summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/binutils/bfd/doc/bfd.info-1
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/binutils/bfd/doc/bfd.info-1')
-rw-r--r--gnu/usr.bin/binutils/bfd/doc/bfd.info-11306
1 files changed, 0 insertions, 1306 deletions
diff --git a/gnu/usr.bin/binutils/bfd/doc/bfd.info-1 b/gnu/usr.bin/binutils/bfd/doc/bfd.info-1
deleted file mode 100644
index cb26d46ed74..00000000000
--- a/gnu/usr.bin/binutils/bfd/doc/bfd.info-1
+++ /dev/null
@@ -1,1306 +0,0 @@
-This is Info file bfd.info, produced by Makeinfo-1.64 from the input
-file ./bfd.texinfo.
-
-START-INFO-DIR-ENTRY
-* Bfd: (bfd). The Binary File Descriptor library.
-END-INFO-DIR-ENTRY
-
- This file documents the BFD library.
-
- Copyright (C) 1991 Free Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, subject to the
-terms of the GNU General Public License, which includes the provision
-that the entire resulting derived work is distributed under the terms
-of a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
-
- This file documents the binary file descriptor library libbfd.
-
-* Menu:
-
-* Overview:: Overview of BFD
-* BFD front end:: BFD front end
-* BFD back ends:: BFD back ends
-* Index:: Index
-
-
-File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
-
-Introduction
-************
-
- BFD is a package which allows applications to use the same routines
-to operate on object files whatever the object file format. A new
-object file format can be supported simply by creating a new BFD back
-end and adding it to the library.
-
- BFD is split into two parts: the front end, and the back ends (one
-for each object file format).
- * The front end of BFD provides the interface to the user. It manages
- memory and various canonical data structures. The front end also
- decides which back end to use and when to call back end routines.
-
- * The back ends provide BFD its view of the real world. Each back
- end provides a set of calls which the BFD front end can use to
- maintain its canonical form. The back ends also may keep around
- information for their own use, for greater efficiency.
-
-* Menu:
-
-* History:: History
-* How It Works:: How It Works
-* What BFD Version 2 Can Do:: What BFD Version 2 Can Do
-
-
-File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
-
-History
-=======
-
- One spur behind BFD was the desire, on the part of the GNU 960 team
-at Intel Oregon, for interoperability of applications on their COFF and
-b.out file formats. Cygnus was providing GNU support for the team, and
-was contracted to provide the required functionality.
-
- The name came from a conversation David Wallace was having with
-Richard Stallman about the library: RMS said that it would be quite
-hard--David said "BFD". Stallman was right, but the name stuck.
-
- At the same time, Ready Systems wanted much the same thing, but for
-different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
-coff.
-
- BFD was first implemented by members of Cygnus Support; Steve
-Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
-Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
-(`gumby@cygnus.com').
-
-
-File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
-
-How To Use BFD
-==============
-
- To use the library, include `bfd.h' and link with `libbfd.a'.
-
- BFD provides a common interface to the parts of an object file for a
-calling application.
-
- When an application sucessfully opens a target file (object,
-archive, or whatever), a pointer to an internal structure is returned.
-This pointer points to a structure called `bfd', described in `bfd.h'.
-Our convention is to call this pointer a BFD, and instances of it
-within code `abfd'. All operations on the target object file are
-applied as methods to the BFD. The mapping is defined within `bfd.h'
-in a set of macros, all beginning with `bfd_' to reduce namespace
-pollution.
-
- For example, this sequence does what you would probably expect:
-return the number of sections in an object file attached to a BFD
-`abfd'.
-
- #include "bfd.h"
-
- unsigned int number_of_sections(abfd)
- bfd *abfd;
- {
- return bfd_count_sections(abfd);
- }
-
- The abstraction used within BFD is that an object file has:
-
- * a header,
-
- * a number of sections containing raw data (*note Sections::.),
-
- * a set of relocations (*note Relocations::.), and
-
- * some symbol information (*note Symbols::.).
-
-Also, BFDs opened for archives have the additional attribute of an index
-and contain subordinate BFDs. This approach is fine for a.out and coff,
-but loses efficiency when applied to formats such as S-records and
-IEEE-695.
-
-
-File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
-
-What BFD Version 2 Can Do
-=========================
-
- When an object file is opened, BFD subroutines automatically
-determine the format of the input object file. They then build a
-descriptor in memory with pointers to routines that will be used to
-access elements of the object file's data structures.
-
- As different information from the the object files is required, BFD
-reads from different sections of the file and processes them. For
-example, a very common operation for the linker is processing symbol
-tables. Each BFD back end provides a routine for converting between
-the object file's representation of symbols and an internal canonical
-format. When the linker asks for the symbol table of an object file, it
-calls through a memory pointer to the routine from the relevant BFD
-back end which reads and converts the table into a canonical form. The
-linker then operates upon the canonical form. When the link is finished
-and the linker writes the output file's symbol table, another BFD back
-end routine is called to take the newly created symbol table and
-convert it into the chosen output format.
-
-* Menu:
-
-* BFD information loss:: Information Loss
-* Canonical format:: The BFD canonical object-file format
-
-
-File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
-
-Information Loss
-----------------
-
- *Information can be lost during output.* The output formats
-supported by BFD do not provide identical facilities, and information
-which can be described in one form has nowhere to go in another format.
-One example of this is alignment information in `b.out'. There is
-nowhere in an `a.out' format file to store alignment information on the
-contained data, so when a file is linked from `b.out' and an `a.out'
-image is produced, alignment information will not propagate to the
-output file. (The linker will still use the alignment information
-internally, so the link is performed correctly).
-
- Another example is COFF section names. COFF files may contain an
-unlimited number of sections, each one with a textual section name. If
-the target of the link is a format which does not have many sections
-(e.g., `a.out') or has sections without names (e.g., the Oasys format),
-the link cannot be done simply. You can circumvent this problem by
-describing the desired input-to-output section mapping with the linker
-command language.
-
- *Information can be lost during canonicalization.* The BFD internal
-canonical form of the external formats is not exhaustive; there are
-structures in input formats for which there is no direct representation
-internally. This means that the BFD back ends cannot maintain all
-possible data richness through the transformation between external to
-internal and back to external formats.
-
- This limitation is only a problem when an application reads one
-format and writes another. Each BFD back end is responsible for
-maintaining as much data as possible, and the internal BFD canonical
-form has structures which are opaque to the BFD core, and exported only
-to the back ends. When a file is read in one format, the canonical form
-is generated for BFD and the application. At the same time, the back
-end saves away any information which may otherwise be lost. If the data
-is then written back in the same format, the back end routine will be
-able to use the canonical form provided by the BFD core as well as the
-information it prepared earlier. Since there is a great deal of
-commonality between back ends, there is no information lost when
-linking or copying big endian COFF to little endian COFF, or `a.out' to
-`b.out'. When a mixture of formats is linked, the information is only
-lost from the files whose format differs from the destination.
-
-
-File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
-
-The BFD canonical object-file format
-------------------------------------
-
- The greatest potential for loss of information occurs when there is
-the least overlap between the information provided by the source
-format, that stored by the canonical format, and that needed by the
-destination format. A brief description of the canonical form may help
-you understand which kinds of data you can count on preserving across
-conversions.
-
-*files*
- Information stored on a per-file basis includes target machine
- architecture, particular implementation format type, a demand
- pageable bit, and a write protected bit. Information like Unix
- magic numbers is not stored here--only the magic numbers' meaning,
- so a `ZMAGIC' file would have both the demand pageable bit and the
- write protected text bit set. The byte order of the target is
- stored on a per-file basis, so that big- and little-endian object
- files may be used with one another.
-
-*sections*
- Each section in the input file contains the name of the section,
- the section's original address in the object file, size and
- alignment information, various flags, and pointers into other BFD
- data structures.
-
-*symbols*
- Each symbol contains a pointer to the information for the object
- file which originally defined it, its name, its value, and various
- flag bits. When a BFD back end reads in a symbol table, it
- relocates all symbols to make them relative to the base of the
- section where they were defined. Doing this ensures that each
- symbol points to its containing section. Each symbol also has a
- varying amount of hidden private data for the BFD back end. Since
- the symbol points to the original file, the private data format
- for that symbol is accessible. `ld' can operate on a collection
- of symbols of wildly different formats without problems.
-
- Normal global and simple local symbols are maintained on output,
- so an output file (no matter its format) will retain symbols
- pointing to functions and to global, static, and common variables.
- Some symbol information is not worth retaining; in `a.out', type
- information is stored in the symbol table as long symbol names.
- This information would be useless to most COFF debuggers; the
- linker has command line switches to allow users to throw it away.
-
- There is one word of type information within the symbol, so if the
- format supports symbol type information within symbols (for
- example, COFF, IEEE, Oasys) and the type is simple enough to fit
- within one word (nearly everything but aggregates), the
- information will be preserved.
-
-*relocation level*
- Each canonical BFD relocation record contains a pointer to the
- symbol to relocate to, the offset of the data to relocate, the
- section the data is in, and a pointer to a relocation type
- descriptor. Relocation is performed by passing messages through
- the relocation type descriptor and the symbol pointer. Therefore,
- relocations can be performed on output data using a relocation
- method that is only available in one of the input formats. For
- instance, Oasys provides a byte relocation format. A relocation
- record requesting this relocation type would point indirectly to a
- routine to perform this, so the relocation may be performed on a
- byte being written to a 68k COFF file, even though 68k COFF has no
- such relocation type.
-
-*line numbers*
- Object formats can contain, for debugging purposes, some form of
- mapping between symbols, source line numbers, and addresses in the
- output file. These addresses have to be relocated along with the
- symbol information. Each symbol with an associated list of line
- number records points to the first record of the list. The head
- of a line number list consists of a pointer to the symbol, which
- allows finding out the address of the function whose line number
- is being described. The rest of the list is made up of pairs:
- offsets into the section and line numbers. Any format which can
- simply derive this information can pass it successfully between
- formats (COFF, IEEE and Oasys).
-
-
-File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
-
-BFD front end
-*************
-
-`typedef bfd'
-=============
-
- A BFD has type `bfd'; objects of this type are the cornerstone of
-any application using BFD. Using BFD consists of making references
-though the BFD and to data in the BFD.
-
- Here is the structure that defines the type `bfd'. It contains the
-major data about the file and pointers to the rest of the data.
-.
- struct _bfd
- {
- /* The filename the application opened the BFD with. */
- CONST char *filename;
-
- /* A pointer to the target jump table. */
- const struct bfd_target *xvec;
-
- /* To avoid dragging too many header files into every file that
- includes ``bfd.h'', IOSTREAM has been declared as a "char
- *", and MTIME as a "long". Their correct types, to which they
- are cast when used, are "FILE *" and "time_t". The iostream
- is the result of an fopen on the filename. However, if the
- BFD_IN_MEMORY flag is set, then iostream is actually a pointer
- to a bfd_in_memory struct. */
- PTR iostream;
-
- /* Is the file descriptor being cached? That is, can it be closed as
- needed, and re-opened when accessed later? */
-
- boolean cacheable;
-
- /* Marks whether there was a default target specified when the
- BFD was opened. This is used to select which matching algorithm
- to use to choose the back end. */
-
- boolean target_defaulted;
-
- /* The caching routines use these to maintain a
- least-recently-used list of BFDs */
-
- struct _bfd *lru_prev, *lru_next;
-
- /* When a file is closed by the caching routines, BFD retains
- state information on the file here: */
-
- file_ptr where;
-
- /* and here: (``once'' means at least once) */
-
- boolean opened_once;
-
- /* Set if we have a locally maintained mtime value, rather than
- getting it from the file each time: */
-
- boolean mtime_set;
-
- /* File modified time, if mtime_set is true: */
-
- long mtime;
-
- /* Reserved for an unimplemented file locking extension.*/
-
- int ifd;
-
- /* The format which belongs to the BFD. (object, core, etc.) */
-
- bfd_format format;
-
- /* The direction the BFD was opened with*/
-
- enum bfd_direction {no_direction = 0,
- read_direction = 1,
- write_direction = 2,
- both_direction = 3} direction;
-
- /* Format_specific flags*/
-
- flagword flags;
-
- /* Currently my_archive is tested before adding origin to
- anything. I believe that this can become always an add of
- origin, with origin set to 0 for non archive files. */
-
- file_ptr origin;
-
- /* Remember when output has begun, to stop strange things
- from happening. */
- boolean output_has_begun;
-
- /* Pointer to linked list of sections*/
- struct sec *sections;
-
- /* The number of sections */
- unsigned int section_count;
-
- /* Stuff only useful for object files:
- The start address. */
- bfd_vma start_address;
-
- /* Used for input and output*/
- unsigned int symcount;
-
- /* Symbol table for output BFD (with symcount entries) */
- struct symbol_cache_entry **outsymbols;
-
- /* Pointer to structure which contains architecture information*/
- const struct bfd_arch_info *arch_info;
-
- /* Stuff only useful for archives:*/
- PTR arelt_data;
- struct _bfd *my_archive; /* The containing archive BFD. */
- struct _bfd *next; /* The next BFD in the archive. */
- struct _bfd *archive_head; /* The first BFD in the archive. */
- boolean has_armap;
-
- /* A chain of BFD structures involved in a link. */
- struct _bfd *link_next;
-
- /* A field used by _bfd_generic_link_add_archive_symbols. This will
- be used only for archive elements. */
- int archive_pass;
-
- /* Used by the back end to hold private data. */
-
- union
- {
- struct aout_data_struct *aout_data;
- struct artdata *aout_ar_data;
- struct _oasys_data *oasys_obj_data;
- struct _oasys_ar_data *oasys_ar_data;
- struct coff_tdata *coff_obj_data;
- struct pe_tdata *pe_obj_data;
- struct xcoff_tdata *xcoff_obj_data;
- struct ecoff_tdata *ecoff_obj_data;
- struct ieee_data_struct *ieee_data;
- struct ieee_ar_data_struct *ieee_ar_data;
- struct srec_data_struct *srec_data;
- struct ihex_data_struct *ihex_data;
- struct tekhex_data_struct *tekhex_data;
- struct elf_obj_tdata *elf_obj_data;
- struct nlm_obj_tdata *nlm_obj_data;
- struct bout_data_struct *bout_data;
- struct sun_core_struct *sun_core_data;
- struct trad_core_struct *trad_core_data;
- struct som_data_struct *som_data;
- struct hpux_core_struct *hpux_core_data;
- struct hppabsd_core_struct *hppabsd_core_data;
- struct sgi_core_struct *sgi_core_data;
- struct lynx_core_struct *lynx_core_data;
- struct osf_core_struct *osf_core_data;
- struct cisco_core_struct *cisco_core_data;
- struct versados_data_struct *versados_data;
- struct netbsd_core_struct *netbsd_core_data;
- PTR any;
- } tdata;
-
- /* Used by the application to hold private data*/
- PTR usrdata;
-
- /* Where all the allocated stuff under this BFD goes. This is a
- struct objalloc *, but we use PTR to avoid requiring the inclusion of
- objalloc.h. */
- PTR memory;
- };
-
-Error reporting
-===============
-
- Most BFD functions return nonzero on success (check their individual
-documentation for precise semantics). On an error, they call
-`bfd_set_error' to set an error condition that callers can check by
-calling `bfd_get_error'. If that returns `bfd_error_system_call', then
-check `errno'.
-
- The easiest way to report a BFD error to the user is to use
-`bfd_perror'.
-Type `bfd_error_type'
----------------------
-
-The values returned by `bfd_get_error' are defined by the enumerated
-type `bfd_error_type'.
-.
- typedef enum bfd_error
- {
- bfd_error_no_error = 0,
- bfd_error_system_call,
- bfd_error_invalid_target,
- bfd_error_wrong_format,
- bfd_error_invalid_operation,
- bfd_error_no_memory,
- bfd_error_no_symbols,
- bfd_error_no_armap,
- bfd_error_no_more_archived_files,
- bfd_error_malformed_archive,
- bfd_error_file_not_recognized,
- bfd_error_file_ambiguously_recognized,
- bfd_error_no_contents,
- bfd_error_nonrepresentable_section,
- bfd_error_no_debug_section,
- bfd_error_bad_value,
- bfd_error_file_truncated,
- bfd_error_file_too_big,
- bfd_error_invalid_error_code
- } bfd_error_type;
-
-`bfd_get_error'
-...............
-
- *Synopsis*
- bfd_error_type bfd_get_error (void);
- *Description*
-Return the current BFD error condition.
-`bfd_set_error'
-...............
-
-*Synopsis*
- void bfd_set_error (bfd_error_type error_tag);
- *Description*
-Set the BFD error condition to be ERROR_TAG.
-`bfd_errmsg'
-............
-
-*Synopsis*
- CONST char *bfd_errmsg (bfd_error_type error_tag);
- *Description*
-Return a string describing the error ERROR_TAG, or the system error if
-ERROR_TAG is `bfd_error_system_call'.
-`bfd_perror'
-............
-
-*Synopsis*
- void bfd_perror (CONST char *message);
- *Description*
-Print to the standard error stream a string describing the last BFD
-error that occurred, or the last system error if the last BFD error was
-a system call failure. If MESSAGE is non-NULL and non-empty, the error
-string printed is preceded by MESSAGE, a colon, and a space. It is
-followed by a newline.
-BFD error handler
------------------
-
-Some BFD functions want to print messages describing the problem. They
-call a BFD error handler function. This function may be overriden by
-the program.
-
- The BFD error handler acts like printf.
-.
- typedef void (*bfd_error_handler_type) PARAMS ((const char *, ...));
-
-`bfd_set_error_handler'
-.......................
-
- *Synopsis*
- bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
- *Description*
-Set the BFD error handler function. Returns the previous function.
-`bfd_set_error_program_name'
-............................
-
-*Synopsis*
- void bfd_set_error_program_name (const char *);
- *Description*
-Set the program name to use when printing a BFD error. This is printed
-before the error message followed by a colon and space. The string
-must not be changed after it is passed to this function.
-Symbols
-=======
-
-`bfd_get_reloc_upper_bound'
-...........................
-
-*Synopsis*
- long bfd_get_reloc_upper_bound(bfd *abfd, asection *sect);
- *Description*
-Return the number of bytes required to store the relocation information
-associated with section SECT attached to bfd ABFD. If an error occurs,
-return -1.
-`bfd_canonicalize_reloc'
-........................
-
-*Synopsis*
- long bfd_canonicalize_reloc
- (bfd *abfd,
- asection *sec,
- arelent **loc,
- asymbol **syms);
- *Description*
-Call the back end associated with the open BFD ABFD and translate the
-external form of the relocation information attached to SEC into the
-internal canonical form. Place the table into memory at LOC, which has
-been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
-Returns the number of relocs, or -1 on error.
-
- The SYMS table is also needed for horrible internal magic reasons.
-`bfd_set_reloc'
-...............
-
-*Synopsis*
- void bfd_set_reloc
- (bfd *abfd, asection *sec, arelent **rel, unsigned int count)
- *Description*
-Set the relocation pointer and count within section SEC to the values
-REL and COUNT. The argument ABFD is ignored.
-`bfd_set_file_flags'
-....................
-
-*Synopsis*
- boolean bfd_set_file_flags(bfd *abfd, flagword flags);
- *Description*
-Set the flag word in the BFD ABFD to the value FLAGS.
-
- Possible errors are:
- * `bfd_error_wrong_format' - The target bfd was not of object format.
-
- * `bfd_error_invalid_operation' - The target bfd was open for
- reading.
-
- * `bfd_error_invalid_operation' - The flag word contained a bit
- which was not applicable to the type of file. E.g., an attempt
- was made to set the `D_PAGED' bit on a BFD format which does not
- support demand paging.
-`bfd_set_start_address'
-.......................
-
-*Synopsis*
- boolean bfd_set_start_address(bfd *abfd, bfd_vma vma);
- *Description*
-Make VMA the entry point of output BFD ABFD.
-*Returns*
-Returns `true' on success, `false' otherwise.
-`bfd_get_mtime'
-...............
-
-*Synopsis*
- long bfd_get_mtime(bfd *abfd);
- *Description*
-Return the file modification time (as read from the file system, or
-from the archive header for archive members).
-`bfd_get_size'
-..............
-
-*Synopsis*
- long bfd_get_size(bfd *abfd);
- *Description*
-Return the file size (as read from file system) for the file associated
-with BFD ABFD.
-
- The initial motivation for, and use of, this routine is not so we
-can get the exact size of the object the BFD applies to, since that
-might not be generally possible (archive members for example). It
-would be ideal if someone could eventually modify it so that such
-results were guaranteed.
-
- Instead, we want to ask questions like "is this NNN byte sized
-object I'm about to try read from file offset YYY reasonable?" As as
-example of where we might do this, some object formats use string
-tables for which the first `sizeof(long)' bytes of the table contain
-the size of the table itself, including the size bytes. If an
-application tries to read what it thinks is one of these string tables,
-without some way to validate the size, and for some reason the size is
-wrong (byte swapping error, wrong location for the string table, etc.),
-the only clue is likely to be a read error when it tries to read the
-table, or a "virtual memory exhausted" error when it tries to allocate
-15 bazillon bytes of space for the 15 bazillon byte table it is about
-to read. This function at least allows us to answer the quesion, "is
-the size reasonable?".
-`bfd_get_gp_size'
-.................
-
-*Synopsis*
- int bfd_get_gp_size(bfd *abfd);
- *Description*
-Return the maximum size of objects to be optimized using the GP
-register under MIPS ECOFF. This is typically set by the `-G' argument
-to the compiler, assembler or linker.
-`bfd_set_gp_size'
-.................
-
-*Synopsis*
- void bfd_set_gp_size(bfd *abfd, int i);
- *Description*
-Set the maximum size of objects to be optimized using the GP register
-under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
-the compiler, assembler or linker.
-`bfd_scan_vma'
-..............
-
-*Synopsis*
- bfd_vma bfd_scan_vma(CONST char *string, CONST char **end, int base);
- *Description*
-Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
-integer, and return that integer. (Though without as many bells and
-whistles as `strtoul'.) The expression is assumed to be unsigned (i.e.,
-positive). If given a BASE, it is used as the base for conversion. A
-base of 0 causes the function to interpret the string in hex if a
-leading "0x" or "0X" is found, otherwise in octal if a leading zero is
-found, otherwise in decimal.
-
- Overflow is not detected.
-`bfd_copy_private_bfd_data'
-...........................
-
-*Synopsis*
- boolean bfd_copy_private_bfd_data(bfd *ibfd, bfd *obfd);
- *Description*
-Copy private BFD information from the BFD IBFD to the the BFD OBFD.
-Return `true' on success, `false' on error. Possible error returns are:
-
- * `bfd_error_no_memory' - Not enough memory exists to create private
- data for OBFD.
- #define bfd_copy_private_bfd_data(ibfd, obfd) \
- BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
- (ibfd, obfd))
-
-`bfd_merge_private_bfd_data'
-............................
-
-*Synopsis*
- boolean bfd_merge_private_bfd_data(bfd *ibfd, bfd *obfd);
- *Description*
-Merge private BFD information from the BFD IBFD to the the output file
-BFD OBFD when linking. Return `true' on success, `false' on error.
-Possible error returns are:
-
- * `bfd_error_no_memory' - Not enough memory exists to create private
- data for OBFD.
- #define bfd_merge_private_bfd_data(ibfd, obfd) \
- BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
- (ibfd, obfd))
-
-`bfd_set_private_flags'
-.......................
-
-*Synopsis*
- boolean bfd_set_private_flags(bfd *abfd, flagword flags);
- *Description*
-Set private BFD flag information in the BFD ABFD. Return `true' on
-success, `false' on error. Possible error returns are:
-
- * `bfd_error_no_memory' - Not enough memory exists to create private
- data for OBFD.
- #define bfd_set_private_flags(abfd, flags) \
- BFD_SEND (abfd, _bfd_set_private_flags, \
- (abfd, flags))
-
-`stuff'
-.......
-
-*Description*
-Stuff which should be documented:
- #define bfd_sizeof_headers(abfd, reloc) \
- BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, reloc))
-
- #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
- BFD_SEND (abfd, _bfd_find_nearest_line, (abfd, sec, syms, off, file, func, line))
-
- /* Do these three do anything useful at all, for any back end? */
- #define bfd_debug_info_start(abfd) \
- BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
-
- #define bfd_debug_info_end(abfd) \
- BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
-
- #define bfd_debug_info_accumulate(abfd, section) \
- BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
-
-
- #define bfd_stat_arch_elt(abfd, stat) \
- BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
-
- #define bfd_update_armap_timestamp(abfd) \
- BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
-
- #define bfd_set_arch_mach(abfd, arch, mach)\
- BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
-
- #define bfd_relax_section(abfd, section, link_info, again) \
- BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
-
- #define bfd_link_hash_table_create(abfd) \
- BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
-
- #define bfd_link_add_symbols(abfd, info) \
- BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
-
- #define bfd_final_link(abfd, info) \
- BFD_SEND (abfd, _bfd_final_link, (abfd, info))
-
- #define bfd_free_cached_info(abfd) \
- BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
-
- #define bfd_get_dynamic_symtab_upper_bound(abfd) \
- BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
-
- #define bfd_print_private_bfd_data(abfd, file)\
- BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
-
- #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
- BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
-
- #define bfd_get_dynamic_reloc_upper_bound(abfd) \
- BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
-
- #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
- BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
-
- extern bfd_byte *bfd_get_relocated_section_contents
- PARAMS ((bfd *, struct bfd_link_info *,
- struct bfd_link_order *, bfd_byte *,
- boolean, asymbol **));
-
-* Menu:
-
-* Memory Usage::
-* Initialization::
-* Sections::
-* Symbols::
-* Archives::
-* Formats::
-* Relocations::
-* Core Files::
-* Targets::
-* Architectures::
-* Opening and Closing::
-* Internal::
-* File Caching::
-* Linker Functions::
-* Hash Tables::
-
-
-File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
-
-Memory usage
-============
-
- BFD keeps all of its internal structures in obstacks. There is one
-obstack per open BFD file, into which the current state is stored. When
-a BFD is closed, the obstack is deleted, and so everything which has
-been allocated by BFD for the closing file is thrown away.
-
- BFD does not free anything created by an application, but pointers
-into `bfd' structures become invalid on a `bfd_close'; for example,
-after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
-still around, since it has been allocated by the application, but the
-data that it pointed to are lost.
-
- The general rule is to not close a BFD until all operations dependent
-upon data from the BFD have been completed, or all the data from within
-the file has been copied. To help with the management of memory, there
-is a function (`bfd_alloc_size') which returns the number of bytes in
-obstacks associated with the supplied BFD. This could be used to select
-the greediest open BFD, close it to reclaim the memory, perform some
-operation and reopen the BFD again, to get a fresh copy of the data
-structures.
-
-
-File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
-
-Initialization
-==============
-
- These are the functions that handle initializing a BFD.
-`bfd_init'
-..........
-
-*Synopsis*
- void bfd_init(void);
- *Description*
-This routine must be called before any other BFD function to initialize
-magical internal data structures.
-
-File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
-
-Sections
-========
-
-The raw data contained within a BFD is maintained through the section
-abstraction. A single BFD may have any number of sections. It keeps
-hold of them by pointing to the first; each one points to the next in
-the list.
-
- Sections are supported in BFD in `section.c'.
-
-* Menu:
-
-* Section Input::
-* Section Output::
-* typedef asection::
-* section prototypes::
-
-
-File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
-
-Section input
--------------
-
-When a BFD is opened for reading, the section structures are created
-and attached to the BFD.
-
- Each section has a name which describes the section in the outside
-world--for example, `a.out' would contain at least three sections,
-called `.text', `.data' and `.bss'.
-
- Names need not be unique; for example a COFF file may have several
-sections named `.data'.
-
- Sometimes a BFD will contain more than the "natural" number of
-sections. A back end may attach other sections containing constructor
-data, or an application may add a section (using `bfd_make_section') to
-the sections attached to an already open BFD. For example, the linker
-creates an extra section `COMMON' for each input file's BFD to hold
-information about common storage.
-
- The raw data is not necessarily read in when the section descriptor
-is created. Some targets may leave the data in place until a
-`bfd_get_section_contents' call is made. Other back ends may read in
-all the data at once. For example, an S-record file has to be read
-once to determine the size of the data. An IEEE-695 file doesn't
-contain raw data in sections, but data and relocation expressions
-intermixed, so the data area has to be parsed to get out the data and
-relocations.
-
-File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
-
-Section output
---------------
-
-To write a new object style BFD, the various sections to be written
-have to be created. They are attached to the BFD in the same way as
-input sections; data is written to the sections using
-`bfd_set_section_contents'.
-
- Any program that creates or combines sections (e.g., the assembler
-and linker) must use the `asection' fields `output_section' and
-`output_offset' to indicate the file sections to which each section
-must be written. (If the section is being created from scratch,
-`output_section' should probably point to the section itself and
-`output_offset' should probably be zero.)
-
- The data to be written comes from input sections attached (via
-`output_section' pointers) to the output sections. The output section
-structure can be considered a filter for the input section: the output
-section determines the vma of the output data and the name, but the
-input section determines the offset into the output section of the data
-to be written.
-
- E.g., to create a section "O", starting at 0x100, 0x123 long,
-containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
-"B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
-look like:
-
- section name "A"
- output_offset 0x00
- size 0x20
- output_section -----------> section name "O"
- | vma 0x100
- section name "B" | size 0x123
- output_offset 0x20 |
- size 0x103 |
- output_section --------|
-
-Link orders
------------
-
-The data within a section is stored in a "link_order". These are much
-like the fixups in `gas'. The link_order abstraction allows a section
-to grow and shrink within itself.
-
- A link_order knows how big it is, and which is the next link_order
-and where the raw data for it is; it also points to a list of
-relocations which apply to it.
-
- The link_order is used by the linker to perform relaxing on final
-code. The compiler creates code which is as big as necessary to make
-it work without relaxing, and the user can select whether to relax.
-Sometimes relaxing takes a lot of time. The linker runs around the
-relocations to see if any are attached to data which can be shrunk, if
-so it does it on a link_order by link_order basis.
-
-File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
-
-typedef asection
-----------------
-
-Here is the section structure:
-.
- typedef struct sec
- {
- /* The name of the section; the name isn't a copy, the pointer is
- the same as that passed to bfd_make_section. */
-
- CONST char *name;
-
- /* Which section is it; 0..nth. */
-
- int index;
-
- /* The next section in the list belonging to the BFD, or NULL. */
-
- struct sec *next;
-
- /* The field flags contains attributes of the section. Some
- flags are read in from the object file, and some are
- synthesized from other information. */
-
- flagword flags;
-
- #define SEC_NO_FLAGS 0x000
-
- /* Tells the OS to allocate space for this section when loading.
- This is clear for a section containing debug information
- only. */
- #define SEC_ALLOC 0x001
-
- /* Tells the OS to load the section from the file when loading.
- This is clear for a .bss section. */
- #define SEC_LOAD 0x002
-
- /* The section contains data still to be relocated, so there is
- some relocation information too. */
- #define SEC_RELOC 0x004
-
- #if 0 /* Obsolete ? */
- #define SEC_BALIGN 0x008
- #endif
-
- /* A signal to the OS that the section contains read only
- data. */
- #define SEC_READONLY 0x010
-
- /* The section contains code only. */
- #define SEC_CODE 0x020
-
- /* The section contains data only. */
- #define SEC_DATA 0x040
-
- /* The section will reside in ROM. */
- #define SEC_ROM 0x080
-
- /* The section contains constructor information. This section
- type is used by the linker to create lists of constructors and
- destructors used by `g++'. When a back end sees a symbol
- which should be used in a constructor list, it creates a new
- section for the type of name (e.g., `__CTOR_LIST__'), attaches
- the symbol to it, and builds a relocation. To build the lists
- of constructors, all the linker has to do is catenate all the
- sections called `__CTOR_LIST__' and relocate the data
- contained within - exactly the operations it would peform on
- standard data. */
- #define SEC_CONSTRUCTOR 0x100
-
- /* The section is a constuctor, and should be placed at the
- end of the text, data, or bss section(?). */
- #define SEC_CONSTRUCTOR_TEXT 0x1100
- #define SEC_CONSTRUCTOR_DATA 0x2100
- #define SEC_CONSTRUCTOR_BSS 0x3100
-
- /* The section has contents - a data section could be
- `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
- `SEC_HAS_CONTENTS' */
- #define SEC_HAS_CONTENTS 0x200
-
- /* An instruction to the linker to not output the section
- even if it has information which would normally be written. */
- #define SEC_NEVER_LOAD 0x400
-
- /* The section is a COFF shared library section. This flag is
- only for the linker. If this type of section appears in
- the input file, the linker must copy it to the output file
- without changing the vma or size. FIXME: Although this
- was originally intended to be general, it really is COFF
- specific (and the flag was renamed to indicate this). It
- might be cleaner to have some more general mechanism to
- allow the back end to control what the linker does with
- sections. */
- #define SEC_COFF_SHARED_LIBRARY 0x800
-
- /* The section contains common symbols (symbols may be defined
- multiple times, the value of a symbol is the amount of
- space it requires, and the largest symbol value is the one
- used). Most targets have exactly one of these (which we
- translate to bfd_com_section_ptr), but ECOFF has two. */
- #define SEC_IS_COMMON 0x8000
-
- /* The section contains only debugging information. For
- example, this is set for ELF .debug and .stab sections.
- strip tests this flag to see if a section can be
- discarded. */
- #define SEC_DEBUGGING 0x10000
-
- /* The contents of this section are held in memory pointed to
- by the contents field. This is checked by
- bfd_get_section_contents, and the data is retrieved from
- memory if appropriate. */
- #define SEC_IN_MEMORY 0x20000
-
- /* The contents of this section are to be excluded by the
- linker for executable and shared objects unless those
- objects are to be further relocated. */
- #define SEC_EXCLUDE 0x40000
-
- /* The contents of this section are to be sorted by the
- based on the address specified in the associated symbol
- table. */
- #define SEC_SORT_ENTRIES 0x80000
-
- /* When linking, duplicate sections of the same name should be
- discarded, rather than being combined into a single section as
- is usually done. This is similar to how common symbols are
- handled. See SEC_LINK_DUPLICATES below. */
- #define SEC_LINK_ONCE 0x100000
-
- /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
- should handle duplicate sections. */
- #define SEC_LINK_DUPLICATES 0x600000
-
- /* This value for SEC_LINK_DUPLICATES means that duplicate
- sections with the same name should simply be discarded. */
- #define SEC_LINK_DUPLICATES_DISCARD 0x0
-
- /* This value for SEC_LINK_DUPLICATES means that the linker
- should warn if there are any duplicate sections, although
- it should still only link one copy. */
- #define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000
-
- /* This value for SEC_LINK_DUPLICATES means that the linker
- should warn if any duplicate sections are a different size. */
- #define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000
-
- /* This value for SEC_LINK_DUPLICATES means that the linker
- should warn if any duplicate sections contain different
- contents. */
- #define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000
-
- /* This section was created by the linker as part of dynamic
- relocation or other arcane processing. It is skipped when
- going through the first-pass output, trusting that someone
- else up the line will take care of it later. */
- #define SEC_LINKER_CREATED 0x800000
-
- /* End of section flags. */
-
- /* Some internal packed boolean fields. */
-
- /* See the vma field. */
- unsigned int user_set_vma : 1;
-
- /* Whether relocations have been processed. */
- unsigned int reloc_done : 1;
-
- /* A mark flag used by some of the linker backends. */
- unsigned int linker_mark : 1;
-
- /* End of internal packed boolean fields. */
-
- /* The virtual memory address of the section - where it will be
- at run time. The symbols are relocated against this. The
- user_set_vma flag is maintained by bfd; if it's not set, the
- backend can assign addresses (for example, in `a.out', where
- the default address for `.data' is dependent on the specific
- target and various flags). */
-
- bfd_vma vma;
-
- /* The load address of the section - where it would be in a
- rom image; really only used for writing section header
- information. */
-
- bfd_vma lma;
-
- /* The size of the section in bytes, as it will be output.
- contains a value even if the section has no contents (e.g., the
- size of `.bss'). This will be filled in after relocation */
-
- bfd_size_type _cooked_size;
-
- /* The original size on disk of the section, in bytes. Normally this
- value is the same as the size, but if some relaxing has
- been done, then this value will be bigger. */
-
- bfd_size_type _raw_size;
-
- /* If this section is going to be output, then this value is the
- offset into the output section of the first byte in the input
- section. E.g., if this was going to start at the 100th byte in
- the output section, this value would be 100. */
-
- bfd_vma output_offset;
-
- /* The output section through which to map on output. */
-
- struct sec *output_section;
-
- /* The alignment requirement of the section, as an exponent of 2 -
- e.g., 3 aligns to 2^3 (or 8). */
-
- unsigned int alignment_power;
-
- /* If an input section, a pointer to a vector of relocation
- records for the data in this section. */
-
- struct reloc_cache_entry *relocation;
-
- /* If an output section, a pointer to a vector of pointers to
- relocation records for the data in this section. */
-
- struct reloc_cache_entry **orelocation;
-
- /* The number of relocation records in one of the above */
-
- unsigned reloc_count;
-
- /* Information below is back end specific - and not always used
- or updated. */
-
- /* File position of section data */
-
- file_ptr filepos;
-
- /* File position of relocation info */
-
- file_ptr rel_filepos;
-
- /* File position of line data */
-
- file_ptr line_filepos;
-
- /* Pointer to data for applications */
-
- PTR userdata;
-
- /* If the SEC_IN_MEMORY flag is set, this points to the actual
- contents. */
- unsigned char *contents;
-
- /* Attached line number information */
-
- alent *lineno;
-
- /* Number of line number records */
-
- unsigned int lineno_count;
-
- /* When a section is being output, this value changes as more
- linenumbers are written out */
-
- file_ptr moving_line_filepos;
-
- /* What the section number is in the target world */
-
- int target_index;
-
- PTR used_by_bfd;
-
- /* If this is a constructor section then here is a list of the
- relocations created to relocate items within it. */
-
- struct relent_chain *constructor_chain;
-
- /* The BFD which owns the section. */
-
- bfd *owner;
-
- /* A symbol which points at this section only */
- struct symbol_cache_entry *symbol;
- struct symbol_cache_entry **symbol_ptr_ptr;
-
- struct bfd_link_order *link_order_head;
- struct bfd_link_order *link_order_tail;
- } asection ;
-
- /* These sections are global, and are managed by BFD. The application
- and target back end are not permitted to change the values in
- these sections. New code should use the section_ptr macros rather
- than referring directly to the const sections. The const sections
- may eventually vanish. */
- #define BFD_ABS_SECTION_NAME "*ABS*"
- #define BFD_UND_SECTION_NAME "*UND*"
- #define BFD_COM_SECTION_NAME "*COM*"
- #define BFD_IND_SECTION_NAME "*IND*"
-
- /* the absolute section */
- extern const asection bfd_abs_section;
- #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
- #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
- /* Pointer to the undefined section */
- extern const asection bfd_und_section;
- #define bfd_und_section_ptr ((asection *) &bfd_und_section)
- #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
- /* Pointer to the common section */
- extern const asection bfd_com_section;
- #define bfd_com_section_ptr ((asection *) &bfd_com_section)
- /* Pointer to the indirect section */
- extern const asection bfd_ind_section;
- #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
- #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
-
- extern const struct symbol_cache_entry * const bfd_abs_symbol;
- extern const struct symbol_cache_entry * const bfd_com_symbol;
- extern const struct symbol_cache_entry * const bfd_und_symbol;
- extern const struct symbol_cache_entry * const bfd_ind_symbol;
- #define bfd_get_section_size_before_reloc(section) \
- (section->reloc_done ? (abort(),1): (section)->_raw_size)
- #define bfd_get_section_size_after_reloc(section) \
- ((section->reloc_done) ? (section)->_cooked_size: (abort(),1))
-