diff options
Diffstat (limited to 'lib/libcrypto/ec/ecp_methods.c')
-rw-r--r-- | lib/libcrypto/ec/ecp_methods.c | 1656 |
1 files changed, 1656 insertions, 0 deletions
diff --git a/lib/libcrypto/ec/ecp_methods.c b/lib/libcrypto/ec/ecp_methods.c new file mode 100644 index 00000000000..3dc7091850a --- /dev/null +++ b/lib/libcrypto/ec/ecp_methods.c @@ -0,0 +1,1656 @@ +/* $OpenBSD: ecp_methods.c,v 1.1 2024/11/12 10:25:16 tb Exp $ */ +/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> + * for the OpenSSL project. + * Includes code written by Bodo Moeller for the OpenSSL project. +*/ +/* ==================================================================== + * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * 3. All advertising materials mentioning features or use of this + * software must display the following acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" + * + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to + * endorse or promote products derived from this software without + * prior written permission. For written permission, please contact + * openssl-core@openssl.org. + * + * 5. Products derived from this software may not be called "OpenSSL" + * nor may "OpenSSL" appear in their names without prior written + * permission of the OpenSSL Project. + * + * 6. Redistributions of any form whatsoever must retain the following + * acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit (http://www.openssl.org/)" + * + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED + * OF THE POSSIBILITY OF SUCH DAMAGE. + * ==================================================================== + * + * This product includes cryptographic software written by Eric Young + * (eay@cryptsoft.com). This product includes software written by Tim + * Hudson (tjh@cryptsoft.com). + * + */ +/* ==================================================================== + * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. + * Portions of this software developed by SUN MICROSYSTEMS, INC., + * and contributed to the OpenSSL project. + */ + +#include <stdlib.h> + +#include <openssl/bn.h> +#include <openssl/ec.h> +#include <openssl/err.h> +#include <openssl/objects.h> + +#include "bn_local.h" +#include "ec_local.h" + +/* + * Most method functions in this file are designed to work with + * non-trivial representations of field elements if necessary + * (see ecp_mont.c): while standard modular addition and subtraction + * are used, the field_mul and field_sqr methods will be used for + * multiplication, and field_encode and field_decode (if defined) + * will be used for converting between representations. + * + * Functions ec_GFp_simple_points_make_affine() and + * ec_GFp_simple_point_get_affine_coordinates() specifically assume + * that if a non-trivial representation is used, it is a Montgomery + * representation (i.e. 'encoding' means multiplying by some factor R). + */ + +int +ec_GFp_simple_group_init(EC_GROUP *group) +{ + BN_init(&group->field); + BN_init(&group->a); + BN_init(&group->b); + group->a_is_minus3 = 0; + return 1; +} + +void +ec_GFp_simple_group_finish(EC_GROUP *group) +{ + BN_free(&group->field); + BN_free(&group->a); + BN_free(&group->b); +} + +int +ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) +{ + if (!bn_copy(&dest->field, &src->field)) + return 0; + if (!bn_copy(&dest->a, &src->a)) + return 0; + if (!bn_copy(&dest->b, &src->b)) + return 0; + + dest->a_is_minus3 = src->a_is_minus3; + + return 1; +} + +static int +ec_decode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) +{ + if (bn == NULL) + return 1; + + if (group->meth->field_decode != NULL) + return group->meth->field_decode(group, bn, x, ctx); + + return bn_copy(bn, x); +} + +static int +ec_encode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) +{ + if (!BN_nnmod(bn, x, &group->field, ctx)) + return 0; + + if (group->meth->field_encode != NULL) + return group->meth->field_encode(group, bn, bn, ctx); + + return 1; +} + +static int +ec_encode_z_coordinate(const EC_GROUP *group, BIGNUM *bn, int *is_one, + const BIGNUM *z, BN_CTX *ctx) +{ + if (!BN_nnmod(bn, z, &group->field, ctx)) + return 0; + + *is_one = BN_is_one(bn); + if (*is_one && group->meth->field_set_to_one != NULL) + return group->meth->field_set_to_one(group, bn, ctx); + + if (group->meth->field_encode != NULL) + return group->meth->field_encode(group, bn, bn, ctx); + + return 1; +} + +int +ec_GFp_simple_group_set_curve(EC_GROUP *group, + const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) +{ + BIGNUM *a_plus_3; + int ret = 0; + + /* p must be a prime > 3 */ + if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { + ECerror(EC_R_INVALID_FIELD); + return 0; + } + + BN_CTX_start(ctx); + + if ((a_plus_3 = BN_CTX_get(ctx)) == NULL) + goto err; + + if (!bn_copy(&group->field, p)) + goto err; + BN_set_negative(&group->field, 0); + + if (!ec_encode_scalar(group, &group->a, a, ctx)) + goto err; + if (!ec_encode_scalar(group, &group->b, b, ctx)) + goto err; + + if (!BN_set_word(a_plus_3, 3)) + goto err; + if (!BN_mod_add(a_plus_3, a_plus_3, a, &group->field, ctx)) + goto err; + + group->a_is_minus3 = BN_is_zero(a_plus_3); + + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, + BIGNUM *b, BN_CTX *ctx) +{ + if (p != NULL) { + if (!bn_copy(p, &group->field)) + return 0; + } + if (!ec_decode_scalar(group, a, &group->a, ctx)) + return 0; + if (!ec_decode_scalar(group, b, &group->b, ctx)) + return 0; + + return 1; +} + +int +ec_GFp_simple_group_get_degree(const EC_GROUP *group) +{ + return BN_num_bits(&group->field); +} + +int +ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) +{ + BIGNUM *p, *a, *b, *discriminant; + int ret = 0; + + BN_CTX_start(ctx); + + if ((p = BN_CTX_get(ctx)) == NULL) + goto err; + if ((a = BN_CTX_get(ctx)) == NULL) + goto err; + if ((b = BN_CTX_get(ctx)) == NULL) + goto err; + if ((discriminant = BN_CTX_get(ctx)) == NULL) + goto err; + + if (!EC_GROUP_get_curve(group, p, a, b, ctx)) + goto err; + + /* + * Check that the discriminant 4a^3 + 27b^2 is non-zero modulo p. + */ + + if (BN_is_zero(a) && BN_is_zero(b)) + goto err; + if (BN_is_zero(a) || BN_is_zero(b)) + goto done; + + /* Compute the discriminant: first 4a^3, then 27b^2, then their sum. */ + if (!BN_mod_sqr(discriminant, a, p, ctx)) + goto err; + if (!BN_mod_mul(discriminant, discriminant, a, p, ctx)) + goto err; + if (!BN_lshift(discriminant, discriminant, 2)) + goto err; + + if (!BN_mod_sqr(b, b, p, ctx)) + goto err; + if (!BN_mul_word(b, 27)) + goto err; + + if (!BN_mod_add(discriminant, discriminant, b, p, ctx)) + goto err; + + if (BN_is_zero(discriminant)) + goto err; + + done: + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_point_init(EC_POINT * point) +{ + BN_init(&point->X); + BN_init(&point->Y); + BN_init(&point->Z); + point->Z_is_one = 0; + + return 1; +} + +void +ec_GFp_simple_point_finish(EC_POINT *point) +{ + BN_free(&point->X); + BN_free(&point->Y); + BN_free(&point->Z); + point->Z_is_one = 0; +} + +int +ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) +{ + if (!bn_copy(&dest->X, &src->X)) + return 0; + if (!bn_copy(&dest->Y, &src->Y)) + return 0; + if (!bn_copy(&dest->Z, &src->Z)) + return 0; + dest->Z_is_one = src->Z_is_one; + + return 1; +} + +int +ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) +{ + point->Z_is_one = 0; + BN_zero(&point->Z); + return 1; +} + +int +ec_GFp_simple_set_Jprojective_coordinates(const EC_GROUP *group, + EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, + BN_CTX *ctx) +{ + int ret = 0; + + /* + * Setting individual coordinates allows the creation of bad points. + * EC_POINT_set_Jprojective_coordinates() checks at the API boundary. + */ + + if (x != NULL) { + if (!ec_encode_scalar(group, &point->X, x, ctx)) + goto err; + } + if (y != NULL) { + if (!ec_encode_scalar(group, &point->Y, y, ctx)) + goto err; + } + if (z != NULL) { + if (!ec_encode_z_coordinate(group, &point->Z, &point->Z_is_one, + z, ctx)) + goto err; + } + + ret = 1; + + err: + return ret; +} + +int +ec_GFp_simple_get_Jprojective_coordinates(const EC_GROUP *group, + const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) +{ + int ret = 0; + + if (!ec_decode_scalar(group, x, &point->X, ctx)) + goto err; + if (!ec_decode_scalar(group, y, &point->Y, ctx)) + goto err; + if (!ec_decode_scalar(group, z, &point->Z, ctx)) + goto err; + + ret = 1; + + err: + return ret; +} + +int +ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, + const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) +{ + if (x == NULL || y == NULL) { + /* unlike for projective coordinates, we do not tolerate this */ + ECerror(ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + return EC_POINT_set_Jprojective_coordinates(group, point, x, y, + BN_value_one(), ctx); +} + +int +ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, + const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) +{ + BIGNUM *z, *Z, *Z_1, *Z_2, *Z_3; + int ret = 0; + + BN_CTX_start(ctx); + + if ((z = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z_1 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z_2 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z_3 = BN_CTX_get(ctx)) == NULL) + goto err; + + /* Convert from projective coordinates (X, Y, Z) into (X/Z^2, Y/Z^3). */ + + if (!ec_decode_scalar(group, z, &point->Z, ctx)) + goto err; + + if (BN_is_one(z)) { + if (!ec_decode_scalar(group, x, &point->X, ctx)) + goto err; + if (!ec_decode_scalar(group, y, &point->Y, ctx)) + goto err; + goto done; + } + + if (BN_mod_inverse_ct(Z_1, z, &group->field, ctx) == NULL) { + ECerror(ERR_R_BN_LIB); + goto err; + } + if (group->meth->field_encode == NULL) { + /* field_sqr works on standard representation */ + if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) + goto err; + } + + if (x != NULL) { + /* + * in the Montgomery case, field_mul will cancel out + * Montgomery factor in X: + */ + if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) + goto err; + } + if (y != NULL) { + if (group->meth->field_encode == NULL) { + /* field_mul works on standard representation */ + if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) + goto err; + } + + /* + * in the Montgomery case, field_mul will cancel out + * Montgomery factor in Y: + */ + if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) + goto err; + } + + done: + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, + EC_POINT *point, const BIGNUM *in_x, int y_bit, BN_CTX *ctx) +{ + const BIGNUM *p = &group->field, *a = &group->a, *b = &group->b; + BIGNUM *w, *x, *y; + int ret = 0; + + y_bit = (y_bit != 0); + + BN_CTX_start(ctx); + + if ((w = BN_CTX_get(ctx)) == NULL) + goto err; + if ((x = BN_CTX_get(ctx)) == NULL) + goto err; + if ((y = BN_CTX_get(ctx)) == NULL) + goto err; + + /* + * Weierstrass equation: y^2 = x^3 + ax + b, so y is one of the + * square roots of x^3 + ax + b. The y-bit indicates which one. + */ + + /* XXX - should we not insist on 0 <= x < p instead? */ + if (!BN_nnmod(x, in_x, p, ctx)) + goto err; + + if (group->meth->field_encode != NULL) { + if (!group->meth->field_encode(group, x, x, ctx)) + goto err; + } + + /* y = x^3 */ + if (!group->meth->field_sqr(group, y, x, ctx)) + goto err; + if (!group->meth->field_mul(group, y, y, x, ctx)) + goto err; + + /* y += ax */ + if (group->a_is_minus3) { + if (!BN_mod_lshift1_quick(w, x, p)) + goto err; + if (!BN_mod_add_quick(w, w, x, p)) + goto err; + if (!BN_mod_sub_quick(y, y, w, p)) + goto err; + } else { + if (!group->meth->field_mul(group, w, a, x, ctx)) + goto err; + if (!BN_mod_add_quick(y, y, w, p)) + goto err; + } + + /* y += b */ + if (!BN_mod_add_quick(y, y, b, p)) + goto err; + + if (group->meth->field_decode != NULL) { + if (!group->meth->field_decode(group, x, x, ctx)) + goto err; + if (!group->meth->field_decode(group, y, y, ctx)) + goto err; + } + + if (!BN_mod_sqrt(y, y, p, ctx)) { + ECerror(EC_R_INVALID_COMPRESSED_POINT); + goto err; + } + + if (y_bit == BN_is_odd(y)) + goto done; + + if (BN_is_zero(y)) { + ECerror(EC_R_INVALID_COMPRESSION_BIT); + goto err; + } + if (!BN_usub(y, &group->field, y)) + goto err; + + if (y_bit != BN_is_odd(y)) { + /* Can only happen if p is even and should not be reachable. */ + ECerror(ERR_R_INTERNAL_ERROR); + goto err; + } + + done: + if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) + goto err; + + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; + const BIGNUM *p; + int ret = 0; + + if (a == b) + return EC_POINT_dbl(group, r, a, ctx); + if (EC_POINT_is_at_infinity(group, a)) + return EC_POINT_copy(r, b); + if (EC_POINT_is_at_infinity(group, b)) + return EC_POINT_copy(r, a); + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + BN_CTX_start(ctx); + + if ((n0 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n1 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n2 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n3 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n4 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n5 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((n6 = BN_CTX_get(ctx)) == NULL) + goto end; + + /* + * Note that in this function we must not read components of 'a' or + * 'b' once we have written the corresponding components of 'r'. ('r' + * might be one of 'a' or 'b'.) + */ + + /* n1, n2 */ + if (b->Z_is_one) { + if (!bn_copy(n1, &a->X)) + goto end; + if (!bn_copy(n2, &a->Y)) + goto end; + /* n1 = X_a */ + /* n2 = Y_a */ + } else { + if (!field_sqr(group, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n1, &a->X, n0, ctx)) + goto end; + /* n1 = X_a * Z_b^2 */ + + if (!field_mul(group, n0, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n2, &a->Y, n0, ctx)) + goto end; + /* n2 = Y_a * Z_b^3 */ + } + + /* n3, n4 */ + if (a->Z_is_one) { + if (!bn_copy(n3, &b->X)) + goto end; + if (!bn_copy(n4, &b->Y)) + goto end; + /* n3 = X_b */ + /* n4 = Y_b */ + } else { + if (!field_sqr(group, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n3, &b->X, n0, ctx)) + goto end; + /* n3 = X_b * Z_a^2 */ + + if (!field_mul(group, n0, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n4, &b->Y, n0, ctx)) + goto end; + /* n4 = Y_b * Z_a^3 */ + } + + /* n5, n6 */ + if (!BN_mod_sub_quick(n5, n1, n3, p)) + goto end; + if (!BN_mod_sub_quick(n6, n2, n4, p)) + goto end; + /* n5 = n1 - n3 */ + /* n6 = n2 - n4 */ + + if (BN_is_zero(n5)) { + if (BN_is_zero(n6)) { + /* a is the same point as b */ + BN_CTX_end(ctx); + ret = EC_POINT_dbl(group, r, a, ctx); + ctx = NULL; + goto end; + } else { + /* a is the inverse of b */ + BN_zero(&r->Z); + r->Z_is_one = 0; + ret = 1; + goto end; + } + } + /* 'n7', 'n8' */ + if (!BN_mod_add_quick(n1, n1, n3, p)) + goto end; + if (!BN_mod_add_quick(n2, n2, n4, p)) + goto end; + /* 'n7' = n1 + n3 */ + /* 'n8' = n2 + n4 */ + + /* Z_r */ + if (a->Z_is_one && b->Z_is_one) { + if (!bn_copy(&r->Z, n5)) + goto end; + } else { + if (a->Z_is_one) { + if (!bn_copy(n0, &b->Z)) + goto end; + } else if (b->Z_is_one) { + if (!bn_copy(n0, &a->Z)) + goto end; + } else { + if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) + goto end; + } + if (!field_mul(group, &r->Z, n0, n5, ctx)) + goto end; + } + r->Z_is_one = 0; + /* Z_r = Z_a * Z_b * n5 */ + + /* X_r */ + if (!field_sqr(group, n0, n6, ctx)) + goto end; + if (!field_sqr(group, n4, n5, ctx)) + goto end; + if (!field_mul(group, n3, n1, n4, ctx)) + goto end; + if (!BN_mod_sub_quick(&r->X, n0, n3, p)) + goto end; + /* X_r = n6^2 - n5^2 * 'n7' */ + + /* 'n9' */ + if (!BN_mod_lshift1_quick(n0, &r->X, p)) + goto end; + if (!BN_mod_sub_quick(n0, n3, n0, p)) + goto end; + /* n9 = n5^2 * 'n7' - 2 * X_r */ + + /* Y_r */ + if (!field_mul(group, n0, n0, n6, ctx)) + goto end; + if (!field_mul(group, n5, n4, n5, ctx)) + goto end; /* now n5 is n5^3 */ + if (!field_mul(group, n1, n2, n5, ctx)) + goto end; + if (!BN_mod_sub_quick(n0, n0, n1, p)) + goto end; + if (BN_is_odd(n0)) + if (!BN_add(n0, n0, p)) + goto end; + /* now 0 <= n0 < 2*p, and n0 is even */ + if (!BN_rshift1(&r->Y, n0)) + goto end; + /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ + + ret = 1; + + end: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + const BIGNUM *p; + BIGNUM *n0, *n1, *n2, *n3; + int ret = 0; + + if (EC_POINT_is_at_infinity(group, a)) + return EC_POINT_set_to_infinity(group, r); + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + BN_CTX_start(ctx); + + if ((n0 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((n1 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((n2 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((n3 = BN_CTX_get(ctx)) == NULL) + goto err; + + /* + * Note that in this function we must not read components of 'a' once + * we have written the corresponding components of 'r'. ('r' might + * the same as 'a'.) + */ + + /* n1 */ + if (a->Z_is_one) { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, &group->a, p)) + goto err; + /* n1 = 3 * X_a^2 + a_curve */ + } else if (group->a_is_minus3) { + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!BN_mod_add_quick(n0, &a->X, n1, p)) + goto err; + if (!BN_mod_sub_quick(n2, &a->X, n1, p)) + goto err; + if (!field_mul(group, n1, n0, n2, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, n1, p)) + goto err; + /* + * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * + * Z_a^4 + */ + } else { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!field_sqr(group, n1, n1, ctx)) + goto err; + if (!field_mul(group, n1, n1, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(n1, n1, n0, p)) + goto err; + /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ + } + + /* Z_r */ + if (a->Z_is_one) { + if (!bn_copy(n0, &a->Y)) + goto err; + } else { + if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) + goto err; + } + if (!BN_mod_lshift1_quick(&r->Z, n0, p)) + goto err; + r->Z_is_one = 0; + /* Z_r = 2 * Y_a * Z_a */ + + /* n2 */ + if (!field_sqr(group, n3, &a->Y, ctx)) + goto err; + if (!field_mul(group, n2, &a->X, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n2, n2, 2, p)) + goto err; + /* n2 = 4 * X_a * Y_a^2 */ + + /* X_r */ + if (!BN_mod_lshift1_quick(n0, n2, p)) + goto err; + if (!field_sqr(group, &r->X, n1, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) + goto err; + /* X_r = n1^2 - 2 * n2 */ + + /* n3 */ + if (!field_sqr(group, n0, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n3, n0, 3, p)) + goto err; + /* n3 = 8 * Y_a^4 */ + + /* Y_r */ + if (!BN_mod_sub_quick(n0, n2, &r->X, p)) + goto err; + if (!field_mul(group, n0, n1, n0, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) + goto err; + /* Y_r = n1 * (n2 - X_r) - n3 */ + + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) +{ + if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) + /* point is its own inverse */ + return 1; + + return BN_usub(&point->Y, &group->field, &point->Y); +} + +int +ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) +{ + return BN_is_zero(&point->Z); +} + +int +ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + const BIGNUM *p; + BIGNUM *rh, *tmp, *Z4, *Z6; + int ret = -1; + + if (EC_POINT_is_at_infinity(group, point)) + return 1; + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + p = &group->field; + + BN_CTX_start(ctx); + + if ((rh = BN_CTX_get(ctx)) == NULL) + goto err; + if ((tmp = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z4 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((Z6 = BN_CTX_get(ctx)) == NULL) + goto err; + + /* + * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x + * + b. The point to consider is given in Jacobian projective + * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). + * Substituting this and multiplying by Z^6 transforms the above + * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up + * the right-hand side in 'rh'. + */ + + /* rh := X^2 */ + if (!field_sqr(group, rh, &point->X, ctx)) + goto err; + + if (!point->Z_is_one) { + if (!field_sqr(group, tmp, &point->Z, ctx)) + goto err; + if (!field_sqr(group, Z4, tmp, ctx)) + goto err; + if (!field_mul(group, Z6, Z4, tmp, ctx)) + goto err; + + /* rh := (rh + a*Z^4)*X */ + if (group->a_is_minus3) { + if (!BN_mod_lshift1_quick(tmp, Z4, p)) + goto err; + if (!BN_mod_add_quick(tmp, tmp, Z4, p)) + goto err; + if (!BN_mod_sub_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } else { + if (!field_mul(group, tmp, Z4, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } + + /* rh := rh + b*Z^6 */ + if (!field_mul(group, tmp, &group->b, Z6, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + } else { + /* point->Z_is_one */ + + /* rh := (rh + a)*X */ + if (!BN_mod_add_quick(rh, rh, &group->a, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + /* rh := rh + b */ + if (!BN_mod_add_quick(rh, rh, &group->b, p)) + goto err; + } + + /* 'lh' := Y^2 */ + if (!field_sqr(group, tmp, &point->Y, ctx)) + goto err; + + ret = (0 == BN_ucmp(tmp, rh)); + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) +{ + /* + * return values: -1 error 0 equal (in affine coordinates) 1 + * not equal + */ + + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + BIGNUM *tmp1, *tmp2, *Za23, *Zb23; + const BIGNUM *tmp1_, *tmp2_; + int ret = -1; + + if (EC_POINT_is_at_infinity(group, a)) + return !EC_POINT_is_at_infinity(group, b); + + if (EC_POINT_is_at_infinity(group, b)) + return 1; + + if (a->Z_is_one && b->Z_is_one) + return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; + + field_mul = group->meth->field_mul; + field_sqr = group->meth->field_sqr; + + BN_CTX_start(ctx); + + if ((tmp1 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((tmp2 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((Za23 = BN_CTX_get(ctx)) == NULL) + goto end; + if ((Zb23 = BN_CTX_get(ctx)) == NULL) + goto end; + + /* + * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, + * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = + * (X_b*Z_a^2, Y_b*Z_a^3). + */ + + if (!b->Z_is_one) { + if (!field_sqr(group, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) + goto end; + tmp1_ = tmp1; + } else + tmp1_ = &a->X; + if (!a->Z_is_one) { + if (!field_sqr(group, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->X, Za23, ctx)) + goto end; + tmp2_ = tmp2; + } else + tmp2_ = &b->X; + + /* compare X_a*Z_b^2 with X_b*Z_a^2 */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ + goto end; + } + if (!b->Z_is_one) { + if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) + goto end; + /* tmp1_ = tmp1 */ + } else + tmp1_ = &a->Y; + if (!a->Z_is_one) { + if (!field_mul(group, Za23, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) + goto end; + /* tmp2_ = tmp2 */ + } else + tmp2_ = &b->Y; + + /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ + goto end; + } + /* points are equal */ + ret = 0; + + end: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) +{ + BIGNUM *x, *y; + int ret = 0; + + if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) + return 1; + + BN_CTX_start(ctx); + + if ((x = BN_CTX_get(ctx)) == NULL) + goto err; + if ((y = BN_CTX_get(ctx)) == NULL) + goto err; + + if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) + goto err; + if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) + goto err; + if (!point->Z_is_one) { + ECerror(ERR_R_INTERNAL_ERROR); + goto err; + } + ret = 1; + + err: + BN_CTX_end(ctx); + + return ret; +} + +int +ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) +{ + BIGNUM *tmp0, *tmp1; + size_t pow2 = 0; + BIGNUM **heap = NULL; + size_t i; + int ret = 0; + + if (num == 0) + return 1; + + BN_CTX_start(ctx); + + if ((tmp0 = BN_CTX_get(ctx)) == NULL) + goto err; + if ((tmp1 = BN_CTX_get(ctx)) == NULL) + goto err; + + /* + * Before converting the individual points, compute inverses of all Z + * values. Modular inversion is rather slow, but luckily we can do + * with a single explicit inversion, plus about 3 multiplications per + * input value. + */ + + pow2 = 1; + while (num > pow2) + pow2 <<= 1; + /* + * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We + * need twice that. + */ + pow2 <<= 1; + + heap = reallocarray(NULL, pow2, sizeof heap[0]); + if (heap == NULL) + goto err; + + /* + * The array is used as a binary tree, exactly as in heapsort: + * + * heap[1] heap[2] heap[3] heap[4] heap[5] + * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] + * heap[12]heap[13] heap[14] heap[15] + * + * We put the Z's in the last line; then we set each other node to the + * product of its two child-nodes (where empty or 0 entries are + * treated as ones); then we invert heap[1]; then we invert each + * other node by replacing it by the product of its parent (after + * inversion) and its sibling (before inversion). + */ + heap[0] = NULL; + for (i = pow2 / 2 - 1; i > 0; i--) + heap[i] = NULL; + for (i = 0; i < num; i++) + heap[pow2 / 2 + i] = &points[i]->Z; + for (i = pow2 / 2 + num; i < pow2; i++) + heap[i] = NULL; + + /* set each node to the product of its children */ + for (i = pow2 / 2 - 1; i > 0; i--) { + heap[i] = BN_new(); + if (heap[i] == NULL) + goto err; + + if (heap[2 * i] != NULL) { + if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { + if (!bn_copy(heap[i], heap[2 * i])) + goto err; + } else { + if (BN_is_zero(heap[2 * i])) { + if (!bn_copy(heap[i], heap[2 * i + 1])) + goto err; + } else { + if (!group->meth->field_mul(group, heap[i], + heap[2 * i], heap[2 * i + 1], ctx)) + goto err; + } + } + } + } + + /* invert heap[1] */ + if (!BN_is_zero(heap[1])) { + if (BN_mod_inverse_ct(heap[1], heap[1], &group->field, ctx) == NULL) { + ECerror(ERR_R_BN_LIB); + goto err; + } + } + if (group->meth->field_encode != NULL) { + /* + * in the Montgomery case, we just turned R*H (representing + * H) into 1/(R*H), but we need R*(1/H) (representing + * 1/H); i.e. we have need to multiply by the Montgomery + * factor twice + */ + if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) + goto err; + if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) + goto err; + } + /* set other heap[i]'s to their inverses */ + for (i = 2; i < pow2 / 2 + num; i += 2) { + /* i is even */ + if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { + if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) + goto err; + if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) + goto err; + if (!bn_copy(heap[i], tmp0)) + goto err; + if (!bn_copy(heap[i + 1], tmp1)) + goto err; + } else { + if (!bn_copy(heap[i], heap[i / 2])) + goto err; + } + } + + /* + * we have replaced all non-zero Z's by their inverses, now fix up + * all the points + */ + for (i = 0; i < num; i++) { + EC_POINT *p = points[i]; + + if (!BN_is_zero(&p->Z)) { + /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ + + if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) + goto err; + + if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) + goto err; + + if (group->meth->field_set_to_one != NULL) { + if (!group->meth->field_set_to_one(group, &p->Z, ctx)) + goto err; + } else { + if (!BN_one(&p->Z)) + goto err; + } + p->Z_is_one = 1; + } + } + + ret = 1; + + err: + BN_CTX_end(ctx); + + if (heap != NULL) { + /* + * heap[pow2/2] .. heap[pow2-1] have not been allocated + * locally! + */ + for (i = pow2 / 2 - 1; i > 0; i--) { + BN_free(heap[i]); + } + free(heap); + } + return ret; +} + +int +ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) +{ + return BN_mod_mul(r, a, b, &group->field, ctx); +} + +int +ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) +{ + return BN_mod_sqr(r, a, &group->field, ctx); +} + +/* + * Apply randomization of EC point projective coordinates: + * + * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) + * + * where lambda is in the interval [1, group->field). + */ +int +ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) +{ + BIGNUM *lambda = NULL; + BIGNUM *tmp = NULL; + int ret = 0; + + BN_CTX_start(ctx); + if ((lambda = BN_CTX_get(ctx)) == NULL) + goto err; + if ((tmp = BN_CTX_get(ctx)) == NULL) + goto err; + + /* Generate lambda in [1, group->field). */ + if (!bn_rand_interval(lambda, 1, &group->field)) + goto err; + + if (group->meth->field_encode != NULL && + !group->meth->field_encode(group, lambda, lambda, ctx)) + goto err; + + /* Z = lambda * Z */ + if (!group->meth->field_mul(group, &p->Z, lambda, &p->Z, ctx)) + goto err; + + /* tmp = lambda^2 */ + if (!group->meth->field_sqr(group, tmp, lambda, ctx)) + goto err; + + /* X = lambda^2 * X */ + if (!group->meth->field_mul(group, &p->X, tmp, &p->X, ctx)) + goto err; + + /* tmp = lambda^3 */ + if (!group->meth->field_mul(group, tmp, tmp, lambda, ctx)) + goto err; + + /* Y = lambda^3 * Y */ + if (!group->meth->field_mul(group, &p->Y, tmp, &p->Y, ctx)) + goto err; + + /* Disable optimized arithmetics after replacing Z by lambda * Z. */ + p->Z_is_one = 0; + + ret = 1; + + err: + BN_CTX_end(ctx); + return ret; +} + +#define EC_POINT_BN_set_flags(P, flags) do { \ + BN_set_flags(&(P)->X, (flags)); \ + BN_set_flags(&(P)->Y, (flags)); \ + BN_set_flags(&(P)->Z, (flags)); \ +} while(0) + +#define EC_POINT_CSWAP(c, a, b, w, t) do { \ + if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ + !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ + !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ + goto err; \ + t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ + (a)->Z_is_one ^= (t); \ + (b)->Z_is_one ^= (t); \ +} while(0) + +/* + * This function computes (in constant time) a point multiplication over the + * EC group. + * + * At a high level, it is Montgomery ladder with conditional swaps. + * + * It performs either a fixed point multiplication + * (scalar * generator) + * when point is NULL, or a variable point multiplication + * (scalar * point) + * when point is not NULL. + * + * scalar should be in the range [0,n) otherwise all constant time bets are off. + * + * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, + * which of course are not constant time themselves. + * + * The product is stored in r. + * + * Returns 1 on success, 0 otherwise. + */ +static int +ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, + const EC_POINT *point, BN_CTX *ctx) +{ + int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; + EC_POINT *s = NULL; + BIGNUM *k = NULL; + BIGNUM *lambda = NULL; + BIGNUM *cardinality = NULL; + int ret = 0; + + BN_CTX_start(ctx); + + if ((s = EC_POINT_new(group)) == NULL) + goto err; + + if (point == NULL) { + if (!EC_POINT_copy(s, group->generator)) + goto err; + } else { + if (!EC_POINT_copy(s, point)) + goto err; + } + + EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); + + if ((cardinality = BN_CTX_get(ctx)) == NULL) + goto err; + if ((lambda = BN_CTX_get(ctx)) == NULL) + goto err; + if ((k = BN_CTX_get(ctx)) == NULL) + goto err; + if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) + goto err; + + /* + * Group cardinalities are often on a word boundary. + * So when we pad the scalar, some timing diff might + * pop if it needs to be expanded due to carries. + * So expand ahead of time. + */ + cardinality_bits = BN_num_bits(cardinality); + group_top = cardinality->top; + if (!bn_wexpand(k, group_top + 2) || + !bn_wexpand(lambda, group_top + 2)) + goto err; + + if (!bn_copy(k, scalar)) + goto err; + + BN_set_flags(k, BN_FLG_CONSTTIME); + + if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { + /* + * This is an unusual input, and we don't guarantee + * constant-timeness + */ + if (!BN_nnmod(k, k, cardinality, ctx)) + goto err; + } + + if (!BN_add(lambda, k, cardinality)) + goto err; + BN_set_flags(lambda, BN_FLG_CONSTTIME); + if (!BN_add(k, lambda, cardinality)) + goto err; + /* + * lambda := scalar + cardinality + * k := scalar + 2*cardinality + */ + kbit = BN_is_bit_set(lambda, cardinality_bits); + if (!BN_swap_ct(kbit, k, lambda, group_top + 2)) + goto err; + + group_top = group->field.top; + if (!bn_wexpand(&s->X, group_top) || + !bn_wexpand(&s->Y, group_top) || + !bn_wexpand(&s->Z, group_top) || + !bn_wexpand(&r->X, group_top) || + !bn_wexpand(&r->Y, group_top) || + !bn_wexpand(&r->Z, group_top)) + goto err; + + /* + * Apply coordinate blinding for EC_POINT if the underlying EC_METHOD + * implements it. + */ + if (!ec_point_blind_coordinates(group, s, ctx)) + goto err; + + /* top bit is a 1, in a fixed pos */ + if (!EC_POINT_copy(r, s)) + goto err; + + EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); + + if (!EC_POINT_dbl(group, s, s, ctx)) + goto err; + + pbit = 0; + + /* + * The ladder step, with branches, is + * + * k[i] == 0: S = add(R, S), R = dbl(R) + * k[i] == 1: R = add(S, R), S = dbl(S) + * + * Swapping R, S conditionally on k[i] leaves you with state + * + * k[i] == 0: T, U = R, S + * k[i] == 1: T, U = S, R + * + * Then perform the ECC ops. + * + * U = add(T, U) + * T = dbl(T) + * + * Which leaves you with state + * + * k[i] == 0: U = add(R, S), T = dbl(R) + * k[i] == 1: U = add(S, R), T = dbl(S) + * + * Swapping T, U conditionally on k[i] leaves you with state + * + * k[i] == 0: R, S = T, U + * k[i] == 1: R, S = U, T + * + * Which leaves you with state + * + * k[i] == 0: S = add(R, S), R = dbl(R) + * k[i] == 1: R = add(S, R), S = dbl(S) + * + * So we get the same logic, but instead of a branch it's a + * conditional swap, followed by ECC ops, then another conditional swap. + * + * Optimization: The end of iteration i and start of i-1 looks like + * + * ... + * CSWAP(k[i], R, S) + * ECC + * CSWAP(k[i], R, S) + * (next iteration) + * CSWAP(k[i-1], R, S) + * ECC + * CSWAP(k[i-1], R, S) + * ... + * + * So instead of two contiguous swaps, you can merge the condition + * bits and do a single swap. + * + * k[i] k[i-1] Outcome + * 0 0 No Swap + * 0 1 Swap + * 1 0 Swap + * 1 1 No Swap + * + * This is XOR. pbit tracks the previous bit of k. + */ + + for (i = cardinality_bits - 1; i >= 0; i--) { + kbit = BN_is_bit_set(k, i) ^ pbit; + EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); + if (!EC_POINT_add(group, s, r, s, ctx)) + goto err; + if (!EC_POINT_dbl(group, r, r, ctx)) + goto err; + /* + * pbit logic merges this cswap with that of the + * next iteration + */ + pbit ^= kbit; + } + /* one final cswap to move the right value into r */ + EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); + + ret = 1; + + err: + EC_POINT_free(s); + BN_CTX_end(ctx); + + return ret; +} + +#undef EC_POINT_BN_set_flags +#undef EC_POINT_CSWAP + +int +ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *scalar, BN_CTX *ctx) +{ + return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); +} + +int +ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) +{ + return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); +} + +int +ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, + BN_CTX *ctx) +{ + return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); +} + +static const EC_METHOD ec_GFp_simple_method = { + .field_type = NID_X9_62_prime_field, + .group_init = ec_GFp_simple_group_init, + .group_finish = ec_GFp_simple_group_finish, + .group_copy = ec_GFp_simple_group_copy, + .group_set_curve = ec_GFp_simple_group_set_curve, + .group_get_curve = ec_GFp_simple_group_get_curve, + .group_get_degree = ec_GFp_simple_group_get_degree, + .group_order_bits = ec_group_simple_order_bits, + .group_check_discriminant = ec_GFp_simple_group_check_discriminant, + .point_init = ec_GFp_simple_point_init, + .point_finish = ec_GFp_simple_point_finish, + .point_copy = ec_GFp_simple_point_copy, + .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, + .point_set_Jprojective_coordinates = + ec_GFp_simple_set_Jprojective_coordinates, + .point_get_Jprojective_coordinates = + ec_GFp_simple_get_Jprojective_coordinates, + .point_set_affine_coordinates = + ec_GFp_simple_point_set_affine_coordinates, + .point_get_affine_coordinates = + ec_GFp_simple_point_get_affine_coordinates, + .point_set_compressed_coordinates = + ec_GFp_simple_set_compressed_coordinates, + .add = ec_GFp_simple_add, + .dbl = ec_GFp_simple_dbl, + .invert = ec_GFp_simple_invert, + .is_at_infinity = ec_GFp_simple_is_at_infinity, + .is_on_curve = ec_GFp_simple_is_on_curve, + .point_cmp = ec_GFp_simple_cmp, + .make_affine = ec_GFp_simple_make_affine, + .points_make_affine = ec_GFp_simple_points_make_affine, + .mul_generator_ct = ec_GFp_simple_mul_generator_ct, + .mul_single_ct = ec_GFp_simple_mul_single_ct, + .mul_double_nonct = ec_GFp_simple_mul_double_nonct, + .field_mul = ec_GFp_simple_field_mul, + .field_sqr = ec_GFp_simple_field_sqr, + .blind_coordinates = ec_GFp_simple_blind_coordinates, +}; + +const EC_METHOD * +EC_GFp_simple_method(void) +{ + return &ec_GFp_simple_method; +} +LCRYPTO_ALIAS(EC_GFp_simple_method); |