diff options
Diffstat (limited to 'gnu/usr.bin/lynx/WWW/Library/Implementation/crypt_util.c')
-rw-r--r-- | gnu/usr.bin/lynx/WWW/Library/Implementation/crypt_util.c | 981 |
1 files changed, 981 insertions, 0 deletions
diff --git a/gnu/usr.bin/lynx/WWW/Library/Implementation/crypt_util.c b/gnu/usr.bin/lynx/WWW/Library/Implementation/crypt_util.c new file mode 100644 index 00000000000..9ed7e95d4da --- /dev/null +++ b/gnu/usr.bin/lynx/WWW/Library/Implementation/crypt_util.c @@ -0,0 +1,981 @@ +/* + * UFC-crypt: ultra fast crypt(3) implementation + * + * Copyright (C) 1991, 1992, Free Software Foundation, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * @(#)crypt_util.c 2.40 09/21/92 + * + * Support routines + * + */ + +#ifndef HTUTILS_H +#include "HTUtils.h" +#endif + +#ifdef DEBUG +/*#include <stdio.h> included by HTUTils.h - FM */ +#endif + +#ifndef STATIC +#define STATIC static +#endif + +#ifndef DOS +#include "patchlevel.h" +#include "ufc-crypt.h" +#else +/* + * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein) + * for DOS patches + */ +#include "pl.h" +#include "ufc.h" +#endif + +#include "LYLeaks.h" + +static char patchlevel_str[] = PATCHLEVEL; + +/* + * Permutation done once on the 56 bit + * key derived from the original 8 byte ASCII key. + */ +static int pc1[56] = { + 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, + 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 +}; + +/* + * How much to rotate each 28 bit half of the pc1 permutated + * 56 bit key before using pc2 to give the i' key + */ +static int rots[16] = { + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 +}; + +/* + * Permutation giving the key + * of the i' DES round + */ +static int pc2[48] = { + 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, + 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, + 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, + 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 +}; + +/* + * The E expansion table which selects + * bits from the 32 bit intermediate result. + */ +static int esel[48] = { + 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, + 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, + 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, + 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 +}; +static int e_inverse[64]; + +/* + * Permutation done on the + * result of sbox lookups + */ +static int perm32[32] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 +}; + +/* + * The sboxes + */ +static int sbox[8][4][16]= { + { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, + { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, + { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, + { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } + }, + + { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, + { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, + { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, + { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } + }, + + { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, + { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, + { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, + { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } + }, + + { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, + { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, + { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, + { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } + }, + + { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, + { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, + { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, + { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } + }, + + { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, + { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, + { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, + { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } + }, + + { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, + { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, + { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, + { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } + }, + + { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, + { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, + { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, + { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } + } +}; + +/* + * This is the initial + * permutation matrix + */ +static int initial_perm[64] = { + 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, + 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, + 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, + 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 +}; + +/* + * This is the final + * permutation matrix + */ +static int final_perm[64] = { + 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, + 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, + 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, + 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 +}; + +/* + * The 16 DES keys in BITMASK format + */ +#ifdef _UFC_32_ +long32 _ufc_keytab[16][2]; +#endif +#ifdef _UFC_64_ +long64 _ufc_keytab[16]; +#endif + +#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') +#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') + +/* Macro to set a bit (0..23) */ +#define BITMASK(i) ( (1L<<(11L-(i)%12L+3L)) << ((i)<12L?16L:0L) ) + +/* + * sb arrays: + * + * Workhorses of the inner loop of the DES implementation. + * They do sbox lookup, shifting of this value, 32 bit + * permutation and E permutation for the next round. + * + * Kept in 'BITMASK' format. + */ + +#ifdef _UFC_32_ +long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192]; +static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; +#endif + +#ifdef _UFC_64_ +long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096]; +static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; +#endif + +/* + * eperm32tab: do 32 bit permutation and E selection + * + * The first index is the byte number in the 32 bit value to be permuted + * - second - is the value of this byte + * - third - selects the two 32 bit values + * + * The table is used and generated internally in init_des to speed it up + */ +static ufc_long eperm32tab[4][256][2]; + +/* + * do_pc1: permform pc1 permutation in the key schedule generation. + * + * The first index is the byte number in the 8 byte ASCII key + * - second - - the two 28 bits halfs of the result + * - third - selects the 7 bits actually used of each byte + * + * The result is kept with 28 bit per 32 bit with the 4 most significant + * bits zero. + */ +static ufc_long do_pc1[8][2][128]; + +/* + * do_pc2: permform pc2 permutation in the key schedule generation. + * + * The first index is the septet number in the two 28 bit intermediate values + * - second - - - septet values + * + * Knowledge of the structure of the pc2 permutation is used. + * + * The result is kept with 28 bit per 32 bit with the 4 most significant + * bits zero. + */ +static ufc_long do_pc2[8][128]; + +/* + * efp: undo an extra e selection and do final + * permutation giving the DES result. + * + * Invoked 6 bit a time on two 48 bit values + * giving two 32 bit longs. + */ +static ufc_long efp[16][64][2]; + +/* + * revfinal: undo final permutation and do E expension. + * + * Invoked 6 bit a time on DES output + * giving 4 32 bit longs. + */ +static ufc_long revfinal[11][64][4]; + + +static unsigned char bytemask[8] = { + 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 +}; + +static ufc_long longmask[32] = { + 0x80000000, 0x40000000, 0x20000000, 0x10000000, + 0x08000000, 0x04000000, 0x02000000, 0x01000000, + 0x00800000, 0x00400000, 0x00200000, 0x00100000, + 0x00080000, 0x00040000, 0x00020000, 0x00010000, + 0x00008000, 0x00004000, 0x00002000, 0x00001000, + 0x00000800, 0x00000400, 0x00000200, 0x00000100, + 0x00000080, 0x00000040, 0x00000020, 0x00000010, + 0x00000008, 0x00000004, 0x00000002, 0x00000001 +}; + +#ifdef DEBUG + +pr_bits(a, n) + ufc_long *a; + int n; + { ufc_long i, j, t, tmp; + n /= 8; + for(i = 0; i < n; i++) { + tmp=0; + for(j = 0; j < 8; j++) { + t=8*i+j; + tmp|=(a[t/24] & BITMASK(t % 24))?bytemask[j]:0; + } + (void)printf("%02x ",tmp); + } + printf(" "); + } + +static set_bits(v, b) + ufc_long v; + ufc_long *b; + { ufc_long i; + *b = 0; + for(i = 0; i < 24; i++) { + if(v & longmask[8 + i]) + *b |= BITMASK(i); + } + } + +#endif + +/* + * Silly rewrite of 'bzero'. I do so + * because some machines don't have + * bzero and some don't have memset. + */ + +STATIC void clearmem(start, cnt) + char *start; + int cnt; + { while(cnt--) + *start++ = '\0'; + } + +static int initialized = 0; + +/* lookup a 6 bit value in sbox */ + +#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; + +/* + * Initialize unit - may be invoked directly + * by fcrypt users. + */ + +void init_des() + { int comes_from_bit; + int bit, sg; + ufc_long j; + ufc_long mask1, mask2; + + /* + * Create the do_pc1 table used + * to affect pc1 permutation + * when generating keys + */ + for(bit = 0; bit < 56; bit++) { + comes_from_bit = pc1[bit] - 1; + mask1 = bytemask[comes_from_bit % 8 + 1]; + mask2 = longmask[bit % 28 + 4]; + for(j = 0; j < 128; j++) { + if(j & mask1) + do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; + } + } + + /* + * Create the do_pc2 table used + * to affect pc2 permutation when + * generating keys + */ + for(bit = 0; bit < 48; bit++) { + comes_from_bit = pc2[bit] - 1; + mask1 = bytemask[comes_from_bit % 7 + 1]; + mask2 = BITMASK(bit % 24); + for(j = 0; j < 128; j++) { + if(j & mask1) + do_pc2[comes_from_bit / 7][j] |= mask2; + } + } + + /* + * Now generate the table used to do combined + * 32 bit permutation and e expansion + * + * We use it because we have to permute 16384 32 bit + * longs into 48 bit in order to initialize sb. + * + * Looping 48 rounds per permutation becomes + * just too slow... + * + */ + + clearmem((char*)eperm32tab, sizeof(eperm32tab)); + + for(bit = 0; bit < 48; bit++) { + ufc_long mask1,comes_from; + + comes_from = perm32[esel[bit]-1]-1; + mask1 = bytemask[comes_from % 8]; + + for(j = 256; j--;) { + if(j & mask1) + eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24); + } + } + + /* + * Create the sb tables: + * + * For each 12 bit segment of an 48 bit intermediate + * result, the sb table precomputes the two 4 bit + * values of the sbox lookups done with the two 6 + * bit halves, shifts them to their proper place, + * sends them through perm32 and finally E expands + * them so that they are ready for the next + * DES round. + * + */ + for(sg = 0; sg < 4; sg++) { + int j1, j2; + int s1, s2; + + for(j1 = 0; j1 < 64; j1++) { + s1 = s_lookup(2 * sg, j1); + for(j2 = 0; j2 < 64; j2++) { + ufc_long to_permute, inx; + + s2 = s_lookup(2 * sg + 1, j2); + to_permute = (((ufc_long)s1 << 4) | + (ufc_long)s2) << (24 - 8 * (ufc_long)sg); + +#ifdef _UFC_32_ + inx = ((j1 << 6) | j2) << 1; + sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; + sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; +#endif +#ifdef _UFC_64_ + inx = ((j1 << 6) | j2); + sb[sg][inx] = + ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | + (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | + (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | + (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | + (long64)eperm32tab[3][(to_permute) & 0xff][1]; +#endif + } + } + } + + /* + * Create an inverse matrix for esel telling + * where to plug out bits if undoing it + */ + for(bit=48; bit--;) { + e_inverse[esel[bit] - 1 ] = bit; + e_inverse[esel[bit] - 1 + 32] = bit + 48; + } + + /* + * create efp: the matrix used to + * undo the E expansion and effect final permutation + */ + clearmem((char*)efp, sizeof efp); + for(bit = 0; bit < 64; bit++) { + int o_bit, o_long; + ufc_long word_value, mask1, mask2; + int comes_from_f_bit, comes_from_e_bit; + int comes_from_word, bit_within_word; + + /* See where bit i belongs in the two 32 bit long's */ + o_long = bit / 32; /* 0..1 */ + o_bit = bit % 32; /* 0..31 */ + + /* + * And find a bit in the e permutated value setting this bit. + * + * Note: the e selection may have selected the same bit several + * times. By the initialization of e_inverse, we only look + * for one specific instance. + */ + comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ + comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ + comes_from_word = comes_from_e_bit / 6; /* 0..15 */ + bit_within_word = comes_from_e_bit % 6; /* 0..5 */ + + mask1 = longmask[bit_within_word + 26]; + mask2 = longmask[o_bit]; + + for(word_value = 64; word_value--;) { + if(word_value & mask1) + efp[comes_from_word][word_value][o_long] |= mask2; + } + } + + + /* + * Create revfinal: an array to undo final + * the effects of efp + */ + clearmem((char*)revfinal, sizeof(revfinal)); + for(bit = 0; bit < 96; bit++) { + int ibit = initial_perm[esel[bit % 48] - 1 + ((bit >= 48) ? 32 : 0)] - 1; + mask1 = bytemask[ibit % 6 + 2]; + mask2 = BITMASK(bit % 24); + for(j = 64; j--;) { + if(j & mask1) { + revfinal[ibit / 6][j][bit / 24] |= mask2; + } + } + } + + initialized++; + } + +/* + * Process the elements of the sb table permuting the + * bits swapped in the expansion by the current salt. + */ + +#ifdef _UFC_32_ +STATIC void shuffle_sb(k, saltbits) + long32 *k; + ufc_long saltbits; + { ufc_long j; + long32 x; + for(j=4096; j--;) { + x = (k[0] ^ k[1]) & (long32)saltbits; + *k++ ^= x; + *k++ ^= x; + } + } +#endif + +#ifdef _UFC_64_ +STATIC void shuffle_sb(k, saltbits) + long64 *k; + ufc_long saltbits; + { ufc_long j; + long64 x; + for(j=4096; j--;) { + x = ((*k >> 32) ^ *k) & (long64)saltbits; + *k++ ^= (x << 32) | x; + } + } +#endif + +/* + * Setup the unit for a new salt + * Hopefully we'll not see a new salt in each crypt call. + */ + +static unsigned char current_salt[3] = "&&"; /* invalid value */ +static ufc_long current_saltbits = 0; +static int direction = 0; + +STATIC void setup_salt(s) + char *s; + { ufc_long i, j, saltbits; + + if(!initialized) + init_des(); + + if(s[0] == current_salt[0] && s[1] == current_salt[1]) + return; + current_salt[0] = s[0]; current_salt[1] = s[1]; + + /* + * This is the only crypt change to DES: + * entries are swapped in the expansion table + * according to the bits set in the salt. + */ + saltbits = 0; + for(i = 0; i < 2; i++) { + long c=ascii_to_bin(s[i]); +#ifdef notdef + /* + * Some applications do rely on illegal + * salts. It seems that UFC-crypt behaves + * identically to standard crypt + * implementations on illegal salts -- glad + */ + if(c < 0 || c > 63) + c = 0; +#endif + for(j = 0; j < 6; j++) { + if((c >> j) & 0x1) + saltbits |= BITMASK(6 * i + j); + } + } + + /* + * Permute the sb table values + * to reflect the changed e + * selection table + */ + shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); + + current_saltbits = saltbits; + } + +STATIC void ufc_mk_keytab(key) + char *key; + { ufc_long v1, v2, *k1; + int i; +#ifdef _UFC_32_ + long32 v, *k2 = &_ufc_keytab[0][0]; +#endif +#ifdef _UFC_64_ + long64 v, *k2 = &_ufc_keytab[0]; +#endif + + v1 = v2 = 0; k1 = &do_pc1[0][0][0]; + for(i = 8; i--;) { + v1 |= k1[*key & 0x7f]; k1 += 128; + v2 |= k1[*key++ & 0x7f]; k1 += 128; + } + + for(i = 0; i < 16; i++) { + k1 = &do_pc2[0][0]; + + v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); + v = k1[(v1 >> 21) & 0x7f]; k1 += 128; + v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; + v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; + v |= k1[(v1 ) & 0x7f]; k1 += 128; + +#ifdef _UFC_32_ + *k2++ = v; + v = 0; +#endif +#ifdef _UFC_64_ + v <<= 32; +#endif + + v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); + v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; + v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; + v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; + v |= k1[(v2 ) & 0x7f]; + + *k2++ = v; + } + + direction = 0; + } + +/* + * Undo an extra E selection and do final permutations + */ + +ufc_long *_ufc_dofinalperm(l1, l2, r1, r2) + ufc_long l1,l2,r1,r2; + { ufc_long v1, v2, x; + static ufc_long ary[2]; + + x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; + x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; + + v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; + + v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; + v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; + v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; + v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; + + v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; + v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; + v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; + v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; + + v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; + v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; + v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; + v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; + + v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; + v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; + v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; + v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; + + ary[0] = v1; ary[1] = v2; + return ary; + } + +/* + * crypt only: convert from 64 bit to 11 bit ASCII + * prefixing with the salt + */ + +STATIC char *output_conversion(v1, v2, salt) + ufc_long v1, v2; + char *salt; + { static char outbuf[14]; + int i, s, shf; + + outbuf[0] = salt[0]; + outbuf[1] = salt[1] ? salt[1] : salt[0]; + + for(i = 0; i < 5; i++) { + shf = (26 - 6 * i); /* to cope with MSC compiler bug */ + outbuf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f); + } + + s = (v2 & 0xf) << 2; + v2 = (v2 >> 2) | ((v1 & 0x3) << 30); + + for(i = 5; i < 10; i++) { + shf = (56 - 6 * i); + outbuf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f); + } + + outbuf[12] = bin_to_ascii(s); + outbuf[13] = 0; + + return outbuf; + } + +ufc_long *_ufc_doit(); + +/* + * UNIX crypt function + */ + +char *crypt(key, salt) + char *key, *salt; + { ufc_long *s; + char ktab[9]; + + /* + * Hack DES tables according to salt + */ + setup_salt(salt); + + /* + * Setup key schedule + */ + clearmem(ktab, sizeof ktab); + (void)strncpy(ktab, key, 8); + ufc_mk_keytab(ktab); + + /* + * Go for the 25 DES encryptions + */ + s = _ufc_doit((ufc_long)0, (ufc_long)0, + (ufc_long)0, (ufc_long)0, (ufc_long)25); + /* + * Do final permutations + */ + s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]); + + /* + * And convert back to 6 bit ASCII + */ + return output_conversion(s[0], s[1], salt); + } + +/* + * To make fcrypt users happy. + * They don't need to call init_des. + */ + +char *fcrypt(key, salt) + char *key; + char *salt; + { return crypt(key, salt); + } + +/* + * UNIX encrypt function. Takes a bitvector + * represented by one byte per bit and + * encrypt/decrypt according to edflag + */ + +void encrypt(block, edflag) + char *block; + int edflag; + { ufc_long l1, l2, r1, r2, *s; + int i; + + /* + * Undo any salt changes to E expansion + */ + setup_salt(".."); + + /* + * Reverse key table if + * changing operation (encrypt/decrypt) + */ + if((edflag == 0) != (direction == 0)) { + for(i = 0; i < 8; i++) { +#ifdef _UFC_32_ + long32 x; + x = _ufc_keytab[15-i][0]; + _ufc_keytab[15-i][0] = _ufc_keytab[i][0]; + _ufc_keytab[i][0] = x; + + x = _ufc_keytab[15-i][1]; + _ufc_keytab[15-i][1] = _ufc_keytab[i][1]; + _ufc_keytab[i][1] = x; +#endif +#ifdef _UFC_64_ + long64 x; + x = _ufc_keytab[15-i]; + _ufc_keytab[15-i] = _ufc_keytab[i]; + _ufc_keytab[i] = x; +#endif + } + direction = edflag; + } + + /* + * Do initial permutation + E expansion + */ + i = 0; + for(l1 = 0; i < 24; i++) { + if(block[initial_perm[esel[i]-1]-1]) + l1 |= BITMASK(i); + } + for(l2 = 0; i < 48; i++) { + if(block[initial_perm[esel[i]-1]-1]) + l2 |= BITMASK(i-24); + } + + i = 0; + for(r1 = 0; i < 24; i++) { + if(block[initial_perm[esel[i]-1+32]-1]) + r1 |= BITMASK(i); + } + for(r2 = 0; i < 48; i++) { + if(block[initial_perm[esel[i]-1+32]-1]) + r2 |= BITMASK(i-24); + } + + /* + * Do DES inner loops + final conversion + */ + s = _ufc_doit(l1, l2, r1, r2, (ufc_long)1); + /* + * Do final permutations + */ + s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]); + + /* + * And convert to bit array + */ + l1 = s[0]; r1 = s[1]; + for(i = 0; i < 32; i++) { + *block++ = (l1 & longmask[i]) != 0; + } + for(i = 0; i < 32; i++) { + *block++ = (r1 & longmask[i]) != 0; + } + + } + +/* + * UNIX setkey function. Take a 64 bit DES + * key and setup the machinery. + */ + +void setkey(key) + char *key; + { int i,j; + unsigned char c; + unsigned char ktab[8]; + + setup_salt(".."); /* be sure we're initialized */ + + for(i = 0; i < 8; i++) { + for(j = 0, c = 0; j < 8; j++) + c = c << 1 | *key++; + ktab[i] = c >> 1; + } + + ufc_mk_keytab(ktab); + } + +/* + * Ultrix crypt16 function, thanks to pcl@convex.oxford.ac.uk (Paul Leyland) + */ + +char *crypt16(key, salt) + char *key, *salt; + { ufc_long *s, *t; + char ktab[9], ttab[9]; + static char q[14], res[25]; + /* + * Hack DES tables according to salt + */ + setup_salt(salt); + + /* + * Setup key schedule + */ + clearmem(ktab, sizeof ktab); + (void)strncpy(ktab, key, 8); + ufc_mk_keytab(ktab); + + /* + * Go for first 20 DES encryptions + */ + s = _ufc_doit((ufc_long)0, (ufc_long)0, + (ufc_long)0, (ufc_long)0, (ufc_long)20); + + /* + * And convert back to 6 bit ASCII + */ + strcpy (res, output_conversion(s[0], s[1], salt)); + + clearmem(ttab, sizeof ttab); + if (strlen (key) > 8) (void)strncpy(ttab, key+8, 8); + ufc_mk_keytab(ttab); + + /* + * Go for second 5 DES encryptions + */ + t = _ufc_doit((ufc_long)0, (ufc_long)0, + (ufc_long)0, (ufc_long)0, (ufc_long)5); + /* + * And convert back to 6 bit ASCII + */ + strcpy (q, output_conversion(t[0], t[1], salt)); + strcpy (res+13, q+2); + + clearmem(ktab, sizeof ktab); + (void)strncpy(ktab, key, 8); + ufc_mk_keytab(ktab); + + return res; + } + +/* + * Experimental -- not supported -- may choke your dog + */ + +void ufc_setup_password(cookie, s) + long *cookie; + char *s; + { char c; + int i; + ufc_long x; + ufc_long dl1, dl2, dr1, dr2; + + setup_salt(s); + dl1 = dl2 = dr1 = dr2 = 0; + for(i = 0, s += 2; c = *s++; i++) { + int x = ascii_to_bin(c); + dl1 |= revfinal[i][x][0]; + dl2 |= revfinal[i][x][1]; + dr1 |= revfinal[i][x][2]; + dr2 |= revfinal[i][x][3]; + } + x = (dl1 ^ dl2) & current_saltbits; + x = (dr1 ^ dr2) & current_saltbits; + cookie[0] = dl1 ^ x; cookie[1] = dl2 ^ x; + cookie[2] = dr1 ^ x; cookie[3] = dr2 ^ x; + } + +void ufc_do_pw(cookie, guess) + long *cookie; + char *guess; + { char ktab[9]; + ufc_long *s; + clearmem(ktab, sizeof ktab); + (void)strncpy(ktab, guess, 8); + ufc_mk_keytab(ktab); + s = _ufc_doit((ufc_long)0, (ufc_long)0, + (ufc_long)0, (ufc_long)0, (ufc_long)25); + cookie[0] = s[0]; cookie[1] = s[1]; + cookie[2] = s[2]; cookie[3] = s[3]; + } |