summaryrefslogtreecommitdiff
path: root/lib/libcrypto/bn/bn_gcd.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libcrypto/bn/bn_gcd.c')
-rw-r--r--lib/libcrypto/bn/bn_gcd.c570
1 files changed, 296 insertions, 274 deletions
diff --git a/lib/libcrypto/bn/bn_gcd.c b/lib/libcrypto/bn/bn_gcd.c
index a808f53178f..18f2812368c 100644
--- a/lib/libcrypto/bn/bn_gcd.c
+++ b/lib/libcrypto/bn/bn_gcd.c
@@ -5,21 +5,21 @@
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
- *
+ *
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
+ *
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
- *
+ *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@@ -34,10 +34,10 @@
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
+ * 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
+ *
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
@@ -49,7 +49,7 @@
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
- *
+ *
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
@@ -63,7 +63,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -114,10 +114,11 @@
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
-int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
- {
- BIGNUM *a,*b,*t;
- int ret=0;
+int
+BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
+{
+ BIGNUM *a, *b, *t;
+ int ret = 0;
bn_check_top(in_a);
bn_check_top(in_b);
@@ -125,98 +126,121 @@ int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
- if (a == NULL || b == NULL) goto err;
+ if (a == NULL || b == NULL)
+ goto err;
- if (BN_copy(a,in_a) == NULL) goto err;
- if (BN_copy(b,in_b) == NULL) goto err;
+ if (BN_copy(a, in_a) == NULL)
+ goto err;
+ if (BN_copy(b, in_b) == NULL)
+ goto err;
a->neg = 0;
b->neg = 0;
- if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
- t=euclid(a,b);
- if (t == NULL) goto err;
+ if (BN_cmp(a, b) < 0) {
+ t = a;
+ a = b;
+ b = t;
+ }
+ t = euclid(a, b);
+ if (t == NULL)
+ goto err;
+
+ if (BN_copy(r, t) == NULL)
+ goto err;
+ ret = 1;
- if (BN_copy(r,t) == NULL) goto err;
- ret=1;
err:
BN_CTX_end(ctx);
bn_check_top(r);
- return(ret);
- }
+ return (ret);
+}
-static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
- {
+static BIGNUM *
+euclid(BIGNUM *a, BIGNUM *b)
+{
BIGNUM *t;
- int shifts=0;
+ int shifts = 0;
bn_check_top(a);
bn_check_top(b);
/* 0 <= b <= a */
- while (!BN_is_zero(b))
- {
+ while (!BN_is_zero(b)) {
/* 0 < b <= a */
- if (BN_is_odd(a))
- {
- if (BN_is_odd(b))
- {
- if (!BN_sub(a,a,b)) goto err;
- if (!BN_rshift1(a,a)) goto err;
- if (BN_cmp(a,b) < 0)
- { t=a; a=b; b=t; }
+ if (BN_is_odd(a)) {
+ if (BN_is_odd(b)) {
+ if (!BN_sub(a, a, b))
+ goto err;
+ if (!BN_rshift1(a, a))
+ goto err;
+ if (BN_cmp(a, b) < 0) {
+ t = a;
+ a = b;
+ b = t;
}
+ }
else /* a odd - b even */
- {
- if (!BN_rshift1(b,b)) goto err;
- if (BN_cmp(a,b) < 0)
- { t=a; a=b; b=t; }
+ {
+ if (!BN_rshift1(b, b))
+ goto err;
+ if (BN_cmp(a, b) < 0) {
+ t = a;
+ a = b;
+ b = t;
}
}
+ }
else /* a is even */
- {
- if (BN_is_odd(b))
- {
- if (!BN_rshift1(a,a)) goto err;
- if (BN_cmp(a,b) < 0)
- { t=a; a=b; b=t; }
+ {
+ if (BN_is_odd(b)) {
+ if (!BN_rshift1(a, a))
+ goto err;
+ if (BN_cmp(a, b) < 0) {
+ t = a;
+ a = b;
+ b = t;
}
+ }
else /* a even - b even */
- {
- if (!BN_rshift1(a,a)) goto err;
- if (!BN_rshift1(b,b)) goto err;
+ {
+ if (!BN_rshift1(a, a))
+ goto err;
+ if (!BN_rshift1(b, b))
+ goto err;
shifts++;
- }
}
- /* 0 <= b <= a */
}
+ /* 0 <= b <= a */
+ }
- if (shifts)
- {
- if (!BN_lshift(a,a,shifts)) goto err;
- }
+ if (shifts) {
+ if (!BN_lshift(a, a, shifts))
+ goto err;
+ }
bn_check_top(a);
- return(a);
+ return (a);
+
err:
- return(NULL);
- }
+ return (NULL);
+}
/* solves ax == 1 (mod n) */
-static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
-
-BIGNUM *BN_mod_inverse(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
- {
- BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
- BIGNUM *ret=NULL;
+static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a,
+ const BIGNUM *n, BN_CTX *ctx);
+
+BIGNUM *
+BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
+{
+ BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
+ BIGNUM *ret = NULL;
int sign;
- if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
- {
+ if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) ||
+ (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
return BN_mod_inverse_no_branch(in, a, n, ctx);
- }
+ }
bn_check_top(a);
bn_check_top(n);
@@ -229,23 +253,27 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
M = BN_CTX_get(ctx);
Y = BN_CTX_get(ctx);
T = BN_CTX_get(ctx);
- if (T == NULL) goto err;
+ if (T == NULL)
+ goto err;
if (in == NULL)
- R=BN_new();
+ R = BN_new();
else
- R=in;
- if (R == NULL) goto err;
+ R = in;
+ if (R == NULL)
+ goto err;
BN_one(X);
BN_zero(Y);
- if (BN_copy(B,a) == NULL) goto err;
- if (BN_copy(A,n) == NULL) goto err;
+ if (BN_copy(B, a) == NULL)
+ goto err;
+ if (BN_copy(A, n) == NULL)
+ goto err;
A->neg = 0;
- if (B->neg || (BN_ucmp(B, A) >= 0))
- {
- if (!BN_nnmod(B, B, A, ctx)) goto err;
- }
+ if (B->neg || (BN_ucmp(B, A) >= 0)) {
+ if (!BN_nnmod(B, B, A, ctx))
+ goto err;
+ }
sign = -1;
/* From B = a mod |n|, A = |n| it follows that
*
@@ -254,16 +282,14 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
* sign*Y*a == A (mod |n|).
*/
- if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
- {
+ if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
/* Binary inversion algorithm; requires odd modulus.
* This is faster than the general algorithm if the modulus
* is sufficiently small (about 400 .. 500 bits on 32-bit
* sytems, but much more on 64-bit systems) */
int shift;
-
- while (!BN_is_zero(B))
- {
+
+ while (!BN_is_zero(B)) {
/*
* 0 < B < |n|,
* 0 < A <= |n|,
@@ -276,41 +302,43 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
* When we're done, (1) still holds. */
shift = 0;
while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
- {
+ {
shift++;
-
- if (BN_is_odd(X))
- {
- if (!BN_uadd(X, X, n)) goto err;
- }
- /* now X is even, so we can easily divide it by two */
- if (!BN_rshift1(X, X)) goto err;
- }
- if (shift > 0)
- {
- if (!BN_rshift(B, B, shift)) goto err;
+
+ if (BN_is_odd(X)) {
+ if (!BN_uadd(X, X, n))
+ goto err;
}
+ /* now X is even, so we can easily divide it by two */
+ if (!BN_rshift1(X, X))
+ goto err;
+ }
+ if (shift > 0) {
+ if (!BN_rshift(B, B, shift))
+ goto err;
+ }
/* Same for A and Y. Afterwards, (2) still holds. */
shift = 0;
while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
- {
+ {
shift++;
-
- if (BN_is_odd(Y))
- {
- if (!BN_uadd(Y, Y, n)) goto err;
- }
- /* now Y is even */
- if (!BN_rshift1(Y, Y)) goto err;
- }
- if (shift > 0)
- {
- if (!BN_rshift(A, A, shift)) goto err;
+
+ if (BN_is_odd(Y)) {
+ if (!BN_uadd(Y, Y, n))
+ goto err;
}
+ /* now Y is even */
+ if (!BN_rshift1(Y, Y))
+ goto err;
+ }
+ if (shift > 0) {
+ if (!BN_rshift(A, A, shift))
+ goto err;
+ }
+
-
/* We still have (1) and (2).
* Both A and B are odd.
* The following computations ensure that
@@ -322,91 +350,87 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
*
* and that either A or B is even in the next iteration.
*/
- if (BN_ucmp(B, A) >= 0)
- {
+ if (BN_ucmp(B, A) >= 0) {
/* -sign*(X + Y)*a == B - A (mod |n|) */
- if (!BN_uadd(X, X, Y)) goto err;
+ if (!BN_uadd(X, X, Y))
+ goto err;
/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
* actually makes the algorithm slower */
- if (!BN_usub(B, B, A)) goto err;
- }
- else
- {
+ if (!BN_usub(B, B, A))
+ goto err;
+ } else {
/* sign*(X + Y)*a == A - B (mod |n|) */
- if (!BN_uadd(Y, Y, X)) goto err;
+ if (!BN_uadd(Y, Y, X))
+ goto err;
/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
- if (!BN_usub(A, A, B)) goto err;
- }
+ if (!BN_usub(A, A, B))
+ goto err;
}
}
- else
- {
+ } else {
/* general inversion algorithm */
- while (!BN_is_zero(B))
- {
+ while (!BN_is_zero(B)) {
BIGNUM *tmp;
-
+
/*
* 0 < B < A,
* (*) -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|)
*/
-
+
/* (D, M) := (A/B, A%B) ... */
- if (BN_num_bits(A) == BN_num_bits(B))
- {
- if (!BN_one(D)) goto err;
- if (!BN_sub(M,A,B)) goto err;
- }
- else if (BN_num_bits(A) == BN_num_bits(B) + 1)
- {
+ if (BN_num_bits(A) == BN_num_bits(B)) {
+ if (!BN_one(D))
+ goto err;
+ if (!BN_sub(M, A, B))
+ goto err;
+ } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
/* A/B is 1, 2, or 3 */
- if (!BN_lshift1(T,B)) goto err;
- if (BN_ucmp(A,T) < 0)
- {
+ if (!BN_lshift1(T, B))
+ goto err;
+ if (BN_ucmp(A, T) < 0) {
/* A < 2*B, so D=1 */
- if (!BN_one(D)) goto err;
- if (!BN_sub(M,A,B)) goto err;
- }
- else
- {
+ if (!BN_one(D))
+ goto err;
+ if (!BN_sub(M, A, B))
+ goto err;
+ } else {
/* A >= 2*B, so D=2 or D=3 */
- if (!BN_sub(M,A,T)) goto err;
+ if (!BN_sub(M, A, T))
+ goto err;
if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
- if (BN_ucmp(A,D) < 0)
- {
+ if (BN_ucmp(A, D) < 0) {
/* A < 3*B, so D=2 */
- if (!BN_set_word(D,2)) goto err;
+ if (!BN_set_word(D, 2))
+ goto err;
/* M (= A - 2*B) already has the correct value */
- }
- else
- {
+ } else {
/* only D=3 remains */
- if (!BN_set_word(D,3)) goto err;
+ if (!BN_set_word(D, 3))
+ goto err;
/* currently M = A - 2*B, but we need M = A - 3*B */
- if (!BN_sub(M,M,B)) goto err;
- }
+ if (!BN_sub(M, M, B))
+ goto err;
}
}
- else
- {
- if (!BN_div(D,M,A,B,ctx)) goto err;
- }
-
+ } else {
+ if (!BN_div(D, M, A, B, ctx))
+ goto err;
+ }
+
/* Now
* A = D*B + M;
* thus we have
* (**) sign*Y*a == D*B + M (mod |n|).
*/
-
- tmp=A; /* keep the BIGNUM object, the value does not matter */
-
+ tmp = A; /* keep the BIGNUM object, the value does not matter */
+
/* (A, B) := (B, A mod B) ... */
- A=B;
- B=M;
+ A = B;
+ B = M;
/* ... so we have 0 <= B < A again */
-
+
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
@@ -425,41 +449,38 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
* sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
-
+
/* most of the time D is very small, so we can optimize tmp := D*X+Y */
- if (BN_is_one(D))
- {
- if (!BN_add(tmp,X,Y)) goto err;
- }
- else
- {
- if (BN_is_word(D,2))
- {
- if (!BN_lshift1(tmp,X)) goto err;
- }
- else if (BN_is_word(D,4))
- {
- if (!BN_lshift(tmp,X,2)) goto err;
- }
- else if (D->top == 1)
- {
- if (!BN_copy(tmp,X)) goto err;
- if (!BN_mul_word(tmp,D->d[0])) goto err;
- }
- else
- {
- if (!BN_mul(tmp,D,X,ctx)) goto err;
- }
- if (!BN_add(tmp,tmp,Y)) goto err;
+ if (BN_is_one(D)) {
+ if (!BN_add(tmp, X, Y))
+ goto err;
+ } else {
+ if (BN_is_word(D, 2)) {
+ if (!BN_lshift1(tmp, X))
+ goto err;
+ } else if (BN_is_word(D, 4)) {
+ if (!BN_lshift(tmp, X, 2))
+ goto err;
+ } else if (D->top == 1) {
+ if (!BN_copy(tmp, X))
+ goto err;
+ if (!BN_mul_word(tmp, D->d[0]))
+ goto err;
+ } else {
+ if (!BN_mul(tmp, D,X, ctx))
+ goto err;
}
-
- M=Y; /* keep the BIGNUM object, the value does not matter */
- Y=X;
- X=tmp;
- sign = -sign;
+ if (!BN_add(tmp, tmp, Y))
+ goto err;
}
+
+ M = Y; /* keep the BIGNUM object, the value does not matter */
+ Y = X;
+ X = tmp;
+ sign = -sign;
}
-
+ }
+
/*
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
@@ -468,49 +489,47 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
* where Y is non-negative.
*/
- if (sign < 0)
- {
- if (!BN_sub(Y,n,Y)) goto err;
- }
+ if (sign < 0) {
+ if (!BN_sub(Y, n, Y))
+ goto err;
+ }
/* Now Y*a == A (mod |n|). */
-
- if (BN_is_one(A))
- {
+ if (BN_is_one(A)) {
/* Y*a == 1 (mod |n|) */
- if (!Y->neg && BN_ucmp(Y,n) < 0)
- {
- if (!BN_copy(R,Y)) goto err;
- }
- else
- {
- if (!BN_nnmod(R,Y,n,ctx)) goto err;
- }
+ if (!Y->neg && BN_ucmp(Y, n) < 0) {
+ if (!BN_copy(R, Y))
+ goto err;
+ } else {
+ if (!BN_nnmod(R, Y,n, ctx))
+ goto err;
}
- else
- {
- BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
+ } else {
+ BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
goto err;
- }
- ret=R;
+ }
+ ret = R;
+
err:
- if ((ret == NULL) && (in == NULL)) BN_free(R);
+ if ((ret == NULL) && (in == NULL))
+ BN_free(R);
BN_CTX_end(ctx);
bn_check_top(ret);
- return(ret);
- }
+ return (ret);
+}
-/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
+/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
* It does not contain branches that may leak sensitive information.
*/
-static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
- {
- BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
+static BIGNUM *
+BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
+ BN_CTX *ctx)
+{
+ BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
BIGNUM local_A, local_B;
BIGNUM *pA, *pB;
- BIGNUM *ret=NULL;
+ BIGNUM *ret = NULL;
int sign;
bn_check_top(a);
@@ -524,29 +543,33 @@ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
M = BN_CTX_get(ctx);
Y = BN_CTX_get(ctx);
T = BN_CTX_get(ctx);
- if (T == NULL) goto err;
+ if (T == NULL)
+ goto err;
if (in == NULL)
- R=BN_new();
+ R = BN_new();
else
- R=in;
- if (R == NULL) goto err;
+ R = in;
+ if (R == NULL)
+ goto err;
BN_one(X);
BN_zero(Y);
- if (BN_copy(B,a) == NULL) goto err;
- if (BN_copy(A,n) == NULL) goto err;
+ if (BN_copy(B, a) == NULL)
+ goto err;
+ if (BN_copy(A, n) == NULL)
+ goto err;
A->neg = 0;
- if (B->neg || (BN_ucmp(B, A) >= 0))
- {
+ if (B->neg || (BN_ucmp(B, A) >= 0)) {
/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
* BN_div_no_branch will be called eventually.
*/
pB = &local_B;
- BN_with_flags(pB, B, BN_FLG_CONSTTIME);
- if (!BN_nnmod(B, pB, A, ctx)) goto err;
- }
+ BN_with_flags(pB, B, BN_FLG_CONSTTIME);
+ if (!BN_nnmod(B, pB, A, ctx))
+ goto err;
+ }
sign = -1;
/* From B = a mod |n|, A = |n| it follows that
*
@@ -555,10 +578,9 @@ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
* sign*Y*a == A (mod |n|).
*/
- while (!BN_is_zero(B))
- {
+ while (!BN_is_zero(B)) {
BIGNUM *tmp;
-
+
/*
* 0 < B < A,
* (*) -sign*X*a == B (mod |n|),
@@ -569,24 +591,24 @@ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
* BN_div_no_branch will be called eventually.
*/
pA = &local_A;
- BN_with_flags(pA, A, BN_FLG_CONSTTIME);
-
- /* (D, M) := (A/B, A%B) ... */
- if (!BN_div(D,M,pA,B,ctx)) goto err;
-
+ BN_with_flags(pA, A, BN_FLG_CONSTTIME);
+
+ /* (D, M) := (A/B, A%B) ... */
+ if (!BN_div(D, M, pA, B, ctx))
+ goto err;
+
/* Now
* A = D*B + M;
* thus we have
* (**) sign*Y*a == D*B + M (mod |n|).
*/
-
- tmp=A; /* keep the BIGNUM object, the value does not matter */
-
+ tmp = A; /* keep the BIGNUM object, the value does not matter */
+
/* (A, B) := (B, A mod B) ... */
- A=B;
- B=M;
+ A = B;
+ B = M;
/* ... so we have 0 <= B < A again */
-
+
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
@@ -605,16 +627,18 @@ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
* sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
-
- if (!BN_mul(tmp,D,X,ctx)) goto err;
- if (!BN_add(tmp,tmp,Y)) goto err;
- M=Y; /* keep the BIGNUM object, the value does not matter */
- Y=X;
- X=tmp;
+ if (!BN_mul(tmp, D, X, ctx))
+ goto err;
+ if (!BN_add(tmp, tmp, Y))
+ goto err;
+
+ M = Y; /* keep the BIGNUM object, the value does not matter */
+ Y = X;
+ X = tmp;
sign = -sign;
- }
-
+ }
+
/*
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
@@ -623,33 +647,31 @@ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
* where Y is non-negative.
*/
- if (sign < 0)
- {
- if (!BN_sub(Y,n,Y)) goto err;
- }
+ if (sign < 0) {
+ if (!BN_sub(Y, n, Y))
+ goto err;
+ }
/* Now Y*a == A (mod |n|). */
- if (BN_is_one(A))
- {
+ if (BN_is_one(A)) {
/* Y*a == 1 (mod |n|) */
- if (!Y->neg && BN_ucmp(Y,n) < 0)
- {
- if (!BN_copy(R,Y)) goto err;
- }
- else
- {
- if (!BN_nnmod(R,Y,n,ctx)) goto err;
- }
+ if (!Y->neg && BN_ucmp(Y, n) < 0) {
+ if (!BN_copy(R, Y))
+ goto err;
+ } else {
+ if (!BN_nnmod(R, Y, n, ctx))
+ goto err;
}
- else
- {
- BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
+ } else {
+ BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
goto err;
- }
- ret=R;
+ }
+ ret = R;
+
err:
- if ((ret == NULL) && (in == NULL)) BN_free(R);
+ if ((ret == NULL) && (in == NULL))
+ BN_free(R);
BN_CTX_end(ctx);
bn_check_top(ret);
- return(ret);
- }
+ return (ret);
+}