summaryrefslogtreecommitdiff
path: root/lib/libcrypto/ec/ecp_smpl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libcrypto/ec/ecp_smpl.c')
-rw-r--r--lib/libcrypto/ec/ecp_smpl.c1482
1 files changed, 770 insertions, 712 deletions
diff --git a/lib/libcrypto/ec/ecp_smpl.c b/lib/libcrypto/ec/ecp_smpl.c
index c99348f08f5..b87410120df 100644
--- a/lib/libcrypto/ec/ecp_smpl.c
+++ b/lib/libcrypto/ec/ecp_smpl.c
@@ -1,6 +1,6 @@
/* crypto/ec/ecp_smpl.c */
/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
- * for the OpenSSL project.
+ * for the OpenSSL project.
* Includes code written by Bodo Moeller for the OpenSSL project.
*/
/* ====================================================================
@@ -11,7 +11,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -80,20 +80,20 @@ EC_GFp_simple_method(void)
.group_get_curve = ec_GFp_simple_group_get_curve,
.group_get_degree = ec_GFp_simple_group_get_degree,
.group_check_discriminant =
- ec_GFp_simple_group_check_discriminant,
+ ec_GFp_simple_group_check_discriminant,
.point_init = ec_GFp_simple_point_init,
.point_finish = ec_GFp_simple_point_finish,
.point_clear_finish = ec_GFp_simple_point_clear_finish,
.point_copy = ec_GFp_simple_point_copy,
.point_set_to_infinity = ec_GFp_simple_point_set_to_infinity,
.point_set_Jprojective_coordinates_GFp =
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
+ ec_GFp_simple_set_Jprojective_coordinates_GFp,
.point_get_Jprojective_coordinates_GFp =
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- .point_set_affine_coordinates =
- ec_GFp_simple_point_set_affine_coordinates,
- .point_get_affine_coordinates =
- ec_GFp_simple_point_get_affine_coordinates,
+ ec_GFp_simple_get_Jprojective_coordinates_GFp,
+ .point_set_affine_coordinates =
+ ec_GFp_simple_point_set_affine_coordinates,
+ .point_get_affine_coordinates =
+ ec_GFp_simple_point_get_affine_coordinates,
.add = ec_GFp_simple_add,
.dbl = ec_GFp_simple_dbl,
.invert = ec_GFp_simple_invert,
@@ -124,212 +124,225 @@ EC_GFp_simple_method(void)
*/
-int ec_GFp_simple_group_init(EC_GROUP *group)
- {
+int
+ec_GFp_simple_group_init(EC_GROUP * group)
+{
BN_init(&group->field);
BN_init(&group->a);
BN_init(&group->b);
group->a_is_minus3 = 0;
return 1;
- }
+}
-void ec_GFp_simple_group_finish(EC_GROUP *group)
- {
+void
+ec_GFp_simple_group_finish(EC_GROUP * group)
+{
BN_free(&group->field);
BN_free(&group->a);
BN_free(&group->b);
- }
+}
-void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
- {
+void
+ec_GFp_simple_group_clear_finish(EC_GROUP * group)
+{
BN_clear_free(&group->field);
BN_clear_free(&group->a);
BN_clear_free(&group->b);
- }
+}
-int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- if (!BN_copy(&dest->field, &src->field)) return 0;
- if (!BN_copy(&dest->a, &src->a)) return 0;
- if (!BN_copy(&dest->b, &src->b)) return 0;
+int
+ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src)
+{
+ if (!BN_copy(&dest->field, &src->field))
+ return 0;
+ if (!BN_copy(&dest->a, &src->a))
+ return 0;
+ if (!BN_copy(&dest->b, &src->b))
+ return 0;
dest->a_is_minus3 = src->a_is_minus3;
return 1;
- }
+}
-int ec_GFp_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_group_set_curve(EC_GROUP * group,
+ const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
+{
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *tmp_a;
-
+
/* p must be a prime > 3 */
- if (BN_num_bits(p) <= 2 || !BN_is_odd(p))
- {
+ if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
return 0;
- }
-
- if (ctx == NULL)
- {
+ }
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
tmp_a = BN_CTX_get(ctx);
- if (tmp_a == NULL) goto err;
+ if (tmp_a == NULL)
+ goto err;
/* group->field */
- if (!BN_copy(&group->field, p)) goto err;
+ if (!BN_copy(&group->field, p))
+ goto err;
BN_set_negative(&group->field, 0);
/* group->a */
- if (!BN_nnmod(tmp_a, a, p, ctx)) goto err;
- if (group->meth->field_encode)
- { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; }
- else
- if (!BN_copy(&group->a, tmp_a)) goto err;
-
+ if (!BN_nnmod(tmp_a, a, p, ctx))
+ goto err;
+ if (group->meth->field_encode) {
+ if (!group->meth->field_encode(group, &group->a, tmp_a, ctx))
+ goto err;
+ } else if (!BN_copy(&group->a, tmp_a))
+ goto err;
+
/* group->b */
- if (!BN_nnmod(&group->b, b, p, ctx)) goto err;
+ if (!BN_nnmod(&group->b, b, p, ctx))
+ goto err;
if (group->meth->field_encode)
- if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err;
-
+ if (!group->meth->field_encode(group, &group->b, &group->b, ctx))
+ goto err;
+
/* group->a_is_minus3 */
- if (!BN_add_word(tmp_a, 3)) goto err;
+ if (!BN_add_word(tmp_a, 3))
+ goto err;
group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
ret = 1;
- err:
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx)
+{
int ret = 0;
BN_CTX *new_ctx = NULL;
-
- if (p != NULL)
- {
- if (!BN_copy(p, &group->field)) return 0;
- }
- if (a != NULL || b != NULL)
- {
- if (group->meth->field_decode)
- {
- if (ctx == NULL)
- {
+ if (p != NULL) {
+ if (!BN_copy(p, &group->field))
+ return 0;
+ }
+ if (a != NULL || b != NULL) {
+ if (group->meth->field_decode) {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
- if (a != NULL)
- {
- if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
- }
- if (b != NULL)
- {
- if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
- }
}
- else
- {
- if (a != NULL)
- {
- if (!BN_copy(a, &group->a)) goto err;
- }
- if (b != NULL)
- {
- if (!BN_copy(b, &group->b)) goto err;
- }
+ if (a != NULL) {
+ if (!group->meth->field_decode(group, a, &group->a, ctx))
+ goto err;
+ }
+ if (b != NULL) {
+ if (!group->meth->field_decode(group, b, &group->b, ctx))
+ goto err;
+ }
+ } else {
+ if (a != NULL) {
+ if (!BN_copy(a, &group->a))
+ goto err;
+ }
+ if (b != NULL) {
+ if (!BN_copy(b, &group->b))
+ goto err;
}
}
-
+ }
ret = 1;
-
- err:
+
+err:
if (new_ctx)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
- {
+int
+ec_GFp_simple_group_get_degree(const EC_GROUP * group)
+{
return BN_num_bits(&group->field);
- }
+}
-int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
+{
int ret = 0;
- BIGNUM *a,*b,*order,*tmp_1,*tmp_2;
+ BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
const BIGNUM *p = &group->field;
BN_CTX *new_ctx = NULL;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
goto err;
- }
}
+ }
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
tmp_1 = BN_CTX_get(ctx);
tmp_2 = BN_CTX_get(ctx);
order = BN_CTX_get(ctx);
- if (order == NULL) goto err;
+ if (order == NULL)
+ goto err;
- if (group->meth->field_decode)
- {
- if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
- if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
- }
- else
- {
- if (!BN_copy(a, &group->a)) goto err;
- if (!BN_copy(b, &group->b)) goto err;
- }
-
- /* check the discriminant:
- * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
- * 0 =< a, b < p */
- if (BN_is_zero(a))
- {
- if (BN_is_zero(b)) goto err;
- }
- else if (!BN_is_zero(b))
- {
- if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err;
- if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err;
- if (!BN_lshift(tmp_1, tmp_2, 2)) goto err;
+ if (group->meth->field_decode) {
+ if (!group->meth->field_decode(group, a, &group->a, ctx))
+ goto err;
+ if (!group->meth->field_decode(group, b, &group->b, ctx))
+ goto err;
+ } else {
+ if (!BN_copy(a, &group->a))
+ goto err;
+ if (!BN_copy(b, &group->b))
+ goto err;
+ }
+
+ /*
+ * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve
+ * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p
+ */
+ if (BN_is_zero(a)) {
+ if (BN_is_zero(b))
+ goto err;
+ } else if (!BN_is_zero(b)) {
+ if (!BN_mod_sqr(tmp_1, a, p, ctx))
+ goto err;
+ if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
+ goto err;
+ if (!BN_lshift(tmp_1, tmp_2, 2))
+ goto err;
/* tmp_1 = 4*a^3 */
- if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err;
- if (!BN_mul_word(tmp_2, 27)) goto err;
+ if (!BN_mod_sqr(tmp_2, b, p, ctx))
+ goto err;
+ if (!BN_mul_word(tmp_2, 27))
+ goto err;
/* tmp_2 = 27*b^2 */
- if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err;
- if (BN_is_zero(a)) goto err;
- }
+ if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
+ goto err;
+ if (BN_is_zero(a))
+ goto err;
+ }
ret = 1;
err:
@@ -338,325 +351,312 @@ err:
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_point_init(EC_POINT *point)
- {
+int
+ec_GFp_simple_point_init(EC_POINT * point)
+{
BN_init(&point->X);
BN_init(&point->Y);
BN_init(&point->Z);
point->Z_is_one = 0;
return 1;
- }
+}
-void ec_GFp_simple_point_finish(EC_POINT *point)
- {
+void
+ec_GFp_simple_point_finish(EC_POINT * point)
+{
BN_free(&point->X);
BN_free(&point->Y);
BN_free(&point->Z);
- }
+}
-void ec_GFp_simple_point_clear_finish(EC_POINT *point)
- {
+void
+ec_GFp_simple_point_clear_finish(EC_POINT * point)
+{
BN_clear_free(&point->X);
BN_clear_free(&point->Y);
BN_clear_free(&point->Z);
point->Z_is_one = 0;
- }
+}
-int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(&dest->X, &src->X)) return 0;
- if (!BN_copy(&dest->Y, &src->Y)) return 0;
- if (!BN_copy(&dest->Z, &src->Z)) return 0;
+int
+ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src)
+{
+ if (!BN_copy(&dest->X, &src->X))
+ return 0;
+ if (!BN_copy(&dest->Y, &src->Y))
+ return 0;
+ if (!BN_copy(&dest->Z, &src->Z))
+ return 0;
dest->Z_is_one = src->Z_is_one;
return 1;
- }
+}
-int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
- {
+int
+ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
+{
point->Z_is_one = 0;
BN_zero(&point->Z);
return 1;
- }
+}
-int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
- const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * point,
+ const BIGNUM * x, const BIGNUM * y, const BIGNUM * z, BN_CTX * ctx)
+{
BN_CTX *new_ctx = NULL;
int ret = 0;
-
- if (ctx == NULL)
- {
+
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
+ }
+ if (x != NULL) {
+ if (!BN_nnmod(&point->X, x, &group->field, ctx))
+ goto err;
+ if (group->meth->field_encode) {
+ if (!group->meth->field_encode(group, &point->X, &point->X, ctx))
+ goto err;
}
-
- if (x != NULL)
- {
- if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err;
- if (group->meth->field_encode)
- {
- if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err;
- }
- }
-
- if (y != NULL)
- {
- if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err;
- if (group->meth->field_encode)
- {
- if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err;
- }
+ }
+ if (y != NULL) {
+ if (!BN_nnmod(&point->Y, y, &group->field, ctx))
+ goto err;
+ if (group->meth->field_encode) {
+ if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx))
+ goto err;
}
-
- if (z != NULL)
- {
+ }
+ if (z != NULL) {
int Z_is_one;
- if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err;
+ if (!BN_nnmod(&point->Z, z, &group->field, ctx))
+ goto err;
Z_is_one = BN_is_one(&point->Z);
- if (group->meth->field_encode)
- {
- if (Z_is_one && (group->meth->field_set_to_one != 0))
- {
- if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err;
- }
- else
- {
- if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err;
- }
+ if (group->meth->field_encode) {
+ if (Z_is_one && (group->meth->field_set_to_one != 0)) {
+ if (!group->meth->field_set_to_one(group, &point->Z, ctx))
+ goto err;
+ } else {
+ if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx))
+ goto err;
}
- point->Z_is_one = Z_is_one;
}
-
+ point->Z_is_one = Z_is_one;
+ }
ret = 1;
-
- err:
+
+err:
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_POINT * point,
+ BIGNUM * x, BIGNUM * y, BIGNUM * z, BN_CTX * ctx)
+{
BN_CTX *new_ctx = NULL;
int ret = 0;
-
- if (group->meth->field_decode != 0)
- {
- if (ctx == NULL)
- {
+
+ if (group->meth->field_decode != 0) {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
- if (x != NULL)
- {
- if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
- }
- if (y != NULL)
- {
- if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
- }
- if (z != NULL)
- {
- if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err;
- }
}
- else
- {
- if (x != NULL)
- {
- if (!BN_copy(x, &point->X)) goto err;
- }
- if (y != NULL)
- {
- if (!BN_copy(y, &point->Y)) goto err;
- }
- if (z != NULL)
- {
- if (!BN_copy(z, &point->Z)) goto err;
- }
+ if (x != NULL) {
+ if (!group->meth->field_decode(group, x, &point->X, ctx))
+ goto err;
+ }
+ if (y != NULL) {
+ if (!group->meth->field_decode(group, y, &point->Y, ctx))
+ goto err;
+ }
+ if (z != NULL) {
+ if (!group->meth->field_decode(group, z, &point->Z, ctx))
+ goto err;
+ }
+ } else {
+ if (x != NULL) {
+ if (!BN_copy(x, &point->X))
+ goto err;
}
-
+ if (y != NULL) {
+ if (!BN_copy(y, &point->Y))
+ goto err;
+ }
+ if (z != NULL) {
+ if (!BN_copy(z, &point->Z))
+ goto err;
+ }
+ }
+
ret = 1;
- err:
+err:
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
- const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
- {
- if (x == NULL || y == NULL)
- {
+int
+ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
+ const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
+{
+ if (x == NULL || y == NULL) {
/* unlike for projective coordinates, we do not tolerate this */
ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
return 0;
- }
-
- return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
}
+ return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
+}
-int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point,
+ BIGNUM * x, BIGNUM * y, BN_CTX * ctx)
+{
BN_CTX *new_ctx = NULL;
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
const BIGNUM *Z_;
int ret = 0;
- if (EC_POINT_is_at_infinity(group, point))
- {
+ if (EC_POINT_is_at_infinity(group, point)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
return 0;
- }
-
- if (ctx == NULL)
- {
+ }
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
Z = BN_CTX_get(ctx);
Z_1 = BN_CTX_get(ctx);
Z_2 = BN_CTX_get(ctx);
Z_3 = BN_CTX_get(ctx);
- if (Z_3 == NULL) goto err;
+ if (Z_3 == NULL)
+ goto err;
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
-
- if (group->meth->field_decode)
- {
- if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err;
+
+ if (group->meth->field_decode) {
+ if (!group->meth->field_decode(group, Z, &point->Z, ctx))
+ goto err;
Z_ = Z;
- }
- else
- {
+ } else {
Z_ = &point->Z;
- }
-
- if (BN_is_one(Z_))
- {
- if (group->meth->field_decode)
- {
- if (x != NULL)
- {
- if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
- }
- if (y != NULL)
- {
- if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
- }
+ }
+
+ if (BN_is_one(Z_)) {
+ if (group->meth->field_decode) {
+ if (x != NULL) {
+ if (!group->meth->field_decode(group, x, &point->X, ctx))
+ goto err;
}
- else
- {
- if (x != NULL)
- {
- if (!BN_copy(x, &point->X)) goto err;
- }
- if (y != NULL)
- {
- if (!BN_copy(y, &point->Y)) goto err;
- }
+ if (y != NULL) {
+ if (!group->meth->field_decode(group, y, &point->Y, ctx))
+ goto err;
+ }
+ } else {
+ if (x != NULL) {
+ if (!BN_copy(x, &point->X))
+ goto err;
+ }
+ if (y != NULL) {
+ if (!BN_copy(y, &point->Y))
+ goto err;
}
}
- else
- {
- if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx))
- {
+ } else {
+ if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
goto err;
- }
-
- if (group->meth->field_encode == 0)
- {
+ }
+ if (group->meth->field_encode == 0) {
/* field_sqr works on standard representation */
- if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err;
- }
- else
- {
- if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err;
- }
-
- if (x != NULL)
- {
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */
- if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err;
- }
+ if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
+ goto err;
+ } else {
+ if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx))
+ goto err;
+ }
- if (y != NULL)
- {
- if (group->meth->field_encode == 0)
- {
+ if (x != NULL) {
+ /*
+ * in the Montgomery case, field_mul will cancel out
+ * Montgomery factor in X:
+ */
+ if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx))
+ goto err;
+ }
+ if (y != NULL) {
+ if (group->meth->field_encode == 0) {
/* field_mul works on standard representation */
- if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err;
- }
- else
- {
- if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err;
- }
-
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */
- if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err;
+ if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
+ goto err;
+ } else {
+ if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx))
+ goto err;
}
+
+ /*
+ * in the Montgomery case, field_mul will cancel out
+ * Montgomery factor in Y:
+ */
+ if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx))
+ goto err;
}
+ }
ret = 1;
- err:
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+int
+ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx)
+{
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
int ret = 0;
-
+
if (a == b)
return EC_POINT_dbl(group, r, a, ctx);
if (EC_POINT_is_at_infinity(group, a))
return EC_POINT_copy(r, b);
if (EC_POINT_is_at_infinity(group, b))
return EC_POINT_copy(r, a);
-
+
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
@@ -665,272 +665,321 @@ int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, con
n4 = BN_CTX_get(ctx);
n5 = BN_CTX_get(ctx);
n6 = BN_CTX_get(ctx);
- if (n6 == NULL) goto end;
+ if (n6 == NULL)
+ goto end;
- /* Note that in this function we must not read components of 'a' or 'b'
- * once we have written the corresponding components of 'r'.
- * ('r' might be one of 'a' or 'b'.)
+ /*
+ * Note that in this function we must not read components of 'a' or
+ * 'b' once we have written the corresponding components of 'r'. ('r'
+ * might be one of 'a' or 'b'.)
*/
/* n1, n2 */
- if (b->Z_is_one)
- {
- if (!BN_copy(n1, &a->X)) goto end;
- if (!BN_copy(n2, &a->Y)) goto end;
+ if (b->Z_is_one) {
+ if (!BN_copy(n1, &a->X))
+ goto end;
+ if (!BN_copy(n2, &a->Y))
+ goto end;
/* n1 = X_a */
/* n2 = Y_a */
- }
- else
- {
- if (!field_sqr(group, n0, &b->Z, ctx)) goto end;
- if (!field_mul(group, n1, &a->X, n0, ctx)) goto end;
+ } else {
+ if (!field_sqr(group, n0, &b->Z, ctx))
+ goto end;
+ if (!field_mul(group, n1, &a->X, n0, ctx))
+ goto end;
/* n1 = X_a * Z_b^2 */
- if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end;
- if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end;
+ if (!field_mul(group, n0, n0, &b->Z, ctx))
+ goto end;
+ if (!field_mul(group, n2, &a->Y, n0, ctx))
+ goto end;
/* n2 = Y_a * Z_b^3 */
- }
+ }
/* n3, n4 */
- if (a->Z_is_one)
- {
- if (!BN_copy(n3, &b->X)) goto end;
- if (!BN_copy(n4, &b->Y)) goto end;
+ if (a->Z_is_one) {
+ if (!BN_copy(n3, &b->X))
+ goto end;
+ if (!BN_copy(n4, &b->Y))
+ goto end;
/* n3 = X_b */
/* n4 = Y_b */
- }
- else
- {
- if (!field_sqr(group, n0, &a->Z, ctx)) goto end;
- if (!field_mul(group, n3, &b->X, n0, ctx)) goto end;
+ } else {
+ if (!field_sqr(group, n0, &a->Z, ctx))
+ goto end;
+ if (!field_mul(group, n3, &b->X, n0, ctx))
+ goto end;
/* n3 = X_b * Z_a^2 */
- if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end;
- if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end;
+ if (!field_mul(group, n0, n0, &a->Z, ctx))
+ goto end;
+ if (!field_mul(group, n4, &b->Y, n0, ctx))
+ goto end;
/* n4 = Y_b * Z_a^3 */
- }
+ }
/* n5, n6 */
- if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end;
- if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end;
+ if (!BN_mod_sub_quick(n5, n1, n3, p))
+ goto end;
+ if (!BN_mod_sub_quick(n6, n2, n4, p))
+ goto end;
/* n5 = n1 - n3 */
/* n6 = n2 - n4 */
- if (BN_is_zero(n5))
- {
- if (BN_is_zero(n6))
- {
+ if (BN_is_zero(n5)) {
+ if (BN_is_zero(n6)) {
/* a is the same point as b */
BN_CTX_end(ctx);
ret = EC_POINT_dbl(group, r, a, ctx);
ctx = NULL;
goto end;
- }
- else
- {
+ } else {
/* a is the inverse of b */
BN_zero(&r->Z);
r->Z_is_one = 0;
ret = 1;
goto end;
- }
}
-
+ }
/* 'n7', 'n8' */
- if (!BN_mod_add_quick(n1, n1, n3, p)) goto end;
- if (!BN_mod_add_quick(n2, n2, n4, p)) goto end;
+ if (!BN_mod_add_quick(n1, n1, n3, p))
+ goto end;
+ if (!BN_mod_add_quick(n2, n2, n4, p))
+ goto end;
/* 'n7' = n1 + n3 */
/* 'n8' = n2 + n4 */
/* Z_r */
- if (a->Z_is_one && b->Z_is_one)
- {
- if (!BN_copy(&r->Z, n5)) goto end;
- }
- else
- {
- if (a->Z_is_one)
- { if (!BN_copy(n0, &b->Z)) goto end; }
- else if (b->Z_is_one)
- { if (!BN_copy(n0, &a->Z)) goto end; }
- else
- { if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; }
- if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end;
+ if (a->Z_is_one && b->Z_is_one) {
+ if (!BN_copy(&r->Z, n5))
+ goto end;
+ } else {
+ if (a->Z_is_one) {
+ if (!BN_copy(n0, &b->Z))
+ goto end;
+ } else if (b->Z_is_one) {
+ if (!BN_copy(n0, &a->Z))
+ goto end;
+ } else {
+ if (!field_mul(group, n0, &a->Z, &b->Z, ctx))
+ goto end;
}
+ if (!field_mul(group, &r->Z, n0, n5, ctx))
+ goto end;
+ }
r->Z_is_one = 0;
/* Z_r = Z_a * Z_b * n5 */
/* X_r */
- if (!field_sqr(group, n0, n6, ctx)) goto end;
- if (!field_sqr(group, n4, n5, ctx)) goto end;
- if (!field_mul(group, n3, n1, n4, ctx)) goto end;
- if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end;
+ if (!field_sqr(group, n0, n6, ctx))
+ goto end;
+ if (!field_sqr(group, n4, n5, ctx))
+ goto end;
+ if (!field_mul(group, n3, n1, n4, ctx))
+ goto end;
+ if (!BN_mod_sub_quick(&r->X, n0, n3, p))
+ goto end;
/* X_r = n6^2 - n5^2 * 'n7' */
-
+
/* 'n9' */
- if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end;
- if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end;
+ if (!BN_mod_lshift1_quick(n0, &r->X, p))
+ goto end;
+ if (!BN_mod_sub_quick(n0, n3, n0, p))
+ goto end;
/* n9 = n5^2 * 'n7' - 2 * X_r */
/* Y_r */
- if (!field_mul(group, n0, n0, n6, ctx)) goto end;
- if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */
- if (!field_mul(group, n1, n2, n5, ctx)) goto end;
- if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end;
+ if (!field_mul(group, n0, n0, n6, ctx))
+ goto end;
+ if (!field_mul(group, n5, n4, n5, ctx))
+ goto end; /* now n5 is n5^3 */
+ if (!field_mul(group, n1, n2, n5, ctx))
+ goto end;
+ if (!BN_mod_sub_quick(n0, n0, n1, p))
+ goto end;
if (BN_is_odd(n0))
- if (!BN_add(n0, n0, p)) goto end;
+ if (!BN_add(n0, n0, p))
+ goto end;
/* now 0 <= n0 < 2*p, and n0 is even */
- if (!BN_rshift1(&r->Y, n0)) goto end;
+ if (!BN_rshift1(&r->Y, n0))
+ goto end;
/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
ret = 1;
- end:
- if (ctx) /* otherwise we already called BN_CTX_end */
+end:
+ if (ctx) /* otherwise we already called BN_CTX_end */
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
- {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+int
+ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx)
+{
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3;
int ret = 0;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
+
+ if (EC_POINT_is_at_infinity(group, a)) {
BN_zero(&r->Z);
r->Z_is_one = 0;
return 1;
- }
-
+ }
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
- if (n3 == NULL) goto err;
+ if (n3 == NULL)
+ goto err;
- /* Note that in this function we must not read components of 'a'
- * once we have written the corresponding components of 'r'.
- * ('r' might the same as 'a'.)
+ /*
+ * Note that in this function we must not read components of 'a' once
+ * we have written the corresponding components of 'r'. ('r' might
+ * the same as 'a'.)
*/
/* n1 */
- if (a->Z_is_one)
- {
- if (!field_sqr(group, n0, &a->X, ctx)) goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
- if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err;
+ if (a->Z_is_one) {
+ if (!field_sqr(group, n0, &a->X, ctx))
+ goto err;
+ if (!BN_mod_lshift1_quick(n1, n0, p))
+ goto err;
+ if (!BN_mod_add_quick(n0, n0, n1, p))
+ goto err;
+ if (!BN_mod_add_quick(n1, n0, &group->a, p))
+ goto err;
/* n1 = 3 * X_a^2 + a_curve */
- }
- else if (group->a_is_minus3)
- {
- if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
- if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err;
- if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err;
- if (!field_mul(group, n1, n0, n2, ctx)) goto err;
- if (!BN_mod_lshift1_quick(n0, n1, p)) goto err;
- if (!BN_mod_add_quick(n1, n0, n1, p)) goto err;
- /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
- * = 3 * X_a^2 - 3 * Z_a^4 */
- }
- else
- {
- if (!field_sqr(group, n0, &a->X, ctx)) goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
- if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
- if (!field_sqr(group, n1, n1, ctx)) goto err;
- if (!field_mul(group, n1, n1, &group->a, ctx)) goto err;
- if (!BN_mod_add_quick(n1, n1, n0, p)) goto err;
+ } else if (group->a_is_minus3) {
+ if (!field_sqr(group, n1, &a->Z, ctx))
+ goto err;
+ if (!BN_mod_add_quick(n0, &a->X, n1, p))
+ goto err;
+ if (!BN_mod_sub_quick(n2, &a->X, n1, p))
+ goto err;
+ if (!field_mul(group, n1, n0, n2, ctx))
+ goto err;
+ if (!BN_mod_lshift1_quick(n0, n1, p))
+ goto err;
+ if (!BN_mod_add_quick(n1, n0, n1, p))
+ goto err;
+ /*
+ * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 *
+ * Z_a^4
+ */
+ } else {
+ if (!field_sqr(group, n0, &a->X, ctx))
+ goto err;
+ if (!BN_mod_lshift1_quick(n1, n0, p))
+ goto err;
+ if (!BN_mod_add_quick(n0, n0, n1, p))
+ goto err;
+ if (!field_sqr(group, n1, &a->Z, ctx))
+ goto err;
+ if (!field_sqr(group, n1, n1, ctx))
+ goto err;
+ if (!field_mul(group, n1, n1, &group->a, ctx))
+ goto err;
+ if (!BN_mod_add_quick(n1, n1, n0, p))
+ goto err;
/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
- }
+ }
/* Z_r */
- if (a->Z_is_one)
- {
- if (!BN_copy(n0, &a->Y)) goto err;
- }
- else
- {
- if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err;
- }
- if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err;
+ if (a->Z_is_one) {
+ if (!BN_copy(n0, &a->Y))
+ goto err;
+ } else {
+ if (!field_mul(group, n0, &a->Y, &a->Z, ctx))
+ goto err;
+ }
+ if (!BN_mod_lshift1_quick(&r->Z, n0, p))
+ goto err;
r->Z_is_one = 0;
/* Z_r = 2 * Y_a * Z_a */
/* n2 */
- if (!field_sqr(group, n3, &a->Y, ctx)) goto err;
- if (!field_mul(group, n2, &a->X, n3, ctx)) goto err;
- if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err;
+ if (!field_sqr(group, n3, &a->Y, ctx))
+ goto err;
+ if (!field_mul(group, n2, &a->X, n3, ctx))
+ goto err;
+ if (!BN_mod_lshift_quick(n2, n2, 2, p))
+ goto err;
/* n2 = 4 * X_a * Y_a^2 */
/* X_r */
- if (!BN_mod_lshift1_quick(n0, n2, p)) goto err;
- if (!field_sqr(group, &r->X, n1, ctx)) goto err;
- if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err;
+ if (!BN_mod_lshift1_quick(n0, n2, p))
+ goto err;
+ if (!field_sqr(group, &r->X, n1, ctx))
+ goto err;
+ if (!BN_mod_sub_quick(&r->X, &r->X, n0, p))
+ goto err;
/* X_r = n1^2 - 2 * n2 */
-
+
/* n3 */
- if (!field_sqr(group, n0, n3, ctx)) goto err;
- if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err;
+ if (!field_sqr(group, n0, n3, ctx))
+ goto err;
+ if (!BN_mod_lshift_quick(n3, n0, 3, p))
+ goto err;
/* n3 = 8 * Y_a^4 */
-
+
/* Y_r */
- if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err;
- if (!field_mul(group, n0, n1, n0, ctx)) goto err;
- if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err;
+ if (!BN_mod_sub_quick(n0, n2, &r->X, p))
+ goto err;
+ if (!field_mul(group, n0, n1, n0, ctx))
+ goto err;
+ if (!BN_mod_sub_quick(&r->Y, n0, n3, p))
+ goto err;
/* Y_r = n1 * (n2 - X_r) - n3 */
ret = 1;
- err:
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
+{
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
/* point is its own inverse */
return 1;
-
+
return BN_usub(&point->Y, &group->field, &point->Y);
- }
+}
-int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
- {
+int
+ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point)
+{
return BN_is_zero(&point->Z);
- }
+}
-int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
- {
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+int
+ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx)
+{
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *rh, *tmp, *Z4, *Z6;
@@ -938,199 +987,200 @@ int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_C
if (EC_POINT_is_at_infinity(group, point))
return 1;
-
+
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
- }
-
+ }
BN_CTX_start(ctx);
rh = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
Z4 = BN_CTX_get(ctx);
Z6 = BN_CTX_get(ctx);
- if (Z6 == NULL) goto err;
-
- /* We have a curve defined by a Weierstrass equation
- * y^2 = x^3 + a*x + b.
- * The point to consider is given in Jacobian projective coordinates
- * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
- * Substituting this and multiplying by Z^6 transforms the above equation into
- * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
- * To test this, we add up the right-hand side in 'rh'.
+ if (Z6 == NULL)
+ goto err;
+
+ /*
+ * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x
+ * + b. The point to consider is given in Jacobian projective
+ * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
+ * Substituting this and multiplying by Z^6 transforms the above
+ * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up
+ * the right-hand side in 'rh'.
*/
/* rh := X^2 */
- if (!field_sqr(group, rh, &point->X, ctx)) goto err;
+ if (!field_sqr(group, rh, &point->X, ctx))
+ goto err;
- if (!point->Z_is_one)
- {
- if (!field_sqr(group, tmp, &point->Z, ctx)) goto err;
- if (!field_sqr(group, Z4, tmp, ctx)) goto err;
- if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err;
+ if (!point->Z_is_one) {
+ if (!field_sqr(group, tmp, &point->Z, ctx))
+ goto err;
+ if (!field_sqr(group, Z4, tmp, ctx))
+ goto err;
+ if (!field_mul(group, Z6, Z4, tmp, ctx))
+ goto err;
/* rh := (rh + a*Z^4)*X */
- if (group->a_is_minus3)
- {
- if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err;
- if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err;
- if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err;
- if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
- }
- else
- {
- if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
- if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
- }
+ if (group->a_is_minus3) {
+ if (!BN_mod_lshift1_quick(tmp, Z4, p))
+ goto err;
+ if (!BN_mod_add_quick(tmp, tmp, Z4, p))
+ goto err;
+ if (!BN_mod_sub_quick(rh, rh, tmp, p))
+ goto err;
+ if (!field_mul(group, rh, rh, &point->X, ctx))
+ goto err;
+ } else {
+ if (!field_mul(group, tmp, Z4, &group->a, ctx))
+ goto err;
+ if (!BN_mod_add_quick(rh, rh, tmp, p))
+ goto err;
+ if (!field_mul(group, rh, rh, &point->X, ctx))
+ goto err;
+ }
/* rh := rh + b*Z^6 */
- if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
- }
- else
- {
+ if (!field_mul(group, tmp, &group->b, Z6, ctx))
+ goto err;
+ if (!BN_mod_add_quick(rh, rh, tmp, p))
+ goto err;
+ } else {
/* point->Z_is_one */
/* rh := (rh + a)*X */
- if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err;
- if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
+ if (!BN_mod_add_quick(rh, rh, &group->a, p))
+ goto err;
+ if (!field_mul(group, rh, rh, &point->X, ctx))
+ goto err;
/* rh := rh + b */
- if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err;
- }
+ if (!BN_mod_add_quick(rh, rh, &group->b, p))
+ goto err;
+ }
/* 'lh' := Y^2 */
- if (!field_sqr(group, tmp, &point->Y, ctx)) goto err;
+ if (!field_sqr(group, tmp, &point->Y, ctx))
+ goto err;
ret = (0 == BN_ucmp(tmp, rh));
- err:
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- /* return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
+int
+ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx)
+{
+ /*
+ * return values: -1 error 0 equal (in affine coordinates) 1
+ * not equal
*/
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
BN_CTX *new_ctx = NULL;
BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
const BIGNUM *tmp1_, *tmp2_;
int ret = -1;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
+ if (EC_POINT_is_at_infinity(group, a)) {
+ return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
+ }
if (EC_POINT_is_at_infinity(group, b))
return 1;
-
- if (a->Z_is_one && b->Z_is_one)
- {
- return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
+ if (a->Z_is_one && b->Z_is_one) {
+ return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
+ }
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
- }
-
+ }
BN_CTX_start(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
Za23 = BN_CTX_get(ctx);
Zb23 = BN_CTX_get(ctx);
- if (Zb23 == NULL) goto end;
+ if (Zb23 == NULL)
+ goto end;
- /* We have to decide whether
- * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
- * or equivalently, whether
- * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
+ /*
+ * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2,
+ * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) =
+ * (X_b*Z_a^2, Y_b*Z_a^3).
*/
- if (!b->Z_is_one)
- {
- if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end;
- if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end;
+ if (!b->Z_is_one) {
+ if (!field_sqr(group, Zb23, &b->Z, ctx))
+ goto end;
+ if (!field_mul(group, tmp1, &a->X, Zb23, ctx))
+ goto end;
tmp1_ = tmp1;
- }
- else
+ } else
tmp1_ = &a->X;
- if (!a->Z_is_one)
- {
- if (!field_sqr(group, Za23, &a->Z, ctx)) goto end;
- if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end;
+ if (!a->Z_is_one) {
+ if (!field_sqr(group, Za23, &a->Z, ctx))
+ goto end;
+ if (!field_mul(group, tmp2, &b->X, Za23, ctx))
+ goto end;
tmp2_ = tmp2;
- }
- else
+ } else
tmp2_ = &b->X;
-
+
/* compare X_a*Z_b^2 with X_b*Z_a^2 */
- if (BN_cmp(tmp1_, tmp2_) != 0)
- {
- ret = 1; /* points differ */
+ if (BN_cmp(tmp1_, tmp2_) != 0) {
+ ret = 1; /* points differ */
goto end;
- }
-
-
- if (!b->Z_is_one)
- {
- if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end;
- if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end;
+ }
+ if (!b->Z_is_one) {
+ if (!field_mul(group, Zb23, Zb23, &b->Z, ctx))
+ goto end;
+ if (!field_mul(group, tmp1, &a->Y, Zb23, ctx))
+ goto end;
/* tmp1_ = tmp1 */
- }
- else
+ } else
tmp1_ = &a->Y;
- if (!a->Z_is_one)
- {
- if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end;
- if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end;
+ if (!a->Z_is_one) {
+ if (!field_mul(group, Za23, Za23, &a->Z, ctx))
+ goto end;
+ if (!field_mul(group, tmp2, &b->Y, Za23, ctx))
+ goto end;
/* tmp2_ = tmp2 */
- }
- else
+ } else
tmp2_ = &b->Y;
/* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
- if (BN_cmp(tmp1_, tmp2_) != 0)
- {
- ret = 1; /* points differ */
+ if (BN_cmp(tmp1_, tmp2_) != 0) {
+ ret = 1; /* points differ */
goto end;
- }
-
+ }
/* points are equal */
ret = 0;
- end:
+end:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
+{
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
int ret = 0;
@@ -1138,38 +1188,38 @@ int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ct
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
return 1;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
- if (y == NULL) goto err;
+ if (y == NULL)
+ goto err;
- if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
- if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
- if (!point->Z_is_one)
- {
+ if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx))
+ goto err;
+ if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
+ goto err;
+ if (!point->Z_is_one) {
ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
goto err;
- }
-
+ }
ret = 1;
- err:
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
- }
+}
-int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
- {
+int
+ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx)
+{
BN_CTX *new_ctx = NULL;
BIGNUM *tmp0, *tmp1;
size_t pow2 = 0;
@@ -1180,171 +1230,179 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT
if (num == 0)
return 1;
- if (ctx == NULL)
- {
+ if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
- }
-
+ }
BN_CTX_start(ctx);
tmp0 = BN_CTX_get(ctx);
tmp1 = BN_CTX_get(ctx);
- if (tmp0 == NULL || tmp1 == NULL) goto err;
+ if (tmp0 == NULL || tmp1 == NULL)
+ goto err;
- /* Before converting the individual points, compute inverses of all Z values.
- * Modular inversion is rather slow, but luckily we can do with a single
- * explicit inversion, plus about 3 multiplications per input value.
+ /*
+ * Before converting the individual points, compute inverses of all Z
+ * values. Modular inversion is rather slow, but luckily we can do
+ * with a single explicit inversion, plus about 3 multiplications per
+ * input value.
*/
pow2 = 1;
while (num > pow2)
pow2 <<= 1;
- /* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
- * We need twice that. */
+ /*
+ * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We
+ * need twice that.
+ */
pow2 <<= 1;
heap = malloc(pow2 * sizeof heap[0]);
- if (heap == NULL) goto err;
-
- /* The array is used as a binary tree, exactly as in heapsort:
- *
- * heap[1]
- * heap[2] heap[3]
- * heap[4] heap[5] heap[6] heap[7]
- * heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
- *
- * We put the Z's in the last line;
- * then we set each other node to the product of its two child-nodes (where
- * empty or 0 entries are treated as ones);
- * then we invert heap[1];
- * then we invert each other node by replacing it by the product of its
- * parent (after inversion) and its sibling (before inversion).
+ if (heap == NULL)
+ goto err;
+
+ /*
+ * The array is used as a binary tree, exactly as in heapsort:
+ *
+ * heap[1] heap[2] heap[3] heap[4] heap[5]
+ * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11]
+ * heap[12]heap[13] heap[14] heap[15]
+ *
+ * We put the Z's in the last line; then we set each other node to the
+ * product of its two child-nodes (where empty or 0 entries are
+ * treated as ones); then we invert heap[1]; then we invert each
+ * other node by replacing it by the product of its parent (after
+ * inversion) and its sibling (before inversion).
*/
heap[0] = NULL;
- for (i = pow2/2 - 1; i > 0; i--)
+ for (i = pow2 / 2 - 1; i > 0; i--)
heap[i] = NULL;
for (i = 0; i < num; i++)
- heap[pow2/2 + i] = &points[i]->Z;
- for (i = pow2/2 + num; i < pow2; i++)
+ heap[pow2 / 2 + i] = &points[i]->Z;
+ for (i = pow2 / 2 + num; i < pow2; i++)
heap[i] = NULL;
-
+
/* set each node to the product of its children */
- for (i = pow2/2 - 1; i > 0; i--)
- {
+ for (i = pow2 / 2 - 1; i > 0; i--) {
heap[i] = BN_new();
- if (heap[i] == NULL) goto err;
-
- if (heap[2*i] != NULL)
- {
- if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
- {
- if (!BN_copy(heap[i], heap[2*i])) goto err;
- }
- else
- {
- if (BN_is_zero(heap[2*i]))
- {
- if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
- }
- else
- {
+ if (heap[i] == NULL)
+ goto err;
+
+ if (heap[2 * i] != NULL) {
+ if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) {
+ if (!BN_copy(heap[i], heap[2 * i]))
+ goto err;
+ } else {
+ if (BN_is_zero(heap[2 * i])) {
+ if (!BN_copy(heap[i], heap[2 * i + 1]))
+ goto err;
+ } else {
if (!group->meth->field_mul(group, heap[i],
- heap[2*i], heap[2*i + 1], ctx)) goto err;
- }
+ heap[2 * i], heap[2 * i + 1], ctx))
+ goto err;
}
}
}
+ }
/* invert heap[1] */
- if (!BN_is_zero(heap[1]))
- {
- if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
- {
+ if (!BN_is_zero(heap[1])) {
+ if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
goto err;
- }
}
- if (group->meth->field_encode != 0)
- {
- /* in the Montgomery case, we just turned R*H (representing H)
- * into 1/(R*H), but we need R*(1/H) (representing 1/H);
- * i.e. we have need to multiply by the Montgomery factor twice */
- if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
- if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
- }
-
+ }
+ if (group->meth->field_encode != 0) {
+ /*
+ * in the Montgomery case, we just turned R*H (representing
+ * H) into 1/(R*H), but we need R*(1/H) (representing
+ * 1/H); i.e. we have need to multiply by the Montgomery
+ * factor twice
+ */
+ if (!group->meth->field_encode(group, heap[1], heap[1], ctx))
+ goto err;
+ if (!group->meth->field_encode(group, heap[1], heap[1], ctx))
+ goto err;
+ }
/* set other heap[i]'s to their inverses */
- for (i = 2; i < pow2/2 + num; i += 2)
- {
+ for (i = 2; i < pow2 / 2 + num; i += 2) {
/* i is even */
- if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
- {
- if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
- if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
- if (!BN_copy(heap[i], tmp0)) goto err;
- if (!BN_copy(heap[i + 1], tmp1)) goto err;
- }
- else
- {
- if (!BN_copy(heap[i], heap[i/2])) goto err;
- }
+ if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) {
+ if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx))
+ goto err;
+ if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx))
+ goto err;
+ if (!BN_copy(heap[i], tmp0))
+ goto err;
+ if (!BN_copy(heap[i + 1], tmp1))
+ goto err;
+ } else {
+ if (!BN_copy(heap[i], heap[i / 2]))
+ goto err;
}
+ }
- /* we have replaced all non-zero Z's by their inverses, now fix up all the points */
- for (i = 0; i < num; i++)
- {
+ /*
+ * we have replaced all non-zero Z's by their inverses, now fix up
+ * all the points
+ */
+ for (i = 0; i < num; i++) {
EC_POINT *p = points[i];
-
- if (!BN_is_zero(&p->Z))
- {
- /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
- if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
- if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;
+ if (!BN_is_zero(&p->Z)) {
+ /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
- if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
- if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
-
- if (group->meth->field_set_to_one != 0)
- {
- if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
- }
- else
- {
- if (!BN_one(&p->Z)) goto err;
- }
- p->Z_is_one = 1;
+ if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx))
+ goto err;
+ if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx))
+ goto err;
+
+ if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx))
+ goto err;
+ if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx))
+ goto err;
+
+ if (group->meth->field_set_to_one != 0) {
+ if (!group->meth->field_set_to_one(group, &p->Z, ctx))
+ goto err;
+ } else {
+ if (!BN_one(&p->Z))
+ goto err;
}
+ p->Z_is_one = 1;
}
+ }
ret = 1;
-
- err:
+
+err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
- if (heap != NULL)
- {
- /* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
- for (i = pow2/2 - 1; i > 0; i--)
- {
+ if (heap != NULL) {
+ /*
+ * heap[pow2/2] .. heap[pow2-1] have not been allocated
+ * locally!
+ */
+ for (i = pow2 / 2 - 1; i > 0; i--) {
if (heap[i] != NULL)
BN_clear_free(heap[i]);
- }
- free(heap);
}
- return ret;
+ free(heap);
}
+ return ret;
+}
-int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
+{
return BN_mod_mul(r, a, b, &group->field, ctx);
- }
+}
-int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
- {
+int
+ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx)
+{
return BN_mod_sqr(r, a, &group->field, ctx);
- }
+}