diff options
Diffstat (limited to 'gnu/usr.bin/bc/libmath.b')
-rw-r--r-- | gnu/usr.bin/bc/libmath.b | 281 |
1 files changed, 0 insertions, 281 deletions
diff --git a/gnu/usr.bin/bc/libmath.b b/gnu/usr.bin/bc/libmath.b deleted file mode 100644 index d6fa9152a45..00000000000 --- a/gnu/usr.bin/bc/libmath.b +++ /dev/null @@ -1,281 +0,0 @@ -/* $NetBSD: libmath.b,v 1.2 1994/12/02 00:43:33 phil Exp $ */ - -/* libmath.b for bc for minix. */ - -/* This file is part of bc written for MINIX. - Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License , or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; see the file COPYING. If not, write to - the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. - - You may contact the author by: - e-mail: phil@cs.wwu.edu - us-mail: Philip A. Nelson - Computer Science Department, 9062 - Western Washington University - Bellingham, WA 98226-9062 - -*************************************************************************/ - - -scale = 20 - -/* Uses the fact that e^x = (e^(x/2))^2 - When x is small enough, we use the series: - e^x = 1 + x + x^2/2! + x^3/3! + ... -*/ - -define e(x) { - auto a, d, e, f, i, m, n, v, z - - /* a - holds x^y of x^y/y! */ - /* d - holds y! */ - /* e - is the value x^y/y! */ - /* v - is the sum of the e's */ - /* f - number of times x was divided by 2. */ - /* m - is 1 if x was minus. */ - /* i - iteration count. */ - /* n - the scale to compute the sum. */ - /* z - orignal scale. */ - - /* Check the sign of x. */ - if (x<0) { - m = 1 - x = -x - } - - /* Precondition x. */ - z = scale; - n = 6 + z + .44*x; - scale = scale(x)+1; - while (x > 1) { - f += 1; - x /= 2; - scale += 1; - } - - /* Initialize the variables. */ - scale = n; - v = 1+x - a = x - d = 1 - - for (i=2; 1; i++) { - e = (a *= x) / (d *= i) - if (e == 0) { - if (f>0) while (f--) v = v*v; - scale = z - if (m) return (1/v); - return (v/1); - } - v += e - } -} - -/* Natural log. Uses the fact that ln(x^2) = 2*ln(x) - The series used is: - ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1) -*/ - -define l(x) { - auto e, f, i, m, n, v, z - - /* return something for the special case. */ - if (x <= 0) return (1 - 10^scale) - - /* Precondition x to make .5 < x < 2.0. */ - z = scale; - scale = 6 + scale; - f = 2; - i=0 - while (x >= 2) { /* for large numbers */ - f *= 2; - x = sqrt(x); - } - while (x <= .5) { /* for small numbers */ - f *= 2; - x = sqrt(x); - } - - /* Set up the loop. */ - v = n = (x-1)/(x+1) - m = n*n - - /* Sum the series. */ - for (i=3; 1; i+=2) { - e = (n *= m) / i - if (e == 0) { - v = f*v - scale = z - return (v/1) - } - v += e - } -} - -/* Sin(x) uses the standard series: - sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */ - -define s(x) { - auto e, i, m, n, s, v, z - - /* precondition x. */ - z = scale - scale = 1.1*z + 2; - v = a(1) - if (x < 0) { - m = 1; - x = -x; - } - scale = 0 - n = (x / v + 2 )/4 - x = x - 4*n*v - if (n%2) x = -x - - /* Do the loop. */ - scale = z + 2; - v = e = x - s = -x*x - for (i=3; 1; i+=2) { - e *= s/(i*(i-1)) - if (e == 0) { - scale = z - if (m) return (-v/1); - return (v/1); - } - v += e - } -} - -/* Cosine : cos(x) = sin(x+pi/2) */ -define c(x) { - auto v; - scale += 1; - v = s(x+a(1)*2); - scale -= 1; - return (v/1); -} - -/* Arctan: Using the formula: - atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here) - For under .2, use the series: - atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... */ - -define a(x) { - auto a, e, f, i, m, n, s, v, z - - /* a is the value of a(.2) if it is needed. */ - /* f is the value to multiply by a in the return. */ - /* e is the value of the current term in the series. */ - /* v is the accumulated value of the series. */ - /* m is 1 or -1 depending on x (-x -> -1). results are divided by m. */ - /* i is the denominator value for series element. */ - /* n is the numerator value for the series element. */ - /* s is -x*x. */ - /* z is the saved user's scale. */ - - /* Negative x? */ - m = 1; - if (x<0) { - m = -1; - x = -x; - } - - /* Special case and for fast answers */ - if (x==1) { - if (scale <= 25) return (.7853981633974483096156608/m) - if (scale <= 40) return (.7853981633974483096156608458198757210492/m) - if (scale <= 60) \ - return (.785398163397448309615660845819875721049292349843776455243736/m) - } - if (x==.2) { - if (scale <= 25) return (.1973955598498807583700497/m) - if (scale <= 40) return (.1973955598498807583700497651947902934475/m) - if (scale <= 60) \ - return (.197395559849880758370049765194790293447585103787852101517688/m) - } - - - /* Save the scale. */ - z = scale; - - /* Note: a and f are known to be zero due to being auto vars. */ - /* Calculate atan of a known number. */ - if (x > .2) { - scale = z+5; - a = a(.2); - } - - /* Precondition x. */ - scale = z+3; - while (x > .2) { - f += 1; - x = (x-.2) / (1+x*.2); - } - - /* Initialize the series. */ - v = n = x; - s = -x*x; - - /* Calculate the series. */ - for (i=3; 1; i+=2) { - e = (n *= s) / i; - if (e == 0) { - scale = z; - return ((f*a+v)/m); - } - v += e - } -} - - -/* Bessel function of integer order. Uses the following: - j(-n,x) = (-1)^n*j(n,x) - j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2)) - - x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... ) -*/ -define j(n,x) { - auto a, d, e, f, i, m, s, v, z - - /* Make n an integer and check for negative n. */ - z = scale; - scale = 0; - n = n/1; - if (n<0) { - n = -n; - if (n%2 == 1) m = 1; - } - - /* Compute the factor of x^n/(2^n*n!) */ - f = 1; - for (i=2; i<=n; i++) f = f*i; - scale = 1.5*z; - f = x^n / 2^n / f; - - /* Initialize the loop .*/ - v = e = 1; - s = -x*x/4 - scale = 1.5*z - - /* The Loop.... */ - for (i=1; 1; i++) { - e = e * s / i / (n+i); - if (e == 0) { - scale = z - if (m) return (-f*v/1); - return (f*v/1); - } - v += e; - } -} |