diff options
Diffstat (limited to 'lib/libc/crypt/crypt.c')
-rw-r--r-- | lib/libc/crypt/crypt.c | 715 |
1 files changed, 715 insertions, 0 deletions
diff --git a/lib/libc/crypt/crypt.c b/lib/libc/crypt/crypt.c new file mode 100644 index 00000000000..28add7f9e21 --- /dev/null +++ b/lib/libc/crypt/crypt.c @@ -0,0 +1,715 @@ +/* $Id: crypt.c,v 1.1 1995/12/16 12:55:30 deraadt Exp $ */ + +/* + * FreeSec: libcrypt + * + * Copyright (c) 1994 David Burren + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 4. Neither the name of the author nor the names of other contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * + * This is an original implementation of the DES and the crypt(3) interfaces + * by David Burren <davidb@werj.com.au>. + * + * An excellent reference on the underlying algorithm (and related + * algorithms) is: + * + * B. Schneier, Applied Cryptography: protocols, algorithms, + * and source code in C, John Wiley & Sons, 1994. + * + * Note that in that book's description of DES the lookups for the initial, + * pbox, and final permutations are inverted (this has been brought to the + * attention of the author). A list of errata for this book has been + * posted to the sci.crypt newsgroup by the author and is available for FTP. + * + * ARCHITECTURE ASSUMPTIONS: + * This code assumes that u_longs are 32 bits. It will probably not + * operate on 64-bit machines without modifications. + * It is assumed that the 8-byte arrays passed by reference can be + * addressed as arrays of u_longs (ie. the CPU is not picky about + * alignment). + * + * NOTE: + * This file has a static version of des_setkey() so that crypt.o exports + * only the crypt() interface. This is required to make binaries linked + * against crypt.o exportable or re-exportable from the USA. + */ +#include <sys/types.h> +#include <sys/param.h> +#include <pwd.h> + +#ifdef DEBUG +# include <stdio.h> +#endif + +static u_char IP[64] = { + 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, + 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, + 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, + 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 +}; + +static u_char inv_key_perm[64]; +static u_char u_key_perm[56]; +static u_char key_perm[56] = { + 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, + 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 +}; + +static u_char key_shifts[16] = { + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 +}; + +static u_char inv_comp_perm[56]; +static u_char comp_perm[48] = { + 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, + 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, + 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, + 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 +}; + +/* + * No E box is used, as it's replaced by some ANDs, shifts, and ORs. + */ + +static u_char u_sbox[8][64]; +static u_char sbox[8][64] = { + { + 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, + 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, + 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, + 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 + }, + { + 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, + 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, + 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, + 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 + }, + { + 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, + 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, + 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 + }, + { + 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, + 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, + 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, + 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 + }, + { + 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, + 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, + 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, + 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 + }, + { + 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, + 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, + 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, + 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 + }, + { + 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, + 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, + 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, + 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 + }, + { + 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, + 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, + 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, + 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 + } +}; + +static u_char un_pbox[32]; +static u_char pbox[32] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 +}; + +static u_int32_t bits32[32] = +{ + 0x80000000, 0x40000000, 0x20000000, 0x10000000, + 0x08000000, 0x04000000, 0x02000000, 0x01000000, + 0x00800000, 0x00400000, 0x00200000, 0x00100000, + 0x00080000, 0x00040000, 0x00020000, 0x00010000, + 0x00008000, 0x00004000, 0x00002000, 0x00001000, + 0x00000800, 0x00000400, 0x00000200, 0x00000100, + 0x00000080, 0x00000040, 0x00000020, 0x00000010, + 0x00000008, 0x00000004, 0x00000002, 0x00000001 +}; + +static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; + +static u_int32_t saltbits; +static int32_t old_salt; +static u_int32_t *bits28, *bits24; +static u_char init_perm[64], final_perm[64]; +static u_int32_t en_keysl[16], en_keysr[16]; +static u_int32_t de_keysl[16], de_keysr[16]; +static int des_initialised = 0; +static u_char m_sbox[4][4096]; +static u_int32_t psbox[4][256]; +static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; +static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; +static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; +static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; +static u_int32_t old_rawkey0, old_rawkey1; + +static u_char ascii64[] = + "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; +/* 0000000000111111111122222222223333333333444444444455555555556666 */ +/* 0123456789012345678901234567890123456789012345678901234567890123 */ + +static inline int +ascii_to_bin(ch) + char ch; +{ + if (ch > 'z') + return(0); + if (ch >= 'a') + return(ch - 'a' + 38); + if (ch > 'Z') + return(0); + if (ch >= 'A') + return(ch - 'A' + 12); + if (ch > '9') + return(0); + if (ch >= '.') + return(ch - '.'); + return(0); +} + +static void +des_init() +{ + int i, j, b, k, inbit, obit; + u_int32_t *p, *il, *ir, *fl, *fr; + + old_rawkey0 = old_rawkey1 = 0; + saltbits = 0; + old_salt = 0; + bits24 = (bits28 = bits32 + 4) + 4; + + /* + * Invert the S-boxes, reordering the input bits. + */ + for (i = 0; i < 8; i++) + for (j = 0; j < 64; j++) { + b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); + u_sbox[i][j] = sbox[i][b]; + } + + /* + * Convert the inverted S-boxes into 4 arrays of 8 bits. + * Each will handle 12 bits of the S-box input. + */ + for (b = 0; b < 4; b++) + for (i = 0; i < 64; i++) + for (j = 0; j < 64; j++) + m_sbox[b][(i << 6) | j] = + (u_sbox[(b << 1)][i] << 4) | + u_sbox[(b << 1) + 1][j]; + + /* + * Set up the initial & final permutations into a useful form, and + * initialise the inverted key permutation. + */ + for (i = 0; i < 64; i++) { + init_perm[final_perm[i] = IP[i] - 1] = i; + inv_key_perm[i] = 255; + } + + /* + * Invert the key permutation and initialise the inverted key + * compression permutation. + */ + for (i = 0; i < 56; i++) { + u_key_perm[i] = key_perm[i] - 1; + inv_key_perm[key_perm[i] - 1] = i; + inv_comp_perm[i] = 255; + } + + /* + * Invert the key compression permutation. + */ + for (i = 0; i < 48; i++) { + inv_comp_perm[comp_perm[i] - 1] = i; + } + + /* + * Set up the OR-mask arrays for the initial and final permutations, + * and for the key initial and compression permutations. + */ + for (k = 0; k < 8; k++) { + for (i = 0; i < 256; i++) { + *(il = &ip_maskl[k][i]) = 0; + *(ir = &ip_maskr[k][i]) = 0; + *(fl = &fp_maskl[k][i]) = 0; + *(fr = &fp_maskr[k][i]) = 0; + for (j = 0; j < 8; j++) { + inbit = 8 * k + j; + if (i & bits8[j]) { + if ((obit = init_perm[inbit]) < 32) + *il |= bits32[obit]; + else + *ir |= bits32[obit-32]; + if ((obit = final_perm[inbit]) < 32) + *fl |= bits32[obit]; + else + *fr |= bits32[obit - 32]; + } + } + } + for (i = 0; i < 128; i++) { + *(il = &key_perm_maskl[k][i]) = 0; + *(ir = &key_perm_maskr[k][i]) = 0; + for (j = 0; j < 7; j++) { + inbit = 8 * k + j; + if (i & bits8[j + 1]) { + if ((obit = inv_key_perm[inbit]) == 255) + continue; + if (obit < 28) + *il |= bits28[obit]; + else + *ir |= bits28[obit - 28]; + } + } + *(il = &comp_maskl[k][i]) = 0; + *(ir = &comp_maskr[k][i]) = 0; + for (j = 0; j < 7; j++) { + inbit = 7 * k + j; + if (i & bits8[j + 1]) { + if ((obit=inv_comp_perm[inbit]) == 255) + continue; + if (obit < 24) + *il |= bits24[obit]; + else + *ir |= bits24[obit - 24]; + } + } + } + } + + /* + * Invert the P-box permutation, and convert into OR-masks for + * handling the output of the S-box arrays setup above. + */ + for (i = 0; i < 32; i++) + un_pbox[pbox[i] - 1] = i; + + for (b = 0; b < 4; b++) + for (i = 0; i < 256; i++) { + *(p = &psbox[b][i]) = 0; + for (j = 0; j < 8; j++) { + if (i & bits8[j]) + *p |= bits32[un_pbox[8 * b + j]]; + } + } + + des_initialised = 1; +} + +static void +setup_salt(salt) + int32_t salt; +{ + u_int32_t obit, saltbit; + int i; + + if (salt == old_salt) + return; + old_salt = salt; + + saltbits = 0; + saltbit = 1; + obit = 0x800000; + for (i = 0; i < 24; i++) { + if (salt & saltbit) + saltbits |= obit; + saltbit <<= 1; + obit >>= 1; + } +} + +static int +des_setkey(key) + const char *key; +{ + u_int32_t k0, k1, rawkey0, rawkey1; + int shifts, i, b, round; + + if (!des_initialised) + des_init(); + + rawkey0 = ntohl(*(u_int32_t *) key); + rawkey1 = ntohl(*(u_int32_t *) (key + 4)); + + if ((rawkey0 | rawkey1) + && rawkey0 == old_rawkey0 + && rawkey1 == old_rawkey1) { + /* + * Already setup for this key. + * This optimisation fails on a zero key (which is weak and + * has bad parity anyway) in order to simplify the starting + * conditions. + */ + return(0); + } + old_rawkey0 = rawkey0; + old_rawkey1 = rawkey1; + + /* + * Do key permutation and split into two 28-bit subkeys. + */ + k0 = key_perm_maskl[0][rawkey0 >> 25] + | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskl[4][rawkey1 >> 25] + | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; + k1 = key_perm_maskr[0][rawkey0 >> 25] + | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskr[4][rawkey1 >> 25] + | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; + /* + * Rotate subkeys and do compression permutation. + */ + shifts = 0; + for (round = 0; round < 16; round++) { + u_int32_t t0, t1; + int bit; + + shifts += key_shifts[round]; + + t0 = (k0 << shifts) | (k0 >> (28 - shifts)); + t1 = (k1 << shifts) | (k1 >> (28 - shifts)); + + de_keysl[15 - round] = + en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] + | comp_maskl[1][(t0 >> 14) & 0x7f] + | comp_maskl[2][(t0 >> 7) & 0x7f] + | comp_maskl[3][t0 & 0x7f] + | comp_maskl[4][(t1 >> 21) & 0x7f] + | comp_maskl[5][(t1 >> 14) & 0x7f] + | comp_maskl[6][(t1 >> 7) & 0x7f] + | comp_maskl[7][t1 & 0x7f]; + + de_keysr[15 - round] = + en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] + | comp_maskr[1][(t0 >> 14) & 0x7f] + | comp_maskr[2][(t0 >> 7) & 0x7f] + | comp_maskr[3][t0 & 0x7f] + | comp_maskr[4][(t1 >> 21) & 0x7f] + | comp_maskr[5][(t1 >> 14) & 0x7f] + | comp_maskr[6][(t1 >> 7) & 0x7f] + | comp_maskr[7][t1 & 0x7f]; + } + return(0); +} + +static int +do_des(l_in, r_in, l_out, r_out, count) + u_int32_t l_in, r_in, *l_out, *r_out; + int count; +{ + /* + * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. + */ + u_int32_t mask, rawl, rawr, l, r, *kl, *kr, *kl1, *kr1; + u_int32_t f, r48l, r48r; + int i, j, b, round; + + if (count == 0) { + return(1); + } else if (count > 0) { + /* + * Encrypting + */ + kl1 = en_keysl; + kr1 = en_keysr; + } else { + /* + * Decrypting + */ + count = -count; + kl1 = de_keysl; + kr1 = de_keysr; + } + + /* + * Do initial permutation (IP). + */ + l = ip_maskl[0][l_in >> 24] + | ip_maskl[1][(l_in >> 16) & 0xff] + | ip_maskl[2][(l_in >> 8) & 0xff] + | ip_maskl[3][l_in & 0xff] + | ip_maskl[4][r_in >> 24] + | ip_maskl[5][(r_in >> 16) & 0xff] + | ip_maskl[6][(r_in >> 8) & 0xff] + | ip_maskl[7][r_in & 0xff]; + r = ip_maskr[0][l_in >> 24] + | ip_maskr[1][(l_in >> 16) & 0xff] + | ip_maskr[2][(l_in >> 8) & 0xff] + | ip_maskr[3][l_in & 0xff] + | ip_maskr[4][r_in >> 24] + | ip_maskr[5][(r_in >> 16) & 0xff] + | ip_maskr[6][(r_in >> 8) & 0xff] + | ip_maskr[7][r_in & 0xff]; + + while (count--) { + /* + * Do each round. + */ + kl = kl1; + kr = kr1; + round = 16; + while (round--) { + /* + * Expand R to 48 bits (simulate the E-box). + */ + r48l = ((r & 0x00000001) << 23) + | ((r & 0xf8000000) >> 9) + | ((r & 0x1f800000) >> 11) + | ((r & 0x01f80000) >> 13) + | ((r & 0x001f8000) >> 15); + + r48r = ((r & 0x0001f800) << 7) + | ((r & 0x00001f80) << 5) + | ((r & 0x000001f8) << 3) + | ((r & 0x0000001f) << 1) + | ((r & 0x80000000) >> 31); + /* + * Do salting for crypt() and friends, and + * XOR with the permuted key. + */ + f = (r48l ^ r48r) & saltbits; + r48l ^= f ^ *kl++; + r48r ^= f ^ *kr++; + /* + * Do sbox lookups (which shrink it back to 32 bits) + * and do the pbox permutation at the same time. + */ + f = psbox[0][m_sbox[0][r48l >> 12]] + | psbox[1][m_sbox[1][r48l & 0xfff]] + | psbox[2][m_sbox[2][r48r >> 12]] + | psbox[3][m_sbox[3][r48r & 0xfff]]; + /* + * Now that we've permuted things, complete f(). + */ + f ^= l; + l = r; + r = f; + } + r = l; + l = f; + } + /* + * Do final permutation (inverse of IP). + */ + *l_out = fp_maskl[0][l >> 24] + | fp_maskl[1][(l >> 16) & 0xff] + | fp_maskl[2][(l >> 8) & 0xff] + | fp_maskl[3][l & 0xff] + | fp_maskl[4][r >> 24] + | fp_maskl[5][(r >> 16) & 0xff] + | fp_maskl[6][(r >> 8) & 0xff] + | fp_maskl[7][r & 0xff]; + *r_out = fp_maskr[0][l >> 24] + | fp_maskr[1][(l >> 16) & 0xff] + | fp_maskr[2][(l >> 8) & 0xff] + | fp_maskr[3][l & 0xff] + | fp_maskr[4][r >> 24] + | fp_maskr[5][(r >> 16) & 0xff] + | fp_maskr[6][(r >> 8) & 0xff] + | fp_maskr[7][r & 0xff]; + return(0); +} + +static int +des_cipher(in, out, salt, count) + const char *in; + char *out; + int32_t salt; + int count; +{ + u_int32_t l_out, r_out, rawl, rawr; + u_int32_t x[2]; + int retval; + + if (!des_initialised) + des_init(); + + setup_salt(salt); + +#if 0 + rawl = ntohl(*((u_int32_t *) in)++); + rawr = ntohl(*((u_int32_t *) in)); +#else + memcpy(x, in, sizeof x); + rawl = ntohl(x[0]); + rawr = ntohl(x[1]); +#endif + retval = do_des(rawl, rawr, &l_out, &r_out, count); + +#if 0 + *((u_int32_t *) out)++ = htonl(l_out); + *((u_int32_t *) out) = htonl(r_out); +#else + x[0] = htonl(l_out); + x[1] = htonl(r_out); + memcpy(out, x, sizeof x); +#endif + return(retval); +} + +char * +crypt(key, setting) + char *key; + char *setting; +{ + int i; + u_int32_t count, salt, l, r0, r1, keybuf[2]; + u_char *p, *q; + static u_char output[21]; + + if (!des_initialised) + des_init(); + + + /* + * Copy the key, shifting each character up by one bit + * and padding with zeros. + */ + q = (u_char *) keybuf; + while (q - (u_char *) keybuf - 8) { + if (*q++ = *key << 1) + key++; + } + if (des_setkey((u_char *) keybuf)) + return(NULL); + + if (*setting == _PASSWORD_EFMT1) { + /* + * "new"-style: + * setting - underscore, 4 bytes of count, 4 bytes of salt + * key - unlimited characters + */ + for (i = 1, count = 0; i < 5; i++) + count |= ascii_to_bin(setting[i]) << (i - 1) * 6; + + for (i = 5, salt = 0; i < 9; i++) + salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; + + while (*key) { + /* + * Encrypt the key with itself. + */ + if (des_cipher((u_char*)keybuf, (u_char*)keybuf, 0, 1)) + return(NULL); + /* + * And XOR with the next 8 characters of the key. + */ + q = (u_char *) keybuf; + while (q - (u_char *) keybuf - 8 && *key) + *q++ ^= *key++ << 1; + + if (des_setkey((u_char *) keybuf)) + return(NULL); + } + strncpy(output, setting, 9); + + /* + * Double check that we weren't given a short setting. + * If we were, the above code will probably have created + * wierd values for count and salt, but we don't really care. + * Just make sure the output string doesn't have an extra + * NUL in it. + */ + output[9] = '\0'; + p = output + strlen(output); + } else { + /* + * "old"-style: + * setting - 2 bytes of salt + * key - up to 8 characters + */ + count = 25; + + salt = (ascii_to_bin(setting[1]) << 6) + | ascii_to_bin(setting[0]); + + output[0] = setting[0]; + /* + * If the encrypted password that the salt was extracted from + * is only 1 character long, the salt will be corrupted. We + * need to ensure that the output string doesn't have an extra + * NUL in it! + */ + output[1] = setting[1] ? setting[1] : output[0]; + + p = output + 2; + } + setup_salt(salt); + /* + * Do it. + */ + if (do_des(0, 0, &r0, &r1, count)) + return(NULL); + /* + * Now encode the result... + */ + l = (r0 >> 8); + *p++ = ascii64[(l >> 18) & 0x3f]; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + + l = (r0 << 16) | ((r1 >> 16) & 0xffff); + *p++ = ascii64[(l >> 18) & 0x3f]; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + + l = r1 << 2; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + *p = 0; + + return(output); +} |