summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gcc/f/intdoc.h
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/gcc/f/intdoc.h')
-rw-r--r--gnu/usr.bin/gcc/f/intdoc.h1297
1 files changed, 0 insertions, 1297 deletions
diff --git a/gnu/usr.bin/gcc/f/intdoc.h b/gnu/usr.bin/gcc/f/intdoc.h
deleted file mode 100644
index aa14419ab62..00000000000
--- a/gnu/usr.bin/gcc/f/intdoc.h
+++ /dev/null
@@ -1,1297 +0,0 @@
-/* Copyright (C) 1997 Free Software Foundation, Inc.
- * This is part of the G77 manual.
- * For copying conditions, see the file g77.texi. */
-
-/* This is the file containing the verbage for the
- intrinsics. It consists of a data base built up
- via DEFDOC macros of the form:
-
- DEFDOC (IMP, SUMMARY, DESCRIPTION)
-
- IMP is the implementation keyword used in the intrin module.
- SUMMARY is the short summary to go in the "* Menu:" section
- of the Info document. DESCRIPTION is the longer description
- to go in the documentation itself.
-
- Note that IMP is leveraged across multiple intrinsic names.
-
- To make for more accurate and consistent documentation,
- the translation made by intdoc.c of the text in SUMMARY
- and DESCRIPTION includes the special sequence
-
- @ARGNO@
-
- where ARGNO is a series of digits forming a number that
- is substituted by intdoc.c as follows:
-
- 0 The initial-caps form of the intrinsic name (e.g. Float).
- 1-98 The initial-caps form of the ARGNO'th argument.
- 99 (SUMMARY only) a newline plus the appropriate # of spaces.
-
- Hope this info is enough to encourage people to feel free to
- add documentation to this file!
-
-*/
-
-DEFDOC (ABS, "Absolute value.", "\
-Returns the absolute value of @var{@1@}.
-
-If @var{@1@} is type @code{COMPLEX}, the absolute
-value is computed as:
-
-@example
-SQRT(REALPART(@var{@1@})**2, IMAGPART(@var{@1@})**2)
-@end example
-
-@noindent
-Otherwise, it is computed by negating the @var{@1@} if
-it is negative, or returning @var{@1@}.
-
-@xref{Sign Intrinsic}, for how to explicitly
-compute the positive or negative form of the absolute
-value of an expression.
-")
-
-DEFDOC (CABS, "Absolute value (archaic).", "\
-Archaic form of @code{ABS()} that is specific
-to one type for @var{@1@}.
-@xref{Abs Intrinsic}.
-")
-
-DEFDOC (DABS, "Absolute value (archaic).", "\
-Archaic form of @code{ABS()} that is specific
-to one type for @var{@1@}.
-@xref{Abs Intrinsic}.
-")
-
-DEFDOC (IABS, "Absolute value (archaic).", "\
-Archaic form of @code{ABS()} that is specific
-to one type for @var{@1@}.
-@xref{Abs Intrinsic}.
-")
-
-DEFDOC (CDABS, "Absolute value (archaic).", "\
-Archaic form of @code{ABS()} that is specific
-to one type for @var{@1@}.
-@xref{Abs Intrinsic}.
-")
-
-DEFDOC (ACHAR, "ASCII character from code.", "\
-Returns the ASCII character corresponding to the
-code specified by @var{@1@}.
-
-@xref{IAChar Intrinsic}, for the inverse function.
-
-@xref{Char Intrinsic}, for the function corresponding
-to the system's native character set.
-")
-
-DEFDOC (IACHAR, "ASCII code for character.", "\
-Returns the code for the ASCII character in the
-first character position of @var{@1@}.
-
-@xref{AChar Intrinsic}, for the inverse function.
-
-@xref{IChar Intrinsic}, for the function corresponding
-to the system's native character set.
-")
-
-DEFDOC (CHAR, "Character from code.", "\
-Returns the character corresponding to the
-code specified by @var{@1@}, using the system's
-native character set.
-
-Because the system's native character set is used,
-the correspondence between character and their codes
-is not necessarily the same between GNU Fortran
-implementations.
-
-@xref{IChar Intrinsic}, for the inverse function.
-
-@xref{AChar Intrinsic}, for the function corresponding
-to the ASCII character set.
-")
-
-DEFDOC (ICHAR, "Code for character.", "\
-Returns the code for the character in the
-first character position of @var{@1@}.
-
-Because the system's native character set is used,
-the correspondence between character and their codes
-is not necessarily the same between GNU Fortran
-implementations.
-
-@xref{Char Intrinsic}, for the inverse function.
-
-@xref{IAChar Intrinsic}, for the function corresponding
-to the ASCII character set.
-")
-
-DEFDOC (ACOS, "Arc cosine.", "\
-Returns the arc-cosine (inverse cosine) of @var{@1@}
-in radians.
-
-@xref{Cos Intrinsic}, for the inverse function.
-")
-
-DEFDOC (DACOS, "Arc cosine (archaic).", "\
-Archaic form of @code{ACOS()} that is specific
-to one type for @var{@1@}.
-@xref{ACos Intrinsic}.
-")
-
-DEFDOC (AIMAG, "Convert/extract imaginary part of complex.", "\
-Returns the (possibly converted) imaginary part of @var{@1@}.
-
-Use of @code{@0@()} with an argument of a type
-other than @code{COMPLEX(KIND=1)} is restricted to the following case:
-
-@example
-REAL(AIMAG(@1@))
-@end example
-
-@noindent
-This expression converts the imaginary part of @1@ to
-@code{REAL(KIND=1)}.
-
-@xref{REAL() and AIMAG() of Complex}, for more information.
-")
-
-DEFDOC (AINT, "Truncate to whole number.", "\
-Returns @var{@1@} with the fractional portion of its
-magnitude truncated and its sign preserved.
-(Also called ``truncation towards zero''.)
-
-@xref{ANInt Intrinsic}, for how to round to nearest
-whole number.
-
-@xref{Int Intrinsic}, for how to truncate and then convert
-number to @code{INTEGER}.
-")
-
-DEFDOC (DINT, "Truncate to whole number (archaic).", "\
-Archaic form of @code{AINT()} that is specific
-to one type for @var{@1@}.
-@xref{AInt Intrinsic}.
-")
-
-DEFDOC (INT, "Convert to @code{INTEGER} value truncated@99@to whole number.", "\
-Returns @var{@1@} with the fractional portion of its
-magnitude truncated and its sign preserved, converted
-to type @code{INTEGER(KIND=1)}.
-
-If @var{@1@} is type @code{COMPLEX}, its real part is
-truncated and converted.
-
-@xref{NInt Intrinsic}, for how to convert, rounded to nearest
-whole number.
-
-@xref{AInt Intrinsic}, for how to truncate to whole number
-without converting.
-")
-
-DEFDOC (IDINT, "Convert to @code{INTEGER} value truncated@99@to whole number (archaic).", "\
-Archaic form of @code{INT()} that is specific
-to one type for @var{@1@}.
-@xref{Int Intrinsic}.
-")
-
-DEFDOC (ANINT, "Round to nearest whole number.", "\
-Returns @var{@1@} with the fractional portion of its
-magnitude eliminated by rounding to the nearest whole
-number and with its sign preserved.
-
-A fractional portion exactly equal to
-@samp{.5} is rounded to the whole number that
-is larger in magnitude.
-(Also called ``Fortran round''.)
-
-@xref{AInt Intrinsic}, for how to truncate to
-whole number.
-
-@xref{NInt Intrinsic}, for how to round and then convert
-number to @code{INTEGER}.
-")
-
-DEFDOC (DNINT, "Round to nearest whole number (archaic).", "\
-Archaic form of @code{ANINT()} that is specific
-to one type for @var{@1@}.
-@xref{ANInt Intrinsic}.
-")
-
-DEFDOC (NINT, "Convert to @code{INTEGER} value rounded@99@to nearest whole number.", "\
-Returns @var{@1@} with the fractional portion of its
-magnitude eliminated by rounding to the nearest whole
-number and with its sign preserved, converted
-to type @code{INTEGER(KIND=1)}.
-
-If @var{@1@} is type @code{COMPLEX}, its real part is
-rounded and converted.
-
-A fractional portion exactly equal to
-@samp{.5} is rounded to the whole number that
-is larger in magnitude.
-(Also called ``Fortran round''.)
-
-@xref{Int Intrinsic}, for how to convert, truncate to
-whole number.
-
-@xref{ANInt Intrinsic}, for how to round to nearest whole number
-without converting.
-")
-
-DEFDOC (IDNINT, "Convert to @code{INTEGER} value rounded@99@to nearest whole number (archaic).", "\
-Archaic form of @code{NINT()} that is specific
-to one type for @var{@1@}.
-@xref{NInt Intrinsic}.
-")
-
-DEFDOC (LOG, "Natural logarithm.", "\
-Returns the natural logarithm of @var{@1@}, which must
-be greater than zero or, if type @code{COMPLEX}, must not
-be zero.
-
-@xref{Exp Intrinsic}, for the inverse function.
-
-@xref{Log10 Intrinsic}, for the base-10 logarithm function.
-")
-
-DEFDOC (ALOG, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG()} that is specific
-to one type for @var{@1@}.
-@xref{Log Intrinsic}.
-")
-
-DEFDOC (CLOG, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG()} that is specific
-to one type for @var{@1@}.
-@xref{Log Intrinsic}.
-")
-
-DEFDOC (DLOG, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG()} that is specific
-to one type for @var{@1@}.
-@xref{Log Intrinsic}.
-")
-
-DEFDOC (CDLOG, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG()} that is specific
-to one type for @var{@1@}.
-@xref{Log Intrinsic}.
-")
-
-DEFDOC (LOG10, "Natural logarithm.", "\
-Returns the natural logarithm of @var{@1@}, which must
-be greater than zero or, if type @code{COMPLEX}, must not
-be zero.
-
-The inverse function is @samp{10. ** LOG10(@var{@1@})}.
-
-@xref{Log Intrinsic}, for the natural logarithm function.
-")
-
-DEFDOC (ALOG10, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG10()} that is specific
-to one type for @var{@1@}.
-@xref{Log10 Intrinsic}.
-")
-
-DEFDOC (DLOG10, "Natural logarithm (archaic).", "\
-Archaic form of @code{LOG10()} that is specific
-to one type for @var{@1@}.
-@xref{Log10 Intrinsic}.
-")
-
-DEFDOC (MAX, "Maximum value.", "\
-Returns the argument with the largest value.
-
-@xref{Min Intrinsic}, for the opposite function.
-")
-
-DEFDOC (AMAX0, "Maximum value (archaic).", "\
-Archaic form of @code{MAX()} that is specific
-to one type for @var{@1@} and a different return type.
-@xref{Max Intrinsic}.
-")
-
-DEFDOC (AMAX1, "Maximum value (archaic).", "\
-Archaic form of @code{MAX()} that is specific
-to one type for @var{@1@}.
-@xref{Max Intrinsic}.
-")
-
-DEFDOC (DMAX1, "Maximum value (archaic).", "\
-Archaic form of @code{MAX()} that is specific
-to one type for @var{@1@}.
-@xref{Max Intrinsic}.
-")
-
-DEFDOC (MAX0, "Maximum value (archaic).", "\
-Archaic form of @code{MAX()} that is specific
-to one type for @var{@1@}.
-@xref{Max Intrinsic}.
-")
-
-DEFDOC (MAX1, "Maximum value (archaic).", "\
-Archaic form of @code{MAX()} that is specific
-to one type for @var{@1@} and a different return type.
-@xref{Max Intrinsic}.
-")
-
-DEFDOC (MIN, "Minimum value.", "\
-Returns the argument with the smallest value.
-
-@xref{Max Intrinsic}, for the opposite function.
-")
-
-DEFDOC (AMIN0, "Minimum value (archaic).", "\
-Archaic form of @code{MIN()} that is specific
-to one type for @var{@1@} and a different return type.
-@xref{Min Intrinsic}.
-")
-
-DEFDOC (AMIN1, "Minimum value (archaic).", "\
-Archaic form of @code{MIN()} that is specific
-to one type for @var{@1@}.
-@xref{Min Intrinsic}.
-")
-
-DEFDOC (DMIN1, "Minimum value (archaic).", "\
-Archaic form of @code{MIN()} that is specific
-to one type for @var{@1@}.
-@xref{Min Intrinsic}.
-")
-
-DEFDOC (MIN0, "Minimum value (archaic).", "\
-Archaic form of @code{MIN()} that is specific
-to one type for @var{@1@}.
-@xref{Min Intrinsic}.
-")
-
-DEFDOC (MIN1, "Minimum value (archaic).", "\
-Archaic form of @code{MIN()} that is specific
-to one type for @var{@1@} and a different return type.
-@xref{Min Intrinsic}.
-")
-
-DEFDOC (MOD, "Remainder.", "\
-Returns remainder calculated as:
-
-@smallexample
-@var{@1@} - (INT(@var{@1@} / @var{@2@}) * @var{@2@})
-@end smallexample
-
-@var{@2@} must not be zero.
-")
-
-DEFDOC (AMOD, "Remainder (archaic).", "\
-Archaic form of @code{MOD()} that is specific
-to one type for @var{@1@}.
-@xref{Mod Intrinsic}.
-")
-
-DEFDOC (DMOD, "Remainder (archaic).", "\
-Archaic form of @code{MOD()} that is specific
-to one type for @var{@1@}.
-@xref{Mod Intrinsic}.
-")
-
-DEFDOC (AND, "Boolean AND.", "\
-Returns value resulting from boolean AND of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (IAND, "Boolean AND.", "\
-Returns value resulting from boolean AND of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (OR, "Boolean OR.", "\
-Returns value resulting from boolean OR of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (IOR, "Boolean OR.", "\
-Returns value resulting from boolean OR of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (XOR, "Boolean XOR.", "\
-Returns value resulting from boolean exclusive-OR of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (IEOR, "Boolean XOR.", "\
-Returns value resulting from boolean exclusive-OR of
-pair of bits in each of @var{@1@} and @var{@2@}.
-")
-
-DEFDOC (NOT, "Boolean NOT.", "\
-Returns value resulting from boolean NOT of each bit
-in @var{@1@}.
-")
-
-DEFDOC (ASIN, "Arc sine.", "\
-Returns the arc-sine (inverse sine) of @var{@1@}
-in radians.
-
-@xref{Sin Intrinsic}, for the inverse function.
-")
-
-DEFDOC (DASIN, "Arc sine (archaic).", "\
-Archaic form of @code{ASIN()} that is specific
-to one type for @var{@1@}.
-@xref{ASin Intrinsic}.
-")
-
-DEFDOC (ATAN, "Arc tangent.", "\
-Returns the arc-tangent (inverse tangent) of @var{@1@}
-in radians.
-
-@xref{Tan Intrinsic}, for the inverse function.
-")
-
-DEFDOC (DATAN, "Arc tangent (archaic).", "\
-Archaic form of @code{ATAN()} that is specific
-to one type for @var{@1@}.
-@xref{ATan Intrinsic}.
-")
-
-DEFDOC (ATAN2, "Arc tangent.", "\
-Returns the arc-tangent (inverse tangent) of the complex
-number (@var{@1@}, @var{@2@}) in radians.
-
-@xref{Tan Intrinsic}, for the inverse function.
-")
-
-DEFDOC (DATAN2, "Arc tangent (archaic).", "\
-Archaic form of @code{ATAN2()} that is specific
-to one type for @var{@1@} and @var{@2@}.
-@xref{ATan2 Intrinsic}.
-")
-
-DEFDOC (BIT_SIZE, "Number of bits in argument's type.", "\
-Returns the number of bits (integer precision plus sign bit)
-represented by the type for @var{@1@}.
-
-@xref{BTest Intrinsic}, for how to test the value of a
-bit in a variable or array.
-
-@xref{IBSet Intrinsic}, for how to set a bit in a
-variable or array to 1.
-")
-
-DEFDOC (BTEST, "Test bit.", "\
-Returns @code{.TRUE.} if bit @var{@2@} in @var{@1@} is
-1, @code{.FALSE.} otherwise.
-
-(Bit 0 is the low-order bit, adding the value 2**0, or 1,
-to the number if set to 1;
-bit 1 is the next-higher-order bit, adding 2**1, or 2;
-bit 2 adds 2**2, or 4; and so on.)
-
-@xref{Bit_Size Intrinsic}, for how to obtain the number of bits
-in a type.
-")
-
-DEFDOC (CMPLX, "Construct @code{COMPLEX(KIND=1)} value.", "\
-If @var{@1@} is not type @code{COMPLEX},
-constructs a value of type @code{COMPLEX(KIND=1)} from the
-real and imaginary values specified by @var{@1@} and
-@var{@2@}, respectively.
-If @var{@2@} is omitted, @samp{0.} is assumed.
-
-If @var{@1@} is type @code{COMPLEX},
-converts it to type @code{COMPLEX(KIND=1)}.
-
-@xref{Complex Intrinsic}, for information on easily constructing
-a @code{COMPLEX} value of arbitrary precision from @code{REAL}
-arguments.
-")
-
-DEFDOC (CONJG, "Complex conjugate.", "\
-Returns the complex conjugate:
-
-@example
-COMPLEX(REALPART(@var{@1@}), -IMAGPART(@var{@1@}))
-@end example
-")
-
-DEFDOC (DCONJG, "Complex conjugate (archaic).", "\
-Archaic form of @code{CONJG()} that is specific
-to one type for @var{@1@}.
-@xref{ATan2 Intrinsic}.
-")
-
-/* ~~~~~ to do:
- COS
- COSH
- SQRT
- DBLE
- DIM
- ERF
- DPROD
- SIGN
- EXP
- FLOAT
- IBCLR
- IBITS
- IBSET
- IFIX
- INDEX
- ISHFT
- ISHFTC
- LEN
- LGE
- LONG
- SHORT
- LSHIFT
- RSHIFT
- MVBITS
- SIN
- SINH
- SNGL
- TAN
- TANH
-*/
-
-DEFDOC (REAL, "Convert value to type @code{REAL(KIND=1)}.", "\
-Converts @var{@1@} to @code{REAL(KIND=1)}.
-
-Use of @code{@0@()} with a @code{COMPLEX} argument
-(other than @code{COMPLEX(KIND=1)}) is restricted to the following case:
-
-@example
-REAL(REAL(@1@))
-@end example
-
-@noindent
-This expression converts the real part of @1@ to
-@code{REAL(KIND=1)}.
-
-@xref{REAL() and AIMAG() of Complex}, for more information.
-")
-
-DEFDOC (IMAGPART, "Extract imaginary part of complex.", "\
-The imaginary part of @var{@1@} is returned, without conversion.
-
-@emph{Note:} The way to do this in standard Fortran 90
-is @samp{AIMAG(@var{@1@})}.
-However, when, for example, @var{@1@} is @code{DOUBLE COMPLEX},
-@samp{AIMAG(@var{@1@})} means something different for some compilers
-that are not true Fortran 90 compilers but offer some
-extensions standardized by Fortran 90 (such as the
-@code{DOUBLE COMPLEX} type, also known as @code{COMPLEX(KIND=2)}).
-
-The advantage of @code{@0@()} is that, while not necessarily
-more or less portable than @code{AIMAG()}, it is more likely to
-cause a compiler that doesn't support it to produce a diagnostic
-than generate incorrect code.
-
-@xref{REAL() and AIMAG() of Complex}, for more information.
-")
-
-DEFDOC (COMPLEX, "Build complex value from real and@99@imaginary parts.", "\
-Returns a @code{COMPLEX} value that has @samp{@1@} and @samp{@2@} as its
-real and imaginary parts, respectively.
-
-If @var{@1@} and @var{@2@} are the same type, and that type is not
-@code{INTEGER}, no data conversion is performed, and the type of
-the resulting value has the same kind value as the types
-of @var{@1@} and @var{@2@}.
-
-If @var{@1@} and @var{@2@} are not the same type, the usual type-promotion
-rules are applied to both, converting either or both to the
-appropriate @code{REAL} type.
-The type of the resulting value has the same kind value as the
-type to which both @var{@1@} and @var{@2@} were converted, in this case.
-
-If @var{@1@} and @var{@2@} are both @code{INTEGER}, they are both converted
-to @code{REAL(KIND=1)}, and the result of the @code{@0@()}
-invocation is type @code{COMPLEX(KIND=1)}.
-
-@emph{Note:} The way to do this in standard Fortran 90
-is too hairy to describe here, but it is important to
-note that @samp{CMPLX(D1,D2)} returns a @code{COMPLEX(KIND=1)}
-result even if @samp{D1} and @samp{D2} are type @code{REAL(KIND=2)}.
-Hence the availability of @code{COMPLEX()} in GNU Fortran.
-")
-
-DEFDOC (LOC, "Address of entity in core.", "\
-The @code{LOC()} intrinsic works the
-same way as the @code{%LOC()} construct.
-@xref{%LOC(),,The @code{%LOC()} Construct}, for
-more information.
-")
-
-DEFDOC (REALPART, "Extract real part of complex.", "\
-The real part of @var{@1@} is returned, without conversion.
-
-@emph{Note:} The way to do this in standard Fortran 90
-is @samp{REAL(@var{@1@})}.
-However, when, for example, @var{@1@} is @code{COMPLEX(KIND=2)},
-@samp{REAL(@var{@1@})} means something different for some compilers
-that are not true Fortran 90 compilers but offer some
-extensions standardized by Fortran 90 (such as the
-@code{DOUBLE COMPLEX} type, also known as @code{COMPLEX(KIND=2)}).
-
-The advantage of @code{@0@()} is that, while not necessarily
-more or less portable than @code{REAL()}, it is more likely to
-cause a compiler that doesn't support it to produce a diagnostic
-than generate incorrect code.
-
-@xref{REAL() and AIMAG() of Complex}, for more information.
-")
-
-DEFDOC (GETARG, "Obtain command-line argument.", "\
-Sets @var{@2@} to the @var{@1@}-th command-line argument (or to all
-blanks if there are fewer than @var{@2@} command-line arguments);
-@code{CALL @0@(0, @var{value})} sets @var{value} to the name of the
-program (on systems that support this feature).
-
-@xref{IArgC Intrinsic}, for information on how to get the number
-of arguments.
-")
-
-DEFDOC (ABORT, "Abort the program.", "\
-Prints a message and potentially causes a core dump via @code{abort(3)}.
-")
-
-DEFDOC (EXIT, "Terminate the program.", "\
-Exit the program with status @var{@1@} after closing open Fortran
-i/o units and otherwise behaving as @code{exit(2)}. If @var{@1@}
-is omitted the canonical `success' value will be returned to the
-system.
-")
-
-DEFDOC (IARGC, "Obtain count of command-line arguments.", "\
-Returns the number of command-line arguments.
-
-This count does not include the specification of the program
-name itself.
-")
-
-DEFDOC (CTIME, "Convert time to Day Mon dd hh:mm:ss yyyy.", "\
-Converts @var{@1@}, a system time value, such as returned by
-@code{TIME()}, to a string of the form @samp{Sat Aug 19 18:13:14 1995}.
-
-@xref{Time Intrinsic}.
-")
-
-DEFDOC (DATE, "Get current date as dd-Mon-yy.", "\
-Returns @var{@1@} in the form @samp{@var{dd}-@var{mmm}-@var{yy}},
-representing the numeric day of the month @var{dd}, a three-character
-abbreviation of the month name @var{mmm} and the last two digits of
-the year @var{yy}, e.g.@ @samp{25-Nov-96}.
-
-This intrinsic is not recommended, due to the year 2000 approaching.
-@xref{CTime Intrinsic}, for information on obtaining more digits
-for the current (or any) date.
-")
-
-DEFDOC (DTIME, "Get elapsed time since last time.", "\
-Initially, return in seconds the runtime (since the start of the
-process' execution) as the function value and the user and system
-components of this in @samp{@var{@1@}(1)} and @samp{@var{@1@}(2)}
-respectively.
-The functions' value is equal to @samp{@var{@1@}(1) + @samp{@1@}(2)}.
-
-Subsequent invocations of @samp{@0@()} return values accumulated since the
-previous invocation.
-")
-
-DEFDOC (ETIME, "Get elapsed time for process.", "\
-Return in seconds the runtime (since the start of the process'
-execution) as the function value and the user and system components of
-this in @samp{@var{@1@}(1)} and @samp{@var{@1@}(2)} respectively.
-The functions' value is equal to @samp{@var{@1@}(1) + @var{@1@}(2)}.
-")
-
-DEFDOC (FDATE, "Get current time as Day Mon dd hh:mm:ss yyyy.", "\
-Returns the current date in the same format as @code{CTIME()}.
-
-Equivalent to:
-
-@example
-CTIME(TIME())
-@end example
-
-@xref{CTime Intrinsic}.
-")
-
-DEFDOC (GMTIME, "Convert time to GMT time info.", "\
-Given a system time value @var{@1@}, fills @var{@2@} with values
-extracted from it appropriate to the GMT time zone using
-@code{gmtime(3)}.
-
-The array elements are as follows:
-
-@enumerate
-@item
-Seconds after the minute, range 0--59 or 0--61 to allow for leap
-seconds
-
-@item
-Minutes after the hour, range 0--59
-
-@item
-Hours past midnight, range 0--23
-
-@item
-Day of month, range 0--31
-
-@item
-Number of months since January, range 0--12
-
-@item
-Number of days since Sunday, range 0--6
-
-@item
-Years since 1900
-
-@item
-Days since January 1
-
-@item
-Daylight savings indicator: positive if daylight savings is in effect,
-zero if not, and negative if the information isn't available.
-@end enumerate
-")
-
-DEFDOC (LTIME, "Convert time to local time info.", "\
-Given a system time value @var{@1@}, fills @var{@2@} with values
-extracted from it appropriate to the GMT time zone using
-@code{localtime(3)}.
-
-The array elements are as follows:
-
-@enumerate
-@item
-Seconds after the minute, range 0--59 or 0--61 to allow for leap
-seconds
-
-@item
-Minutes after the hour, range 0--59
-
-@item
-Hours past midnight, range 0--23
-
-@item
-Day of month, range 0--31
-
-@item
-Number of months since January, range 0--12
-
-@item
-Number of days since Sunday, range 0--6
-
-@item
-Years since 1900
-
-@item
-Days since January 1
-
-@item
-Daylight savings indicator: positive if daylight savings is in effect,
-zero if not, and negative if the information isn't available.
-@end enumerate
-")
-
-DEFDOC (IDATE, "Get local time info.", "\
-Fills @var{@1@} with the numerical values at the current local time
-of day, month (in the range 1--12), and year in elements 1, 2, and 3,
-respectively.
-The year has four significant digits.
-")
-
-DEFDOC (IDATEVXT, "Get local time info (VAX/VMS).", "\
-Returns the numerical values of the current local time.
-The date is returned in @var{@1@},
-the month in @var{@2@} (in the range 1--12),
-and the year in @var{@3@} (in the range 0--99).
-
-This intrinsic is not recommended, due to the year 2000 approaching.
-@xref{IDate Intrinsic}, for information on obtaining more digits
-for the current local date.
-")
-
-DEFDOC (ITIME, "Get local time of day.", "\
-Returns the current local time hour, minutes, and seconds in elements
-1, 2, and 3 of @var{@1@}, respectively.
-")
-
-DEFDOC (MCLOCK, "Get number of clock ticks for process.", "\
-Returns the number of clock ticks since the start of the process.
-Only defined on systems with @code{clock(3)} (q.v.).
-")
-
-DEFDOC (SECNDS, "Get local time offset since midnight.", "\
-Returns the local time in seconds since midnight minus the value
-@var{@1@}.
-")
-
-DEFDOC (SECONDFUNC, "Get CPU time for process in seconds.", "\
-Returns the process' runtime in seconds---the same value as the
-UNIX function @code{etime} returns.
-
-This routine is known from Cray Fortran.
-")
-
-DEFDOC (SECONDSUBR, "Get CPU time for process@99@in seconds.", "\
-Returns the process' runtime in seconds in @var{@1@}---the same value
-as the UNIX function @code{etime} returns.
-
-This routine is known from Cray Fortran.
-")
-
-DEFDOC (SYSTEM_CLOCK, "Get current system clock value.", "\
-Returns in @var{@1@} the current value of the system clock; this is
-the value returned by the UNIX function @code{times(2)}
-in this implementation, but
-isn't in general.
-@var{@2@} is the number of clock ticks per second and
-@var{@3@} is the maximum value this can take, which isn't very useful
-in this implementation since it's just the maximum C @code{unsigned
-int} value.
-")
-
-DEFDOC (TIME, "Get current time as time value.", "\
-Returns the current time encoded as an integer in the manner of
-the UNIX function @code{time(3)}.
-This value is suitable for passing to @code{CTIME},
-@code{GMTIME}, and @code{LTIME}.
-")
-
-#define BES(num,n) "\
-Calculates the Bessel function of the " #num " kind of \
-order " #n ".\n\
-See @code{bessel(3m)}, on whose implementation the \
-function depends.\
-"
-
-DEFDOC (BESJ0, "Bessel function.", BES (first, 0))
-DEFDOC (BESJ1, "Bessel function.", BES (first, 1))
-DEFDOC (BESJN, "Bessel function.", BES (first, @var{N}))
-DEFDOC (BESY0, "Bessel function.", BES (second, 0))
-DEFDOC (BESY1, "Bessel function.", BES (second, 1))
-DEFDOC (BESYN, "Bessel function.", BES (second, @var{N}))
-
-DEFDOC (ERF, "Error function.", "\
-Returns the error function of @var{@1@}.
-See @code{erf(3m)}, which provides the implementation.
-")
-
-DEFDOC (ERFC, "Complementary error function.", "\
-Returns the complementary error function of @var{@1@}:
-@code{ERFC(R) = 1 - ERF(R)} (except that the result may be more
-accurate than explicitly evaluating that formulae would give).
-See @code{erfc(3m)}, which provides the implementation.
-")
-
-DEFDOC (IRAND, "Random number.", "\
-Returns a uniform quasi-random number up to a system-dependent limit.
-If @var{@1@} is 0, the next number in sequence is returned; if
-@var{@1@} is 1, the generator is restarted by calling the UNIX function
-@samp{srand(0)}; if @var{@1@} has any other value,
-it is used as a new seed with @code{srand()}.
-
-@xref{SRand Intrinsic}.
-
-@emph{Note:} As typically implemented (by the routine of the same
-name in the C library), this random number generator is a very poor
-one, though the BSD and GNU libraries provide a much better
-implementation than the `traditional' one.
-On a different system you almost certainly want to use something better.
-")
-
-DEFDOC (RAND, "Random number.", "\
-Returns a uniform quasi-random number between 0 and 1.
-If @var{@1@} is 0, the next number in sequence is returned; if
-@var{@1@} is 1, the generator is restarted by calling @samp{srand(0)};
-if @var{@1@} has any other value, it is used as a new seed with
-@code{srand}.
-
-@xref{SRand Intrinsic}.
-
-@emph{Note:} As typically implemented (by the routine of the same
-name in the C library), this random number generator is a very poor
-one, though the BSD and GNU libraries provide a much better
-implementation than the `traditional' one.
-On a different system you
-almost certainly want to use something better.
-")
-
-DEFDOC (SRAND, "Random seed.", "\
-Reinitialises the generator with the seed in @var{@1@}.
-@xref{IRand Intrinsic}. @xref{Rand Intrinsic}.
-")
-
-DEFDOC (ACCESS, "Check file accessibility.", "\
-Checks file @var{@1@} for accessibility in the mode specified by @var{@2@} and
-returns 0 if the file is accessible in that mode, otherwise an error
-code if the file is inaccessible or @var{@2@} is invalid. See
-@code{access(2)}. @var{@2@} may be a concatenation of any of the
-following characters:
-
-@table @samp
-@item r
-Read permission
-
-@item w
-Write permission
-
-@item x
-Execute permission
-
-@item @kbd{SPC}
-Existence
-@end table
-")
-
-DEFDOC (CHDIR, "Change directory.", "\
-Sets the current working directory to be @var{@1@}.
-If the @var{@2@} argument is supplied, it contains 0
-on success or an error code otherwise upon return.
-See @code{chdir(3)}.
-")
-
-DEFDOC (CHMOD, "Change file modes.", "\
-Changes the access mode of file @var{@1@} according to the
-specification @var{@2@}, which is given in the format of
-@code{chmod(1)}.
-If the @var{Status} argument is supplied, it contains 0
-on success or an error code otherwise upon return.
-Note that this currently works
-by actually invoking @code{/bin/chmod} (or the @code{chmod} found when
-the library was configured) and so may fail in some circumstances and
-will, anyway, be slow.
-")
-
-DEFDOC (GETCWD, "Get current working directory.", "\
-Places the current working directory in @var{@1@}.
-Returns 0 on
-success, otherwise an error code.
-")
-
-DEFDOC (FSTAT, "Get file information.", "\
-Obtains data about the file open on Fortran I/O unit @var{@1@} and
-places them in the array @var{@2@}.
-The values in this array are
-extracted from the @code{stat} structure as returned by
-@code{fstat(2)} q.v., as follows:
-
-@enumerate
-@item
-File mode
-
-@item
-Inode number
-
-@item
-ID of device containing directory entry for file
-
-@item
-Device id (if relevant)
-
-@item
-Number of links
-
-@item
-Owner's uid
-
-@item
-Owner's gid
-
-@item
-File size (bytes)
-
-@item
-Last access time
-
-@item
-Last modification time
-
-@item
-Last file status change time
-
-@item
-Preferred i/o block size
-
-@item
-Number of blocks allocated
-@end enumerate
-
-Not all these elements are relevant on all systems.
-If an element is not relevant, it is returned as 0.
-
-Returns 0 on success, otherwise an error number.
-")
-
-DEFDOC (LSTAT, "Get file information.", "\
-Obtains data about the given @var{@1@} and places them in the array
-@var{@2@}.
-If @var{@1@} is a symbolic link it returns data on the
-link itself, so the routine is available only on systems that support
-symbolic links.
-The values in this array are extracted from the
-@code{stat} structure as returned by @code{fstat(2)} q.v., as follows:
-
-@enumerate
-@item
-File mode
-
-@item
-Inode number
-
-@item
-ID of device containing directory entry for file
-
-@item
-Device id (if relevant)
-
-@item
-Number of links
-
-@item
-Owner's uid
-
-@item
-Owner's gid
-
-@item
-File size (bytes)
-
-@item
-Last access time
-
-@item
-Last modification time
-
-@item
-Last file status change time
-
-@item
-Preferred i/o block size
-
-@item
-Number of blocks allocated
-@end enumerate
-
-Not all these elements are relevant on all systems.
-If an element is not relevant, it is returned as 0.
-
-Returns 0 on success, otherwise an error number.
-")
-
-DEFDOC (STAT, "Get file information.", "\
-Obtains data about the given @var{@1@} and places them in the array
-@var{@2@}.
-The values in this array are extracted from the
-@code{stat} structure as returned by @code{fstat(2)} q.v., as follows:
-
-@enumerate
-@item
-File mode
-
-@item
-Inode number
-
-@item
-ID of device containing directory entry for file
-
-@item
-Device id (if relevant)
-
-@item
-Number of links
-
-@item
-Owner's uid
-
-@item
-Owner's gid
-
-@item
-File size (bytes)
-
-@item
-Last access time
-
-@item
-Last modification time
-
-@item
-Last file status change time
-
-@item
-Preferred i/o block size
-
-@item
-Number of blocks allocated
-@end enumerate
-
-Not all these elements are relevant on all systems.
-If an element is not relevant, it is returned as 0.
-
-Returns 0 on success, otherwise an error number.
-")
-
-DEFDOC (LINK, "Make hard link in file system.", "\
-Makes a (hard) link from @var{@1@} to @var{@2@}.
-If the
-@var{@3@} argument is supplied, it contains 0 on success or an error
-code otherwise.
-See @code{link(2)}.
-")
-
-DEFDOC (SYMLNK, "Make symbolic link in file system.", "\
-Makes a symbolic link from @var{@1@} to @var{@2@}.
-If the
-@var{@3@} argument is supplied, it contains 0 on success or an error
-code otherwise.
-Available only on systems that support symbolic
-links (see @code{symlink(2)}).
-")
-
-DEFDOC (RENAME, "Rename file.", "\
-Renames the file @var{@1@} to @var{@2@}.
-See @code{rename(2)}.
-If the @var{@3@} argument is supplied, it contains 0 on success or an
-error code otherwise upon return.
-")
-
-DEFDOC (UMASK, "Set file creation permissions mask.", "\
-Sets the file creation mask to @var{@2@} and returns the old value in
-argument @var{@2@} if it is supplied.
-See @code{umask(2)}.
-")
-
-DEFDOC (UNLINK, "Unlink file.", "\
-Unlink the file @var{@1@}.
-If the @var{@2@} argument is supplied, it
-contains 0 on success or an error code otherwise.
-See @code{unlink(2)}.
-")
-
-DEFDOC (GERROR, "Get error message for last error.", "\
-Returns the system error message corresponding to the last system
-error (C @code{errno}).
-")
-
-DEFDOC (IERRNO, "Get error number for last error.", "\
-Returns the last system error number (corresponding to the C
-@code{errno}).
-")
-
-DEFDOC (PERROR, "Print error message for last error.", "\
-Prints (on the C @code{stderr} stream) a newline-terminated error
-message corresponding to the last system error.
-This is prefixed by @var{@1@}, a colon and a space.
-See @code{perror(3)}.
-")
-
-DEFDOC (GETGID, "Get process group id.", "\
-Returns the group id for the current process.
-")
-
-DEFDOC (GETUID, "Get process user id.", "\
-Returns the user id for the current process.
-")
-
-DEFDOC (GETPID, "Get process id.", "\
-Returns the process id for the current process.
-")
-
-DEFDOC (GETENV, "Get environment variable.", "\
-Sets @var{@2@} to the value of environment variable given by the
-value of @var{@1@} (@code{$name} in shell terms) or to blanks if
-@code{$name} has not been set.
-")
-
-DEFDOC (GETLOG, "Get login name.", "\
-Returns the login name for the process in @var{@1@}.
-")
-
-DEFDOC (HOSTNM, "Get host name.", "\
-Fills @var{@1@} with the system's host name returned by
-@code{gethostname(2)}, returning 0 on success or an error code.
-This function is not available on all systems.
-")
-
-/* Fixme: stream i/o */
-
-DEFDOC (FLUSH, "Flush buffered output.", "\
-Flushes Fortran unit(s) currently open for output.
-Without the optional argument, all such units are flushed,
-otherwise just the unit specified by @var{@1@}.
-")
-
-DEFDOC (FNUM, "Get file descriptor from Fortran unit number.", "\
-Returns the Unix file descriptor number corresponding to the open
-Fortran I/O unit @var{@1@}.
-This could be passed to an interface to C I/O routines.
-")
-
-DEFDOC (FSEEK, "Position file (low-level).", "\
-Attempts to move Fortran unit @var{@1@} to the specified
-@var{Offset}: absolute offset if @var{@2@}=0; relative to the
-current offset if @var{@2@}=1; relative to the end of the file if
-@var{@2@}=2.
-It branches to label @var{@3@} if @var{@1@} is
-not open or if the call otherwise fails.
-")
-
-DEFDOC (FTELL, "Get file position (low-level).", "\
-Returns the current offset of Fortran unit @var{@1@} (or @minus{}1 if
-@var{@1@} is not open).
-")
-
-DEFDOC (ISATTY, "Is unit connected to a terminal?", "\
-Returns @code{.TRUE.} if and only if the Fortran I/O unit
-specified by @var{@1@} is connected
-to a terminal device.
-See @code{isatty(3)}.
-")
-
-DEFDOC (TTYNAM, "Get name of terminal device for unit.", "\
-Returns the name of the terminal device open on logical unit
-@var{@1@} or a blank string if @var{@1@} is not connected to a
-terminal.
-")
-
-DEFDOC (SIGNAL, "Muck with signal handling.", "\
-If @var{@2@} is a an @code{EXTERNAL} routine, arranges for it to be
-invoked with a single integer argument (of system-dependent length)
-when signal @var{@1@} occurs.
-If @var{@1@} is an integer it can be
-used to turn off handling of signal @var{@2@} or revert to its default
-action.
-See @code{signal(2)}.
-
-Note that @var{@2@} will be called with C conventions, so its value in
-Fortran terms is obtained by applying @code{%loc} (or @var{loc}) to it.
-")
-
-DEFDOC (KILL, "Signal a process.", "\
-Sends the signal specified by @var{@2@} to the process @var{@1@}. Returns zero
-on success, otherwise an error number.
-See @code{kill(2)}.
-")
-
-DEFDOC (LNBLNK, "Get last non-blank character in string.", "\
-Returns the index of the last non-blank character in @var{@1@}.
-@code{LNBLNK} and @code{LEN_TRIM} are equivalent.
-")
-
-DEFDOC (SLEEP, "Sleep for a specified time.", "\
-Causes the process to pause for @var{@1@} seconds.
-See @code{sleep(2)}.
-")
-
-DEFDOC (SYSTEM, "Invoke shell (system) command.", "\
-Passes the command @var{@1@} to a shell (see @code{system(3)}).
-If argument @var{@2@} is present, it contains the value returned by
-@code{system(3)}, presumably 0 if the shell command succeeded.
-Note that which shell is used to invoke the command is system-dependent
-and environment-dependent.
-")