summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gcc/caller-save.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/gcc/caller-save.c')
-rw-r--r--gnu/usr.bin/gcc/caller-save.c770
1 files changed, 770 insertions, 0 deletions
diff --git a/gnu/usr.bin/gcc/caller-save.c b/gnu/usr.bin/gcc/caller-save.c
new file mode 100644
index 00000000000..6dc90189ee6
--- /dev/null
+++ b/gnu/usr.bin/gcc/caller-save.c
@@ -0,0 +1,770 @@
+/* Save and restore call-clobbered registers which are live across a call.
+ Copyright (C) 1989, 1992, 1994, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "rtl.h"
+#include "insn-config.h"
+#include "flags.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "recog.h"
+#include "basic-block.h"
+#include "reload.h"
+#include "expr.h"
+
+#ifndef MAX_MOVE_MAX
+#define MAX_MOVE_MAX MOVE_MAX
+#endif
+
+#ifndef MIN_UNITS_PER_WORD
+#define MIN_UNITS_PER_WORD UNITS_PER_WORD
+#endif
+
+/* Modes for each hard register that we can save. The smallest mode is wide
+ enough to save the entire contents of the register. When saving the
+ register because it is live we first try to save in multi-register modes.
+ If that is not possible the save is done one register at a time. */
+
+static enum machine_mode
+ regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
+
+/* For each hard register, a place on the stack where it can be saved,
+ if needed. */
+
+static rtx
+ regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
+
+/* We will only make a register eligible for caller-save if it can be
+ saved in its widest mode with a simple SET insn as long as the memory
+ address is valid. We record the INSN_CODE is those insns here since
+ when we emit them, the addresses might not be valid, so they might not
+ be recognized. */
+
+static enum insn_code
+ reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
+static enum insn_code
+ reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
+
+/* Set of hard regs currently live (during scan of all insns). */
+
+static HARD_REG_SET hard_regs_live;
+
+/* Set of hard regs currently residing in save area (during insn scan). */
+
+static HARD_REG_SET hard_regs_saved;
+
+/* Set of hard regs which need to be restored before referenced. */
+
+static HARD_REG_SET hard_regs_need_restore;
+
+/* Number of registers currently in hard_regs_saved. */
+
+int n_regs_saved;
+
+static void set_reg_live PROTO((rtx, rtx));
+static void clear_reg_live PROTO((rtx));
+static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode));
+static int insert_save_restore PROTO((rtx, int, int,
+ enum machine_mode, int));
+
+/* Initialize for caller-save.
+
+ Look at all the hard registers that are used by a call and for which
+ regclass.c has not already excluded from being used across a call.
+
+ Ensure that we can find a mode to save the register and that there is a
+ simple insn to save and restore the register. This latter check avoids
+ problems that would occur if we tried to save the MQ register of some
+ machines directly into memory. */
+
+void
+init_caller_save ()
+{
+ char *first_obj = (char *) oballoc (0);
+ rtx addr_reg;
+ int offset;
+ rtx address;
+ int i, j;
+
+ /* First find all the registers that we need to deal with and all
+ the modes that they can have. If we can't find a mode to use,
+ we can't have the register live over calls. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (call_used_regs[i] && ! call_fixed_regs[i])
+ {
+ for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
+ {
+ regno_save_mode[i][j] = choose_hard_reg_mode (i, j);
+ if (regno_save_mode[i][j] == VOIDmode && j == 1)
+ {
+ call_fixed_regs[i] = 1;
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+ }
+ }
+ }
+ else
+ regno_save_mode[i][1] = VOIDmode;
+ }
+
+ /* The following code tries to approximate the conditions under which
+ we can easily save and restore a register without scratch registers or
+ other complexities. It will usually work, except under conditions where
+ the validity of an insn operand is dependent on the address offset.
+ No such cases are currently known.
+
+ We first find a typical offset from some BASE_REG_CLASS register.
+ This address is chosen by finding the first register in the class
+ and by finding the smallest power of two that is a valid offset from
+ that register in every mode we will use to save registers. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
+ break;
+
+ if (i == FIRST_PSEUDO_REGISTER)
+ abort ();
+
+ addr_reg = gen_rtx (REG, Pmode, i);
+
+ for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
+ {
+ address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset));
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (regno_save_mode[i][1] != VOIDmode
+ && ! strict_memory_address_p (regno_save_mode[i][1], address))
+ break;
+
+ if (i == FIRST_PSEUDO_REGISTER)
+ break;
+ }
+
+ /* If we didn't find a valid address, we must use register indirect. */
+ if (offset == 0)
+ address = addr_reg;
+
+ /* Next we try to form an insn to save and restore the register. We
+ see if such an insn is recognized and meets its constraints. */
+
+ start_sequence ();
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
+ if (regno_save_mode[i][j] != VOIDmode)
+ {
+ rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address);
+ rtx reg = gen_rtx (REG, regno_save_mode[i][j], i);
+ rtx savepat = gen_rtx (SET, VOIDmode, mem, reg);
+ rtx restpat = gen_rtx (SET, VOIDmode, reg, mem);
+ rtx saveinsn = emit_insn (savepat);
+ rtx restinsn = emit_insn (restpat);
+ int ok;
+
+ reg_save_code[i][j] = recog_memoized (saveinsn);
+ reg_restore_code[i][j] = recog_memoized (restinsn);
+
+ /* Now extract both insns and see if we can meet their constraints. */
+ ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1);
+ if (ok)
+ {
+ insn_extract (saveinsn);
+ ok = constrain_operands (reg_save_code[i][j], 1);
+ insn_extract (restinsn);
+ ok &= constrain_operands (reg_restore_code[i][j], 1);
+ }
+
+ if (! ok)
+ {
+ regno_save_mode[i][j] = VOIDmode;
+ if (j == 1)
+ {
+ call_fixed_regs[i] = 1;
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+ }
+ }
+ }
+
+ end_sequence ();
+
+ obfree (first_obj);
+}
+
+/* Initialize save areas by showing that we haven't allocated any yet. */
+
+void
+init_save_areas ()
+{
+ int i, j;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
+ regno_save_mem[i][j] = 0;
+}
+
+/* Allocate save areas for any hard registers that might need saving.
+ We take a conservative approach here and look for call-clobbered hard
+ registers that are assigned to pseudos that cross calls. This may
+ overestimate slightly (especially if some of these registers are later
+ used as spill registers), but it should not be significant.
+
+ Then perform register elimination in the addresses of the save area
+ locations; return 1 if all eliminated addresses are strictly valid.
+ We assume that our caller has set up the elimination table to the
+ worst (largest) possible offsets.
+
+ Set *PCHANGED to 1 if we had to allocate some memory for the save area.
+
+ Future work:
+
+ In the fallback case we should iterate backwards across all possible
+ modes for the save, choosing the largest available one instead of
+ falling back to the smallest mode immediately. (eg TF -> DF -> SF).
+
+ We do not try to use "move multiple" instructions that exist
+ on some machines (such as the 68k moveml). It could be a win to try
+ and use them when possible. The hard part is doing it in a way that is
+ machine independent since they might be saving non-consecutive
+ registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
+
+int
+setup_save_areas (pchanged)
+ int *pchanged;
+{
+ int i, j, k;
+ HARD_REG_SET hard_regs_used;
+ int ok = 1;
+
+
+ /* Allocate space in the save area for the largest multi-register
+ pseudos first, then work backwards to single register
+ pseudos. */
+
+ /* Find and record all call-used hard-registers in this function. */
+ CLEAR_HARD_REG_SET (hard_regs_used);
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0)
+ {
+ int regno = reg_renumber[i];
+ int endregno
+ = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
+ int nregs = endregno - regno;
+
+ for (j = 0; j < nregs; j++)
+ {
+ if (call_used_regs[regno+j])
+ SET_HARD_REG_BIT (hard_regs_used, regno+j);
+ }
+ }
+
+ /* Now run through all the call-used hard-registers and allocate
+ space for them in the caller-save area. Try to allocate space
+ in a manner which allows multi-register saves/restores to be done. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--)
+ {
+ int ok = 1;
+ int do_save;
+
+ /* If no mode exists for this size, try another. Also break out
+ if we have already saved this hard register. */
+ if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
+ continue;
+
+ /* See if any register in this group has been saved. */
+ do_save = 1;
+ for (k = 0; k < j; k++)
+ if (regno_save_mem[i + k][1])
+ {
+ do_save = 0;
+ break;
+ }
+ if (! do_save)
+ continue;
+
+ for (k = 0; k < j; k++)
+ {
+ int regno = i + k;
+ ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0);
+ }
+
+ /* We have found an acceptable mode to store in. */
+ if (ok)
+ {
+
+ regno_save_mem[i][j]
+ = assign_stack_local (regno_save_mode[i][j],
+ GET_MODE_SIZE (regno_save_mode[i][j]), 0);
+
+ /* Setup single word save area just in case... */
+ for (k = 0; k < j; k++)
+ {
+ /* This should not depend on WORDS_BIG_ENDIAN.
+ The order of words in regs is the same as in memory. */
+ rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1],
+ XEXP (regno_save_mem[i][j], 0));
+
+ regno_save_mem[i+k][1]
+ = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
+ }
+ *pchanged = 1;
+ }
+ }
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
+ if (regno_save_mem[i][j] != 0)
+ ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]),
+ XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0));
+
+ return ok;
+}
+
+/* Find the places where hard regs are live across calls and save them.
+
+ INSN_MODE is the mode to assign to any insns that we add. This is used
+ by reload to determine whether or not reloads or register eliminations
+ need be done on these insns. */
+
+void
+save_call_clobbered_regs (insn_mode)
+ enum machine_mode insn_mode;
+{
+ rtx insn;
+ int b;
+
+ for (b = 0; b < n_basic_blocks; b++)
+ {
+ regset regs_live = basic_block_live_at_start[b];
+ rtx prev_block_last = PREV_INSN (basic_block_head[b]);
+ REGSET_ELT_TYPE bit;
+ int offset, i, j;
+ int regno;
+
+ /* Compute hard regs live at start of block -- this is the
+ real hard regs marked live, plus live pseudo regs that
+ have been renumbered to hard regs. No registers have yet been
+ saved because we restore all of them before the end of the basic
+ block. */
+
+#ifdef HARD_REG_SET
+ hard_regs_live = *regs_live;
+#else
+ COPY_HARD_REG_SET (hard_regs_live, regs_live);
+#endif
+
+ CLEAR_HARD_REG_SET (hard_regs_saved);
+ CLEAR_HARD_REG_SET (hard_regs_need_restore);
+ n_regs_saved = 0;
+
+ for (offset = 0, i = 0; offset < regset_size; offset++)
+ {
+ if (regs_live[offset] == 0)
+ i += REGSET_ELT_BITS;
+ else
+ for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
+ if ((regs_live[offset] & bit)
+ && (regno = reg_renumber[i]) >= 0)
+ for (j = regno;
+ j < regno + HARD_REGNO_NREGS (regno,
+ PSEUDO_REGNO_MODE (i));
+ j++)
+ SET_HARD_REG_BIT (hard_regs_live, j);
+
+ }
+
+ /* Now scan the insns in the block, keeping track of what hard
+ regs are live as we go. When we see a call, save the live
+ call-clobbered hard regs. */
+
+ for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn))
+ {
+ RTX_CODE code = GET_CODE (insn);
+
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ rtx link;
+
+ /* If some registers have been saved, see if INSN references
+ any of them. We must restore them before the insn if so. */
+
+ if (n_regs_saved)
+ restore_referenced_regs (PATTERN (insn), insn, insn_mode);
+
+ /* NB: the normal procedure is to first enliven any
+ registers set by insn, then deaden any registers that
+ had their last use at insn. This is incorrect now,
+ since multiple pseudos may have been mapped to the
+ same hard reg, and the death notes are ambiguous. So
+ it must be done in the other, safe, order. */
+
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_DEAD)
+ clear_reg_live (XEXP (link, 0));
+
+ /* When we reach a call, we need to save all registers that are
+ live, call-used, not fixed, and not already saved. We must
+ test at this point because registers that die in a CALL_INSN
+ are not live across the call and likewise for registers that
+ are born in the CALL_INSN.
+
+ If registers are filled with parameters for this function,
+ and some of these are also being set by this function, then
+ they will not appear to die (no REG_DEAD note for them),
+ to check if in fact they do, collect the set registers in
+ hard_regs_live first. */
+
+ if (code == CALL_INSN)
+ {
+ HARD_REG_SET this_call_sets;
+ {
+ HARD_REG_SET old_hard_regs_live;
+
+ /* Save the hard_regs_live information. */
+ COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live);
+
+ /* Now calculate hard_regs_live for this CALL_INSN
+ only. */
+ CLEAR_HARD_REG_SET (hard_regs_live);
+ note_stores (PATTERN (insn), set_reg_live);
+ COPY_HARD_REG_SET (this_call_sets, hard_regs_live);
+
+ /* Restore the hard_regs_live information. */
+ COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live);
+ }
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (call_used_regs[regno] && ! call_fixed_regs[regno]
+ && TEST_HARD_REG_BIT (hard_regs_live, regno)
+ /* It must not be set by this instruction. */
+ && ! TEST_HARD_REG_BIT (this_call_sets, regno)
+ && ! TEST_HARD_REG_BIT (hard_regs_saved, regno))
+ regno += insert_save_restore (insn, 1, regno,
+ insn_mode, 0);
+
+ /* Put the information for this CALL_INSN on top of what
+ we already had. */
+ IOR_HARD_REG_SET (hard_regs_live, this_call_sets);
+ COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved);
+
+ /* Must recompute n_regs_saved. */
+ n_regs_saved = 0;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
+ n_regs_saved++;
+ }
+ else
+ {
+ note_stores (PATTERN (insn), set_reg_live);
+#ifdef AUTO_INC_DEC
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC)
+ set_reg_live (XEXP (link, 0), NULL_RTX);
+#endif
+ }
+
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_UNUSED)
+ clear_reg_live (XEXP (link, 0));
+ }
+
+ if (insn == basic_block_end[b])
+ break;
+ }
+
+ /* At the end of the basic block, we must restore any registers that
+ remain saved. If the last insn in the block is a JUMP_INSN, put
+ the restore before the insn, otherwise, put it after the insn. */
+
+ if (n_regs_saved)
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno))
+ regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN
+ ? insn : NEXT_INSN (insn)), 0,
+ regno, insn_mode, MOVE_MAX / UNITS_PER_WORD);
+
+ /* If we added any insns at the start of the block, update the start
+ of the block to point at those insns. */
+ basic_block_head[b] = NEXT_INSN (prev_block_last);
+ }
+}
+
+/* Here from note_stores when an insn stores a value in a register.
+ Set the proper bit or bits in hard_regs_live. All pseudos that have
+ been assigned hard regs have had their register number changed already,
+ so we can ignore pseudos. */
+
+static void
+set_reg_live (reg, setter)
+ rtx reg, setter;
+{
+ register int regno, endregno, i;
+ enum machine_mode mode = GET_MODE (reg);
+ int word = 0;
+
+ if (GET_CODE (reg) == SUBREG)
+ {
+ word = SUBREG_WORD (reg);
+ reg = SUBREG_REG (reg);
+ }
+
+ if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
+ return;
+
+ regno = REGNO (reg) + word;
+ endregno = regno + HARD_REGNO_NREGS (regno, mode);
+
+ for (i = regno; i < endregno; i++)
+ {
+ SET_HARD_REG_BIT (hard_regs_live, i);
+ CLEAR_HARD_REG_BIT (hard_regs_saved, i);
+ CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
+ }
+}
+
+/* Here when a REG_DEAD note records the last use of a reg. Clear
+ the appropriate bit or bits in hard_regs_live. Again we can ignore
+ pseudos. */
+
+static void
+clear_reg_live (reg)
+ rtx reg;
+{
+ register int regno, endregno, i;
+
+ if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
+ return;
+
+ regno = REGNO (reg);
+ endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+
+ for (i = regno; i < endregno; i++)
+ {
+ CLEAR_HARD_REG_BIT (hard_regs_live, i);
+ CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
+ CLEAR_HARD_REG_BIT (hard_regs_saved, i);
+ }
+}
+
+/* If any register currently residing in the save area is referenced in X,
+ which is part of INSN, emit code to restore the register in front of INSN.
+ INSN_MODE is the mode to assign to any insns that we add. */
+
+static void
+restore_referenced_regs (x, insn, insn_mode)
+ rtx x;
+ rtx insn;
+ enum machine_mode insn_mode;
+{
+ enum rtx_code code = GET_CODE (x);
+ char *fmt;
+ int i, j;
+
+ if (code == CLOBBER)
+ return;
+
+ if (code == REG)
+ {
+ int regno = REGNO (x);
+
+ /* If this is a pseudo, scan its memory location, since it might
+ involve the use of another register, which might be saved. */
+
+ if (regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_mem[regno] != 0)
+ restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0),
+ insn, insn_mode);
+ else if (regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_address[regno] != 0)
+ restore_referenced_regs (reg_equiv_address[regno],
+ insn, insn_mode);
+
+ /* Otherwise if this is a hard register, restore any piece of it that
+ is currently saved. */
+
+ else if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* Save at most SAVEREGS at a time. This can not be larger than
+ MOVE_MAX, because that causes insert_save_restore to fail. */
+ int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD);
+ int endregno = regno + numregs;
+
+ for (i = regno; i < endregno; i++)
+ if (TEST_HARD_REG_BIT (hard_regs_need_restore, i))
+ i += insert_save_restore (insn, 0, i, insn_mode, saveregs);
+ }
+
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ restore_referenced_regs (XEXP (x, i), insn, insn_mode);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode);
+ }
+}
+
+/* Insert a sequence of insns to save or restore, SAVE_P says which,
+ REGNO. Place these insns in front of INSN. INSN_MODE is the mode
+ to assign to these insns. MAXRESTORE is the maximum number of registers
+ which should be restored during this call (when SAVE_P == 0). It should
+ never be less than 1 since we only work with entire registers.
+
+ Note that we have verified in init_caller_save that we can do this
+ with a simple SET, so use it. Set INSN_CODE to what we save there
+ since the address might not be valid so the insn might not be recognized.
+ These insns will be reloaded and have register elimination done by
+ find_reload, so we need not worry about that here.
+
+ Return the extra number of registers saved. */
+
+static int
+insert_save_restore (insn, save_p, regno, insn_mode, maxrestore)
+ rtx insn;
+ int save_p;
+ int regno;
+ enum machine_mode insn_mode;
+ int maxrestore;
+{
+ rtx pat;
+ enum insn_code code;
+ int i, numregs;
+
+ /* A common failure mode if register status is not correct in the RTL
+ is for this routine to be called with a REGNO we didn't expect to
+ save. That will cause us to write an insn with a (nil) SET_DEST
+ or SET_SRC. Instead of doing so and causing a crash later, check
+ for this common case and abort here instead. This will remove one
+ step in debugging such problems. */
+
+ if (regno_save_mem[regno][1] == 0)
+ abort ();
+
+#ifdef HAVE_cc0
+ /* If INSN references CC0, put our insns in front of the insn that sets
+ CC0. This is always safe, since the only way we could be passed an
+ insn that references CC0 is for a restore, and doing a restore earlier
+ isn't a problem. We do, however, assume here that CALL_INSNs don't
+ reference CC0. Guard against non-INSN's like CODE_LABEL. */
+
+ if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
+ && reg_referenced_p (cc0_rtx, PATTERN (insn)))
+ insn = prev_nonnote_insn (insn);
+#endif
+
+ /* Get the pattern to emit and update our status. */
+ if (save_p)
+ {
+ int i, j, k;
+ int ok;
+
+ /* See if we can save several registers with a single instruction.
+ Work backwards to the single register case. */
+ for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--)
+ {
+ ok = 1;
+ if (regno_save_mem[regno][i] != 0)
+ for (j = 0; j < i; j++)
+ {
+ if (! call_used_regs[regno + j] || call_fixed_regs[regno + j]
+ || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j)
+ || TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
+ ok = 0;
+ }
+ else
+ continue;
+
+ /* Must do this one save at a time */
+ if (! ok)
+ continue;
+
+ pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i],
+ gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno));
+ code = reg_save_code[regno][i];
+
+ /* Set hard_regs_saved for all the registers we saved. */
+ for (k = 0; k < i; k++)
+ {
+ SET_HARD_REG_BIT (hard_regs_saved, regno + k);
+ SET_HARD_REG_BIT (hard_regs_need_restore, regno + k);
+ n_regs_saved++;
+ }
+
+ numregs = i;
+ break;
+ }
+ }
+ else
+ {
+ int i, j, k;
+ int ok;
+
+ /* See if we can restore `maxrestore' registers at once. Work
+ backwards to the single register case. */
+ for (i = maxrestore; i > 0; i--)
+ {
+ ok = 1;
+ if (regno_save_mem[regno][i])
+ for (j = 0; j < i; j++)
+ {
+ if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j))
+ ok = 0;
+ }
+ else
+ continue;
+
+ /* Must do this one restore at a time */
+ if (! ok)
+ continue;
+
+ pat = gen_rtx (SET, VOIDmode,
+ gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]),
+ regno),
+ regno_save_mem[regno][i]);
+ code = reg_restore_code[regno][i];
+
+
+ /* Clear status for all registers we restored. */
+ for (k = 0; k < i; k++)
+ {
+ CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k);
+ n_regs_saved--;
+ }
+
+ numregs = i;
+ break;
+ }
+ }
+ /* Emit the insn and set the code and mode. */
+
+ insn = emit_insn_before (pat, insn);
+ PUT_MODE (insn, insn_mode);
+ INSN_CODE (insn) = code;
+
+ /* Tell our callers how many extra registers we saved/restored */
+ return numregs - 1;
+}