summaryrefslogtreecommitdiff
path: root/lib/libc/crypt/crypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libc/crypt/crypt.c')
-rw-r--r--lib/libc/crypt/crypt.c715
1 files changed, 715 insertions, 0 deletions
diff --git a/lib/libc/crypt/crypt.c b/lib/libc/crypt/crypt.c
new file mode 100644
index 00000000000..28add7f9e21
--- /dev/null
+++ b/lib/libc/crypt/crypt.c
@@ -0,0 +1,715 @@
+/* $Id: crypt.c,v 1.1 1995/12/16 12:55:30 deraadt Exp $ */
+
+/*
+ * FreeSec: libcrypt
+ *
+ * Copyright (c) 1994 David Burren
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 4. Neither the name of the author nor the names of other contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ *
+ * This is an original implementation of the DES and the crypt(3) interfaces
+ * by David Burren <davidb@werj.com.au>.
+ *
+ * An excellent reference on the underlying algorithm (and related
+ * algorithms) is:
+ *
+ * B. Schneier, Applied Cryptography: protocols, algorithms,
+ * and source code in C, John Wiley & Sons, 1994.
+ *
+ * Note that in that book's description of DES the lookups for the initial,
+ * pbox, and final permutations are inverted (this has been brought to the
+ * attention of the author). A list of errata for this book has been
+ * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ *
+ * ARCHITECTURE ASSUMPTIONS:
+ * This code assumes that u_longs are 32 bits. It will probably not
+ * operate on 64-bit machines without modifications.
+ * It is assumed that the 8-byte arrays passed by reference can be
+ * addressed as arrays of u_longs (ie. the CPU is not picky about
+ * alignment).
+ *
+ * NOTE:
+ * This file has a static version of des_setkey() so that crypt.o exports
+ * only the crypt() interface. This is required to make binaries linked
+ * against crypt.o exportable or re-exportable from the USA.
+ */
+#include <sys/types.h>
+#include <sys/param.h>
+#include <pwd.h>
+
+#ifdef DEBUG
+# include <stdio.h>
+#endif
+
+static u_char IP[64] = {
+ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+static u_char inv_key_perm[64];
+static u_char u_key_perm[56];
+static u_char key_perm[56] = {
+ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+};
+
+static u_char key_shifts[16] = {
+ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+};
+
+static u_char inv_comp_perm[56];
+static u_char comp_perm[48] = {
+ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+};
+
+/*
+ * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ */
+
+static u_char u_sbox[8][64];
+static u_char sbox[8][64] = {
+ {
+ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ },
+ {
+ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ },
+ {
+ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ },
+ {
+ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ },
+ {
+ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ },
+ {
+ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ },
+ {
+ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ },
+ {
+ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ }
+};
+
+static u_char un_pbox[32];
+static u_char pbox[32] = {
+ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+};
+
+static u_int32_t bits32[32] =
+{
+ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ 0x00000008, 0x00000004, 0x00000002, 0x00000001
+};
+
+static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
+
+static u_int32_t saltbits;
+static int32_t old_salt;
+static u_int32_t *bits28, *bits24;
+static u_char init_perm[64], final_perm[64];
+static u_int32_t en_keysl[16], en_keysr[16];
+static u_int32_t de_keysl[16], de_keysr[16];
+static int des_initialised = 0;
+static u_char m_sbox[4][4096];
+static u_int32_t psbox[4][256];
+static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
+static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
+static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
+static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
+static u_int32_t old_rawkey0, old_rawkey1;
+
+static u_char ascii64[] =
+ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+/* 0000000000111111111122222222223333333333444444444455555555556666 */
+/* 0123456789012345678901234567890123456789012345678901234567890123 */
+
+static inline int
+ascii_to_bin(ch)
+ char ch;
+{
+ if (ch > 'z')
+ return(0);
+ if (ch >= 'a')
+ return(ch - 'a' + 38);
+ if (ch > 'Z')
+ return(0);
+ if (ch >= 'A')
+ return(ch - 'A' + 12);
+ if (ch > '9')
+ return(0);
+ if (ch >= '.')
+ return(ch - '.');
+ return(0);
+}
+
+static void
+des_init()
+{
+ int i, j, b, k, inbit, obit;
+ u_int32_t *p, *il, *ir, *fl, *fr;
+
+ old_rawkey0 = old_rawkey1 = 0;
+ saltbits = 0;
+ old_salt = 0;
+ bits24 = (bits28 = bits32 + 4) + 4;
+
+ /*
+ * Invert the S-boxes, reordering the input bits.
+ */
+ for (i = 0; i < 8; i++)
+ for (j = 0; j < 64; j++) {
+ b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ u_sbox[i][j] = sbox[i][b];
+ }
+
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ * Each will handle 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ m_sbox[b][(i << 6) | j] =
+ (u_sbox[(b << 1)][i] << 4) |
+ u_sbox[(b << 1) + 1][j];
+
+ /*
+ * Set up the initial & final permutations into a useful form, and
+ * initialise the inverted key permutation.
+ */
+ for (i = 0; i < 64; i++) {
+ init_perm[final_perm[i] = IP[i] - 1] = i;
+ inv_key_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key permutation and initialise the inverted key
+ * compression permutation.
+ */
+ for (i = 0; i < 56; i++) {
+ u_key_perm[i] = key_perm[i] - 1;
+ inv_key_perm[key_perm[i] - 1] = i;
+ inv_comp_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key compression permutation.
+ */
+ for (i = 0; i < 48; i++) {
+ inv_comp_perm[comp_perm[i] - 1] = i;
+ }
+
+ /*
+ * Set up the OR-mask arrays for the initial and final permutations,
+ * and for the key initial and compression permutations.
+ */
+ for (k = 0; k < 8; k++) {
+ for (i = 0; i < 256; i++) {
+ *(il = &ip_maskl[k][i]) = 0;
+ *(ir = &ip_maskr[k][i]) = 0;
+ *(fl = &fp_maskl[k][i]) = 0;
+ *(fr = &fp_maskr[k][i]) = 0;
+ for (j = 0; j < 8; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j]) {
+ if ((obit = init_perm[inbit]) < 32)
+ *il |= bits32[obit];
+ else
+ *ir |= bits32[obit-32];
+ if ((obit = final_perm[inbit]) < 32)
+ *fl |= bits32[obit];
+ else
+ *fr |= bits32[obit - 32];
+ }
+ }
+ }
+ for (i = 0; i < 128; i++) {
+ *(il = &key_perm_maskl[k][i]) = 0;
+ *(ir = &key_perm_maskr[k][i]) = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j + 1]) {
+ if ((obit = inv_key_perm[inbit]) == 255)
+ continue;
+ if (obit < 28)
+ *il |= bits28[obit];
+ else
+ *ir |= bits28[obit - 28];
+ }
+ }
+ *(il = &comp_maskl[k][i]) = 0;
+ *(ir = &comp_maskr[k][i]) = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 7 * k + j;
+ if (i & bits8[j + 1]) {
+ if ((obit=inv_comp_perm[inbit]) == 255)
+ continue;
+ if (obit < 24)
+ *il |= bits24[obit];
+ else
+ *ir |= bits24[obit - 24];
+ }
+ }
+ }
+ }
+
+ /*
+ * Invert the P-box permutation, and convert into OR-masks for
+ * handling the output of the S-box arrays setup above.
+ */
+ for (i = 0; i < 32; i++)
+ un_pbox[pbox[i] - 1] = i;
+
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 256; i++) {
+ *(p = &psbox[b][i]) = 0;
+ for (j = 0; j < 8; j++) {
+ if (i & bits8[j])
+ *p |= bits32[un_pbox[8 * b + j]];
+ }
+ }
+
+ des_initialised = 1;
+}
+
+static void
+setup_salt(salt)
+ int32_t salt;
+{
+ u_int32_t obit, saltbit;
+ int i;
+
+ if (salt == old_salt)
+ return;
+ old_salt = salt;
+
+ saltbits = 0;
+ saltbit = 1;
+ obit = 0x800000;
+ for (i = 0; i < 24; i++) {
+ if (salt & saltbit)
+ saltbits |= obit;
+ saltbit <<= 1;
+ obit >>= 1;
+ }
+}
+
+static int
+des_setkey(key)
+ const char *key;
+{
+ u_int32_t k0, k1, rawkey0, rawkey1;
+ int shifts, i, b, round;
+
+ if (!des_initialised)
+ des_init();
+
+ rawkey0 = ntohl(*(u_int32_t *) key);
+ rawkey1 = ntohl(*(u_int32_t *) (key + 4));
+
+ if ((rawkey0 | rawkey1)
+ && rawkey0 == old_rawkey0
+ && rawkey1 == old_rawkey1) {
+ /*
+ * Already setup for this key.
+ * This optimisation fails on a zero key (which is weak and
+ * has bad parity anyway) in order to simplify the starting
+ * conditions.
+ */
+ return(0);
+ }
+ old_rawkey0 = rawkey0;
+ old_rawkey1 = rawkey1;
+
+ /*
+ * Do key permutation and split into two 28-bit subkeys.
+ */
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskl[4][rawkey1 >> 25]
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskr[4][rawkey1 >> 25]
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+ /*
+ * Rotate subkeys and do compression permutation.
+ */
+ shifts = 0;
+ for (round = 0; round < 16; round++) {
+ u_int32_t t0, t1;
+ int bit;
+
+ shifts += key_shifts[round];
+
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+
+ de_keysl[15 - round] =
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
+ | comp_maskl[3][t0 & 0x7f]
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
+ | comp_maskl[7][t1 & 0x7f];
+
+ de_keysr[15 - round] =
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
+ | comp_maskr[3][t0 & 0x7f]
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
+ | comp_maskr[7][t1 & 0x7f];
+ }
+ return(0);
+}
+
+static int
+do_des(l_in, r_in, l_out, r_out, count)
+ u_int32_t l_in, r_in, *l_out, *r_out;
+ int count;
+{
+ /*
+ * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
+ */
+ u_int32_t mask, rawl, rawr, l, r, *kl, *kr, *kl1, *kr1;
+ u_int32_t f, r48l, r48r;
+ int i, j, b, round;
+
+ if (count == 0) {
+ return(1);
+ } else if (count > 0) {
+ /*
+ * Encrypting
+ */
+ kl1 = en_keysl;
+ kr1 = en_keysr;
+ } else {
+ /*
+ * Decrypting
+ */
+ count = -count;
+ kl1 = de_keysl;
+ kr1 = de_keysr;
+ }
+
+ /*
+ * Do initial permutation (IP).
+ */
+ l = ip_maskl[0][l_in >> 24]
+ | ip_maskl[1][(l_in >> 16) & 0xff]
+ | ip_maskl[2][(l_in >> 8) & 0xff]
+ | ip_maskl[3][l_in & 0xff]
+ | ip_maskl[4][r_in >> 24]
+ | ip_maskl[5][(r_in >> 16) & 0xff]
+ | ip_maskl[6][(r_in >> 8) & 0xff]
+ | ip_maskl[7][r_in & 0xff];
+ r = ip_maskr[0][l_in >> 24]
+ | ip_maskr[1][(l_in >> 16) & 0xff]
+ | ip_maskr[2][(l_in >> 8) & 0xff]
+ | ip_maskr[3][l_in & 0xff]
+ | ip_maskr[4][r_in >> 24]
+ | ip_maskr[5][(r_in >> 16) & 0xff]
+ | ip_maskr[6][(r_in >> 8) & 0xff]
+ | ip_maskr[7][r_in & 0xff];
+
+ while (count--) {
+ /*
+ * Do each round.
+ */
+ kl = kl1;
+ kr = kr1;
+ round = 16;
+ while (round--) {
+ /*
+ * Expand R to 48 bits (simulate the E-box).
+ */
+ r48l = ((r & 0x00000001) << 23)
+ | ((r & 0xf8000000) >> 9)
+ | ((r & 0x1f800000) >> 11)
+ | ((r & 0x01f80000) >> 13)
+ | ((r & 0x001f8000) >> 15);
+
+ r48r = ((r & 0x0001f800) << 7)
+ | ((r & 0x00001f80) << 5)
+ | ((r & 0x000001f8) << 3)
+ | ((r & 0x0000001f) << 1)
+ | ((r & 0x80000000) >> 31);
+ /*
+ * Do salting for crypt() and friends, and
+ * XOR with the permuted key.
+ */
+ f = (r48l ^ r48r) & saltbits;
+ r48l ^= f ^ *kl++;
+ r48r ^= f ^ *kr++;
+ /*
+ * Do sbox lookups (which shrink it back to 32 bits)
+ * and do the pbox permutation at the same time.
+ */
+ f = psbox[0][m_sbox[0][r48l >> 12]]
+ | psbox[1][m_sbox[1][r48l & 0xfff]]
+ | psbox[2][m_sbox[2][r48r >> 12]]
+ | psbox[3][m_sbox[3][r48r & 0xfff]];
+ /*
+ * Now that we've permuted things, complete f().
+ */
+ f ^= l;
+ l = r;
+ r = f;
+ }
+ r = l;
+ l = f;
+ }
+ /*
+ * Do final permutation (inverse of IP).
+ */
+ *l_out = fp_maskl[0][l >> 24]
+ | fp_maskl[1][(l >> 16) & 0xff]
+ | fp_maskl[2][(l >> 8) & 0xff]
+ | fp_maskl[3][l & 0xff]
+ | fp_maskl[4][r >> 24]
+ | fp_maskl[5][(r >> 16) & 0xff]
+ | fp_maskl[6][(r >> 8) & 0xff]
+ | fp_maskl[7][r & 0xff];
+ *r_out = fp_maskr[0][l >> 24]
+ | fp_maskr[1][(l >> 16) & 0xff]
+ | fp_maskr[2][(l >> 8) & 0xff]
+ | fp_maskr[3][l & 0xff]
+ | fp_maskr[4][r >> 24]
+ | fp_maskr[5][(r >> 16) & 0xff]
+ | fp_maskr[6][(r >> 8) & 0xff]
+ | fp_maskr[7][r & 0xff];
+ return(0);
+}
+
+static int
+des_cipher(in, out, salt, count)
+ const char *in;
+ char *out;
+ int32_t salt;
+ int count;
+{
+ u_int32_t l_out, r_out, rawl, rawr;
+ u_int32_t x[2];
+ int retval;
+
+ if (!des_initialised)
+ des_init();
+
+ setup_salt(salt);
+
+#if 0
+ rawl = ntohl(*((u_int32_t *) in)++);
+ rawr = ntohl(*((u_int32_t *) in));
+#else
+ memcpy(x, in, sizeof x);
+ rawl = ntohl(x[0]);
+ rawr = ntohl(x[1]);
+#endif
+ retval = do_des(rawl, rawr, &l_out, &r_out, count);
+
+#if 0
+ *((u_int32_t *) out)++ = htonl(l_out);
+ *((u_int32_t *) out) = htonl(r_out);
+#else
+ x[0] = htonl(l_out);
+ x[1] = htonl(r_out);
+ memcpy(out, x, sizeof x);
+#endif
+ return(retval);
+}
+
+char *
+crypt(key, setting)
+ char *key;
+ char *setting;
+{
+ int i;
+ u_int32_t count, salt, l, r0, r1, keybuf[2];
+ u_char *p, *q;
+ static u_char output[21];
+
+ if (!des_initialised)
+ des_init();
+
+
+ /*
+ * Copy the key, shifting each character up by one bit
+ * and padding with zeros.
+ */
+ q = (u_char *) keybuf;
+ while (q - (u_char *) keybuf - 8) {
+ if (*q++ = *key << 1)
+ key++;
+ }
+ if (des_setkey((u_char *) keybuf))
+ return(NULL);
+
+ if (*setting == _PASSWORD_EFMT1) {
+ /*
+ * "new"-style:
+ * setting - underscore, 4 bytes of count, 4 bytes of salt
+ * key - unlimited characters
+ */
+ for (i = 1, count = 0; i < 5; i++)
+ count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
+
+ for (i = 5, salt = 0; i < 9; i++)
+ salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
+
+ while (*key) {
+ /*
+ * Encrypt the key with itself.
+ */
+ if (des_cipher((u_char*)keybuf, (u_char*)keybuf, 0, 1))
+ return(NULL);
+ /*
+ * And XOR with the next 8 characters of the key.
+ */
+ q = (u_char *) keybuf;
+ while (q - (u_char *) keybuf - 8 && *key)
+ *q++ ^= *key++ << 1;
+
+ if (des_setkey((u_char *) keybuf))
+ return(NULL);
+ }
+ strncpy(output, setting, 9);
+
+ /*
+ * Double check that we weren't given a short setting.
+ * If we were, the above code will probably have created
+ * wierd values for count and salt, but we don't really care.
+ * Just make sure the output string doesn't have an extra
+ * NUL in it.
+ */
+ output[9] = '\0';
+ p = output + strlen(output);
+ } else {
+ /*
+ * "old"-style:
+ * setting - 2 bytes of salt
+ * key - up to 8 characters
+ */
+ count = 25;
+
+ salt = (ascii_to_bin(setting[1]) << 6)
+ | ascii_to_bin(setting[0]);
+
+ output[0] = setting[0];
+ /*
+ * If the encrypted password that the salt was extracted from
+ * is only 1 character long, the salt will be corrupted. We
+ * need to ensure that the output string doesn't have an extra
+ * NUL in it!
+ */
+ output[1] = setting[1] ? setting[1] : output[0];
+
+ p = output + 2;
+ }
+ setup_salt(salt);
+ /*
+ * Do it.
+ */
+ if (do_des(0, 0, &r0, &r1, count))
+ return(NULL);
+ /*
+ * Now encode the result...
+ */
+ l = (r0 >> 8);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = (r0 << 16) | ((r1 >> 16) & 0xffff);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = r1 << 2;
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+ *p = 0;
+
+ return(output);
+}