summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/Target/X86/X86InstrCompiler.td
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86InstrCompiler.td')
-rw-r--r--gnu/llvm/lib/Target/X86/X86InstrCompiler.td653
1 files changed, 277 insertions, 376 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86InstrCompiler.td b/gnu/llvm/lib/Target/X86/X86InstrCompiler.td
index d66d9258e96..1cee25a26e7 100644
--- a/gnu/llvm/lib/Target/X86/X86InstrCompiler.td
+++ b/gnu/llvm/lib/Target/X86/X86InstrCompiler.td
@@ -32,10 +32,9 @@ def GetLo8XForm : SDNodeXForm<imm, [{
// PIC base construction. This expands to code that looks like this:
// call $next_inst
// popl %destreg"
-let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
- SchedRW = [WriteJump] in
+let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
- "", [], IIC_CALL_RI>;
+ "", []>;
// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
@@ -43,18 +42,18 @@ let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
-let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
-def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
- (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
- "#ADJCALLSTACKDOWN", [], IIC_ALU_NONMEM>,
- Requires<[NotLP64]>;
+let Defs = [ESP, EFLAGS], Uses = [ESP] in {
+def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKDOWN",
+ []>,
+ Requires<[NotLP64]>;
def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
- [(X86callseq_end timm:$amt1, timm:$amt2)],
- IIC_ALU_NONMEM>, Requires<[NotLP64]>;
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[NotLP64]>;
}
-def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
- (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
+def : Pat<(X86callseq_start timm:$amt1),
+ (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
@@ -62,20 +61,19 @@ def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
-let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
-def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
- (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
+let Defs = [RSP, EFLAGS], Uses = [RSP] in {
+def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKDOWN",
- [], IIC_ALU_NONMEM>, Requires<[IsLP64]>;
+ []>,
+ Requires<[IsLP64]>;
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
- [(X86callseq_end timm:$amt1, timm:$amt2)],
- IIC_ALU_NONMEM>, Requires<[IsLP64]>;
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[IsLP64]>;
}
-def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
- (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
+def : Pat<(X86callseq_start timm:$amt1),
+ (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
-let SchedRW = [WriteSystem] in {
// x86-64 va_start lowering magic.
let usesCustomInserter = 1, Defs = [EFLAGS] in {
@@ -101,6 +99,18 @@ def VAARG_64 : I<0, Pseudo,
(X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
(implicit EFLAGS)]>;
+// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
+// targets. These calls are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+ def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
+ "# dynamic stack allocation",
+ [(X86WinAlloca)]>;
// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
@@ -122,39 +132,6 @@ def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
Requires<[In64BitMode]>;
}
-// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
-// targets. These calls are needed to probe the stack when allocating more than
-// 4k bytes in one go. Touching the stack at 4K increments is necessary to
-// ensure that the guard pages used by the OS virtual memory manager are
-// allocated in correct sequence.
-// The main point of having separate instruction are extra unmodelled effects
-// (compared to ordinary calls) like stack pointer change.
-
-let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
-def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
- "# dynamic stack allocation",
- [(X86WinAlloca GR32:$size)]>,
- Requires<[NotLP64]>;
-
-let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
-def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
- "# dynamic stack allocation",
- [(X86WinAlloca GR64:$size)]>,
- Requires<[In64BitMode]>;
-} // SchedRW
-
-// These instructions XOR the frame pointer into a GPR. They are used in some
-// stack protection schemes. These are post-RA pseudos because we only know the
-// frame register after register allocation.
-let Constraints = "$src = $dst", isPseudo = 1, Defs = [EFLAGS] in {
- def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
- "xorl\t$$FP, $src", [], IIC_BIN_NONMEM>,
- Requires<[NotLP64]>, Sched<[WriteALU]>;
- def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
- "xorq\t$$FP $src", [], IIC_BIN_NONMEM>,
- Requires<[In64BitMode]>, Sched<[WriteALU]>;
-}
-
//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
@@ -219,17 +196,17 @@ let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
Requires<[In64BitMode]>;
}
}
+} // SchedRW
let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
"#EH_SjLj_Setup\t$dst", []>;
}
-} // SchedRW
//===----------------------------------------------------------------------===//
// Pseudo instructions used by unwind info.
//
-let isPseudo = 1, SchedRW = [WriteSystem] in {
+let isPseudo = 1 in {
def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
"#SEH_PushReg $reg", []>;
def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
@@ -255,15 +232,15 @@ let isPseudo = 1, SchedRW = [WriteSystem] in {
// This is lowered into a RET instruction by MCInstLower. We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
-let isPseudo = 1, SchedRW = [WriteJumpLd] in {
+let isPseudo = 1 in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
- "", [], IIC_RET>;
+ "", []>;
// This instruction is lowered to a RET followed by a MOV. The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
- "", [], IIC_RET>;
+ "", []>;
}
//===----------------------------------------------------------------------===//
@@ -273,54 +250,40 @@ def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
- isPseudo = 1, AddedComplexity = 10 in
+ isPseudo = 1 in
def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
[(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
-let AddedComplexity = 10 in {
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
-def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
+def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
+ let AddedComplexity = 20;
}
-let Predicates = [OptForSize, Not64BitMode],
- AddedComplexity = 10 in {
- let SchedRW = [WriteALU] in {
+let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
+ AddedComplexity = 1 in {
// Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
// which only require 3 bytes compared to MOV32ri which requires 5.
let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
- [(set GR32:$dst, 1)], IIC_ALU_NONMEM>;
+ [(set GR32:$dst, 1)]>;
def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
- [(set GR32:$dst, -1)], IIC_ALU_NONMEM>;
+ [(set GR32:$dst, -1)]>;
}
- } // SchedRW
// MOV16ri is 4 bytes, so the instructions above are smaller.
def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
}
-let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
- SchedRW = [WriteALU] in {
-// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
-def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
- [(set GR32:$dst, i32immSExt8:$src)], IIC_ALU_NONMEM>,
- Requires<[OptForMinSize, NotWin64WithoutFP]>;
-def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
- [(set GR64:$dst, i64immSExt8:$src)], IIC_ALU_NONMEM>,
- Requires<[OptForMinSize, NotWin64WithoutFP]>;
-}
-
// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let isReMaterializable = 1, isAsCheapAsAMove = 1,
- isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteALU] in
-def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", [],
- IIC_ALU_NONMEM>;
+ isPseudo = 1, hasSideEffects = 0 in
+def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
// This 64-bit pseudo-move can be used for both a 64-bit constant that is
// actually the zero-extension of a 32-bit constant and for labels in the
@@ -463,7 +426,6 @@ let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
-let SchedRW = [WriteSystem] in {
// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
@@ -474,7 +436,7 @@ let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
- usesCustomInserter = 1, Uses = [ESP, SSP] in {
+ usesCustomInserter = 1, Uses = [ESP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLS_addr32",
[(X86tlsaddr tls32addr:$sym)]>,
@@ -494,7 +456,7 @@ let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
- usesCustomInserter = 1, Uses = [RSP, SSP] in {
+ usesCustomInserter = 1, Uses = [RSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLS_addr64",
[(X86tlsaddr tls64addr:$sym)]>,
@@ -510,26 +472,23 @@ def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
// address of the variable is in %eax. %ecx is trashed during the function
// call. All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS],
- Uses = [ESP, SSP],
+ Uses = [ESP],
usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLSCall_32",
[(X86TLSCall addr:$sym)]>,
Requires<[Not64BitMode]>;
-// For x86_64, the address of the thunk is passed in %rdi, but the
-// pseudo directly use the symbol, so do not add an implicit use of
-// %rdi. The lowering will do the right thing with RDI.
-// On return the address of the variable is in %rax. All other
-// registers are preserved.
+// For x86_64, the address of the thunk is passed in %rdi, on return
+// the address of the variable is in %rax. All other registers are preserved.
let Defs = [RAX, EFLAGS],
- Uses = [RSP, SSP],
+ Uses = [RSP, RDI],
usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLSCall_64",
[(X86TLSCall addr:$sym)]>,
Requires<[In64BitMode]>;
-} // SchedRW
+
//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions
@@ -544,7 +503,7 @@ multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
EFLAGS)))]>;
}
-let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
+let usesCustomInserter = 1, Uses = [EFLAGS] in {
// X86 doesn't have 8-bit conditional moves. Use a customInserter to
// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
// however that requires promoting the operands, and can induce additional
@@ -582,7 +541,7 @@ let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
-} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
+} // usesCustomInserter = 1, Uses = [EFLAGS]
//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
@@ -609,7 +568,7 @@ def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
- Format ImmMod, SDNode Op, string mnemonic> {
+ Format ImmMod, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
SchedRW = [WriteALULd, WriteRMW] in {
@@ -618,152 +577,112 @@ def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
!strconcat(mnemonic, "{b}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
- IIC_ALU_NONMEM>, LOCK;
-
+ [], IIC_ALU_NONMEM>, LOCK;
def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
- IIC_ALU_NONMEM>, OpSize16, LOCK;
-
+ [], IIC_ALU_NONMEM>, OpSize16, LOCK;
def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
- IIC_ALU_NONMEM>, OpSize32, LOCK;
-
+ [], IIC_ALU_NONMEM>, OpSize32, LOCK;
def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
- IIC_ALU_NONMEM>, LOCK;
+ [], IIC_ALU_NONMEM>, LOCK;
def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
!strconcat(mnemonic, "{b}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
- IIC_ALU_MEM>, LOCK;
+ [], IIC_ALU_MEM>, LOCK;
def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
- IIC_ALU_MEM>, OpSize16, LOCK;
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
- IIC_ALU_MEM>, OpSize32, LOCK;
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
- IIC_ALU_MEM>, LOCK;
+ [], IIC_ALU_MEM>, LOCK;
def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
- IIC_ALU_MEM>, OpSize16, LOCK;
-
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
- IIC_ALU_MEM>, OpSize32, LOCK;
-
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
- IIC_ALU_MEM>, LOCK;
+ [], IIC_ALU_MEM>, LOCK;
}
}
-defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
-defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
-defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
-defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
-defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
+defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
+defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
+defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
+defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
+defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
+// Optimized codegen when the non-memory output is not used.
multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
- string frag, string mnemonic> {
+ string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
SchedRW = [WriteALULd, WriteRMW] in {
+
def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
!strconcat(mnemonic, "{b}\t$dst"),
- [(set EFLAGS, (!cast<PatFrag>(frag # "_8") addr:$dst))],
- IIC_UNARY_MEM>, LOCK;
+ [], IIC_UNARY_MEM>, LOCK;
def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
!strconcat(mnemonic, "{w}\t$dst"),
- [(set EFLAGS, (!cast<PatFrag>(frag # "_16") addr:$dst))],
- IIC_UNARY_MEM>, OpSize16, LOCK;
+ [], IIC_UNARY_MEM>, OpSize16, LOCK;
def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
!strconcat(mnemonic, "{l}\t$dst"),
- [(set EFLAGS, (!cast<PatFrag>(frag # "_32") addr:$dst))],
- IIC_UNARY_MEM>, OpSize32, LOCK;
+ [], IIC_UNARY_MEM>, OpSize32, LOCK;
def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
!strconcat(mnemonic, "{q}\t$dst"),
- [(set EFLAGS, (!cast<PatFrag>(frag # "_64") addr:$dst))],
- IIC_UNARY_MEM>, LOCK;
+ [], IIC_UNARY_MEM>, LOCK;
}
}
-multiclass unary_atomic_intrin<SDNode atomic_op> {
- def _8 : PatFrag<(ops node:$ptr),
- (atomic_op node:$ptr), [{
- return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
- }]>;
- def _16 : PatFrag<(ops node:$ptr),
- (atomic_op node:$ptr), [{
- return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
- }]>;
- def _32 : PatFrag<(ops node:$ptr),
- (atomic_op node:$ptr), [{
- return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
- }]>;
- def _64 : PatFrag<(ops node:$ptr),
- (atomic_op node:$ptr), [{
- return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
- }]>;
-}
-
-defm X86lock_inc : unary_atomic_intrin<X86lock_inc>;
-defm X86lock_dec : unary_atomic_intrin<X86lock_dec>;
-
-defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "X86lock_inc", "inc">;
-defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "X86lock_dec", "dec">;
+defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
+defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
// Atomic compare and swap.
multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
SDPatternOperator frag, X86MemOperand x86memop,
InstrItinClass itin> {
-let isCodeGenOnly = 1, usesCustomInserter = 1 in {
+let isCodeGenOnly = 1 in {
def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
!strconcat(mnemonic, "\t$ptr"),
[(frag addr:$ptr)], itin>, TB, LOCK;
@@ -805,18 +724,18 @@ defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
// register and the register allocator will ignore any use/def of
// it. In other words, the register will not fix the clobbering of
// RBX that will happen when setting the arguments for the instrucion.
-//
+//
// Unlike the actual related instuction, we mark that this one
// defines EBX (instead of using EBX).
// The rationale is that we will define RBX during the expansion of
// the pseudo. The argument feeding EBX is ebx_input.
//
// The additional argument, $ebx_save, is a temporary register used to
-// save the value of RBX across the actual instruction.
+// save the value of RBX accross the actual instruction.
//
// To make sure the register assigned to $ebx_save does not interfere with
// the definition of the actual instruction, we use a definition $dst which
-// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
+// is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
// the instruction and we are sure we will have a valid register to restore
// the value of RBX.
let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
@@ -933,7 +852,7 @@ multiclass RELEASE_BINOP_MI<SDNode op> {
[(atomic_store_64 addr:$dst, (op
(atomic_load_64 addr:$dst), GR64:$src))]>;
}
-let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in {
+let Defs = [EFLAGS] in {
defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
defm RELEASE_AND : RELEASE_BINOP_MI<and>;
defm RELEASE_OR : RELEASE_BINOP_MI<or>;
@@ -946,20 +865,20 @@ let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in {
// FIXME: imm version.
// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
-let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in {
+let usesCustomInserter = 1 in {
multiclass RELEASE_FP_BINOP_MI<SDNode op> {
def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
"#BINOP "#NAME#"32mr PSEUDO!",
[(atomic_store_32 addr:$dst,
- (i32 (bitconvert (op
+ (i32 (bitconvert (op
(f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
- FR32:$src))))]>, Requires<[HasSSE1]>;
+ FR32:$src))))]>, Requires<[HasSSE1]>;
def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
"#BINOP "#NAME#"64mr PSEUDO!",
[(atomic_store_64 addr:$dst,
- (i64 (bitconvert (op
+ (i64 (bitconvert (op
(f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
- FR64:$src))))]>, Requires<[HasSSE2]>;
+ FR64:$src))))]>, Requires<[HasSSE2]>;
}
defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
// FIXME: Add fsub, fmul, fdiv, ...
@@ -980,17 +899,17 @@ multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
[(atomic_store_64 addr:$dst, dag64)]>;
}
-let Defs = [EFLAGS], Predicates = [UseIncDec], SchedRW = [WriteMicrocoded] in {
+let Defs = [EFLAGS] in {
defm RELEASE_INC : RELEASE_UNOP<
(add (atomic_load_8 addr:$dst), (i8 1)),
(add (atomic_load_16 addr:$dst), (i16 1)),
(add (atomic_load_32 addr:$dst), (i32 1)),
- (add (atomic_load_64 addr:$dst), (i64 1))>;
+ (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
defm RELEASE_DEC : RELEASE_UNOP<
(add (atomic_load_8 addr:$dst), (i8 -1)),
(add (atomic_load_16 addr:$dst), (i16 -1)),
(add (atomic_load_32 addr:$dst), (i32 -1)),
- (add (atomic_load_64 addr:$dst), (i64 -1))>;
+ (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
}
/*
TODO: These don't work because the type inference of TableGen fails.
@@ -1010,19 +929,18 @@ defm RELEASE_NOT : RELEASE_UNOP<
(not (atomic_load_64 addr:$dst))>;
*/
-let SchedRW = [WriteMicrocoded] in {
def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
- "#RELEASE_MOV8mi PSEUDO!",
- [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
+ "#RELEASE_MOV8mi PSEUDO!",
+ [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
- "#RELEASE_MOV16mi PSEUDO!",
- [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
+ "#RELEASE_MOV16mi PSEUDO!",
+ [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
- "#RELEASE_MOV32mi PSEUDO!",
- [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
+ "#RELEASE_MOV32mi PSEUDO!",
+ [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
- "#RELEASE_MOV64mi32 PSEUDO!",
- [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
+ "#RELEASE_MOV64mi32 PSEUDO!",
+ [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
"#RELEASE_MOV8mr PSEUDO!",
@@ -1049,23 +967,57 @@ def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
"#ACQUIRE_MOV64rm PSEUDO!",
[(set GR64:$dst, (atomic_load_64 addr:$src))]>;
-} // SchedRW
//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//
-// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
-// binary size compared to a regular MOV, but it introduces an unnecessary
-// load, so is not suitable for regular or optsize functions.
-let Predicates = [OptForMinSize] in {
-def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
-def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
-def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
-def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
-def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
-def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
-}
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
+def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
+def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
+def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
+def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
+
+def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
+ (ADD32ri GR32:$src1, tconstpool:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
+ (ADD32ri GR32:$src1, tjumptable:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
+ (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
+ (ADD32ri GR32:$src1, texternalsym:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
+ (ADD32ri GR32:$src1, mcsym:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
+ (ADD32ri GR32:$src1, tblockaddress:$src2)>;
+
+def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tglobaladdr:$src)>;
+def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV32mi addr:$dst, texternalsym:$src)>;
+def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
+ (MOV32mi addr:$dst, mcsym:$src)>;
+def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tblockaddress:$src)>;
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
+// code model mode, should use 'movabs'. FIXME: This is really a hack, the
+// 'movabs' predicate should handle this sort of thing.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper mcsym:$dst)),
+ (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
// In kernel code model, we can get the address of a label
// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
@@ -1088,22 +1040,22 @@ def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tconstpool:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tjumptable:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, texternalsym:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, mcsym:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tblockaddress:$src)>,
- Requires<[NearData, IsNotPIC]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
@@ -1146,14 +1098,14 @@ def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
(TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
- Requires<[Not64BitMode, NotUseRetpoline]>;
+ Requires<[Not64BitMode]>;
// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
(TCRETURNmi addr:$dst, imm:$off)>,
- Requires<[Not64BitMode, IsNotPIC, NotUseRetpoline]>;
+ Requires<[Not64BitMode, IsNotPIC]>;
def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
(TCRETURNdi tglobaladdr:$dst, imm:$off)>,
@@ -1165,21 +1117,13 @@ def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
(TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
- Requires<[In64BitMode, NotUseRetpoline]>;
+ Requires<[In64BitMode]>;
// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
(TCRETURNmi64 addr:$dst, imm:$off)>,
- Requires<[In64BitMode, NotUseRetpoline]>;
-
-def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
- (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
- Requires<[In64BitMode, UseRetpoline]>;
-
-def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
- (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
- Requires<[Not64BitMode, UseRetpoline]>;
+ Requires<[In64BitMode]>;
def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
(TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
@@ -1241,13 +1185,12 @@ defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
// zextload bool -> zextload byte
-// i1 stored in one byte in zero-extended form.
-// Upper bits cleanup should be executed before Store.
-def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
-def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
-def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
+def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
+def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
def : Pat<(zextloadi64i1 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+ (SUBREG_TO_REG (i64 0),
+ (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
@@ -1287,20 +1230,20 @@ def : Pat<(i64 (anyext GR8 :$src)),
def : Pat<(i64 (anyext GR16:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
-// be copying from a truncate. Any other 32-bit operation will zero-extend
-// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
-// 32 bits, they're probably just qualifying a CopyFromReg.
+// be copying from a truncate. And x86's cmov doesn't do anything if the
+// condition is false. But any other 32-bit operation will zero-extend
+// up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
N->getOpcode() != ISD::CopyFromReg &&
N->getOpcode() != ISD::AssertSext &&
- N->getOpcode() != ISD::AssertZext;
+ N->getOpcode() != X86ISD::CMOV;
}]>;
// In the case of a 32-bit def that is known to implicitly zero-extend,
@@ -1323,11 +1266,11 @@ def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
- KnownBits Known0;
- CurDAG->computeKnownBits(N->getOperand(0), Known0, 0);
- KnownBits Known1;
- CurDAG->computeKnownBits(N->getOperand(1), Known1, 0);
- return (~Known0.Zero & ~Known1.Zero) == 0;
+ APInt KnownZero0, KnownOne0;
+ CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
+ APInt KnownZero1, KnownOne1;
+ CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
+ return (~KnownZero0 & ~KnownZero1) == 0;
}]>;
@@ -1408,7 +1351,7 @@ def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
(SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
-def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
+def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
(SUB64mi32 addr:$dst, 0xffffffff80000000)>;
// To avoid needing to materialize an immediate in a register, use a 32-bit and
@@ -1447,11 +1390,16 @@ def : Pat<(and GR32:$src1, 0xffff),
(MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
- (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
- (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
- sub_16bit)>;
+ (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
+ (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
@@ -1468,6 +1416,15 @@ def : Pat<(and GR64:$src, 0xff),
(SUBREG_TO_REG (i64 0),
(MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
+ Requires<[In64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (i8
+ (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
+ Requires<[In64BitMode]>;
} // AddedComplexity = 1
@@ -1475,11 +1432,16 @@ def : Pat<(and GR64:$src, 0xff),
def : Pat<(sext_inreg GR32:$src, i16),
(MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
- (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
+ (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
- (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
- sub_16bit)>;
+ (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
+ (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
def : Pat<(sext_inreg GR64:$src, i32),
(MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
@@ -1487,6 +1449,13 @@ def : Pat<(sext_inreg GR64:$src, i16),
(MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
(MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
+ Requires<[In64BitMode]>;
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (MOVSX32rr8
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
+ Requires<[In64BitMode]>;
// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
@@ -1524,26 +1493,40 @@ def : Pat<(i8 (trunc GR16:$src)),
// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
- Requires<[Not64BitMode]>;
-def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)>,
Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
- (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi)>,
Requires<[Not64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
- (MOVZX32_NOREXrr8 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
- sub_16bit)>;
+ (MOVZX32rr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
- (MOVZX32_NOREXrr8 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
- (MOVZX32_NOREXrr8 (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
- (MOVZX32_NOREXrr8 (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
- (MOVZX32_NOREXrr8 (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
@@ -1557,35 +1540,68 @@ def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
- (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi)),
sub_32bit)>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
sub_32bit)>;
// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
- (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
- (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
Requires<[In64BitMode]>;
@@ -1600,13 +1616,7 @@ def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
-// Helper imms to check if a mask doesn't change significant shift/rotate bits.
-def immShift8 : ImmLeaf<i8, [{
- return countTrailingOnes<uint64_t>(Imm) >= 3;
-}]>;
-def immShift16 : ImmLeaf<i8, [{
- return countTrailingOnes<uint64_t>(Imm) >= 4;
-}]>;
+// Helper imms that check if a mask doesn't change significant shift bits.
def immShift32 : ImmLeaf<i8, [{
return countTrailingOnes<uint64_t>(Imm) >= 5;
}]>;
@@ -1633,121 +1643,15 @@ multiclass MaskedShiftAmountPats<SDNode frag, string name> {
// (shift x (and y, 63)) ==> (shift x, y)
def : Pat<(frag GR64:$src1, (and CL, immShift64)),
(!cast<Instruction>(name # "64rCL") GR64:$src1)>;
- def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
+ def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
(!cast<Instruction>(name # "64mCL") addr:$dst)>;
}
defm : MaskedShiftAmountPats<shl, "SHL">;
defm : MaskedShiftAmountPats<srl, "SHR">;
defm : MaskedShiftAmountPats<sra, "SAR">;
-
-// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
-// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
-// because over-rotating produces the same result. This is noted in the Intel
-// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
-// amount could affect EFLAGS results, but that does not matter because we are
-// not tracking flags for these nodes.
-multiclass MaskedRotateAmountPats<SDNode frag, string name> {
- // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
- def : Pat<(frag GR8:$src1, (and CL, immShift8)),
- (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
- def : Pat<(frag GR16:$src1, (and CL, immShift16)),
- (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
- def : Pat<(frag GR32:$src1, (and CL, immShift32)),
- (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
- def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst),
- (!cast<Instruction>(name # "8mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst),
- (!cast<Instruction>(name # "16mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
- (!cast<Instruction>(name # "32mCL") addr:$dst)>;
-
- // (rot x (and y, 63)) ==> (rot x, y)
- def : Pat<(frag GR64:$src1, (and CL, immShift64)),
- (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
- def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
- (!cast<Instruction>(name # "64mCL") addr:$dst)>;
-}
-
-
-defm : MaskedRotateAmountPats<rotl, "ROL">;
-defm : MaskedRotateAmountPats<rotr, "ROR">;
-
-// Double shift amount is implicitly masked.
-multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
- // (shift x (and y, 31)) ==> (shift x, y)
- def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
- (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
- def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
- (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
-
- // (shift x (and y, 63)) ==> (shift x, y)
- def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
- (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
-}
-
-defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
-defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
-
-let Predicates = [HasBMI2] in {
- let AddedComplexity = 1 in {
- def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)),
- (SARX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)),
- (SARX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
-
- def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)),
- (SHRX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)),
- (SHRX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
-
- def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)),
- (SHLX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)),
- (SHLX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- }
-
- let AddedComplexity = -20 in {
- def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
- (SARX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
- (SARX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
-
- def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
- (SHRX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
- (SHRX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
-
- def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
- (SHLX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
- (SHLX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- }
-}
+defm : MaskedShiftAmountPats<rotl, "ROL">;
+defm : MaskedShiftAmountPats<rotr, "ROR">;
// (anyext (setcc_carry)) -> (setcc_carry)
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
@@ -1757,6 +1661,9 @@ def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
+
+
+
//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//
@@ -1814,12 +1721,6 @@ def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
-// sub reg, relocImm
-def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
- (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
-def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
- (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
-
// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
(IMUL16rr GR16:$src1, GR16:$src2)>;
@@ -1890,7 +1791,7 @@ def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
// Increment/Decrement reg.
// Do not make INC/DEC if it is slow
-let Predicates = [UseIncDec] in {
+let Predicates = [NotSlowIncDec] in {
def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;