
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * This routine executes in interrupt context. It replenishes
+ * the mbufs in the descriptor and sends data which has been
+ * dma'ed into host memory to upper layer.
+ *
+ *********************************************************************/
+void
+em_process_receive_interrupts(struct em_softc* sc)
+{
+ struct mbuf *mp;
+ struct ifnet *ifp;
+ struct ether_header *eh;
+ u_int16_t len;
+ u_int8_t last_byte;
+ u_int8_t accept_frame = 0;
+ u_int8_t eop = 0;
+ u_int32_t pkt_len = 0;
+
+ /* Pointer to the receive descriptor being examined. */
+ struct em_rx_desc *current_desc;
+ struct em_rx_desc *last_desc_processed;
+ struct em_rx_buffer *rx_buffer;
+
+ ifp = &sc->arpcom.ac_if;
+ current_desc = sc->next_rx_desc_to_check;
+
+ if (!((current_desc->status) & E1000_RXD_STAT_DD)) {
+#ifdef DBG_STATS
+ sc->no_pkts_avail++;
+#endif
+ return;
+ }
+
+ while (current_desc->status & E1000_RXD_STAT_DD) {
+
+ /* Get a pointer to the actual receive buffer */
+ rx_buffer = SIMPLEQ_FIRST(&sc->rx_buffer_list);
+
+ if (rx_buffer == NULL) {
+ printf("%s: Found null rx_buffer\n",
+ sc->sc_dv.dv_xname);
+ return;
+ }
+
+ mp = rx_buffer->m_head;
+ accept_frame = 1;
+
+ if (current_desc->status & E1000_RXD_STAT_EOP) {
+ eop = 1;
+ len = letoh16(current_desc->length) - ETHER_CRC_LEN;
+ } else {
+ eop = 0;
+ len = letoh16(current_desc->length);
+ }
+
+ if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
+
+ /* Compute packet length for tbi_accept macro */
+ pkt_len = letoh16(current_desc->length);
+ if (sc->fmp != NULL) {
+ pkt_len += sc->fmp->m_pkthdr.len;
+ }
+
+ last_byte = *(mtod(rx_buffer->m_head,caddr_t) +
+ letoh16(current_desc->length) - 1);
+
+ if (TBI_ACCEPT(&sc->hw, current_desc->status,
+ current_desc->errors,
+ pkt_len, last_byte)) {
+ em_tbi_adjust_stats(&sc->hw,
+ &sc->stats,
+ pkt_len,
+ sc->hw.mac_addr);
+ len--;
+ } else {
+ accept_frame = 0;
+ }
+ }
+
+ if (accept_frame) {
+
+ if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) {
+ sc->dropped_pkts++;
+ em_get_buf(rx_buffer, sc, mp);
+ if (sc->fmp != NULL) m_freem(sc->fmp);
+ sc->fmp = NULL;
+ sc->lmp = NULL;
+ break;
+ }
+
+ /* Assign correct length to the current fragment */
+ mp->m_len = len;
+
+ if (sc->fmp == NULL) {
+ mp->m_pkthdr.len = len;
+ sc->fmp = mp; /* Store the first mbuf */
+ sc->lmp = mp;
+ } else {
+ /* Chain mbuf's together */
+ mp->m_flags &= ~M_PKTHDR;
+ sc->lmp->m_next = mp;
+ sc->lmp = sc->lmp->m_next;
+ sc->fmp->m_pkthdr.len += len;
+ }
+
+ if (eop) {
+ sc->fmp->m_pkthdr.rcvif = ifp;
+#if NBPFILTER > 0
+ /*
+ * Handle BPF listeners. Let the BPF
+ * user see the packet.
+ */
+ if (ifp->if_bpf)
+ bpf_mtap(ifp->if_bpf, sc->fmp);
+#endif
+
+
+ eh = mtod(sc->fmp, struct ether_header *);
+
+ /* Remove ethernet header from mbuf */
+ m_adj(sc->fmp, sizeof(struct ether_header));
+ em_receive_checksum(sc, current_desc,
+ sc->fmp);
+#if 0
+ if (current_desc->status & E1000_RXD_STAT_VP)
+ VLAN_INPUT_TAG(eh, sc->fmp,
+ letoh16(current_desc->special));
+ else
+#endif /* 0 */
+ ether_input(ifp, eh, sc->fmp);
+
+ sc->fmp = NULL;
+ sc->lmp = NULL;
+ }
+ } else {
+ sc->dropped_pkts++;
+ em_get_buf(rx_buffer, sc, mp);
+ if (sc->fmp != NULL) m_freem(sc->fmp);
+ sc->fmp = NULL;
+ sc->lmp = NULL;
+ }
+
+ /* Zero out the receive descriptors status */
+ current_desc->status = 0;
+
+ if (rx_buffer->m_head != NULL) {
+ current_desc->buffer_addr =
+ htole64(rx_buffer->buffer_addr);
+ }
+
+ /* Advance our pointers to the next descriptor
+ * (checking for wrap). */
+ if (current_desc == sc->last_rx_desc)
+ sc->next_rx_desc_to_check = sc->first_rx_desc;
+ else
+ ((sc)->next_rx_desc_to_check)++;
+
+ last_desc_processed = current_desc;
+ current_desc = sc->next_rx_desc_to_check;
+ /*
+ * Put the buffer that we just indicated back at the
+ * end of our list
+ */
+ SIMPLEQ_REMOVE_HEAD(&sc->rx_buffer_list, rx_buffer,
+ em_rx_entry);
+ SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list,
+ rx_buffer, em_rx_entry);
+
+ /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
+ E1000_WRITE_REG(&sc->hw, RDT,
+ (((u_long) last_desc_processed -
+ (u_long) sc->first_rx_desc) >> 4));
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * Verify that the hardware indicated that the checksum is valid.
+ * Inform the stack about the status of checksum so that stack
+ * doesn't spend time verifying the checksum.
+ *
+ *********************************************************************/
+void
+em_receive_checksum(struct em_softc *sc,
+ struct em_rx_desc *rx_desc,
+ struct mbuf *mp)
+{
+#if 0
+ /* 82543 or newer only */
+ if ((sc->hw.mac_type < em_82543) ||
+ /* Ignore Checksum bit is set */
+ (rx_desc->status & E1000_RXD_STAT_IXSM)) {
+ mp->m_pkthdr.csum_flags = 0;
+ return;
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_IPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
+ /* IP Checksum Good */
+ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
+ mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+
+ } else {
+ mp->m_pkthdr.csum_flags = 0;
+ }
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
+ mp->m_pkthdr.csum_flags |=
+ (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
+ mp->m_pkthdr.csum_data = htons(0xffff);
+ }
+ }
+
+ return;
+#endif /* 0 */
+}
+
+
+void em_enable_vlans(struct em_softc * sc)
+{
+ uint32_t ctrl;
+
+ E1000_WRITE_REG(&sc->hw, VET, QTAG_TYPE);
+
+ ctrl = E1000_READ_REG(&sc->hw, CTRL);
+ ctrl |= E1000_CTRL_VME;
+ E1000_WRITE_REG(&sc->hw, CTRL, ctrl);
+
+ return;
+}
+
+void
+em_enable_intr(struct em_softc* sc)
+{
+ E1000_WRITE_REG(&sc->hw, IMS, (IMS_ENABLE_MASK));
+ return;
+}
+
+void
+em_disable_intr(struct em_softc *sc)
+{
+ E1000_WRITE_REG(&sc->hw, IMC,
+ (0xffffffff & ~E1000_IMC_RXSEQ));
+ return;
+}
+
+void em_write_pci_cfg(struct em_hw *hw,
+ uint32_t reg,
+ uint16_t *value)
+{
+ struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;
+ pci_chipset_tag_t pc = pa->pa_pc;
+ pci_conf_write(pc, pa->pa_tag, reg, *value);
+}
+
+void em_read_pci_cfg(struct em_hw *hw, uint32_t reg,
+ uint16_t *value)
+{
+ struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa;
+ pci_chipset_tag_t pc = pa->pa_pc;
+ *value = pci_conf_read(pc, pa->pa_tag, reg);
+ return;
+}
+
+uint32_t em_io_read(struct em_hw *hw, uint32_t port)
+{
+#if 0
+ return(inl(port));
+#endif
+ return bus_space_read_4(
+ ((struct em_osdep *)(hw)->back)->em_iobtag,
+ ((struct em_osdep *)(hw)->back)->em_iobhandle,
+ port);
+}
+
+void em_io_write(struct em_hw *hw, uint32_t port, uint32_t value)
+{
+#if 0
+ outl(port, value);
+#endif
+ bus_space_write_4(
+ ((struct em_osdep *)(hw)->back)->em_iobtag,
+ ((struct em_osdep *)(hw)->back)->em_iobhandle,
+ port,
+ value);
+ return;
+}
+
+/**********************************************************************
+ *
+ * Update the board statistics counters.
+ *
+ **********************************************************************/
+void
+em_update_stats_counters(struct em_softc *sc)
+{
+ struct ifnet *ifp;
+
+ sc->stats.crcerrs += E1000_READ_REG(&sc->hw, CRCERRS);
+ sc->stats.symerrs += E1000_READ_REG(&sc->hw, SYMERRS);
+ sc->stats.mpc += E1000_READ_REG(&sc->hw, MPC);
+ sc->stats.scc += E1000_READ_REG(&sc->hw, SCC);
+ sc->stats.ecol += E1000_READ_REG(&sc->hw, ECOL);
+ sc->stats.mcc += E1000_READ_REG(&sc->hw, MCC);
+ sc->stats.latecol += E1000_READ_REG(&sc->hw, LATECOL);
+ sc->stats.colc += E1000_READ_REG(&sc->hw, COLC);
+ sc->stats.dc += E1000_READ_REG(&sc->hw, DC);
+ sc->stats.sec += E1000_READ_REG(&sc->hw, SEC);
+ sc->stats.rlec += E1000_READ_REG(&sc->hw, RLEC);
+ sc->stats.xonrxc += E1000_READ_REG(&sc->hw, XONRXC);
+ sc->stats.xontxc += E1000_READ_REG(&sc->hw, XONTXC);
+ sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, XOFFRXC);
+ sc->stats.xofftxc += E1000_READ_REG(&sc->hw, XOFFTXC);
+ sc->stats.fcruc += E1000_READ_REG(&sc->hw, FCRUC);
+ sc->stats.prc64 += E1000_READ_REG(&sc->hw, PRC64);
+ sc->stats.prc127 += E1000_READ_REG(&sc->hw, PRC127);
+ sc->stats.prc255 += E1000_READ_REG(&sc->hw, PRC255);
+ sc->stats.prc511 += E1000_READ_REG(&sc->hw, PRC511);
+ sc->stats.prc1023 += E1000_READ_REG(&sc->hw, PRC1023);
+ sc->stats.prc1522 += E1000_READ_REG(&sc->hw, PRC1522);
+ sc->stats.gprc += E1000_READ_REG(&sc->hw, GPRC);
+ sc->stats.bprc += E1000_READ_REG(&sc->hw, BPRC);
+ sc->stats.mprc += E1000_READ_REG(&sc->hw, MPRC);
+ sc->stats.gptc += E1000_READ_REG(&sc->hw, GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ sc->stats.gorcl += E1000_READ_REG(&sc->hw, GORCL);
+ sc->stats.gorch += E1000_READ_REG(&sc->hw, GORCH);
+ sc->stats.gotcl += E1000_READ_REG(&sc->hw, GOTCL);
+ sc->stats.gotch += E1000_READ_REG(&sc->hw, GOTCH);
+
+ sc->stats.rnbc += E1000_READ_REG(&sc->hw, RNBC);
+ sc->stats.ruc += E1000_READ_REG(&sc->hw, RUC);
+ sc->stats.rfc += E1000_READ_REG(&sc->hw, RFC);
+ sc->stats.roc += E1000_READ_REG(&sc->hw, ROC);
+ sc->stats.rjc += E1000_READ_REG(&sc->hw, RJC);
+
+ sc->stats.torl += E1000_READ_REG(&sc->hw, TORL);
+ sc->stats.torh += E1000_READ_REG(&sc->hw, TORH);
+ sc->stats.totl += E1000_READ_REG(&sc->hw, TOTL);
+ sc->stats.toth += E1000_READ_REG(&sc->hw, TOTH);
+
+ sc->stats.tpr += E1000_READ_REG(&sc->hw, TPR);
+ sc->stats.tpt += E1000_READ_REG(&sc->hw, TPT);
+ sc->stats.ptc64 += E1000_READ_REG(&sc->hw, PTC64);
+ sc->stats.ptc127 += E1000_READ_REG(&sc->hw, PTC127);
+ sc->stats.ptc255 += E1000_READ_REG(&sc->hw, PTC255);
+ sc->stats.ptc511 += E1000_READ_REG(&sc->hw, PTC511);
+ sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, PTC1023);
+ sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, PTC1522);
+ sc->stats.mptc += E1000_READ_REG(&sc->hw, MPTC);
+ sc->stats.bptc += E1000_READ_REG(&sc->hw, BPTC);
+
+ if (sc->hw.mac_type >= em_82543) {
+ sc->stats.algnerrc +=
+ E1000_READ_REG(&sc->hw, ALGNERRC);
+ sc->stats.rxerrc +=
+ E1000_READ_REG(&sc->hw, RXERRC);
+ sc->stats.tncrs +=
+ E1000_READ_REG(&sc->hw, TNCRS);
+ sc->stats.cexterr +=
+ E1000_READ_REG(&sc->hw, CEXTERR);
+ sc->stats.tsctc +=
+ E1000_READ_REG(&sc->hw, TSCTC);
+ sc->stats.tsctfc +=
+ E1000_READ_REG(&sc->hw, TSCTFC);
+ }
+ ifp = &sc->arpcom.ac_if;
+
+ /* Fill out the OS statistics structure */
+ ifp->if_ipackets = sc->stats.gprc;
+ ifp->if_opackets = sc->stats.gptc;
+ ifp->if_ibytes = sc->stats.gorcl;
+ ifp->if_obytes = sc->stats.gotcl;
+ ifp->if_imcasts = sc->stats.mprc;
+ ifp->if_collisions = sc->stats.colc;
+
+ /* Rx Errors */
+ ifp->if_ierrors =
+ sc->dropped_pkts +
+ sc->stats.rxerrc +
+ sc->stats.crcerrs +
+ sc->stats.algnerrc +
+ sc->stats.rlec + sc->stats.rnbc +
+ sc->stats.mpc + sc->stats.cexterr;
+
+ /* Tx Errors */
+ ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol;
+
+}
+
+
+/**********************************************************************
+ *
+ * This routine is called only when em_display_debug_stats is enabled.
+ * This routine provides a way to take a look at important statistics
+ * maintained by the driver and hardware.
+ *
+ **********************************************************************/
+void
+em_print_hw_stats(struct em_softc *sc)
+{
+#ifdef DBG_STATS
+ printf("%s: Packets not Avail = %ld\n", sc->sc_dv.dv_xname,
+ sc->no_pkts_avail);
+ printf("%s: CleanTxInterrupts = %ld\n", sc->sc_dv.dv_xname,
+ sc->clean_tx_interrupts);
+#endif
+
+ printf("%s: Tx Descriptors not Avail = %ld\n", sc->sc_dv.dv_xname,
+ sc->no_tx_desc_avail);
+ printf("%s: Tx Buffer not avail1 = %ld\n", sc->sc_dv.dv_xname,
+ sc->no_tx_buffer_avail1);
+ printf("%s: Tx Buffer not avail2 = %ld\n", sc->sc_dv.dv_xname,
+ sc->no_tx_buffer_avail2);
+ printf("%s: Std Mbuf Failed = %ld\n",sc->sc_dv.dv_xname,
+ sc->mbuf_alloc_failed);
+ printf("%s: Std Cluster Failed = %ld\n",sc->sc_dv.dv_xname,
+ sc->mbuf_cluster_failed);
+
+ printf("%s: Symbol errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.symerrs);
+ printf("%s: Sequence errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.sec);
+ printf("%s: Defer count = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.dc);
+
+ printf("%s: Missed Packets = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.mpc);
+ printf("%s: Receive No Buffers = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.rnbc);
+ printf("%s: Receive length errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.rlec);
+ printf("%s: Receive errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.rxerrc);
+ printf("%s: Crc errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.crcerrs);
+ printf("%s: Alignment errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.algnerrc);
+ printf("%s: Carrier extension errors = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.cexterr);
+ printf("%s: Driver dropped packets = %ld\n", sc->sc_dv.dv_xname,
+ sc->dropped_pkts);
+
+ printf("%s: XON Rcvd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.xonrxc);
+ printf("%s: XON Xmtd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.xontxc);
+ printf("%s: XOFF Rcvd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.xoffrxc);
+ printf("%s: XOFF Xmtd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.xofftxc);
+
+ printf("%s: Good Packets Rcvd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.gprc);
+ printf("%s: Good Packets Xmtd = %lld\n", sc->sc_dv.dv_xname,
+ (long long)sc->stats.gptc);
+}
+
+
+/**********************************************************************
+ *
+ * Examine each tx_buffer in the used queue. If the hardware is done
+ * processing the packet then free associated resources. The
+ * tx_buffer is put back on the free queue.
+ *
+ **********************************************************************/
+void
+em_clean_transmit_interrupts(struct em_softc* sc)
+{
+ struct em_tx_buffer *tx_buffer;
+ struct em_tx_desc *tx_desc;
+ int s;
+ struct ifnet *ifp;
+
+ s = splimp();
+#ifdef DBG_STATS
+ sc->clean_tx_interrupts++;
+#endif
+
+ for (tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list);
+ tx_buffer;
+ tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list)) {
+
+ /*
+ * Get hold of the next descriptor that the em will
+ * report status back to (this will be the last
+ * descriptor of a given tx_buffer). We only want to
+ * free the tx_buffer (and it resources) if the driver
+ * is done with ALL of the descriptors. If the driver
+ * is done with the last one then it is done with all
+ * of them.
+ */
+
+ tx_desc = sc->oldest_used_tx_desc +
+ (tx_buffer->num_tx_desc_used - 1);
+
+ /* Check for wrap case */
+ if (tx_desc > sc->last_tx_desc)
+ tx_desc -= sc->num_tx_desc;
+
+
+ /*
+ * If the descriptor done bit is set free tx_buffer
+ * and associated resources
+ */
+ if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+
+ SIMPLEQ_REMOVE_HEAD(&sc->used_tx_buffer_list,
+ tx_buffer,
+ em_tx_entry);
+
+ if ((tx_desc == sc->last_tx_desc))
+ sc->oldest_used_tx_desc =
+ sc->first_tx_desc;
+ else
+ sc->oldest_used_tx_desc = (tx_desc + 1);
+
+ /* Make available the descriptors that were
+ * previously used */
+ sc->num_tx_desc_avail +=
+ tx_buffer->num_tx_desc_used;
+
+ tx_buffer->num_tx_desc_used = 0;
+
+ if (tx_buffer->m_head) {
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ /* Return this "Software packet" back to the
+ * "free" list */
+ SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list,
+ tx_buffer, em_tx_entry);
+ } else {
+ /*
+ * Found a tx_buffer that the em is not done
+ * with then there is no reason to check the
+ * rest of the queue.
+ */
+ break;
+ }
+ } /* end for each tx_buffer */
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* Tell the stack that it is OK to send packets */
+ if (sc->num_tx_desc_avail > TX_CLEANUP_THRESHOLD) {
+ ifp->if_timer = 0;
+ ifp->if_flags &= ~IFF_OACTIVE;
+ }
+ splx(s);
+ return;
+}
+
+int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm,
+ bus_size_t size)
+{
+ bus_dma_tag_t dma_tag = sc->osdep.em_pa.pa_dmat;
+
+ emm->emm_size = size;
+
+ if (bus_dmamem_alloc(dma_tag, size, PAGE_SIZE, 0, &emm->emm_seg, 1,
+ &emm->emm_rseg, BUS_DMA_NOWAIT)) {
+ goto fail0;
+ }
+ if (bus_dmamem_map(dma_tag, &emm->emm_seg, emm->emm_rseg, size,
+ &emm->emm_kva, BUS_DMA_NOWAIT)) {
+ goto fail1;
+ }
+ if (bus_dmamap_create(dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
+ &emm->emm_dmamap)) {
+ goto fail2;
+ }
+ if (bus_dmamap_load(dma_tag, emm->emm_dmamap, emm->emm_kva, size,
+ NULL, BUS_DMA_NOWAIT)) {
+ goto fail3;
+ }
+
+ return 0;
+
+ fail3:
+ bus_dmamap_destroy(dma_tag, emm->emm_dmamap);
+ fail2:
+ bus_dmamem_unmap(dma_tag, emm->emm_kva, size);
+ fail1:
+ bus_dmamem_free(dma_tag, &emm->emm_seg, emm->emm_rseg);
+ fail0:
+ return (ENOBUFS);
+}
+
+void em_free_dma(struct em_softc *sc, struct em_dmamap *emm)
+{
+ bus_dmamap_unload(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap);
+ bus_dmamap_destroy(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap);
+ bus_dmamem_unmap(sc->osdep.em_pa.pa_dmat, emm->emm_kva, emm->emm_size);
+ bus_dmamem_free(sc->osdep.em_pa.pa_dmat, &emm->emm_seg, emm->emm_rseg);
+}
diff --git a/sys/dev/pci/if_em.h b/sys/dev/pci/if_em.h
new file mode 100644
index 00000000000..f8167d415a9
--- /dev/null
+++ b/sys/dev/pci/if_em.h
@@ -0,0 +1,189 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+
+#ifndef _EM_H_DEFINED_
+#define _EM_H_DEFINED_
+
+#include <dev/pci/if_em_hw.h>
+
+/* Tunables */
+#define MAX_TXD 256
+#define MAX_RXD 256
+#define TX_CLEANUP_THRESHOLD MAX_TXD / 8
+#define TIDV 128
+#define RIDV 28
+#define DO_AUTO_NEG 1
+#define WAIT_FOR_AUTO_NEG_DEFAULT 1
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | \
+ ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | \
+ ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define EM_REPORT_TX_EARLY 2
+#define EM_CHECKSUM_FEATURES (CSUM_TCP | CSUM_UDP)
+#define EM_MAX_INTR 3
+#define EM_TX_TIMEOUT 5 /* set to 5 seconds */
+
+
+#define EM_VENDOR_ID 0x8086
+#define EM_MMBA 0x0010 /* Mem base address */
+#define EM_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))
+#define EM_JUMBO_PBA 0x00000028
+#define EM_DEFAULT_PBA 0x00000030
+
+#define IOCTL_CMD_TYPE u_long
+#define MAX_NUM_MULTICAST_ADDRESSES 128
+#define PCI_ANY_ID (~0U)
+#define ETHER_ALIGN 2
+#define QTAG_TYPE 0x8100
+
+/* Defines for printing debug information */
+#define DEBUG_INIT 0
+#define DEBUG_IOCTL 0
+#define DEBUG_HW 0
+
+#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
+#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
+#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
+#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
+#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
+#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
+#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
+#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
+#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+
+
+/* Supported RX Buffer Sizes */
+#define EM_RXBUFFER_2048 2048
+#define EM_RXBUFFER_4096 4096
+#define EM_RXBUFFER_8192 8192
+#define EM_RXBUFFER_16384 16384
+
+struct em_tx_buffer {
+ SIMPLEQ_ENTRY(em_tx_buffer) em_tx_entry;
+ struct mbuf *m_head;
+ bus_dmamap_t dmamap;
+ u_int32_t num_tx_desc_used;
+};
+
+
+/* ******************************************************************************
+ * This structure stores information about the 2k aligned receive buffer
+ * into which the E1000 DMA's frames.
+ * ******************************************************************************/
+struct em_rx_buffer {
+ SIMPLEQ_ENTRY(em_rx_buffer) em_rx_entry;
+ struct mbuf *m_head;
+ bus_dmamap_t dmamap;
+ u_int64_t buffer_addr;
+};
+
+typedef enum _XSUM_CONTEXT_T {
+ OFFLOAD_NONE,
+ OFFLOAD_TCP_IP,
+ OFFLOAD_UDP_IP
+} XSUM_CONTEXT_T;
+
+/* Our adapter structure */
+struct em_softc {
+ struct device sc_dv;
+ struct arpcom arpcom; /* interface info */
+ struct em_hw hw;
+
+ /* FreeBSD operating-system-specific structures */
+ struct em_osdep osdep;
+
+ int io_rid;
+ void *sc_intrhand;
+ struct ifmedia media;
+ struct timeout em_timeout;
+
+ /* Info about the board itself */
+ u_int32_t part_num;
+ u_int8_t link_active;
+ u_int16_t link_speed;
+ u_int16_t link_duplex;
+ u_int32_t tx_int_delay;
+ u_int32_t rx_int_delay;
+
+ XSUM_CONTEXT_T active_checksum_context;
+
+ /* Transmit definitions */
+ struct em_tx_desc *first_tx_desc;
+ struct em_tx_desc *last_tx_desc;
+ struct em_tx_desc *next_avail_tx_desc;
+ struct em_tx_desc *oldest_used_tx_desc;
+ struct em_tx_desc *tx_desc_base;
+ volatile u_int16_t num_tx_desc_avail;
+ u_int16_t num_tx_desc;
+ u_int32_t txd_cmd;
+ struct em_tx_buffer *tx_buffer_area;
+ SIMPLEQ_HEAD(__em_tx_buffer_free, em_tx_buffer) free_tx_buffer_list;
+ SIMPLEQ_HEAD(__em_tx_buffer_used, em_tx_buffer) used_tx_buffer_list;
+
+ /* Receive definitions */
+ struct em_rx_desc *first_rx_desc;
+ struct em_rx_desc *last_rx_desc;
+ struct em_rx_desc *next_rx_desc_to_check;
+ struct em_rx_desc *rx_desc_base;
+ u_int16_t num_rx_desc;
+ u_int32_t rx_buffer_len;
+ struct em_rx_buffer *rx_buffer_area;
+ SIMPLEQ_HEAD(__em_rx_buffer, em_rx_buffer) rx_buffer_list;
+
+ /* Jumbo frame */
+ struct mbuf *fmp;
+ struct mbuf *lmp;
+
+ /* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
+ unsigned long mbuf_alloc_failed;
+ unsigned long mbuf_cluster_failed;
+ unsigned long xmit_pullup;
+ unsigned long no_tx_desc_avail;
+ unsigned long no_tx_buffer_avail1;
+ unsigned long no_tx_buffer_avail2;
+#ifdef DBG_STATS
+ unsigned long no_pkts_avail;
+ unsigned long clean_tx_interrupts;
+
+#endif
+
+ struct em_hw_stats stats;
+};
+
+#endif /* _EM_H_DEFINED_ */
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c
new file mode 100644
index 00000000000..de65f593f64
--- /dev/null
+++ b/sys/dev/pci/if_em_hw.c
@@ -0,0 +1,3567 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+/* if_em_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "bpfilter.h"
+#include "vlan.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/device.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#ifdef INET
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/in_var.h>
+#include <netinet/ip.h>
+#include <netinet/if_ether.h>
+#endif
+
+#if NVLAN > 0
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+#endif
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#endif
+
+#include <uvm/uvm_extern.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcidevs.h>
+
+#include <dev/pci/if_em_hw.h>
+
+static int32_t em_setup_fiber_link(struct em_hw *hw);
+static int32_t em_setup_copper_link(struct em_hw *hw);
+static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
+static int32_t em_config_mac_to_phy(struct em_hw *hw);
+static int32_t em_force_mac_fc(struct em_hw *hw);
+static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
+static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
+static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count);
+static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
+static int32_t em_phy_reset_dsp(struct em_hw *hw);
+static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
+static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
+static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count);
+static uint16_t em_shift_in_ee_bits(struct em_hw *hw);
+static void em_setup_eeprom(struct em_hw *hw);
+static void em_standby_eeprom(struct em_hw *hw);
+static int32_t em_id_led_init(struct em_hw * hw);
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_reset_hw(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+ uint32_t icr;
+ uint32_t manc;
+ uint16_t pci_cmd_word;
+
+ DEBUGFUNC("em_reset_hw");
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word);
+ }
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+ hw->tbi_compatibility_on = FALSE;
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ if(hw->mac_type > em_82543)
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ else
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+ /* Force a reload from the EEPROM if necessary */
+ if(hw->mac_type < em_82540) {
+ /* Wait for reset to complete */
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ /* Wait for EEPROM reload */
+ msec_delay(2);
+ } else {
+ /* Wait for EEPROM reload (it happens automatically) */
+ msec_delay(4);
+ /* Dissable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word);
+ }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+int32_t
+em_init_hw(struct em_hw *hw)
+{
+ uint32_t ctrl, status;
+ uint32_t i;
+ int32_t ret_val;
+ uint16_t pci_cmd_word;
+ uint16_t pcix_cmd_word;
+ uint16_t pcix_stat_hi_word;
+ uint16_t cmd_mmrbc;
+ uint16_t stat_mmrbc;
+
+ DEBUGFUNC("em_init_hw");
+
+ /* Initialize Identification LED */
+ ret_val = em_id_led_init(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+
+ /* Set the Media Type and exit with error if it is not valid. */
+ if(hw->mac_type != em_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = FALSE;
+ }
+
+ if(hw->mac_type >= em_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_TBIMODE) {
+ hw->media_type = em_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = FALSE;
+ } else {
+ hw->media_type = em_media_type_copper;
+ }
+ } else {
+ /* This is an 82542 (fiber only) */
+ hw->media_type = em_media_type_fiber;
+ }
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ E1000_WRITE_REG(hw, VET, 0);
+
+ em_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if(hw->mac_type == em_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word);
+ }
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. This involves initializing all of the Receive
+ * Address Registers (RARs 0 - 15).
+ */
+ em_init_rx_addrs(hw);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if(hw->mac_type == em_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ msec_delay(1);
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+ /* Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if(hw->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+ if(hw->bus_type == em_bus_type_pcix) {
+ em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+ em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if(cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+ }
+ }
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = em_setup_link(hw);
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ em_clear_hw_cntrs(hw);
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+int32_t
+em_setup_link(struct em_hw *hw)
+{
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("em_setup_link");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if(hw->fc == em_fc_default) {
+ if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = em_fc_none;
+ else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = em_fc_tx_pause;
+ else
+ hw->fc = em_fc_full;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if(hw->mac_type == em_82542_rev2_0)
+ hw->fc &= (~em_fc_tx_pause);
+
+ if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~em_fc_rx_pause);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before em_setup_pcs_link()
+ * or em_phy_setup() is called.
+ */
+ if(hw->mac_type == em_82543) {
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = (hw->media_type == em_media_type_fiber) ?
+ em_setup_fiber_link(hw) :
+ em_setup_copper_link(hw);
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if(!(hw->fc & em_fc_tx_pause)) {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ } else {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ if(hw->fc_send_xon) {
+ E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ * ctrl - Current value of the device control register
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int32_t
+em_setup_fiber_link(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal;
+ int32_t ret_val;
+
+ DEBUGFUNC("em_setup_fiber_link");
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
+ else signal = 0;
+
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ em_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case em_fc_none:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case em_fc_rx_pause:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case em_fc_tx_pause:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case em_fc_full:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-neogtiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ hw->txcw = txcw;
+ msec_delay(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ */
+ if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_LU) break;
+ }
+ if(i == (LINK_UP_TIMEOUT / 10)) {
+ /* AutoNeg failed to achieve a link, so we'll call
+ * em_check_for_link. This routine will force the link up if we
+ * detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ ret_val = em_check_for_link(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Detects which PHY is present and the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - current value of the device control register
+******************************************************************************/
+static int32_t
+em_setup_copper_link(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_setup_copper_link");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if(hw->mac_type > em_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ em_phy_hw_reset(hw);
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = em_detect_gig_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if(hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = em_phy_reset(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Options:
+ * autoneg = 1 (default)
+ * PHY will advertise value(s) parsed from
+ * autoneg_advertised and fc
+ * autoneg = 0
+ * PHY will be set to 10H, 10F, 100H, or 100F
+ * depending on value parsed from forced_speed_duplex.
+ */
+
+ /* Is autoneg enabled? This is enabled by default or by software override.
+ * If so, call em_phy_setup_autoneg routine to parse the
+ * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
+ * user should have provided a speed/duplex override. If so, then call
+ * em_phy_force_speed_duplex to parse and set this up.
+ */
+ if(hw->autoneg) {
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if(hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = em_phy_setup_autoneg(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if(hw->wait_autoneg_complete) {
+ ret_val = em_wait_autoneg(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+ } else {
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = em_phy_force_speed_duplex(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for(i = 0; i < 10; i++) {
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & MII_SR_LINK_STATUS) {
+ /* We have link, so we need to finish the config process:
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ */
+ if(hw->mac_type >= em_82544) {
+ em_config_collision_dist(hw);
+ } else {
+ ret_val = em_config_mac_to_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+ DEBUGOUT("Valid link established!!!\n");
+ return 0;
+ }
+ usec_delay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return 0;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_phy_setup_autoneg(struct em_hw *hw)
+{
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+
+ DEBUGFUNC("em_phy_setup_autoneg");
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ if(em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case em_fc_none: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case em_fc_rx_pause: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in em_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case em_fc_tx_pause: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case em_fc_full: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if(em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if(em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Force PHY speed and duplex settings to hw->forced_speed_duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+em_phy_force_speed_duplex(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t mii_ctrl_reg;
+ uint16_t mii_status_reg;
+ uint16_t phy_data;
+ uint16_t i;
+
+ DEBUGFUNC("em_phy_force_speed_duplex");
+
+ /* Turn off Flow control if we are forcing speed and duplex. */
+ hw->fc = em_fc_none;
+
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+ /* Read the Device Control Register. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(DEVICE_SPEED_MASK);
+
+ /* Clear the Auto Speed Detect Enable bit. */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Read the MII Control Register. */
+ if(em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* We need to disable autoneg in order to force link and duplex. */
+
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Are we forcing Full or Half Duplex? */
+ if(hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_10_full) {
+ /* We want to force full duplex so we SET the full duplex bits in the
+ * Device and MII Control Registers.
+ */
+ ctrl |= E1000_CTRL_FD;
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ /* We want to force half duplex so we CLEAR the full duplex bits in
+ * the Device and MII Control Registers.
+ */
+ ctrl &= ~E1000_CTRL_FD;
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ /* Are we forcing 100Mbps??? */
+ if(hw->forced_speed_duplex == em_100_full ||
+ hw->forced_speed_duplex == em_100_half) {
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+ ctrl |= E1000_CTRL_SPD_100;
+ mii_ctrl_reg |= MII_CR_SPEED_100;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb ");
+ } else {
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ mii_ctrl_reg |= MII_CR_SPEED_10;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb ");
+ }
+
+ em_config_collision_dist(hw);
+
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Write the MII Control Register with the new PHY configuration. */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed are duplex are forced.
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+ /* Need to reset the PHY or these changes will be ignored */
+ mii_ctrl_reg |= MII_CR_RESET;
+ if(em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ usec_delay(1);
+
+ /* The wait_autoneg_complete flag may be a little misleading here.
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+ * But we do want to delay for a period while forcing only so we
+ * don't generate false No Link messages. So we will wait here
+ * only if the user has set wait_autoneg_complete to 1, which is
+ * the default.
+ */
+ if(hw->wait_autoneg_complete) {
+ /* We will wait for autoneg to complete. */
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
+ mii_status_reg = 0;
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ }
+ if(i == 0) { /* We didn't get link */
+ /* Reset the DSP and wait again for link. */
+
+ ret_val = em_phy_reset_dsp(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error Resetting PHY DSP\n");
+ return ret_val;
+ }
+ }
+ /* This loop will early-out if the link condition has been met. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ }
+ }
+
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock. This value
+ * defaults back to a 2.5MHz clock when the PHY is reset.
+ */
+ if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* In addition, because of the s/w reset above, we need to enable CRS on
+ * TX. This must be set for both full and half duplex operation.
+ */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+void
+em_config_collision_dist(struct em_hw *hw)
+{
+ uint32_t tctl;
+
+ tctl = E1000_READ_REG(hw, TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int32_t
+em_config_mac_to_phy(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_config_mac_to_phy");
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
+ else ctrl &= ~E1000_CTRL_FD;
+
+ em_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int32_t
+em_force_mac_fc(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_force_mac_fc");
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case em_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case em_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case em_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case em_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if(hw->mac_type == em_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+int32_t
+em_config_fc_after_link_up(struct em_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+
+ DEBUGFUNC("em_config_fc_after_link_up");
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
+ ret_val = em_force_mac_fc(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if((hw->media_type == em_media_type_copper) && hw->autoneg) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+
+ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | em_fc_none
+ * 0 | 1 | 0 | DC | em_fc_none
+ * 0 | 1 | 1 | 0 | em_fc_none
+ * 0 | 1 | 1 | 1 | em_fc_tx_pause
+ * 1 | 0 | 0 | DC | em_fc_none
+ * 1 | DC | 1 | DC | em_fc_full
+ * 1 | 1 | 0 | 0 | em_fc_none
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | em_fc_full
+ *
+ */
+ if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if(hw->original_fc == em_fc_full) {
+ hw->fc = em_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | em_fc_tx_pause
+ *
+ */
+ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = em_fc_tx_pause;
+ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | em_fc_rx_pause
+ *
+ */
+ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if(hw->original_fc == em_fc_none ||
+ hw->original_fc == em_fc_tx_pause) {
+ hw->fc = em_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ } else {
+ hw->fc = em_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ em_get_speed_and_duplex(hw, &speed, &duplex);
+
+ if(duplex == HALF_DUPLEX)
+ hw->fc = em_fc_none;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = em_force_mac_fc(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
+ }
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+int32_t
+em_check_for_link(struct em_hw *hw)
+{
+ uint32_t rxcw;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t rctl;
+ uint32_t signal;
+ int32_t ret_val;
+ uint16_t phy_data;
+ uint16_t lp_capability;
+
+ DEBUGFUNC("em_check_for_link");
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1;
+ else signal = 0;
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ status = E1000_READ_REG(hw, STATUS);
+ rxcw = E1000_READ_REG(hw, RXCW);
+
+ /* If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ * Read the register twice since the link bit is sticky.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ if(phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = FALSE;
+ } else {
+ /* No link detected */
+ return 0;
+ }
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if(!hw->autoneg) return -E1000_ERR_CONFIG;
+
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if(hw->mac_type >= em_82544)
+ em_config_collision_dist(hw);
+ else {
+ ret_val = em_config_mac_to_phy(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
+ * need to restore the desired flow control settings because we may
+ * have had to re-autoneg with a different link partner.
+ */
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+
+ /* At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * parter capability register. We use the link partner capability to
+ * determine if TBI Compatibility needs to be turned on or off. If
+ * the link partner advertises any speed in addition to Gigabit, then
+ * we assume that they are GMII-based, and TBI compatibility is not
+ * needed. If no other speeds are advertised, we assume the link
+ * partner is TBI-based, and we turn on TBI Compatibility.
+ */
+ if(hw->tbi_compatibility_en) {
+ if(em_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
+ NWAY_LPAR_10T_FD_CAPS |
+ NWAY_LPAR_100TX_HD_CAPS |
+ NWAY_LPAR_100TX_FD_CAPS |
+ NWAY_LPAR_100T4_CAPS)) {
+ /* If our link partner advertises anything in addition to
+ * gigabit, we do not need to enable TBI compatibility.
+ */
+ if(hw->tbi_compatibility_on) {
+ /* If we previously were in the mode, turn it off. */
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ hw->tbi_compatibility_on = FALSE;
+ }
+ } else {
+ /* If TBI compatibility is was previously off, turn it on. For
+ * compatibility with a TBI link partner, we will store bad
+ * packets. Some frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if(!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = TRUE;
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ }
+ }
+ }
+ }
+ /* If we don't have link (auto-negotiation failed or link partner cannot
+ * auto-negotiate), the cable is plugged in (we have signal), and our
+ * link partner is not trying to auto-negotiate with us (we are receiving
+ * idles or data), we need to force link up. We also need to give
+ * auto-negotiation time to complete, in case the cable was just plugged
+ * in. The autoneg_failed flag does this.
+ */
+ else if((hw->media_type == em_media_type_fiber) &&
+ (!(status & E1000_STATUS_LU)) &&
+ ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if(hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ return 0;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = em_config_fc_after_link_up(hw);
+ if(ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ }
+ /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable forced link in the
+ * Device Control register in an attempt to auto-negotiate with our link
+ * partner.
+ */
+ else if((hw->media_type == em_media_type_fiber) &&
+ (ctrl & E1000_CTRL_SLU) &&
+ (rxcw & E1000_RXCW_C)) {
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+ E1000_WRITE_REG(hw, TXCW, hw->txcw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+void
+em_get_speed_and_duplex(struct em_hw *hw,
+ uint16_t *speed,
+ uint16_t *duplex)
+{
+ uint32_t status;
+
+ DEBUGFUNC("em_get_speed_and_duplex");
+
+ if(hw->mac_type >= em_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if(status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if(status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\r\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\r\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_wait_autoneg(struct em_hw *hw)
+{
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_wait_autoneg");
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+ return 0;
+ }
+ msec_delay(100);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+em_raise_mdi_clk(struct em_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ usec_delay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+em_lower_mdi_clk(struct em_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ usec_delay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+em_shift_out_mdi_bits(struct em_hw *hw,
+ uint32_t data,
+ uint16_t count)
+{
+ uint32_t ctrl;
+ uint32_t mask;
+
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while(mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if(data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ usec_delay(2);
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
+
+ /* Clear the data bit just before leaving this routine. */
+ ctrl &= ~E1000_CTRL_MDIO;
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+em_shift_in_mdi_bits(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ for(data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ em_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if(ctrl & E1000_CTRL_MDIO) data |= 1;
+ em_lower_mdi_clk(hw, &ctrl);
+ }
+
+ em_raise_mdi_clk(hw, &ctrl);
+ em_lower_mdi_clk(hw, &ctrl);
+
+ /* Clear the MDIO bit just before leaving this routine. */
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+int32_t
+em_read_phy_reg(struct em_hw *hw,
+ uint32_t reg_addr,
+ uint16_t *phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("em_read_phy_reg");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > em_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 64; i++) {
+ usec_delay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if(mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (uint16_t) mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * em_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ em_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *phy_data = em_shift_in_mdi_bits(hw);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+int32_t
+em_write_phy_reg(struct em_hw *hw,
+ uint32_t reg_addr,
+ uint16_t phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("em_write_phy_reg");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > em_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 64; i++) {
+ usec_delay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * em_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ em_shift_out_mdi_bits(hw, mdic, 32);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+void
+em_phy_hw_reset(struct em_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+
+ DEBUGFUNC("em_phy_hw_reset");
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if(hw->mac_type > em_82543) {
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ msec_delay(10);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ msec_delay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+ usec_delay(150);
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+int32_t
+em_phy_reset(struct em_hw *hw)
+{
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_phy_reset");
+
+ if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= MII_CR_RESET;
+ if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ usec_delay(1);
+ return 0;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+em_detect_gig_phy(struct em_hw *hw)
+{
+ uint16_t phy_id_high, phy_id_low;
+ boolean_t match = FALSE;
+
+ DEBUGFUNC("em_detect_gig_phy");
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ if(em_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ usec_delay(2);
+ if(em_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+
+ switch(hw->mac_type) {
+ case em_82543:
+ if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ break;
+ case em_82544:
+ if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ break;
+ case em_82540:
+ case em_82545:
+ case em_82546:
+ if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ break;
+ default:
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ if(match) {
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+ return 0;
+ }
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
+}
+
+/******************************************************************************
+* Resets the PHY's DSP
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+em_phy_reset_dsp(struct em_hw *hw)
+{
+ int32_t ret_val = -E1000_ERR_PHY;
+ DEBUGFUNC("em_phy_reset_dsp");
+
+ do {
+ if(em_write_phy_reg(hw, 29, 0x001d) < 0) break;
+ if(em_write_phy_reg(hw, 30, 0x00c1) < 0) break;
+ if(em_write_phy_reg(hw, 30, 0x0000) < 0) break;
+ ret_val = 0;
+ } while(0);
+
+ if(ret_val < 0) DEBUGOUT("PHY Write Error\n");
+ return ret_val;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+em_phy_get_info(struct em_hw *hw,
+ struct em_phy_info *phy_info)
+{
+ int32_t ret_val = -E1000_ERR_PHY;
+ uint16_t phy_data;
+
+ DEBUGFUNC("em_phy_get_info");
+
+ phy_info->cable_length = em_cable_length_undefined;
+ phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
+ phy_info->cable_polarity = em_rev_polarity_undefined;
+ phy_info->polarity_correction = em_polarity_reversal_undefined;
+ phy_info->mdix_mode = em_auto_x_mode_undefined;
+ phy_info->local_rx = em_1000t_rx_status_undefined;
+ phy_info->remote_rx = em_1000t_rx_status_undefined;
+
+ if(hw->media_type != em_media_type_copper) {
+ DEBUGOUT("PHY info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ do {
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+ if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+ if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ DEBUGOUT("PHY info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0)
+ break;
+ phy_info->extended_10bt_distance =
+ (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
+ phy_info->polarity_correction =
+ (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
+
+ if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
+ break;
+ phy_info->cable_polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
+ M88E1000_PSSR_REV_POLARITY_SHIFT;
+ phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
+ M88E1000_PSSR_MDIX_SHIFT;
+ if(phy_data & M88E1000_PSSR_1000MBS) {
+ /* Cable Length Estimation and Local/Remote Receiver Informatoion
+ * are only valid at 1000 Mbps
+ */
+ phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+ if(em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0)
+ break;
+ phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT;
+ phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT;
+ }
+ ret_val = 0;
+ } while(0);
+
+ if(ret_val < 0) DEBUGOUT("PHY Read Error\n");
+ return ret_val;
+}
+
+int32_t
+em_validate_mdi_setting(struct em_hw *hw)
+{
+ DEBUGFUNC("em_validate_mdi_settings");
+
+ if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->mdix = 1;
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+em_raise_ee_clk(struct em_hw *hw,
+ uint32_t *eecd)
+{
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+em_lower_ee_clk(struct em_hw *hw,
+ uint32_t *eecd)
+{
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+em_shift_out_ee_bits(struct em_hw *hw,
+ uint16_t data,
+ uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if(data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ usec_delay(50);
+
+ em_raise_ee_clk(hw, &eecd);
+ em_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while(mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+em_shift_in_ee_bits(struct em_hw *hw)
+{
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+
+ /* In order to read a register from the EEPROM, we need to shift 16 bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the "DO"
+ * bit. During this "shifting in" process the "DI" bit should always be
+ * clear..
+ */
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for(i = 0; i < 16; i++) {
+ data = data << 1;
+ em_raise_ee_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DI);
+ if(eecd & E1000_EECD_DO)
+ data |= 1;
+
+ em_lower_ee_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static void
+em_setup_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_standby_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Deselct EEPROM */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Raises then lowers the EEPROM's clock pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_clock_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ usec_delay(50);
+}
+
+/******************************************************************************
+ * Terminates a command by lowering the EEPROM's chip select pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+em_cleanup_eeprom(struct em_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ em_clock_eeprom(hw);
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+int32_t
+em_read_eeprom(struct em_hw *hw,
+ uint16_t offset,
+ uint16_t *data)
+{
+ uint32_t eecd;
+ uint32_t i = 0;
+ boolean_t large_eeprom = FALSE;
+
+ DEBUGFUNC("em_read_eeprom");
+
+ /* Request EEPROM Access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if(!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Prepare the EEPROM for reading */
+ em_setup_eeprom(hw);
+
+ /* Send the READ command (opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
+ if(large_eeprom) {
+ /* If we have a 256 word EEPROM, there are 8 address bits */
+ em_shift_out_ee_bits(hw, offset, 8);
+ } else {
+ /* If we have a 64 word EEPROM, there are 6 address bits */
+ em_shift_out_ee_bits(hw, offset, 6);
+ }
+
+ /* Read the data */
+ *data = em_shift_in_ee_bits(hw);
+
+ /* End this read operation */
+ em_standby_eeprom(hw);
+
+ /* Stop requesting EEPROM access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+
+ return 0;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int32_t
+em_validate_eeprom_checksum(struct em_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("em_validate_eeprom_checksum");
+
+ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if(em_read_eeprom(hw, i, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if(checksum == (uint16_t) EEPROM_SUM) {
+ return 0;
+ } else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
+}
+
+/******************************************************************************
+ * Calculates the EEPROM checksum and writes it to the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ *****************************************************************************/
+int32_t
+em_update_eeprom_checksum(struct em_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("em_update_eeprom_checksum");
+
+ for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if(em_read_eeprom(hw, i, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+ checksum = (uint16_t) EEPROM_SUM - checksum;
+ if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum) < 0) {
+ DEBUGOUT("EEPROM Write Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * data - 16 bit word to be writen to the EEPROM
+ *
+ * If em_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ *****************************************************************************/
+int32_t
+em_write_eeprom(struct em_hw *hw,
+ uint16_t offset,
+ uint16_t data)
+{
+ uint32_t eecd;
+ uint32_t i = 0;
+ int32_t status = 0;
+ boolean_t large_eeprom = FALSE;
+
+ DEBUGFUNC("em_write_eeprom");
+
+ /* Request EEPROM Access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if(!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Prepare the EEPROM for writing */
+ em_setup_eeprom(hw);
+
+ /* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable) command
+ * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This puts the EEPROM
+ * into write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
+ if(large_eeprom)
+ em_shift_out_ee_bits(hw, 0, 6);
+ else
+ em_shift_out_ee_bits(hw, 0, 4);
+
+ /* Prepare the EEPROM */
+ em_standby_eeprom(hw);
+
+ /* Send the Write command (3-bit opcode + addr) */
+ em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
+ if(large_eeprom)
+ /* If we have a 256 word EEPROM, there are 8 address bits */
+ em_shift_out_ee_bits(hw, offset, 8);
+ else
+ /* If we have a 64 word EEPROM, there are 6 address bits */
+ em_shift_out_ee_bits(hw, offset, 6);
+
+ /* Send the data */
+ em_shift_out_ee_bits(hw, data, 16);
+
+ /* Toggle the CS line. This in effect tells to EEPROM to actually execute
+ * the command in question.
+ */
+ em_standby_eeprom(hw);
+
+ /* Now read DO repeatedly until is high (equal to '1'). The EEEPROM will
+ * signal that the command has been completed by raising the DO signal.
+ * If DO does not go high in 10 milliseconds, then error out.
+ */
+ for(i = 0; i < 200; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_DO) break;
+ usec_delay(50);
+ }
+ if(i == 200) {
+ DEBUGOUT("EEPROM Write did not complete\n");
+ status = -E1000_ERR_EEPROM;
+ }
+
+ /* Recover from write */
+ em_standby_eeprom(hw);
+
+ /* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable) command
+ * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This takes the EEPROM
+ * out of write/erase mode.
+ */
+ em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
+ if(large_eeprom)
+ em_shift_out_ee_bits(hw, 0, 6);
+ else
+ em_shift_out_ee_bits(hw, 0, 4);
+
+ /* Done with writing */
+ em_cleanup_eeprom(hw);
+
+ /* Stop requesting EEPROM access */
+ if(hw->mac_type > em_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+
+ return status;
+}
+
+/******************************************************************************
+ * Reads the adapter's part number from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ * part_num - Adapter's part number
+ *****************************************************************************/
+int32_t
+em_read_part_num(struct em_hw *hw,
+ uint32_t *part_num)
+{
+ uint16_t offset = EEPROM_PBA_BYTE_1;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("em_read_part_num");
+
+ /* Get word 0 from EEPROM */
+ if(em_read_eeprom(hw, offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 0 in upper half of part_num */
+ *part_num = (uint32_t) (eeprom_data << 16);
+
+ /* Get word 1 from EEPROM */
+ if(em_read_eeprom(hw, ++offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 1 in lower half of part_num */
+ *part_num |= eeprom_data;
+
+ return 0;
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_read_mac_addr(struct em_hw * hw)
+{
+ uint16_t offset;
+ uint16_t eeprom_data, i;
+
+ DEBUGFUNC("em_read_mac_addr");
+
+ for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if(em_read_eeprom(hw, offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+ hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+ }
+ if((hw->mac_type == em_82546) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ if(hw->perm_mac_addr[5] & 0x01)
+ hw->perm_mac_addr[5] &= ~(0x01);
+ else
+ hw->perm_mac_addr[5] |= 0x01;
+ }
+ for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
+ return 0;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+void
+em_init_rx_addrs(struct em_hw *hw)
+{
+ uint32_t i;
+ uint32_t addr_low;
+ uint32_t addr_high;
+
+ DEBUGFUNC("em_init_rx_addrs");
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+ addr_low = (hw->mac_addr[0] |
+ (hw->mac_addr[1] << 8) |
+ (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
+
+ addr_high = (hw->mac_addr[4] |
+ (hw->mac_addr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the
+ * multicast table.
+ *****************************************************************************/
+void
+em_mc_addr_list_update(struct em_hw *hw,
+ uint8_t *mc_addr_list,
+ uint32_t mc_addr_count,
+ uint32_t pad)
+{
+ uint32_t hash_value;
+ uint32_t i;
+ uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
+
+ DEBUGFUNC("em_mc_addr_list_update");
+
+ /* Set the new number of MC addresses that we are being requested to use. */
+ hw->num_mc_addrs = mc_addr_count;
+
+ /* Clear RAR[1-15] */
+ DEBUGOUT(" Clearing RAR[1-15]\n");
+ for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+
+ /* Clear the MTA */
+ DEBUGOUT(" Clearing MTA\n");
+ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ }
+
+ /* Add the new addresses */
+ for(i = 0; i < mc_addr_count; i++) {
+ DEBUGOUT(" Adding the multicast addresses:\n");
+ DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+ hash_value = em_hash_mc_addr(hw,
+ mc_addr_list +
+ (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+ DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+
+ /* Place this multicast address in the RAR if there is room, *
+ * else put it in the MTA
+ */
+ if(rar_used_count < E1000_RAR_ENTRIES) {
+ em_rar_set(hw,
+ mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+ rar_used_count);
+ rar_used_count++;
+ } else {
+ em_mta_set(hw, hash_value);
+ }
+ }
+ DEBUGOUT("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash
+ *****************************************************************************/
+uint32_t
+em_hash_mc_addr(struct em_hw *hw,
+ uint8_t *mc_addr)
+{
+ uint32_t hash_value = 0;
+
+ /* The portion of the address that is used for the hash table is
+ * determined by the mc_filter_type setting.
+ */
+ switch (hw->mc_filter_type) {
+ /* [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ */
+ case 0:
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ break;
+ case 1:
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+ break;
+ case 2:
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ break;
+ case 3:
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+ break;
+ }
+
+ hash_value &= 0xFFF;
+ return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+void
+em_mta_set(struct em_hw *hw,
+ uint32_t hash_value)
+{
+ uint32_t hash_bit, hash_reg;
+ uint32_t mta;
+ uint32_t temp;
+
+ /* The MTA is a register array of 128 32-bit registers.
+ * It is treated like an array of 4096 bits. We want to set
+ * bit BitArray[hash_value]. So we figure out what register
+ * the bit is in, read it, OR in the new bit, then write
+ * back the new value. The register is determined by the
+ * upper 7 bits of the hash value and the bit within that
+ * register are determined by the lower 5 bits of the value.
+ */
+ hash_reg = (hash_value >> 5) & 0x7F;
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+
+ /* If we are on an 82544 and we are trying to write an odd offset
+ * in the MTA, save off the previous entry before writing and
+ * restore the old value after writing.
+ */
+ if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ }
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+em_rar_set(struct em_hw *hw,
+ uint8_t *addr,
+ uint32_t index)
+{
+ uint32_t rar_low, rar_high;
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((uint32_t) addr[0] |
+ ((uint32_t) addr[1] << 8) |
+ ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+
+ rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+em_write_vfta(struct em_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ uint32_t temp;
+
+ if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_clear_vfta(struct em_hw *hw)
+{
+ uint32_t offset;
+
+ for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+static int32_t
+em_id_led_init(struct em_hw * hw)
+{
+ uint32_t ledctl;
+ const uint32_t ledctl_mask = 0x000000FF;
+ const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ uint16_t eeprom_data, i, temp;
+ const uint16_t led_mask = 0x0F;
+
+ DEBUGFUNC("em_id_led_init");
+
+ if(hw->mac_type < em_82540) {
+ /* Nothing to do */
+ return 0;
+ }
+
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ hw->ledctl_default = ledctl;
+ hw->ledctl_mode1 = hw->ledctl_default;
+ hw->ledctl_mode2 = hw->ledctl_default;
+
+ if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if((eeprom_data== ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
+ for(i = 0; i < 4; i++) {
+ temp = (eeprom_data >> (i << 2)) & led_mask;
+ switch(temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch(temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_setup_led(struct em_hw *hw)
+{
+ uint32_t ledctl;
+
+ DEBUGFUNC("em_setup_led");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ /* No setup necessary */
+ break;
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ /* Save current LEDCTL settings */
+ hw->ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, LEDCTL, ledctl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Restores the saved state of the SW controlable LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_cleanup_led(struct em_hw *hw)
+{
+ DEBUGFUNC("em_cleanup_led");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ /* No cleanup necessary */
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ /* Restore LEDCTL settings */
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_led_on(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_led_on");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+em_led_off(struct em_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("em_led_off");
+
+ switch(hw->device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82546EB_COPPER:
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ break;
+ default:
+ DEBUGOUT("Invalid device ID\n");
+ return -E1000_ERR_CONFIG;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_clear_hw_cntrs(struct em_hw *hw)
+{
+ volatile uint32_t temp;
+
+ temp = E1000_READ_REG(hw, CRCERRS);
+ temp = E1000_READ_REG(hw, SYMERRS);
+ temp = E1000_READ_REG(hw, MPC);
+ temp = E1000_READ_REG(hw, SCC);
+ temp = E1000_READ_REG(hw, ECOL);
+ temp = E1000_READ_REG(hw, MCC);
+ temp = E1000_READ_REG(hw, LATECOL);
+ temp = E1000_READ_REG(hw, COLC);
+ temp = E1000_READ_REG(hw, DC);
+ temp = E1000_READ_REG(hw, SEC);
+ temp = E1000_READ_REG(hw, RLEC);
+ temp = E1000_READ_REG(hw, XONRXC);
+ temp = E1000_READ_REG(hw, XONTXC);
+ temp = E1000_READ_REG(hw, XOFFRXC);
+ temp = E1000_READ_REG(hw, XOFFTXC);
+ temp = E1000_READ_REG(hw, FCRUC);
+ temp = E1000_READ_REG(hw, PRC64);
+ temp = E1000_READ_REG(hw, PRC127);
+ temp = E1000_READ_REG(hw, PRC255);
+ temp = E1000_READ_REG(hw, PRC511);
+ temp = E1000_READ_REG(hw, PRC1023);
+ temp = E1000_READ_REG(hw, PRC1522);
+ temp = E1000_READ_REG(hw, GPRC);
+ temp = E1000_READ_REG(hw, BPRC);
+ temp = E1000_READ_REG(hw, MPRC);
+ temp = E1000_READ_REG(hw, GPTC);
+ temp = E1000_READ_REG(hw, GORCL);
+ temp = E1000_READ_REG(hw, GORCH);
+ temp = E1000_READ_REG(hw, GOTCL);
+ temp = E1000_READ_REG(hw, GOTCH);
+ temp = E1000_READ_REG(hw, RNBC);
+ temp = E1000_READ_REG(hw, RUC);
+ temp = E1000_READ_REG(hw, RFC);
+ temp = E1000_READ_REG(hw, ROC);
+ temp = E1000_READ_REG(hw, RJC);
+ temp = E1000_READ_REG(hw, TORL);
+ temp = E1000_READ_REG(hw, TORH);
+ temp = E1000_READ_REG(hw, TOTL);
+ temp = E1000_READ_REG(hw, TOTH);
+ temp = E1000_READ_REG(hw, TPR);
+ temp = E1000_READ_REG(hw, TPT);
+ temp = E1000_READ_REG(hw, PTC64);
+ temp = E1000_READ_REG(hw, PTC127);
+ temp = E1000_READ_REG(hw, PTC255);
+ temp = E1000_READ_REG(hw, PTC511);
+ temp = E1000_READ_REG(hw, PTC1023);
+ temp = E1000_READ_REG(hw, PTC1522);
+ temp = E1000_READ_REG(hw, MPTC);
+ temp = E1000_READ_REG(hw, BPTC);
+
+ if(hw->mac_type < em_82543) return;
+
+ temp = E1000_READ_REG(hw, ALGNERRC);
+ temp = E1000_READ_REG(hw, RXERRC);
+ temp = E1000_READ_REG(hw, TNCRS);
+ temp = E1000_READ_REG(hw, CEXTERR);
+ temp = E1000_READ_REG(hw, TSCTC);
+ temp = E1000_READ_REG(hw, TSCTFC);
+
+ if(hw->mac_type <= em_82544) return;
+
+ temp = E1000_READ_REG(hw, MGTPRC);
+ temp = E1000_READ_REG(hw, MGTPDC);
+ temp = E1000_READ_REG(hw, MGTPTC);
+}
+
+/******************************************************************************
+ * Resets Adaptive IFS to its default state.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Call this after em_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ *****************************************************************************/
+void
+em_reset_adaptive(struct em_hw *hw)
+{
+ DEBUGFUNC("em_reset_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if(!hw->ifs_params_forced) {
+ hw->current_ifs_val = 0;
+ hw->ifs_min_val = IFS_MIN;
+ hw->ifs_max_val = IFS_MAX;
+ hw->ifs_step_size = IFS_STEP;
+ hw->ifs_ratio = IFS_RATIO;
+ }
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * tx_packets - Number of transmits since last callback
+ * total_collisions - Number of collisions since last callback
+ *****************************************************************************/
+void
+em_update_adaptive(struct em_hw *hw)
+{
+ DEBUGFUNC("em_update_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if((hw->collision_delta * hw->ifs_ratio) >
+ hw->tx_packet_delta) {
+ if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+ hw->in_ifs_mode = TRUE;
+ if(hw->current_ifs_val < hw->ifs_max_val) {
+ if(hw->current_ifs_val == 0)
+ hw->current_ifs_val = hw->ifs_min_val;
+ else
+ hw->current_ifs_val += hw->ifs_step_size;
+ E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+ }
+ }
+ } else {
+ if((hw->in_ifs_mode == TRUE) &&
+ (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ hw->current_ifs_val = 0;
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ }
+ }
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ *
+ * hw - Struct containing variables accessed by shared code
+ * frame_len - The length of the frame in question
+ * mac_addr - The Ethernet destination address of the frame in question
+ *****************************************************************************/
+void
+em_tbi_adjust_stats(struct em_hw *hw,
+ struct em_hw_stats *stats,
+ uint32_t frame_len,
+ uint8_t *mac_addr)
+{
+ uint64_t carry_bit;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /* We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ carry_bit = 0x80000000 & stats->gorcl;
+ stats->gorcl += frame_len;
+ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+ * Received Count) was one before the addition,
+ * AND it is zero after, then we lost the carry out,
+ * need to add one to Gorch (Good Octets Received Count High).
+ * This could be simplified if all environments supported
+ * 64-bit integers.
+ */
+ if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ stats->gorch++;
+ /* Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if(*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ if(frame_len == hw->max_frame_size) {
+ /* In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if(stats->roc > 0)
+ stats->roc--;
+ }
+
+ /* Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if(frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if(frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if(frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if(frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if(frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if(frame_len == 1522) {
+ stats->prc1522++;
+ }
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+em_get_bus_info(struct em_hw *hw)
+{
+ uint32_t status;
+
+ if(hw->mac_type < em_82543) {
+ hw->bus_type = em_bus_type_unknown;
+ hw->bus_speed = em_bus_speed_unknown;
+ hw->bus_width = em_bus_width_unknown;
+ return;
+ }
+
+ status = E1000_READ_REG(hw, STATUS);
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ em_bus_type_pcix : em_bus_type_pci;
+ if(hw->bus_type == em_bus_type_pci) {
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+ em_bus_speed_66 : em_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ hw->bus_speed = em_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ hw->bus_speed = em_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ hw->bus_speed = em_bus_speed_133;
+ break;
+ default:
+ hw->bus_speed = em_bus_speed_reserved;
+ break;
+ }
+ }
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
+ em_bus_width_64 : em_bus_width_32;
+}
+/******************************************************************************
+ * Reads a value from one of the devices registers using port I/O (as opposed
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to read from
+ *****************************************************************************/
+uint32_t
+em_read_reg_io(struct em_hw *hw,
+ uint32_t offset)
+{
+ uint32_t io_addr = hw->io_base;
+ uint32_t io_data = hw->io_base + 4;
+
+ em_io_write(hw, io_addr, offset);
+ return em_io_read(hw, io_data);
+}
+
+/******************************************************************************
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to write to
+ * value - value to write
+ *****************************************************************************/
+void
+em_write_reg_io(struct em_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ uint32_t io_addr = hw->io_base;
+ uint32_t io_data = hw->io_base + 4;
+
+ em_io_write(hw, io_addr, offset);
+ em_io_write(hw, io_data, value);
+}
+
diff --git a/sys/dev/pci/if_em_hw.h b/sys/dev/pci/if_em_hw.h
new file mode 100644
index 00000000000..f4b498dc7a8
--- /dev/null
+++ b/sys/dev/pci/if_em_hw.h
@@ -0,0 +1,1784 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+/* if_em_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _EM_HW_H_
+#define _EM_HW_H_
+
+#include <dev/pci/if_em_osdep.h>
+
+/* Forward declarations of structures used by the shared code */
+struct em_hw;
+struct em_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+ em_82542_rev2_0 = 0,
+ em_82542_rev2_1,
+ em_82543,
+ em_82544,
+ em_82540,
+ em_82545,
+ em_82546,
+ em_num_macs
+} em_mac_type;
+
+/* Media Types */
+typedef enum {
+ em_media_type_copper = 0,
+ em_media_type_fiber = 1,
+ em_num_media_types
+} em_media_type;
+
+typedef enum {
+ em_10_half = 0,
+ em_10_full = 1,
+ em_100_half = 2,
+ em_100_full = 3
+} em_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+ em_fc_none = 0,
+ em_fc_rx_pause = 1,
+ em_fc_tx_pause = 2,
+ em_fc_full = 3,
+ em_fc_default = 0xFF
+} em_fc_type;
+
+/* PCI bus types */
+typedef enum {
+ em_bus_type_unknown = 0,
+ em_bus_type_pci,
+ em_bus_type_pcix
+} em_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+ em_bus_speed_unknown = 0,
+ em_bus_speed_33,
+ em_bus_speed_66,
+ em_bus_speed_100,
+ em_bus_speed_133,
+ em_bus_speed_reserved
+} em_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+ em_bus_width_unknown = 0,
+ em_bus_width_32,
+ em_bus_width_64
+} em_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+ em_cable_length_50 = 0,
+ em_cable_length_50_80,
+ em_cable_length_80_110,
+ em_cable_length_110_140,
+ em_cable_length_140,
+ em_cable_length_undefined = 0xFF
+} em_cable_length;
+
+typedef enum {
+ em_10bt_ext_dist_enable_normal = 0,
+ em_10bt_ext_dist_enable_lower,
+ em_10bt_ext_dist_enable_undefined = 0xFF
+} em_10bt_ext_dist_enable;
+
+typedef enum {
+ em_rev_polarity_normal = 0,
+ em_rev_polarity_reversed,
+ em_rev_polarity_undefined = 0xFF
+} em_rev_polarity;
+
+typedef enum {
+ em_polarity_reversal_enabled = 0,
+ em_polarity_reversal_disabled,
+ em_polarity_reversal_undefined = 0xFF
+} em_polarity_reversal;
+
+typedef enum {
+ em_auto_x_mode_manual_mdi = 0,
+ em_auto_x_mode_manual_mdix,
+ em_auto_x_mode_auto1,
+ em_auto_x_mode_auto2,
+ em_auto_x_mode_undefined = 0xFF
+} em_auto_x_mode;
+
+typedef enum {
+ em_1000t_rx_status_not_ok = 0,
+ em_1000t_rx_status_ok,
+ em_1000t_rx_status_undefined = 0xFF
+} em_1000t_rx_status;
+
+struct em_phy_info {
+ em_cable_length cable_length;
+ em_10bt_ext_dist_enable extended_10bt_distance;
+ em_rev_polarity cable_polarity;
+ em_polarity_reversal polarity_correction;
+ em_auto_x_mode mdix_mode;
+ em_1000t_rx_status local_rx;
+ em_1000t_rx_status remote_rx;
+};
+
+struct em_phy_stats {
+ uint32_t idle_errors;
+ uint32_t receive_errors;
+};
+
+
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_EEPROM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+
+/* Function prototypes */
+/* Initialization */
+void em_reset_hw(struct em_hw *hw);
+int32_t em_init_hw(struct em_hw *hw);
+
+/* Link Configuration */
+int32_t em_setup_link(struct em_hw *hw);
+int32_t em_phy_setup_autoneg(struct em_hw *hw);
+void em_config_collision_dist(struct em_hw *hw);
+int32_t em_config_fc_after_link_up(struct em_hw *hw);
+int32_t em_check_for_link(struct em_hw *hw);
+void em_get_speed_and_duplex(struct em_hw *hw, uint16_t * speed, uint16_t * duplex);
+int32_t em_wait_autoneg(struct em_hw *hw);
+
+/* PHY */
+int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
+int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
+void em_phy_hw_reset(struct em_hw *hw);
+int32_t em_phy_reset(struct em_hw *hw);
+int32_t em_detect_gig_phy(struct em_hw *hw);
+int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
+int32_t em_validate_mdi_setting(struct em_hw *hw);
+
+/* EEPROM Functions */
+int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t *data);
+int32_t em_validate_eeprom_checksum(struct em_hw *hw);
+int32_t em_update_eeprom_checksum(struct em_hw *hw);
+int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t data);
+int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num);
+int32_t em_read_mac_addr(struct em_hw * hw);
+
+/* Filters (multicast, vlan, receive) */
+void em_init_rx_addrs(struct em_hw *hw);
+void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad);
+uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr);
+void em_mta_set(struct em_hw *hw, uint32_t hash_value);
+void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
+void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value);
+void em_clear_vfta(struct em_hw *hw);
+
+/* LED functions */
+int32_t em_setup_led(struct em_hw *hw);
+int32_t em_cleanup_led(struct em_hw *hw);
+int32_t em_led_on(struct em_hw *hw);
+int32_t em_led_off(struct em_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+void em_clear_hw_cntrs(struct em_hw *hw);
+void em_reset_adaptive(struct em_hw *hw);
+void em_update_adaptive(struct em_hw *hw);
+void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
+void em_get_bus_info(struct em_hw *hw);
+void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
+void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
+/* Port I/O is only supported on 82544 and newer */
+uint32_t em_io_read(struct em_hw *hw, uint32_t port);
+uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset);
+void em_io_write(struct em_hw *hw, uint32_t port, uint32_t value);
+void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
+#define E1000_READ_REG_IO(a, reg) \
+ em_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+ em_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define NUM_DEV_IDS 13
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE 14
+#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */
+#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
+#define ETHERNET_FCS_SIZE 4
+#define MAXIMUM_ETHERNET_PACKET_SIZE \
+ (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+ (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
+#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP 6
+#define IP_PROTOCOL_UDP 0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* The number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 16
+
+#define MIN_NUMBER_OF_DESCRIPTORS 8
+#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
+
+/* Receive Descriptor */
+struct em_rx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ uint16_t length; /* Length of data DMAed into data buffer */
+ uint16_t csum; /* Packet checksum */
+ uint8_t status; /* Descriptor status */
+ uint8_t errors; /* Descriptor Errors */
+ uint16_t special;
+};
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Transmit Descriptor */
+struct em_tx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ uint32_t data;
+ struct {
+ uint16_t length; /* Data buffer length */
+ uint8_t cso; /* Checksum offset */
+ uint8_t cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t css; /* Checksum start */
+ uint16_t special;
+ } fields;
+ } upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct em_context_desc {
+ union {
+ uint32_t ip_config;
+ struct {
+ uint8_t ipcss; /* IP checksum start */
+ uint8_t ipcso; /* IP checksum offset */
+ uint16_t ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ uint32_t tcp_config;
+ struct {
+ uint8_t tucss; /* TCP checksum start */
+ uint8_t tucso; /* TCP checksum offset */
+ uint16_t tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ uint32_t cmd_and_length; /* */
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t hdr_len; /* Header length */
+ uint16_t mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct em_data_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ uint32_t data;
+ struct {
+ uint16_t length; /* Data buffer length */
+ uint8_t typ_len_ext; /* */
+ uint8_t cmd; /* */
+ } flags;
+ } lower;
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t popts; /* Packet Options */
+ uint16_t special; /* */
+ } fields;
+ } upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
+#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+
+/* Receive Address Register */
+struct em_rar {
+ volatile uint32_t low; /* receive address low */
+ volatile uint32_t high; /* receive address high */
+};
+
+/* The number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct em_ipv4_at_entry {
+ volatile uint32_t ipv4_addr; /* IP Address (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE 1
+
+/* IPv6 Address Table Entry */
+struct em_ipv6_at_entry {
+ volatile uint8_t ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct em_fflt_entry {
+ volatile uint32_t length; /* Flexible Filter Length (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct em_ffmt_entry {
+ volatile uint32_t mask; /* Flexible Filter Mask (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct em_ffvt_entry {
+ volatile uint32_t value; /* Flexible Filter Value (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_RCTL 0x00100 /* RX Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
+#define E1000_TCTL 0x00400 /* TX Control - RW */
+#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
+#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
+#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
+#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
+#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
+#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
+#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
+#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
+#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
+#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
+#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
+#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL E1000_CTRL
+#define E1000_82542_STATUS E1000_STATUS
+#define E1000_82542_EECD E1000_EECD
+#define E1000_82542_EERD E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_MDIC E1000_MDIC
+#define E1000_82542_FCAL E1000_FCAL
+#define E1000_82542_FCAH E1000_FCAH
+#define E1000_82542_FCT E1000_FCT
+#define E1000_82542_VET E1000_VET
+#define E1000_82542_RA 0x00040
+#define E1000_82542_ICR E1000_ICR
+#define E1000_82542_ITR E1000_ITR
+#define E1000_82542_ICS E1000_ICS
+#define E1000_82542_IMS E1000_IMS
+#define E1000_82542_IMC E1000_IMC
+#define E1000_82542_RCTL E1000_RCTL
+#define E1000_82542_RDTR 0x00108
+#define E1000_82542_RDBAL 0x00110
+#define E1000_82542_RDBAH 0x00114
+#define E1000_82542_RDLEN 0x00118
+#define E1000_82542_RDH 0x00120
+#define E1000_82542_RDT 0x00128
+#define E1000_82542_FCRTH 0x00160
+#define E1000_82542_FCRTL 0x00168
+#define E1000_82542_FCTTV E1000_FCTTV
+#define E1000_82542_TXCW E1000_TXCW
+#define E1000_82542_RXCW E1000_RXCW
+#define E1000_82542_MTA 0x00200
+#define E1000_82542_TCTL E1000_TCTL
+#define E1000_82542_TIPG E1000_TIPG
+#define E1000_82542_TDBAL 0x00420
+#define E1000_82542_TDBAH 0x00424
+#define E1000_82542_TDLEN 0x00428
+#define E1000_82542_TDH 0x00430
+#define E1000_82542_TDT 0x00438
+#define E1000_82542_TIDV 0x00440
+#define E1000_82542_TBT E1000_TBT
+#define E1000_82542_AIT E1000_AIT
+#define E1000_82542_VFTA 0x00600
+#define E1000_82542_LEDCTL E1000_LEDCTL
+#define E1000_82542_PBA E1000_PBA
+#define E1000_82542_RXDCTL E1000_RXDCTL
+#define E1000_82542_RADV E1000_RADV
+#define E1000_82542_RSRPD E1000_RSRPD
+#define E1000_82542_TXDMAC E1000_TXDMAC
+#define E1000_82542_TXDCTL E1000_TXDCTL
+#define E1000_82542_TADV E1000_TADV
+#define E1000_82542_TSPMT E1000_TSPMT
+#define E1000_82542_CRCERRS E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS E1000_SYMERRS
+#define E1000_82542_RXERRC E1000_RXERRC
+#define E1000_82542_MPC E1000_MPC
+#define E1000_82542_SCC E1000_SCC
+#define E1000_82542_ECOL E1000_ECOL
+#define E1000_82542_MCC E1000_MCC
+#define E1000_82542_LATECOL E1000_LATECOL
+#define E1000_82542_COLC E1000_COLC
+#define E1000_82542_DC E1000_DC
+#define E1000_82542_TNCRS E1000_TNCRS
+#define E1000_82542_SEC E1000_SEC
+#define E1000_82542_CEXTERR E1000_CEXTERR
+#define E1000_82542_RLEC E1000_RLEC
+#define E1000_82542_XONRXC E1000_XONRXC
+#define E1000_82542_XONTXC E1000_XONTXC
+#define E1000_82542_XOFFRXC E1000_XOFFRXC
+#define E1000_82542_XOFFTXC E1000_XOFFTXC
+#define E1000_82542_FCRUC E1000_FCRUC
+#define E1000_82542_PRC64 E1000_PRC64
+#define E1000_82542_PRC127 E1000_PRC127
+#define E1000_82542_PRC255 E1000_PRC255
+#define E1000_82542_PRC511 E1000_PRC511
+#define E1000_82542_PRC1023 E1000_PRC1023
+#define E1000_82542_PRC1522 E1000_PRC1522
+#define E1000_82542_GPRC E1000_GPRC
+#define E1000_82542_BPRC E1000_BPRC
+#define E1000_82542_MPRC E1000_MPRC
+#define E1000_82542_GPTC E1000_GPTC
+#define E1000_82542_GORCL E1000_GORCL
+#define E1000_82542_GORCH E1000_GORCH
+#define E1000_82542_GOTCL E1000_GOTCL
+#define E1000_82542_GOTCH E1000_GOTCH
+#define E1000_82542_RNBC E1000_RNBC
+#define E1000_82542_RUC E1000_RUC
+#define E1000_82542_RFC E1000_RFC
+#define E1000_82542_ROC E1000_ROC
+#define E1000_82542_RJC E1000_RJC
+#define E1000_82542_MGTPRC E1000_MGTPRC
+#define E1000_82542_MGTPDC E1000_MGTPDC
+#define E1000_82542_MGTPTC E1000_MGTPTC
+#define E1000_82542_TORL E1000_TORL
+#define E1000_82542_TORH E1000_TORH
+#define E1000_82542_TOTL E1000_TOTL
+#define E1000_82542_TOTH E1000_TOTH
+#define E1000_82542_TPR E1000_TPR
+#define E1000_82542_TPT E1000_TPT
+#define E1000_82542_PTC64 E1000_PTC64
+#define E1000_82542_PTC127 E1000_PTC127
+#define E1000_82542_PTC255 E1000_PTC255
+#define E1000_82542_PTC511 E1000_PTC511
+#define E1000_82542_PTC1023 E1000_PTC1023
+#define E1000_82542_PTC1522 E1000_PTC1522
+#define E1000_82542_MPTC E1000_MPTC
+#define E1000_82542_BPTC E1000_BPTC
+#define E1000_82542_TSCTC E1000_TSCTC
+#define E1000_82542_TSCTFC E1000_TSCTFC
+#define E1000_82542_RXCSUM E1000_RXCSUM
+#define E1000_82542_WUC E1000_WUC
+#define E1000_82542_WUFC E1000_WUFC
+#define E1000_82542_WUS E1000_WUS
+#define E1000_82542_MANC E1000_MANC
+#define E1000_82542_IPAV E1000_IPAV
+#define E1000_82542_IP4AT E1000_IP4AT
+#define E1000_82542_IP6AT E1000_IP6AT
+#define E1000_82542_WUPL E1000_WUPL
+#define E1000_82542_WUPM E1000_WUPM
+#define E1000_82542_FFLT E1000_FFLT
+#define E1000_82542_FFMT E1000_FFMT
+#define E1000_82542_FFVT E1000_FFVT
+
+/* Statistics counters collected by the MAC */
+struct em_hw_stats {
+ uint64_t crcerrs;
+ uint64_t algnerrc;
+ uint64_t symerrs;
+ uint64_t rxerrc;
+ uint64_t mpc;
+ uint64_t scc;
+ uint64_t ecol;
+ uint64_t mcc;
+ uint64_t latecol;
+ uint64_t colc;
+ uint64_t dc;
+ uint64_t tncrs;
+ uint64_t sec;
+ uint64_t cexterr;
+ uint64_t rlec;
+ uint64_t xonrxc;
+ uint64_t xontxc;
+ uint64_t xoffrxc;
+ uint64_t xofftxc;
+ uint64_t fcruc;
+ uint64_t prc64;
+ uint64_t prc127;
+ uint64_t prc255;
+ uint64_t prc511;
+ uint64_t prc1023;
+ uint64_t prc1522;
+ uint64_t gprc;
+ uint64_t bprc;
+ uint64_t mprc;
+ uint64_t gptc;
+ uint64_t gorcl;
+ uint64_t gorch;
+ uint64_t gotcl;
+ uint64_t gotch;
+ uint64_t rnbc;
+ uint64_t ruc;
+ uint64_t rfc;
+ uint64_t roc;
+ uint64_t rjc;
+ uint64_t mgprc;
+ uint64_t mgpdc;
+ uint64_t mgptc;
+ uint64_t torl;
+ uint64_t torh;
+ uint64_t totl;
+ uint64_t toth;
+ uint64_t tpr;
+ uint64_t tpt;
+ uint64_t ptc64;
+ uint64_t ptc127;
+ uint64_t ptc255;
+ uint64_t ptc511;
+ uint64_t ptc1023;
+ uint64_t ptc1522;
+ uint64_t mptc;
+ uint64_t bptc;
+ uint64_t tsctc;
+ uint64_t tsctfc;
+};
+
+/* Structure containing variables used by the shared code (em_hw.c) */
+struct em_hw {
+ uint8_t *hw_addr;
+ em_mac_type mac_type;
+ em_media_type media_type;
+ void *back;
+ em_fc_type fc;
+ em_bus_speed bus_speed;
+ em_bus_width bus_width;
+ em_bus_type bus_type;
+ uint32_t io_base;
+ uint32_t phy_id;
+ uint32_t phy_addr;
+ uint32_t original_fc;
+ uint32_t txcw;
+ uint32_t autoneg_failed;
+ uint32_t max_frame_size;
+ uint32_t min_frame_size;
+ uint32_t mc_filter_type;
+ uint32_t num_mc_addrs;
+ uint32_t collision_delta;
+ uint32_t tx_packet_delta;
+ uint32_t ledctl_default;
+ uint32_t ledctl_mode1;
+ uint32_t ledctl_mode2;
+ uint16_t autoneg_advertised;
+ uint16_t pci_cmd_word;
+ uint16_t fc_high_water;
+ uint16_t fc_low_water;
+ uint16_t fc_pause_time;
+ uint16_t current_ifs_val;
+ uint16_t ifs_min_val;
+ uint16_t ifs_max_val;
+ uint16_t ifs_step_size;
+ uint16_t ifs_ratio;
+ uint16_t device_id;
+ uint16_t vendor_id;
+ uint16_t subsystem_id;
+ uint16_t subsystem_vendor_id;
+ uint8_t revision_id;
+ uint8_t autoneg;
+ uint8_t mdix;
+ uint8_t forced_speed_duplex;
+ uint8_t wait_autoneg_complete;
+ uint8_t dma_fairness;
+ uint8_t mac_addr[NODE_ADDRESS_SIZE];
+ uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
+ boolean_t disable_polarity_correction;
+ boolean_t get_link_status;
+ boolean_t tbi_compatibility_en;
+ boolean_t tbi_compatibility_on;
+ boolean_t fc_send_xon;
+ boolean_t report_tx_early;
+ boolean_t adaptive_ifs;
+ boolean_t ifs_params_forced;
+ boolean_t in_ifs_mode;
+};
+
+
+#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
+
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
+#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
+#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
+
+/* EEPROM Read */
+#define E1000_EERD_START 0x00000001 /* Start Read */
+#define E1000_EERD_DONE 0x00000010 /* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Receive Address */
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD E1000_ICR_SRPD
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
+#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
+#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
+#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
+#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
+#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
+#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
+#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
+ * Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN 4096
+
+/* EEPROM Commands */
+#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */
+#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */
+#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */
+#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */
+#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT 0x0003
+#define EEPROM_ID_LED_SETTINGS 0x0004
+#define EEPROM_INIT_CONTROL1_REG 0x000A
+#define EEPROM_INIT_CONTROL2_REG 0x000F
+#define EEPROM_FLASH_VERSION 0x0032
+#define EEPROM_CHECKSUM_REG 0x003F
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define EEPROM_COMPAT_SERVER 0x0400
+#define EEPROM_COMPAT_CLIENT 0x0200
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS 0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST 0x0200
+#define EEPROM_WORD0A_FD 0x0400
+#define EEPROM_WORD0A_66MHZ 0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE 0x1000
+#define EEPROM_WORD0F_ASM_DIR 0x2000
+#define EEPROM_WORD0F_ANE 0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1 8
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 16
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 64
+#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_GB_HDX_COLLISION_DISTANCE 512
+#define E1000_COLD_SHIFT 12
+
+/* The number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START 8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP 190
+#define TX_THRESHOLD_DISABLE 0
+#define TX_THRESHOLD_TIMER_MS 10000
+#define MIN_NUM_XMITS 1000
+#define IFS_MAX 80
+#define IFS_STEP 10
+#define IFS_MIN 40
+#define IFS_RATIO 4
+
+/* PBA constants */
+#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
+#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
+#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+
+
+/* The number of bits that we need to shift right to move the "pause"
+ * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field
+ * in the TXCW register
+ */
+#define PAUSE_SHIFT 5
+
+/* The number of bits that we need to shift left to move the "SWDPIO"
+ * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field
+ * in the CTRL register
+ */
+#define SWDPIO_SHIFT 17
+
+/* The number of bits that we need to shift left to move the "SWDPIO_EXT"
+ * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The
+ * Extended CTRL register.
+ * in the CTRL register
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* The number of bits that we need to shift left to move the "ILOS"
+ * bit from the EEPROM (bit 4) to the "ILOS" (bit 7) field
+ * in the CTRL register
+ */
+#define ILOS_SHIFT 3
+
+
+#define RECEIVE_BUFFER_ALIGN_SIZE (256)
+
+/* The number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT 500
+
+#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct em_hw
+ * status = the 8 bit status field of the RX descriptor with EOP set
+ * error = the 8 bit error field of the RX descriptor with EOP set
+ * length = the sum of all the length fields of the RX descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * em_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+ ((adapter)->tbi_compatibility_on && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= ((adapter)->max_frame_size + 1))) : \
+ (((length) > (adapter)->min_frame_size) && \
+ ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Regiser */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
+ /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
+ * 0=CLK125 toggling
+ */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
+ * 100BASE-TX/10BASE-T:
+ * MDI Mode
+ */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
+ * all speeds.
+ */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+ /* 1=Enable Extended 10BASE-T distance
+ * (Lower 10BASE-T RX Threshold)
+ * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+ /* 1=5-Bit interface in 100BASE-TX
+ * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
+ * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_MDIX_SHIFT 6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* Bit definitions for valid PHY IDs. */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_SOF 0x01
+#define PHY_OP_READ 0x02
+#define PHY_OP_WRITE 0x01
+#define PHY_TURNAROUND 0x02
+#define PHY_PREAMBLE_SIZE 32
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+#define E1000_PHY_ADDRESS 0x01
+#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
+#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK 0x01E0
+#define REG9_SPEED_MASK 0x0300
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
+
+#endif /* _EM_HW_H_ */
diff --git a/sys/dev/pci/if_em_osdep.h b/sys/dev/pci/if_em_osdep.h
new file mode 100644
index 00000000000..e6e4c793a0f
--- /dev/null
+++ b/sys/dev/pci/if_em_osdep.h
@@ -0,0 +1,131 @@
+/**************************************************************************
+
+Copyright (c) 2001-2002 Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms of the Software, with or
+without modification, are permitted provided that the following conditions
+are met:
+
+ 1. Redistributions of source code of the Software may retain the above
+ copyright notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form of the Software may reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors shall be used to endorse or promote products derived from
+ this Software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGE.
+
+***************************************************************************/
+
+/*$FreeBSD$*/
+
+#ifndef _OPENBSD_OS_H_
+#define _OPENBSD_OS_H_
+
+#define ASSERT(x) if(!(x)) panic("EM: x")
+
+/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */
+#define usec_delay(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+
+#define MSGOUT(S, A, B) printf(S "\n", A, B)
+#define DEBUGFUNC(F) DEBUGOUT(F);
+#if DBG
+ #define DEBUGOUT(S) printf(S "\n")
+ #define DEBUGOUT1(S,A) printf(S "\n",A)
+ #define DEBUGOUT2(S,A,B) printf(S "\n",A,B)
+ #define DEBUGOUT3(S,A,B,C) printf(S "\n",A,B,C)
+ #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S "\n",A,B,C,D,E,F,G)
+#else
+ #define DEBUGOUT(S)
+ #define DEBUGOUT1(S,A)
+ #define DEBUGOUT2(S,A,B)
+ #define DEBUGOUT3(S,A,B,C)
+ #define DEBUGOUT7(S,A,B,C,D,E,F,G)
+#endif
+
+#define FALSE 0
+#define TRUE 1
+#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
+#define PCI_COMMAND_REGISTER PCI_COMMAND_STATUS_REG
+
+struct em_dmamap
+{
+ bus_size_t emm_size;
+ caddr_t emm_ptr, emm_kva;
+ bus_dma_segment_t emm_seg;
+ bus_dmamap_t emm_dmamap;
+ int emm_rseg;
+};
+
+struct em_osdep
+{
+ struct device *dev;
+
+ struct em_dmamap em_rx;
+ struct em_dmamap em_tx;
+
+ struct pci_attach_args em_pa;
+
+ bus_space_handle_t em_bhandle;
+ bus_space_tag_t em_btag;
+ bus_size_t em_memsize;
+ bus_addr_t em_membase;
+
+ bus_space_handle_t em_iobhandle;
+ bus_space_tag_t em_iobtag;
+ bus_size_t em_iosize;
+ bus_addr_t em_iobase;
+
+};
+
+#define E1000_READ_REG(hw, reg) \
+ bus_space_read_4( \
+ ((struct em_osdep *)(hw)->back)->em_btag, \
+ ((struct em_osdep *)(hw)->back)->em_bhandle, \
+ ((hw)->mac_type >= em_82543) ? \
+ E1000_##reg : E1000_82542_##reg)
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ bus_space_write_4( \
+ ((struct em_osdep *)(hw)->back)->em_btag, \
+ ((struct em_osdep *)(hw)->back)->em_bhandle, \
+ ((hw)->mac_type >= em_82543) ? \
+ E1000_##reg : E1000_82542_##reg, \
+ value)
+
+#define E1000_READ_REG_ARRAY(sc, reg, offset) \
+ bus_space_read_4( \
+ ((struct em_osdep *)(hw)->back)->em_btag, \
+ ((struct em_osdep *)(hw)->back)->em_bhandle, \
+ ((hw)->mac_type >= em_82543) ? \
+ (E1000_##reg + ((offset) << 2)) : \
+ (E1000_82542_##reg + ((offset) << 2)) )
+
+#define E1000_WRITE_REG_ARRAY(sc, reg, offset, value) \
+ bus_space_write_4( \
+ ((struct em_osdep *)(hw)->back)->em_btag, \
+ ((struct em_osdep *)(hw)->back)->em_bhandle, \
+ ((hw)->mac_type >= em_82543) ? \
+ (E1000_##reg + ((offset) << 2)) : \
+ (E1000_82542_##reg + ((offset) << 2)), \
+ value)
+
+#endif /* _OPENBSD_OS_H_ */
+