summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gas/expr.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/gas/expr.c')
-rw-r--r--gnu/usr.bin/gas/expr.c1007
1 files changed, 0 insertions, 1007 deletions
diff --git a/gnu/usr.bin/gas/expr.c b/gnu/usr.bin/gas/expr.c
deleted file mode 100644
index 01d501192a5..00000000000
--- a/gnu/usr.bin/gas/expr.c
+++ /dev/null
@@ -1,1007 +0,0 @@
-/* $OpenBSD: expr.c,v 1.7 2000/07/26 15:42:57 deraadt Exp $ */
-
-/* expr.c -operands, expressions-
- Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-/*
- * This is really a branch office of as-read.c. I split it out to clearly
- * distinguish the world of expressions from the world of statements.
- * (It also gives smaller files to re-compile.)
- * Here, "operand"s are of expressions, not instructions.
- */
-
-#ifndef lint
-static char rcsid[] = "$OpenBSD: expr.c,v 1.7 2000/07/26 15:42:57 deraadt Exp $";
-#endif
-
-#include <ctype.h>
-#include <string.h>
-
-#include "as.h"
-
-#include "obstack.h"
-
-#if __STDC__ == 1
-static void clean_up_expression(expressionS *expressionP);
-#else /* __STDC__ */
-static void clean_up_expression(); /* Internal. */
-#endif /* not __STDC__ */
-extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
-extern const char FLT_CHARS[];
-
-#ifdef LOCAL_LABELS_DOLLAR
-extern int local_label_defined[];
-#endif
-
-/*
- * Build any floating-point literal here.
- * Also build any bignum literal here.
- */
-
-/* LITTLENUM_TYPE generic_buffer[6]; */ /* JF this is a hack */
-/* Seems atof_machine can backscan through generic_bignum and hit whatever
- happens to be loaded before it in memory. And its way too complicated
- for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
- and never write into the early words, thus they'll always be zero.
- I hate Dean's floating-point code. Bleh.
- */
-LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER+6];
-FLONUM_TYPE generic_floating_point_number =
-{
- &generic_bignum[6], /* low (JF: Was 0) */
- &generic_bignum[SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
- 0, /* leader */
- 0, /* exponent */
- 0 /* sign */
- };
-/* If nonzero, we've been asked to assemble nan, +inf or -inf */
-int generic_floating_point_magic;
-
-/*
- * Summary of operand().
- *
- * in: Input_line_pointer points to 1st char of operand, which may
- * be a space.
- *
- * out: A expressionS. X_seg determines how to understand the rest of the
- * expressionS.
- * The operand may have been empty: in this case X_seg == SEG_ABSENT.
- * Input_line_pointer->(next non-blank) char after operand.
- *
- */
-
-static segT
- operand (expressionP)
-register expressionS * expressionP;
-{
- register char c;
- register char *name; /* points to name of symbol */
- register symbolS * symbolP; /* Points to symbol */
-
- extern const char hex_value[]; /* In hex_value.c */
-
-#ifdef PIC
-/* XXX */ expressionP->X_got_symbol = 0;
-#endif
- SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
- c = * input_line_pointer ++; /* Input_line_pointer->past char in c. */
- if (isdigit(c) || (c == 'H' && input_line_pointer[0] == '\''))
- {
- register valueT number; /* offset or (absolute) value */
- register short int digit; /* value of next digit in current radix */
- /* invented for humans only, hope */
- /* optimising compiler flushes it! */
- register short int radix; /* 2, 8, 10 or 16 */
- /* 0 means we saw start of a floating- */
- /* point constant. */
- register short int maxdig = 0;/* Highest permitted digit value. */
- register int too_many_digits = 0; /* If we see >= this number of */
- /* digits, assume it is a bignum. */
- register char * digit_2; /*->2nd digit of number. */
- int small; /* TRUE if fits in 32 bits. */
-
-
- if (c == 'H' || c == '0') { /* non-decimal radix */
- if ((c = *input_line_pointer ++) == 'x' || c == 'X' || c == '\'') {
- c = *input_line_pointer ++; /* read past "0x" or "0X" or H' */
- maxdig = radix = 16;
- too_many_digits = 9;
- } else {
- /* If it says '0f' and the line ends or it DOESN'T look like
- a floating point #, its a local label ref. DTRT */
- /* likewise for the b's. xoxorich. */
- if ((c == 'f' || c == 'b' || c == 'B')
- && (!*input_line_pointer ||
- (!strchr("+-.0123456789iInN",*input_line_pointer) &&
- !strchr(EXP_CHARS,*input_line_pointer)))) {
- maxdig = radix = 10;
- too_many_digits = 11;
- c = '0';
- input_line_pointer -= 2;
-
- } else if (c == 'b' || c == 'B') {
- c = *input_line_pointer++;
- maxdig = radix = 2;
- too_many_digits = 33;
-
- } else if (c && strchr(FLT_CHARS,c)) {
- radix = 0; /* Start of floating-point constant. */
- /* input_line_pointer->1st char of number. */
- expressionP->X_add_number = -(isupper(c) ? tolower(c) : c);
-
- } else { /* By elimination, assume octal radix. */
- radix = maxdig = 8;
- too_many_digits = 11;
- }
- } /* c == char after "0" or "0x" or "0X" or "0e" etc. */
- } else {
- maxdig = radix = 10;
- too_many_digits = 11;
- } /* if operand starts with a zero */
-
- if (radix) { /* Fixed-point integer constant. */
- /* May be bignum, or may fit in 32 bits. */
- /*
- * Most numbers fit into 32 bits, and we want this case to be fast.
- * So we pretend it will fit into 32 bits. If, after making up a 32
- * bit number, we realise that we have scanned more digits than
- * comfortably fit into 32 bits, we re-scan the digits coding
- * them into a bignum. For decimal and octal numbers we are conservative: some
- * numbers may be assumed bignums when in fact they do fit into 32 bits.
- * Numbers of any radix can have excess leading zeros: we strive
- * to recognise this and cast them back into 32 bits.
- * We must check that the bignum really is more than 32
- * bits, and change it back to a 32-bit number if it fits.
- * The number we are looking for is expected to be positive, but
- * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
- * number. The cavalier approach is for speed in ordinary cases.
- */
- digit_2 = input_line_pointer;
- for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
- {
- number = number * radix + digit;
- }
- /* C contains character after number. */
- /* Input_line_pointer->char after C. */
- small = input_line_pointer - digit_2 < too_many_digits;
- if (!small)
- {
- /*
- * We saw a lot of digits. Manufacture a bignum the hard way.
- */
- LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
- LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
- long carry;
-
- leader = generic_bignum;
- generic_bignum[0] = 0;
- generic_bignum[1] = 0;
- /* We could just use digit_2, but lets be mnemonic. */
- input_line_pointer = --digit_2; /*->1st digit. */
- c = *input_line_pointer++;
- for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
- {
- for (pointer = generic_bignum;
- pointer <= leader;
- pointer++)
- {
- long work;
-
- work = carry + radix * *pointer;
- *pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
- if (carry)
- {
- if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
- { /* Room to grow a longer bignum. */
- *++leader = carry;
- }
- }
- }
- /* Again, C is char after number, */
- /* input_line_pointer->after C. */
- know(sizeof (int) * 8 == 32);
- know(LITTLENUM_NUMBER_OF_BITS == 16);
- /* Hence the constant "2" in the next line. */
- if (leader < generic_bignum + 2)
- { /* Will fit into 32 bits. */
- number =
- ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
- | (generic_bignum[0] & LITTLENUM_MASK);
- small = 1;
- }
- else
- {
- number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
- }
- }
- if (small)
- {
- /*
- * Here with number, in correct radix. c is the next char.
- * Note that unlike Un*x, we allow "011f" "0x9f" to
- * both mean the same as the (conventional) "9f". This is simply easier
- * than checking for strict canonical form. Syntax sux!
- */
- if (number<10)
- {
- if (0
-#ifdef LOCAL_LABELS_FB
- || c == 'b'
-#endif
-#ifdef LOCAL_LABELS_DOLLAR
- || (c == '$' && local_label_defined[number])
-#endif
- )
- {
- /*
- * Backward ref to local label.
- * Because it is backward, expect it to be DEFINED.
- */
- /*
- * Construct a local label.
- */
- name = local_label_name ((int)number, 0);
- if (((symbolP = symbol_find(name)) != NULL) /* seen before */
- && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */
- { /* Expected path: symbol defined. */
- /* Local labels are never absolute. Don't waste time checking absoluteness. */
- know(SEG_NORMAL(S_GET_SEGMENT(symbolP)));
-
- expressionP->X_add_symbol = symbolP;
- expressionP->X_add_number = 0;
- expressionP->X_seg = S_GET_SEGMENT(symbolP);
- }
- else
- { /* Either not seen or not defined. */
- as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.",
- number);
- expressionP->X_add_number = 0;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- }
- else
- {
- if (0
-#ifdef LOCAL_LABELS_FB
- || c == 'f'
-#endif
-#ifdef LOCAL_LABELS_DOLLAR
- || (c == '$' && !local_label_defined[number])
-#endif
- )
- {
- /*
- * Forward reference. Expect symbol to be undefined or
- * unknown. Undefined: seen it before. Unknown: never seen
- * it in this pass.
- * Construct a local label name, then an undefined symbol.
- * Don't create a XSEG frag for it: caller may do that.
- * Just return it as never seen before.
- */
- name = local_label_name((int)number, 1);
- symbolP = symbol_find_or_make(name);
- /* We have no need to check symbol properties. */
-#ifndef MANY_SEGMENTS
- /* Since "know" puts its arg into a "string", we
- can't have newlines in the argument. */
- know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA);
-#endif
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = SEG_UNKNOWN;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- }
- else
- { /* Really a number, not a local label. */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer--; /* Restore following character. */
- } /* if (c == 'f') */
- } /* if (c == 'b') */
- }
- else
- { /* Really a number. */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer--; /* Restore following character. */
- } /* if (number<10) */
- }
- else
- {
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_BIG;
- input_line_pointer --; /*->char following number. */
- } /* if (small) */
- } /* (If integer constant) */
- else
- { /* input_line_pointer->*/
- /* floating-point constant. */
- int error_code;
-
- error_code = atof_generic
- (& input_line_pointer, ".", EXP_CHARS,
- & generic_floating_point_number);
-
- if (error_code)
- {
- if (error_code == ERROR_EXPONENT_OVERFLOW)
- {
- as_bad("Bad floating-point constant: exponent overflow, probably assembling junk");
- }
- else
- {
- as_bad("Bad floating-point constant: unknown error code=%d.", error_code);
- }
- }
- expressionP->X_seg = SEG_BIG;
- /* input_line_pointer->just after constant, */
- /* which may point to whitespace. */
- know(expressionP->X_add_number < 0); /* < 0 means "floating point". */
- } /* if (not floating-point constant) */
- }
- else if (c == '.' && !is_part_of_name(*input_line_pointer)) {
- extern struct obstack frags;
-
- /*
- JF: '.' is pseudo symbol with value of current location in current
- segment...
- */
- symbolP = symbol_new("\001L0",
- now_seg,
- (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
- frag_now);
-
- expressionP->X_add_number=0;
- expressionP->X_add_symbol=symbolP;
- expressionP->X_seg = now_seg;
-
- } else if (is_name_beginner(c)) { /* here if did not begin with a digit */
-
- /*
- * Identifier begins here.
- * This is kludged for speed, so code is repeated.
- */
- name = input_line_pointer - 1;
- c = get_symbol_end();
- symbolP = symbol_find_or_make(name);
- /*
- * If we have an absolute symbol or a reg, then we know its value now.
- */
- expressionP->X_seg = S_GET_SEGMENT(symbolP);
- switch (expressionP->X_seg)
- {
- case SEG_ABSOLUTE:
- case SEG_REGISTER:
- expressionP->X_add_number = S_GET_VALUE(symbolP);
- break;
-
- default:
- expressionP->X_add_number = 0;
-#ifdef PIC
- if (symbolP == GOT_symbol) {
- expressionP->X_got_symbol = symbolP;
- got_referenced = 1;
- } else
-#endif
- expressionP->X_add_symbol = symbolP;
- }
- *input_line_pointer = c;
- expressionP->X_subtract_symbol = NULL;
- } else if (c == '(' || c == '[') {/* didn't begin with digit & not a name */
- (void)expression(expressionP);
- /* Expression() will pass trailing whitespace */
- if (c == '(' && *input_line_pointer++ != ')' ||
- c == '[' && *input_line_pointer++ != ']') {
- as_bad("Missing ')' assumed");
- input_line_pointer--;
- }
- /* here with input_line_pointer->char after "(...)" */
- } else if (c == '~' || c == '-' || c == '+') {
- /* unary operator: hope for SEG_ABSOLUTE */
- switch (operand (expressionP)) {
- case SEG_ABSOLUTE:
- /* input_line_pointer->char after operand */
- if (c == '-') {
- expressionP->X_add_number = - expressionP->X_add_number;
- /*
- * Notice: '-' may overflow: no warning is given. This is compatible
- * with other people's assemblers. Sigh.
- */
- } else if (c == '~') {
- expressionP->X_add_number = ~ expressionP->X_add_number;
- } else if (c != '+') {
- know(0);
- } /* switch on unary operator */
- break;
-
- default: /* unary on non-absolute is unsuported */
- if (!SEG_NORMAL(operand(expressionP)))
- {
- as_bad("Unary operator %c ignored because bad operand follows", c);
- break;
- }
- /* Fall through for normal segments ****/
- case SEG_PASS1:
- case SEG_UNKNOWN:
- if (c == '-') { /* JF I hope this hack works */
- expressionP->X_subtract_symbol=expressionP->X_add_symbol;
- expressionP->X_add_symbol=0;
- expressionP->X_seg=SEG_DIFFERENCE;
- break;
- }
- /* Expression undisturbed from operand(). */
- }
- }
- else if (c == '\'')
- {
- /*
- * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
- * for a single quote. The next character, parity errors and all, is taken
- * as the value of the operand. VERY KINKY.
- */
- expressionP->X_add_number = * input_line_pointer ++;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- else
- {
- /* can't imagine any other kind of operand */
- expressionP->X_seg = SEG_ABSENT;
- input_line_pointer --;
- md_operand (expressionP);
- }
- /*
- * It is more 'efficient' to clean up the expressions when they are created.
- * Doing it here saves lines of code.
- */
- clean_up_expression(expressionP);
- SKIP_WHITESPACE(); /*->1st char after operand. */
- know(*input_line_pointer != ' ');
- return(expressionP->X_seg);
-} /* operand() */
-
-/* Internal. Simplify a struct expression for use by expr() */
-
-/*
- * In: address of a expressionS.
- * The X_seg field of the expressionS may only take certain values.
- * Now, we permit SEG_PASS1 to make code smaller & faster.
- * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
- * Out: expressionS may have been modified:
- * 'foo-foo' symbol references cancelled to 0,
- * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
- * Unused fields zeroed to help expr().
- */
-
-static void
- clean_up_expression (expressionP)
-register expressionS *expressionP;
-{
- switch (expressionP->X_seg) {
- case SEG_ABSENT:
- case SEG_PASS1:
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- break;
-
- case SEG_BIG:
- case SEG_ABSOLUTE:
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- break;
-
- case SEG_UNKNOWN:
- expressionP->X_subtract_symbol = NULL;
- break;
-
- case SEG_DIFFERENCE:
- /*
- * It does not hurt to 'cancel' NULL == NULL
- * when comparing symbols for 'eq'ness.
- * It is faster to re-cancel them to NULL
- * than to check for this special case.
- */
- if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
- || (expressionP->X_subtract_symbol
- && expressionP->X_add_symbol
- && expressionP->X_subtract_symbol->sy_frag == expressionP->X_add_symbol->sy_frag
- && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
- && S_GET_VALUE(expressionP->X_subtract_symbol) == S_GET_VALUE(expressionP->X_add_symbol))) {
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- break;
-
- case SEG_REGISTER:
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- break;
-
- default:
- if (SEG_NORMAL(expressionP->X_seg)) {
- expressionP->X_subtract_symbol = NULL;
- }
- else {
- BAD_CASE (expressionP->X_seg);
- }
- break;
- }
-} /* clean_up_expression() */
-
-/*
- * expr_part ()
- *
- * Internal. Made a function because this code is used in 2 places.
- * Generate error or correct X_?????_symbol of expressionS.
- */
-
-/*
- * symbol_1 += symbol_2 ... well ... sort of.
- */
-
-static segT
- expr_part (symbol_1_PP, symbol_2_P)
-symbolS ** symbol_1_PP;
-symbolS * symbol_2_P;
-{
- segT return_value;
-#ifndef MANY_SEGMENTS
- know((* symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED(* symbol_1_PP)));
- know(symbol_2_P == NULL || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED(symbol_2_P)));
-#endif
- if (* symbol_1_PP)
- {
- if (!S_IS_DEFINED(* symbol_1_PP))
- {
- if (symbol_2_P)
- {
- return_value = SEG_PASS1;
- * symbol_1_PP = NULL;
- }
- else
- {
- know(!S_IS_DEFINED(* symbol_1_PP));
- return_value = SEG_UNKNOWN;
- }
- }
- else
- {
- if (symbol_2_P)
- {
- if (!S_IS_DEFINED(symbol_2_P))
- {
- * symbol_1_PP = NULL;
- return_value = SEG_PASS1;
- }
- else
- {
- /* {seg1} - {seg2} */
- as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
- S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
- }
- }
- else
- {
- return_value = S_GET_SEGMENT(* symbol_1_PP);
- }
- }
- }
- else
- { /* (* symbol_1_PP) == NULL */
- if (symbol_2_P)
- {
- * symbol_1_PP = symbol_2_P;
- return_value = S_GET_SEGMENT(symbol_2_P);
- }
- else
- {
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
- }
- }
-#ifndef MANY_SEGMENTS
- know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
-#endif
- know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value));
- return (return_value);
-} /* expr_part() */
-
-void ps (s)
-symbolS *s;
-{
- fprintf (stdout, "%s type %s%s",
- S_GET_NAME(s),
- S_IS_EXTERNAL(s) ? "EXTERNAL " : "",
- segment_name(S_GET_SEGMENT(s)));
-}
-void pe (e)
-expressionS *e;
-{
- fprintf (stdout, " segment %s\n", segment_name (e->X_seg));
- fprintf (stdout, " add_number %d (%x)\n",
- e->X_add_number, e->X_add_number);
- if (e->X_add_symbol) {
- fprintf (stdout, " add_symbol ");
- ps (e->X_add_symbol);
- fprintf (stdout, "\n");
- }
- if (e->X_subtract_symbol) {
- fprintf (stdout, " sub_symbol ");
- ps (e->X_subtract_symbol);
- fprintf (stdout, "\n");
- }
-}
-
-/* Expression parser. */
-
-/*
- * We allow an empty expression, and just assume (absolute,0) silently.
- * Unary operators and parenthetical expressions are treated as operands.
- * As usual, Q == quantity == operand, O == operator, X == expression mnemonics.
- *
- * We used to do a aho/ullman shift-reduce parser, but the logic got so
- * warped that I flushed it and wrote a recursive-descent parser instead.
- * Now things are stable, would anybody like to write a fast parser?
- * Most expressions are either register (which does not even reach here)
- * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
- * So I guess it doesn't really matter how inefficient more complex expressions
- * are parsed.
- *
- * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
- * Also, we have consumed any leading or trailing spaces (operand does that)
- * and done all intervening operators.
- */
-
-typedef enum
-{
- O_illegal, /* (0) what we get for illegal op */
-
- O_multiply, /* (1) * */
- O_divide, /* (2) / */
- O_modulus, /* (3) % */
- O_left_shift, /* (4) < */
- O_right_shift, /* (5) > */
- O_bit_inclusive_or, /* (6) | */
- O_bit_or_not, /* (7) ! */
- O_bit_exclusive_or, /* (8) ^ */
- O_bit_and, /* (9) & */
- O_add, /* (10) + */
- O_subtract /* (11) - */
- }
-operatorT;
-
-#define __ O_illegal
-
-static const operatorT op_encoding[256] = { /* maps ASCII->operators */
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
-
- __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
- __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_left_shift, __, O_right_shift, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, O_bit_exclusive_or, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_bit_inclusive_or, __, __, __,
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
- };
-
-
-/*
- * Rank Examples
- * 0 operand, (expression)
- * 1 + -
- * 2 & ^ ! |
- * 3 * / % << >>
- */
-static const operator_rankT
- op_rank[] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
-
-/* Return resultP->X_seg. */
-segT expr(rank, resultP)
- register operator_rankT rank; /* Larger # is higher rank. */
- register expressionS *resultP; /* Deliver result here. */
-{
- expressionS right;
- register operatorT op_left;
- register u_char c_left; /* 1st operator character. */
- register operatorT op_right;
- register u_char c_right;
-
-#ifndef __CHAR_UNSIGNED__
- know(rank >= 0);
-#endif
- (void) operand(resultP);
- know(*input_line_pointer != ' '); /* Operand() gobbles spaces. */
- c_left = *input_line_pointer; /* Potential operator character. */
- op_left = op_encoding[c_left];
-
- while (op_left != O_illegal && op_rank[(int) op_left] > rank) {
- input_line_pointer++; /*->after 1st character of operator. */
-
- /* Operators "<<" and ">>" have 2 characters. */
- if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>')) {
- input_line_pointer ++;
- } /*->after operator. */
- if (SEG_ABSENT == expr (op_rank[(int) op_left], &right)) {
- as_warn("Missing operand value assumed absolute 0.");
- resultP->X_add_number = 0;
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- resultP->X_seg = SEG_ABSOLUTE;
- }
-
- know(*input_line_pointer != ' ');
- c_right = *input_line_pointer;
- op_right = op_encoding[c_right];
-
- if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>')) {
- input_line_pointer ++;
- } /*->after operator. */
-
- know((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
- /* input_line_pointer->after right-hand quantity. */
- /* left-hand quantity in resultP */
- /* right-hand quantity in right. */
- /* operator in op_left. */
- if (resultP->X_seg == SEG_PASS1 || right.X_seg == SEG_PASS1) {
- resultP->X_seg = SEG_PASS1;
- } else {
- if (resultP->X_seg == SEG_BIG) {
- as_warn("Left operand of %c is a %s. Integer 0 assumed.",
- c_left, resultP->X_add_number > 0 ? "bignum" : "float");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_symbol = 0;
- resultP->X_subtract_symbol = 0;
- resultP->X_add_number = 0;
- }
- if (right.X_seg == SEG_BIG) {
- as_warn("Right operand of %c is a %s. Integer 0 assumed.",
- c_left, right.X_add_number > 0 ? "bignum" : "float");
- right.X_seg = SEG_ABSOLUTE;
- right.X_add_symbol = 0;
- right.X_subtract_symbol = 0;
- right.X_add_number = 0;
- }
- if (op_left == O_subtract) {
- /*
- * Convert - into + by exchanging symbols and negating number.
- * I know -infinity can't be negated in 2's complement:
- * but then it can't be subtracted either. This trick
- * does not cause any further inaccuracy.
- */
-
- register symbolS * symbolP;
-
- right.X_add_number = - right.X_add_number;
- symbolP = right.X_add_symbol;
- right.X_add_symbol = right.X_subtract_symbol;
- right.X_subtract_symbol = symbolP;
- if (symbolP) {
- right.X_seg = SEG_DIFFERENCE;
- }
- op_left = O_add;
- }
-
- if (op_left == O_add) {
- segT seg1;
- segT seg2;
-#ifndef MANY_SEGMENTS
- know(resultP->X_seg == SEG_DATA
- || resultP->X_seg == SEG_TEXT
- || resultP->X_seg == SEG_BSS
- || resultP->X_seg == SEG_UNKNOWN
- || resultP->X_seg == SEG_DIFFERENCE
- || resultP->X_seg == SEG_ABSOLUTE
- || resultP->X_seg == SEG_PASS1);
- know(right.X_seg == SEG_DATA
- || right.X_seg == SEG_TEXT
- || right.X_seg == SEG_BSS
- || right.X_seg == SEG_UNKNOWN
- || right.X_seg == SEG_DIFFERENCE
- || right.X_seg == SEG_ABSOLUTE
- || right.X_seg == SEG_PASS1);
-#endif
- clean_up_expression(& right);
- clean_up_expression(resultP);
-
-#ifdef PIC
-/* XXX - kludge here to accomodate "_GLOBAL_OFFSET_TABLE + (x - y)"
- * expressions: this only works for this special case, the
- * _GLOBAL_OFFSET_TABLE thing *must* be the left operand, the whole
- * expression is given the segment of right expression (always a DIFFERENCE,
- * which should get resolved by fixup_segment())
- */
- if (resultP->X_got_symbol &&
- right.X_add_symbol != NULL &&
- right.X_subtract_symbol != NULL) {
- resultP->X_add_symbol = right.X_add_symbol;
- resultP->X_subtract_symbol = right.X_subtract_symbol;
- seg1 = S_GET_SEGMENT(right.X_add_symbol);
- seg2 = S_GET_SEGMENT(right.X_subtract_symbol);
- resultP->X_seg = right.X_seg;
- } else {
-#endif
- seg1 = expr_part(&resultP->X_add_symbol, right.X_add_symbol);
- seg2 = expr_part(&resultP->X_subtract_symbol, right.X_subtract_symbol);
-#ifdef PIC
- }
-#endif
- if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
- need_pass_2 = 1;
- resultP->X_seg = SEG_PASS1;
- } else if (seg2 == SEG_ABSOLUTE)
- resultP->X_seg = seg1;
- else if (seg1 != SEG_UNKNOWN
- && seg1 != SEG_ABSOLUTE
- && seg2 != SEG_UNKNOWN
- && seg1 != seg2) {
- know(seg2 != SEG_ABSOLUTE);
- know(resultP->X_subtract_symbol);
-#ifndef MANY_SEGMENTS
- know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1 == SEG_BSS);
- know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2 == SEG_BSS);
-#endif
- know(resultP->X_add_symbol);
- know(resultP->X_subtract_symbol);
- as_bad("Expression too complex: forgetting %s - %s",
- S_GET_NAME(resultP->X_add_symbol),
- S_GET_NAME(resultP->X_subtract_symbol));
- resultP->X_seg = SEG_ABSOLUTE;
- /* Clean_up_expression() will do the rest. */
- } else
- resultP->X_seg = SEG_DIFFERENCE;
-
- resultP->X_add_number += right.X_add_number;
- clean_up_expression(resultP);
- } else { /* Not +. */
- if (resultP->X_seg == SEG_UNKNOWN || right.X_seg == SEG_UNKNOWN) {
- resultP->X_seg = SEG_PASS1;
- need_pass_2 = 1;
- } else {
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
-
- /* Will be SEG_ABSOLUTE. */
- if (resultP->X_seg != SEG_ABSOLUTE || right.X_seg != SEG_ABSOLUTE) {
- as_bad("Relocation error. Absolute 0 assumed.");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_number = 0;
- } else {
- switch (op_left) {
- case O_bit_inclusive_or:
- resultP->X_add_number |= right.X_add_number;
- break;
-
- case O_modulus:
- if (right.X_add_number) {
- resultP->X_add_number %= right.X_add_number;
- } else {
- as_warn("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_bit_and:
- resultP->X_add_number &= right.X_add_number;
- break;
-
- case O_multiply:
- resultP->X_add_number *= right.X_add_number;
- break;
-
- case O_divide:
- if (right.X_add_number) {
- resultP->X_add_number /= right.X_add_number;
- } else {
- as_warn("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_left_shift:
- resultP->X_add_number <<= right.X_add_number;
- break;
-
- case O_right_shift:
- resultP->X_add_number >>= right.X_add_number;
- break;
-
- case O_bit_exclusive_or:
- resultP->X_add_number ^= right.X_add_number;
- break;
-
- case O_bit_or_not:
- resultP->X_add_number |= ~ right.X_add_number;
- break;
-
- default:
- BAD_CASE(op_left);
- break;
- } /* switch (operator) */
- }
- } /* If we have to force need_pass_2. */
- } /* If operator was +. */
- } /* If we didn't set need_pass_2. */
- op_left = op_right;
- } /* While next operator is >= this rank. */
-
- return(resultP->X_seg);
-} /* expr() */
-
-/*
- * get_symbol_end()
- *
- * This lives here because it belongs equally in expr.c & read.c.
- * Expr.c is just a branch office read.c anyway, and putting it
- * here lessens the crowd at read.c.
- *
- * Assume input_line_pointer is at start of symbol name.
- * Advance input_line_pointer past symbol name.
- * Turn that character into a '\0', returning its former value.
- * This allows a string compare (RMS wants symbol names to be strings)
- * of the symbol name.
- * There will always be a char following symbol name, because all good
- * lines end in end-of-line.
- */
-char
- get_symbol_end()
-{
- register char c;
-
- while (is_part_of_name(c = *input_line_pointer++)) ;;
- *--input_line_pointer = 0;
- return (c);
-}
-
-
-unsigned int get_single_number()
-{
- expressionS exp;
- operand(&exp);
- return exp.X_add_number;
-
-}
-/*
- * Local Variables:
- * comment-column: 0
- * fill-column: 131
- * End:
- */
-
-/* end of expr.c */