summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/bc/libmath.b
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/bc/libmath.b')
-rw-r--r--gnu/usr.bin/bc/libmath.b281
1 files changed, 0 insertions, 281 deletions
diff --git a/gnu/usr.bin/bc/libmath.b b/gnu/usr.bin/bc/libmath.b
deleted file mode 100644
index d6fa9152a45..00000000000
--- a/gnu/usr.bin/bc/libmath.b
+++ /dev/null
@@ -1,281 +0,0 @@
-/* $NetBSD: libmath.b,v 1.2 1994/12/02 00:43:33 phil Exp $ */
-
-/* libmath.b for bc for minix. */
-
-/* This file is part of bc written for MINIX.
- Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License , or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-
- You may contact the author by:
- e-mail: phil@cs.wwu.edu
- us-mail: Philip A. Nelson
- Computer Science Department, 9062
- Western Washington University
- Bellingham, WA 98226-9062
-
-*************************************************************************/
-
-
-scale = 20
-
-/* Uses the fact that e^x = (e^(x/2))^2
- When x is small enough, we use the series:
- e^x = 1 + x + x^2/2! + x^3/3! + ...
-*/
-
-define e(x) {
- auto a, d, e, f, i, m, n, v, z
-
- /* a - holds x^y of x^y/y! */
- /* d - holds y! */
- /* e - is the value x^y/y! */
- /* v - is the sum of the e's */
- /* f - number of times x was divided by 2. */
- /* m - is 1 if x was minus. */
- /* i - iteration count. */
- /* n - the scale to compute the sum. */
- /* z - orignal scale. */
-
- /* Check the sign of x. */
- if (x<0) {
- m = 1
- x = -x
- }
-
- /* Precondition x. */
- z = scale;
- n = 6 + z + .44*x;
- scale = scale(x)+1;
- while (x > 1) {
- f += 1;
- x /= 2;
- scale += 1;
- }
-
- /* Initialize the variables. */
- scale = n;
- v = 1+x
- a = x
- d = 1
-
- for (i=2; 1; i++) {
- e = (a *= x) / (d *= i)
- if (e == 0) {
- if (f>0) while (f--) v = v*v;
- scale = z
- if (m) return (1/v);
- return (v/1);
- }
- v += e
- }
-}
-
-/* Natural log. Uses the fact that ln(x^2) = 2*ln(x)
- The series used is:
- ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1)
-*/
-
-define l(x) {
- auto e, f, i, m, n, v, z
-
- /* return something for the special case. */
- if (x <= 0) return (1 - 10^scale)
-
- /* Precondition x to make .5 < x < 2.0. */
- z = scale;
- scale = 6 + scale;
- f = 2;
- i=0
- while (x >= 2) { /* for large numbers */
- f *= 2;
- x = sqrt(x);
- }
- while (x <= .5) { /* for small numbers */
- f *= 2;
- x = sqrt(x);
- }
-
- /* Set up the loop. */
- v = n = (x-1)/(x+1)
- m = n*n
-
- /* Sum the series. */
- for (i=3; 1; i+=2) {
- e = (n *= m) / i
- if (e == 0) {
- v = f*v
- scale = z
- return (v/1)
- }
- v += e
- }
-}
-
-/* Sin(x) uses the standard series:
- sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */
-
-define s(x) {
- auto e, i, m, n, s, v, z
-
- /* precondition x. */
- z = scale
- scale = 1.1*z + 2;
- v = a(1)
- if (x < 0) {
- m = 1;
- x = -x;
- }
- scale = 0
- n = (x / v + 2 )/4
- x = x - 4*n*v
- if (n%2) x = -x
-
- /* Do the loop. */
- scale = z + 2;
- v = e = x
- s = -x*x
- for (i=3; 1; i+=2) {
- e *= s/(i*(i-1))
- if (e == 0) {
- scale = z
- if (m) return (-v/1);
- return (v/1);
- }
- v += e
- }
-}
-
-/* Cosine : cos(x) = sin(x+pi/2) */
-define c(x) {
- auto v;
- scale += 1;
- v = s(x+a(1)*2);
- scale -= 1;
- return (v/1);
-}
-
-/* Arctan: Using the formula:
- atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here)
- For under .2, use the series:
- atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... */
-
-define a(x) {
- auto a, e, f, i, m, n, s, v, z
-
- /* a is the value of a(.2) if it is needed. */
- /* f is the value to multiply by a in the return. */
- /* e is the value of the current term in the series. */
- /* v is the accumulated value of the series. */
- /* m is 1 or -1 depending on x (-x -> -1). results are divided by m. */
- /* i is the denominator value for series element. */
- /* n is the numerator value for the series element. */
- /* s is -x*x. */
- /* z is the saved user's scale. */
-
- /* Negative x? */
- m = 1;
- if (x<0) {
- m = -1;
- x = -x;
- }
-
- /* Special case and for fast answers */
- if (x==1) {
- if (scale <= 25) return (.7853981633974483096156608/m)
- if (scale <= 40) return (.7853981633974483096156608458198757210492/m)
- if (scale <= 60) \
- return (.785398163397448309615660845819875721049292349843776455243736/m)
- }
- if (x==.2) {
- if (scale <= 25) return (.1973955598498807583700497/m)
- if (scale <= 40) return (.1973955598498807583700497651947902934475/m)
- if (scale <= 60) \
- return (.197395559849880758370049765194790293447585103787852101517688/m)
- }
-
-
- /* Save the scale. */
- z = scale;
-
- /* Note: a and f are known to be zero due to being auto vars. */
- /* Calculate atan of a known number. */
- if (x > .2) {
- scale = z+5;
- a = a(.2);
- }
-
- /* Precondition x. */
- scale = z+3;
- while (x > .2) {
- f += 1;
- x = (x-.2) / (1+x*.2);
- }
-
- /* Initialize the series. */
- v = n = x;
- s = -x*x;
-
- /* Calculate the series. */
- for (i=3; 1; i+=2) {
- e = (n *= s) / i;
- if (e == 0) {
- scale = z;
- return ((f*a+v)/m);
- }
- v += e
- }
-}
-
-
-/* Bessel function of integer order. Uses the following:
- j(-n,x) = (-1)^n*j(n,x)
- j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2))
- - x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... )
-*/
-define j(n,x) {
- auto a, d, e, f, i, m, s, v, z
-
- /* Make n an integer and check for negative n. */
- z = scale;
- scale = 0;
- n = n/1;
- if (n<0) {
- n = -n;
- if (n%2 == 1) m = 1;
- }
-
- /* Compute the factor of x^n/(2^n*n!) */
- f = 1;
- for (i=2; i<=n; i++) f = f*i;
- scale = 1.5*z;
- f = x^n / 2^n / f;
-
- /* Initialize the loop .*/
- v = e = 1;
- s = -x*x/4
- scale = 1.5*z
-
- /* The Loop.... */
- for (i=1; 1; i++) {
- e = e * s / i / (n+i);
- if (e == 0) {
- scale = z
- if (m) return (-f*v/1);
- return (f*v/1);
- }
- v += e;
- }
-}