diff options
Diffstat (limited to 'gnu/egcs/libstdc++/stl/pthread_alloc')
-rw-r--r-- | gnu/egcs/libstdc++/stl/pthread_alloc | 479 |
1 files changed, 479 insertions, 0 deletions
diff --git a/gnu/egcs/libstdc++/stl/pthread_alloc b/gnu/egcs/libstdc++/stl/pthread_alloc new file mode 100644 index 00000000000..887d8e8a154 --- /dev/null +++ b/gnu/egcs/libstdc++/stl/pthread_alloc @@ -0,0 +1,479 @@ +/* + * Copyright (c) 1996 + * Silicon Graphics Computer Systems, Inc. + * + * Permission to use, copy, modify, distribute and sell this software + * and its documentation for any purpose is hereby granted without fee, + * provided that the above copyright notice appear in all copies and + * that both that copyright notice and this permission notice appear + * in supporting documentation. Silicon Graphics makes no + * representations about the suitability of this software for any + * purpose. It is provided "as is" without express or implied warranty. + */ + +#ifndef __SGI_STL_PTHREAD_ALLOC +#define __SGI_STL_PTHREAD_ALLOC + +// Pthread-specific node allocator. +// This is similar to the default allocator, except that free-list +// information is kept separately for each thread, avoiding locking. +// This should be reasonably fast even in the presence of threads. +// The down side is that storage may not be well-utilized. +// It is not an error to allocate memory in thread A and deallocate +// it in thread B. But this effectively transfers ownership of the memory, +// so that it can only be reallocated by thread B. Thus this can effectively +// result in a storage leak if it's done on a regular basis. +// It can also result in frequent sharing of +// cache lines among processors, with potentially serious performance +// consequences. + +#include <stl_config.h> +#include <stl_alloc.h> +#ifndef __RESTRICT +# define __RESTRICT +#endif + +__STL_BEGIN_NAMESPACE + +#define __STL_DATA_ALIGNMENT 8 + +union _Pthread_alloc_obj { + union _Pthread_alloc_obj * __free_list_link; + char __client_data[__STL_DATA_ALIGNMENT]; /* The client sees this. */ +}; + +// Pthread allocators don't appear to the client to have meaningful +// instances. We do in fact need to associate some state with each +// thread. That state is represented by +// _Pthread_alloc_per_thread_state<_Max_size>. + +template<size_t _Max_size> +struct _Pthread_alloc_per_thread_state { + typedef _Pthread_alloc_obj __obj; + enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT }; + _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS]; + _Pthread_alloc_per_thread_state<_Max_size> * __next; + // Free list link for list of available per thread structures. + // When one of these becomes available for reuse due to thread + // termination, any objects in its free list remain associated + // with it. The whole structure may then be used by a newly + // created thread. + _Pthread_alloc_per_thread_state() : __next(0) + { + memset((void *)__free_list, 0, _S_NFREELISTS * sizeof(__obj *)); + } + // Returns an object of size __n, and possibly adds to size n free list. + void *_M_refill(size_t __n); +}; + +// Pthread-specific allocator. +// The argument specifies the largest object size allocated from per-thread +// free lists. Larger objects are allocated using malloc_alloc. +// Max_size must be a power of 2. +template <size_t _Max_size = 128> +class _Pthread_alloc_template { + +public: // but only for internal use: + + typedef _Pthread_alloc_obj __obj; + + // Allocates a chunk for nobjs of size "size". nobjs may be reduced + // if it is inconvenient to allocate the requested number. + static char *_S_chunk_alloc(size_t __size, int &__nobjs); + + enum {_S_ALIGN = __STL_DATA_ALIGNMENT}; + + static size_t _S_round_up(size_t __bytes) { + return (((__bytes) + _S_ALIGN-1) & ~(_S_ALIGN - 1)); + } + static size_t _S_freelist_index(size_t __bytes) { + return (((__bytes) + _S_ALIGN-1)/_S_ALIGN - 1); + } + +private: + // Chunk allocation state. And other shared state. + // Protected by _S_chunk_allocator_lock. + static pthread_mutex_t _S_chunk_allocator_lock; + static char *_S_start_free; + static char *_S_end_free; + static size_t _S_heap_size; + static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states; + static pthread_key_t _S_key; + static bool _S_key_initialized; + // Pthread key under which per thread state is stored. + // Allocator instances that are currently unclaimed by any thread. + static void _S_destructor(void *instance); + // Function to be called on thread exit to reclaim per thread + // state. + static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state(); + // Return a recycled or new per thread state. + static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state(); + // ensure that the current thread has an associated + // per thread state. + friend class _M_lock; + class _M_lock { + public: + _M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); } + ~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); } + }; + +public: + + /* n must be > 0 */ + static void * allocate(size_t __n) + { + __obj * volatile * __my_free_list; + __obj * __RESTRICT __result; + _Pthread_alloc_per_thread_state<_Max_size>* __a; + + if (__n > _Max_size) { + return(malloc_alloc::allocate(__n)); + } + if (!_S_key_initialized || + !(__a = (_Pthread_alloc_per_thread_state<_Max_size>*) + pthread_getspecific(_S_key))) { + __a = _S_get_per_thread_state(); + } + __my_free_list = __a -> __free_list + _S_freelist_index(__n); + __result = *__my_free_list; + if (__result == 0) { + void *__r = __a -> _M_refill(_S_round_up(__n)); + return __r; + } + *__my_free_list = __result -> __free_list_link; + return (__result); + }; + + /* p may not be 0 */ + static void deallocate(void *__p, size_t __n) + { + __obj *__q = (__obj *)__p; + __obj * volatile * __my_free_list; + _Pthread_alloc_per_thread_state<_Max_size>* __a; + + if (__n > _Max_size) { + malloc_alloc::deallocate(__p, __n); + return; + } + if (!_S_key_initialized || + !(__a = (_Pthread_alloc_per_thread_state<_Max_size> *) + pthread_getspecific(_S_key))) { + __a = _S_get_per_thread_state(); + } + __my_free_list = __a->__free_list + _S_freelist_index(__n); + __q -> __free_list_link = *__my_free_list; + *__my_free_list = __q; + } + + static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz); + +} ; + +typedef _Pthread_alloc_template<> pthread_alloc; + + +template <size_t _Max_size> +void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance) +{ + _M_lock __lock_instance; // Need to acquire lock here. + _Pthread_alloc_per_thread_state<_Max_size>* __s = + (_Pthread_alloc_per_thread_state<_Max_size> *)__instance; + __s -> __next = _S_free_per_thread_states; + _S_free_per_thread_states = __s; +} + +template <size_t _Max_size> +_Pthread_alloc_per_thread_state<_Max_size> * +_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state() +{ + /* lock already held here. */ + if (0 != _S_free_per_thread_states) { + _Pthread_alloc_per_thread_state<_Max_size> *__result = + _S_free_per_thread_states; + _S_free_per_thread_states = _S_free_per_thread_states -> __next; + return __result; + } else { + return new _Pthread_alloc_per_thread_state<_Max_size>; + } +} + +template <size_t _Max_size> +_Pthread_alloc_per_thread_state<_Max_size> * +_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state() +{ + /*REFERENCED*/ + _M_lock __lock_instance; // Need to acquire lock here. + _Pthread_alloc_per_thread_state<_Max_size> * __result; + if (!_S_key_initialized) { + if (pthread_key_create(&_S_key, _S_destructor)) { + abort(); // failed + } + _S_key_initialized = true; + } + __result = _S_new_per_thread_state(); + if (pthread_setspecific(_S_key, __result)) abort(); + return __result; +} + +/* We allocate memory in large chunks in order to avoid fragmenting */ +/* the malloc heap too much. */ +/* We assume that size is properly aligned. */ +template <size_t _Max_size> +char *_Pthread_alloc_template<_Max_size> +::_S_chunk_alloc(size_t __size, int &__nobjs) +{ + { + char * __result; + size_t __total_bytes; + size_t __bytes_left; + /*REFERENCED*/ + _M_lock __lock_instance; // Acquire lock for this routine + + __total_bytes = __size * __nobjs; + __bytes_left = _S_end_free - _S_start_free; + if (__bytes_left >= __total_bytes) { + __result = _S_start_free; + _S_start_free += __total_bytes; + return(__result); + } else if (__bytes_left >= __size) { + __nobjs = __bytes_left/__size; + __total_bytes = __size * __nobjs; + __result = _S_start_free; + _S_start_free += __total_bytes; + return(__result); + } else { + size_t __bytes_to_get = + 2 * __total_bytes + _S_round_up(_S_heap_size >> 4); + // Try to make use of the left-over piece. + if (__bytes_left > 0) { + _Pthread_alloc_per_thread_state<_Max_size>* __a = + (_Pthread_alloc_per_thread_state<_Max_size>*) + pthread_getspecific(_S_key); + __obj * volatile * __my_free_list = + __a->__free_list + _S_freelist_index(__bytes_left); + + ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list; + *__my_free_list = (__obj *)_S_start_free; + } +# ifdef _SGI_SOURCE + // Try to get memory that's aligned on something like a + // cache line boundary, so as to avoid parceling out + // parts of the same line to different threads and thus + // possibly different processors. + { + const int __cache_line_size = 128; // probable upper bound + __bytes_to_get &= ~(__cache_line_size-1); + _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get); + if (0 == _S_start_free) { + _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get); + } + } +# else /* !SGI_SOURCE */ + _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get); +# endif + _S_heap_size += __bytes_to_get; + _S_end_free = _S_start_free + __bytes_to_get; + } + } + // lock is released here + return(_S_chunk_alloc(__size, __nobjs)); +} + + +/* Returns an object of size n, and optionally adds to size n free list.*/ +/* We assume that n is properly aligned. */ +/* We hold the allocation lock. */ +template <size_t _Max_size> +void *_Pthread_alloc_per_thread_state<_Max_size> +::_M_refill(size_t __n) +{ + int __nobjs = 128; + char * __chunk = + _Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs); + __obj * volatile * __my_free_list; + __obj * __result; + __obj * __current_obj, * __next_obj; + int __i; + + if (1 == __nobjs) { + return(__chunk); + } + __my_free_list = __free_list + + _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n); + + /* Build free list in chunk */ + __result = (__obj *)__chunk; + *__my_free_list = __next_obj = (__obj *)(__chunk + __n); + for (__i = 1; ; __i++) { + __current_obj = __next_obj; + __next_obj = (__obj *)((char *)__next_obj + __n); + if (__nobjs - 1 == __i) { + __current_obj -> __free_list_link = 0; + break; + } else { + __current_obj -> __free_list_link = __next_obj; + } + } + return(__result); +} + +template <size_t _Max_size> +void *_Pthread_alloc_template<_Max_size> +::reallocate(void *__p, size_t __old_sz, size_t __new_sz) +{ + void * __result; + size_t __copy_sz; + + if (__old_sz > _Max_size + && __new_sz > _Max_size) { + return(realloc(__p, __new_sz)); + } + if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p); + __result = allocate(__new_sz); + __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; + memcpy(__result, __p, __copy_sz); + deallocate(__p, __old_sz); + return(__result); +} + +template <size_t _Max_size> +_Pthread_alloc_per_thread_state<_Max_size> * +_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0; + +template <size_t _Max_size> +pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key; + +template <size_t _Max_size> +bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false; + +template <size_t _Max_size> +pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock += PTHREAD_MUTEX_INITIALIZER; + +template <size_t _Max_size> +char *_Pthread_alloc_template<_Max_size> +::_S_start_free = 0; + +template <size_t _Max_size> +char *_Pthread_alloc_template<_Max_size> +::_S_end_free = 0; + +template <size_t _Max_size> +size_t _Pthread_alloc_template<_Max_size> +::_S_heap_size = 0; + +#ifdef __STL_USE_STD_ALLOCATORS + +template <class _Tp> +class pthread_allocator { + typedef pthread_alloc _S_Alloc; // The underlying allocator. +public: + typedef size_t size_type; + typedef ptrdiff_t difference_type; + typedef _Tp* pointer; + typedef const _Tp* const_pointer; + typedef _Tp& reference; + typedef const _Tp& const_reference; + typedef _Tp value_type; + + template <class _U> struct rebind { + typedef pthread_allocator<_U> other; + }; + + pthread_allocator() __STL_NOTHROW {} + pthread_allocator(const pthread_allocator& a) __STL_NOTHROW {} + template <class _U> pthread_allocator(const pthread_allocator<_U>&) + __STL_NOTHROW {} + ~pthread_allocator() __STL_NOTHROW {} + + pointer address(reference __x) const { return &__x; } + const_pointer address(const_reference __x) const { return &__x; } + + // __n is permitted to be 0. The C++ standard says nothing about what + // the return value is when __n == 0. + _Tp* allocate(size_type __n, const void* = 0) { + return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp))) + : 0; + } + + // p is not permitted to be a null pointer. + void deallocate(pointer __p, size_type __n) + { _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); } + + size_type max_size() const __STL_NOTHROW + { return size_t(-1) / sizeof(_Tp); } + + void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } + void destroy(pointer _p) { _p->~_Tp(); } +}; + +template<> +class pthread_allocator<void> { +public: + typedef size_t size_type; + typedef ptrdiff_t difference_type; + typedef void* pointer; + typedef const void* const_pointer; + typedef void value_type; + + template <class _U> struct rebind { + typedef pthread_allocator<_U> other; + }; +}; + +template <size_t _Max_size> +inline bool operator==(const _Pthread_alloc_template<_Max_size>&, + const _Pthread_alloc_template<_Max_size>&) +{ + return true; +} + +template <class _T1, class _T2> +inline bool operator==(const pthread_allocator<_T1>&, + const pthread_allocator<_T2>& a2) +{ + return true; +} + +template <class _T1, class _T2> +inline bool operator!=(const pthread_allocator<_T1>&, + const pthread_allocator<_T2>&) +{ + return false; +} + +template <class _Tp, size_t _Max_size> +struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> > +{ + static const bool _S_instanceless = true; + typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type; + typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> > + allocator_type; +}; + +template <class _Tp, class _U, size_t _Max> +struct _Alloc_traits<_Tp, __allocator<_U, _Pthread_alloc_template<_Max> > > +{ + static const bool _S_instanceless = true; + typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type; + typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type; +}; + +template <class _Tp, class _U> +struct _Alloc_traits<_Tp, pthread_allocator<_U> > +{ + static const bool _S_instanceless = true; + typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type; + typedef pthread_allocator<_Tp> allocator_type; +}; + + +#endif /* __STL_USE_STD_ALLOCATORS */ + +__STL_END_NAMESPACE + +#endif /* __SGI_STL_PTHREAD_ALLOC */ + +// Local Variables: +// mode:C++ +// End: |