diff options
Diffstat (limited to 'lib/libcrypto/ec/ecp_smpl.c')
-rw-r--r-- | lib/libcrypto/ec/ecp_smpl.c | 1482 |
1 files changed, 770 insertions, 712 deletions
diff --git a/lib/libcrypto/ec/ecp_smpl.c b/lib/libcrypto/ec/ecp_smpl.c index c99348f08f5..b87410120df 100644 --- a/lib/libcrypto/ec/ecp_smpl.c +++ b/lib/libcrypto/ec/ecp_smpl.c @@ -1,6 +1,6 @@ /* crypto/ec/ecp_smpl.c */ /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> - * for the OpenSSL project. + * for the OpenSSL project. * Includes code written by Bodo Moeller for the OpenSSL project. */ /* ==================================================================== @@ -11,7 +11,7 @@ * are met: * * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. + * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in @@ -80,20 +80,20 @@ EC_GFp_simple_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates_GFp = - ec_GFp_simple_set_Jprojective_coordinates_GFp, + ec_GFp_simple_set_Jprojective_coordinates_GFp, .point_get_Jprojective_coordinates_GFp = - ec_GFp_simple_get_Jprojective_coordinates_GFp, - .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, - .point_get_affine_coordinates = - ec_GFp_simple_point_get_affine_coordinates, + ec_GFp_simple_get_Jprojective_coordinates_GFp, + .point_set_affine_coordinates = + ec_GFp_simple_point_set_affine_coordinates, + .point_get_affine_coordinates = + ec_GFp_simple_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -124,212 +124,225 @@ EC_GFp_simple_method(void) */ -int ec_GFp_simple_group_init(EC_GROUP *group) - { +int +ec_GFp_simple_group_init(EC_GROUP * group) +{ BN_init(&group->field); BN_init(&group->a); BN_init(&group->b); group->a_is_minus3 = 0; return 1; - } +} -void ec_GFp_simple_group_finish(EC_GROUP *group) - { +void +ec_GFp_simple_group_finish(EC_GROUP * group) +{ BN_free(&group->field); BN_free(&group->a); BN_free(&group->b); - } +} -void ec_GFp_simple_group_clear_finish(EC_GROUP *group) - { +void +ec_GFp_simple_group_clear_finish(EC_GROUP * group) +{ BN_clear_free(&group->field); BN_clear_free(&group->a); BN_clear_free(&group->b); - } +} -int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) - { - if (!BN_copy(&dest->field, &src->field)) return 0; - if (!BN_copy(&dest->a, &src->a)) return 0; - if (!BN_copy(&dest->b, &src->b)) return 0; +int +ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) +{ + if (!BN_copy(&dest->field, &src->field)) + return 0; + if (!BN_copy(&dest->a, &src->a)) + return 0; + if (!BN_copy(&dest->b, &src->b)) + return 0; dest->a_is_minus3 = src->a_is_minus3; return 1; - } +} -int ec_GFp_simple_group_set_curve(EC_GROUP *group, - const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { +int +ec_GFp_simple_group_set_curve(EC_GROUP * group, + const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) +{ int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *tmp_a; - + /* p must be a prime > 3 */ - if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) - { + if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); return 0; - } - - if (ctx == NULL) - { + } + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); tmp_a = BN_CTX_get(ctx); - if (tmp_a == NULL) goto err; + if (tmp_a == NULL) + goto err; /* group->field */ - if (!BN_copy(&group->field, p)) goto err; + if (!BN_copy(&group->field, p)) + goto err; BN_set_negative(&group->field, 0); /* group->a */ - if (!BN_nnmod(tmp_a, a, p, ctx)) goto err; - if (group->meth->field_encode) - { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; } - else - if (!BN_copy(&group->a, tmp_a)) goto err; - + if (!BN_nnmod(tmp_a, a, p, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) + goto err; + } else if (!BN_copy(&group->a, tmp_a)) + goto err; + /* group->b */ - if (!BN_nnmod(&group->b, b, p, ctx)) goto err; + if (!BN_nnmod(&group->b, b, p, ctx)) + goto err; if (group->meth->field_encode) - if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err; - + if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) + goto err; + /* group->a_is_minus3 */ - if (!BN_add_word(tmp_a, 3)) goto err; + if (!BN_add_word(tmp_a, 3)) + goto err; group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); ret = 1; - err: +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) - { +int +ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) +{ int ret = 0; BN_CTX *new_ctx = NULL; - - if (p != NULL) - { - if (!BN_copy(p, &group->field)) return 0; - } - if (a != NULL || b != NULL) - { - if (group->meth->field_decode) - { - if (ctx == NULL) - { + if (p != NULL) { + if (!BN_copy(p, &group->field)) + return 0; + } + if (a != NULL || b != NULL) { + if (group->meth->field_decode) { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - if (a != NULL) - { - if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; - } - if (b != NULL) - { - if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; - } } - else - { - if (a != NULL) - { - if (!BN_copy(a, &group->a)) goto err; - } - if (b != NULL) - { - if (!BN_copy(b, &group->b)) goto err; - } + if (a != NULL) { + if (!group->meth->field_decode(group, a, &group->a, ctx)) + goto err; + } + if (b != NULL) { + if (!group->meth->field_decode(group, b, &group->b, ctx)) + goto err; + } + } else { + if (a != NULL) { + if (!BN_copy(a, &group->a)) + goto err; + } + if (b != NULL) { + if (!BN_copy(b, &group->b)) + goto err; } } - + } ret = 1; - - err: + +err: if (new_ctx) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_group_get_degree(const EC_GROUP *group) - { +int +ec_GFp_simple_group_get_degree(const EC_GROUP * group) +{ return BN_num_bits(&group->field); - } +} -int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) - { +int +ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) +{ int ret = 0; - BIGNUM *a,*b,*order,*tmp_1,*tmp_2; + BIGNUM *a, *b, *order, *tmp_1, *tmp_2; const BIGNUM *p = &group->field; BN_CTX *new_ctx = NULL; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - { + if (ctx == NULL) { ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); goto err; - } } + } BN_CTX_start(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); tmp_1 = BN_CTX_get(ctx); tmp_2 = BN_CTX_get(ctx); order = BN_CTX_get(ctx); - if (order == NULL) goto err; + if (order == NULL) + goto err; - if (group->meth->field_decode) - { - if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; - if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; - } - else - { - if (!BN_copy(a, &group->a)) goto err; - if (!BN_copy(b, &group->b)) goto err; - } - - /* check the discriminant: - * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) - * 0 =< a, b < p */ - if (BN_is_zero(a)) - { - if (BN_is_zero(b)) goto err; - } - else if (!BN_is_zero(b)) - { - if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err; - if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err; - if (!BN_lshift(tmp_1, tmp_2, 2)) goto err; + if (group->meth->field_decode) { + if (!group->meth->field_decode(group, a, &group->a, ctx)) + goto err; + if (!group->meth->field_decode(group, b, &group->b, ctx)) + goto err; + } else { + if (!BN_copy(a, &group->a)) + goto err; + if (!BN_copy(b, &group->b)) + goto err; + } + + /* + * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve + * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p + */ + if (BN_is_zero(a)) { + if (BN_is_zero(b)) + goto err; + } else if (!BN_is_zero(b)) { + if (!BN_mod_sqr(tmp_1, a, p, ctx)) + goto err; + if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) + goto err; + if (!BN_lshift(tmp_1, tmp_2, 2)) + goto err; /* tmp_1 = 4*a^3 */ - if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err; - if (!BN_mul_word(tmp_2, 27)) goto err; + if (!BN_mod_sqr(tmp_2, b, p, ctx)) + goto err; + if (!BN_mul_word(tmp_2, 27)) + goto err; /* tmp_2 = 27*b^2 */ - if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err; - if (BN_is_zero(a)) goto err; - } + if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) + goto err; + if (BN_is_zero(a)) + goto err; + } ret = 1; err: @@ -338,325 +351,312 @@ err: if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_point_init(EC_POINT *point) - { +int +ec_GFp_simple_point_init(EC_POINT * point) +{ BN_init(&point->X); BN_init(&point->Y); BN_init(&point->Z); point->Z_is_one = 0; return 1; - } +} -void ec_GFp_simple_point_finish(EC_POINT *point) - { +void +ec_GFp_simple_point_finish(EC_POINT * point) +{ BN_free(&point->X); BN_free(&point->Y); BN_free(&point->Z); - } +} -void ec_GFp_simple_point_clear_finish(EC_POINT *point) - { +void +ec_GFp_simple_point_clear_finish(EC_POINT * point) +{ BN_clear_free(&point->X); BN_clear_free(&point->Y); BN_clear_free(&point->Z); point->Z_is_one = 0; - } +} -int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) - { - if (!BN_copy(&dest->X, &src->X)) return 0; - if (!BN_copy(&dest->Y, &src->Y)) return 0; - if (!BN_copy(&dest->Z, &src->Z)) return 0; +int +ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) +{ + if (!BN_copy(&dest->X, &src->X)) + return 0; + if (!BN_copy(&dest->Y, &src->Y)) + return 0; + if (!BN_copy(&dest->Z, &src->Z)) + return 0; dest->Z_is_one = src->Z_is_one; return 1; - } +} -int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) - { +int +ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) +{ point->Z_is_one = 0; BN_zero(&point->Z); return 1; - } +} -int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) - { +int +ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * point, + const BIGNUM * x, const BIGNUM * y, const BIGNUM * z, BN_CTX * ctx) +{ BN_CTX *new_ctx = NULL; int ret = 0; - - if (ctx == NULL) - { + + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; + } + if (x != NULL) { + if (!BN_nnmod(&point->X, x, &group->field, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) + goto err; } - - if (x != NULL) - { - if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err; - if (group->meth->field_encode) - { - if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err; - } - } - - if (y != NULL) - { - if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err; - if (group->meth->field_encode) - { - if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err; - } + } + if (y != NULL) { + if (!BN_nnmod(&point->Y, y, &group->field, ctx)) + goto err; + if (group->meth->field_encode) { + if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) + goto err; } - - if (z != NULL) - { + } + if (z != NULL) { int Z_is_one; - if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err; + if (!BN_nnmod(&point->Z, z, &group->field, ctx)) + goto err; Z_is_one = BN_is_one(&point->Z); - if (group->meth->field_encode) - { - if (Z_is_one && (group->meth->field_set_to_one != 0)) - { - if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err; - } - else - { - if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err; - } + if (group->meth->field_encode) { + if (Z_is_one && (group->meth->field_set_to_one != 0)) { + if (!group->meth->field_set_to_one(group, &point->Z, ctx)) + goto err; + } else { + if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) + goto err; } - point->Z_is_one = Z_is_one; } - + point->Z_is_one = Z_is_one; + } ret = 1; - - err: + +err: if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) - { +int +ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_POINT * point, + BIGNUM * x, BIGNUM * y, BIGNUM * z, BN_CTX * ctx) +{ BN_CTX *new_ctx = NULL; int ret = 0; - - if (group->meth->field_decode != 0) - { - if (ctx == NULL) - { + + if (group->meth->field_decode != 0) { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - - if (x != NULL) - { - if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; - } - if (y != NULL) - { - if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; - } - if (z != NULL) - { - if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err; - } } - else - { - if (x != NULL) - { - if (!BN_copy(x, &point->X)) goto err; - } - if (y != NULL) - { - if (!BN_copy(y, &point->Y)) goto err; - } - if (z != NULL) - { - if (!BN_copy(z, &point->Z)) goto err; - } + if (x != NULL) { + if (!group->meth->field_decode(group, x, &point->X, ctx)) + goto err; + } + if (y != NULL) { + if (!group->meth->field_decode(group, y, &point->Y, ctx)) + goto err; + } + if (z != NULL) { + if (!group->meth->field_decode(group, z, &point->Z, ctx)) + goto err; + } + } else { + if (x != NULL) { + if (!BN_copy(x, &point->X)) + goto err; } - + if (y != NULL) { + if (!BN_copy(y, &point->Y)) + goto err; + } + if (z != NULL) { + if (!BN_copy(z, &point->Z)) + goto err; + } + } + ret = 1; - err: +err: if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) - { - if (x == NULL || y == NULL) - { +int +ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, + const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) +{ + if (x == NULL || y == NULL) { /* unlike for projective coordinates, we do not tolerate this */ ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); return 0; - } - - return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); } + return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); +} -int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BN_CTX *ctx) - { +int +ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, + BIGNUM * x, BIGNUM * y, BN_CTX * ctx) +{ BN_CTX *new_ctx = NULL; BIGNUM *Z, *Z_1, *Z_2, *Z_3; const BIGNUM *Z_; int ret = 0; - if (EC_POINT_is_at_infinity(group, point)) - { + if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; - } - - if (ctx == NULL) - { + } + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); Z = BN_CTX_get(ctx); Z_1 = BN_CTX_get(ctx); Z_2 = BN_CTX_get(ctx); Z_3 = BN_CTX_get(ctx); - if (Z_3 == NULL) goto err; + if (Z_3 == NULL) + goto err; /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ - - if (group->meth->field_decode) - { - if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err; + + if (group->meth->field_decode) { + if (!group->meth->field_decode(group, Z, &point->Z, ctx)) + goto err; Z_ = Z; - } - else - { + } else { Z_ = &point->Z; - } - - if (BN_is_one(Z_)) - { - if (group->meth->field_decode) - { - if (x != NULL) - { - if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; - } - if (y != NULL) - { - if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; - } + } + + if (BN_is_one(Z_)) { + if (group->meth->field_decode) { + if (x != NULL) { + if (!group->meth->field_decode(group, x, &point->X, ctx)) + goto err; } - else - { - if (x != NULL) - { - if (!BN_copy(x, &point->X)) goto err; - } - if (y != NULL) - { - if (!BN_copy(y, &point->Y)) goto err; - } + if (y != NULL) { + if (!group->meth->field_decode(group, y, &point->Y, ctx)) + goto err; + } + } else { + if (x != NULL) { + if (!BN_copy(x, &point->X)) + goto err; + } + if (y != NULL) { + if (!BN_copy(y, &point->Y)) + goto err; } } - else - { - if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) - { + } else { + if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); goto err; - } - - if (group->meth->field_encode == 0) - { + } + if (group->meth->field_encode == 0) { /* field_sqr works on standard representation */ - if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; - } - else - { - if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err; - } - - if (x != NULL) - { - /* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */ - if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err; - } + if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) + goto err; + } - if (y != NULL) - { - if (group->meth->field_encode == 0) - { + if (x != NULL) { + /* + * in the Montgomery case, field_mul will cancel out + * Montgomery factor in X: + */ + if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) + goto err; + } + if (y != NULL) { + if (group->meth->field_encode == 0) { /* field_mul works on standard representation */ - if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; - } - else - { - if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err; - } - - /* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */ - if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err; + if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) + goto err; + } else { + if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) + goto err; } + + /* + * in the Montgomery case, field_mul will cancel out + * Montgomery factor in Y: + */ + if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) + goto err; } + } ret = 1; - err: +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); +int +ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; int ret = 0; - + if (a == b) return EC_POINT_dbl(group, r, a, ctx); if (EC_POINT_is_at_infinity(group, a)) return EC_POINT_copy(r, b); if (EC_POINT_is_at_infinity(group, b)) return EC_POINT_copy(r, a); - + field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); @@ -665,272 +665,321 @@ int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, con n4 = BN_CTX_get(ctx); n5 = BN_CTX_get(ctx); n6 = BN_CTX_get(ctx); - if (n6 == NULL) goto end; + if (n6 == NULL) + goto end; - /* Note that in this function we must not read components of 'a' or 'b' - * once we have written the corresponding components of 'r'. - * ('r' might be one of 'a' or 'b'.) + /* + * Note that in this function we must not read components of 'a' or + * 'b' once we have written the corresponding components of 'r'. ('r' + * might be one of 'a' or 'b'.) */ /* n1, n2 */ - if (b->Z_is_one) - { - if (!BN_copy(n1, &a->X)) goto end; - if (!BN_copy(n2, &a->Y)) goto end; + if (b->Z_is_one) { + if (!BN_copy(n1, &a->X)) + goto end; + if (!BN_copy(n2, &a->Y)) + goto end; /* n1 = X_a */ /* n2 = Y_a */ - } - else - { - if (!field_sqr(group, n0, &b->Z, ctx)) goto end; - if (!field_mul(group, n1, &a->X, n0, ctx)) goto end; + } else { + if (!field_sqr(group, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n1, &a->X, n0, ctx)) + goto end; /* n1 = X_a * Z_b^2 */ - if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end; - if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end; + if (!field_mul(group, n0, n0, &b->Z, ctx)) + goto end; + if (!field_mul(group, n2, &a->Y, n0, ctx)) + goto end; /* n2 = Y_a * Z_b^3 */ - } + } /* n3, n4 */ - if (a->Z_is_one) - { - if (!BN_copy(n3, &b->X)) goto end; - if (!BN_copy(n4, &b->Y)) goto end; + if (a->Z_is_one) { + if (!BN_copy(n3, &b->X)) + goto end; + if (!BN_copy(n4, &b->Y)) + goto end; /* n3 = X_b */ /* n4 = Y_b */ - } - else - { - if (!field_sqr(group, n0, &a->Z, ctx)) goto end; - if (!field_mul(group, n3, &b->X, n0, ctx)) goto end; + } else { + if (!field_sqr(group, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n3, &b->X, n0, ctx)) + goto end; /* n3 = X_b * Z_a^2 */ - if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end; - if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end; + if (!field_mul(group, n0, n0, &a->Z, ctx)) + goto end; + if (!field_mul(group, n4, &b->Y, n0, ctx)) + goto end; /* n4 = Y_b * Z_a^3 */ - } + } /* n5, n6 */ - if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; - if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; + if (!BN_mod_sub_quick(n5, n1, n3, p)) + goto end; + if (!BN_mod_sub_quick(n6, n2, n4, p)) + goto end; /* n5 = n1 - n3 */ /* n6 = n2 - n4 */ - if (BN_is_zero(n5)) - { - if (BN_is_zero(n6)) - { + if (BN_is_zero(n5)) { + if (BN_is_zero(n6)) { /* a is the same point as b */ BN_CTX_end(ctx); ret = EC_POINT_dbl(group, r, a, ctx); ctx = NULL; goto end; - } - else - { + } else { /* a is the inverse of b */ BN_zero(&r->Z); r->Z_is_one = 0; ret = 1; goto end; - } } - + } /* 'n7', 'n8' */ - if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; - if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; + if (!BN_mod_add_quick(n1, n1, n3, p)) + goto end; + if (!BN_mod_add_quick(n2, n2, n4, p)) + goto end; /* 'n7' = n1 + n3 */ /* 'n8' = n2 + n4 */ /* Z_r */ - if (a->Z_is_one && b->Z_is_one) - { - if (!BN_copy(&r->Z, n5)) goto end; - } - else - { - if (a->Z_is_one) - { if (!BN_copy(n0, &b->Z)) goto end; } - else if (b->Z_is_one) - { if (!BN_copy(n0, &a->Z)) goto end; } - else - { if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; } - if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end; + if (a->Z_is_one && b->Z_is_one) { + if (!BN_copy(&r->Z, n5)) + goto end; + } else { + if (a->Z_is_one) { + if (!BN_copy(n0, &b->Z)) + goto end; + } else if (b->Z_is_one) { + if (!BN_copy(n0, &a->Z)) + goto end; + } else { + if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) + goto end; } + if (!field_mul(group, &r->Z, n0, n5, ctx)) + goto end; + } r->Z_is_one = 0; /* Z_r = Z_a * Z_b * n5 */ /* X_r */ - if (!field_sqr(group, n0, n6, ctx)) goto end; - if (!field_sqr(group, n4, n5, ctx)) goto end; - if (!field_mul(group, n3, n1, n4, ctx)) goto end; - if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end; + if (!field_sqr(group, n0, n6, ctx)) + goto end; + if (!field_sqr(group, n4, n5, ctx)) + goto end; + if (!field_mul(group, n3, n1, n4, ctx)) + goto end; + if (!BN_mod_sub_quick(&r->X, n0, n3, p)) + goto end; /* X_r = n6^2 - n5^2 * 'n7' */ - + /* 'n9' */ - if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end; - if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; + if (!BN_mod_lshift1_quick(n0, &r->X, p)) + goto end; + if (!BN_mod_sub_quick(n0, n3, n0, p)) + goto end; /* n9 = n5^2 * 'n7' - 2 * X_r */ /* Y_r */ - if (!field_mul(group, n0, n0, n6, ctx)) goto end; - if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ - if (!field_mul(group, n1, n2, n5, ctx)) goto end; - if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; + if (!field_mul(group, n0, n0, n6, ctx)) + goto end; + if (!field_mul(group, n5, n4, n5, ctx)) + goto end; /* now n5 is n5^3 */ + if (!field_mul(group, n1, n2, n5, ctx)) + goto end; + if (!BN_mod_sub_quick(n0, n0, n1, p)) + goto end; if (BN_is_odd(n0)) - if (!BN_add(n0, n0, p)) goto end; + if (!BN_add(n0, n0, p)) + goto end; /* now 0 <= n0 < 2*p, and n0 is even */ - if (!BN_rshift1(&r->Y, n0)) goto end; + if (!BN_rshift1(&r->Y, n0)) + goto end; /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ ret = 1; - end: - if (ctx) /* otherwise we already called BN_CTX_end */ +end: + if (ctx) /* otherwise we already called BN_CTX_end */ BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); +int +ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; - - if (EC_POINT_is_at_infinity(group, a)) - { + + if (EC_POINT_is_at_infinity(group, a)) { BN_zero(&r->Z); r->Z_is_one = 0; return 1; - } - + } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); - if (n3 == NULL) goto err; + if (n3 == NULL) + goto err; - /* Note that in this function we must not read components of 'a' - * once we have written the corresponding components of 'r'. - * ('r' might the same as 'a'.) + /* + * Note that in this function we must not read components of 'a' once + * we have written the corresponding components of 'r'. ('r' might + * the same as 'a'.) */ /* n1 */ - if (a->Z_is_one) - { - if (!field_sqr(group, n0, &a->X, ctx)) goto err; - if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; - if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; - if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err; + if (a->Z_is_one) { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, &group->a, p)) + goto err; /* n1 = 3 * X_a^2 + a_curve */ - } - else if (group->a_is_minus3) - { - if (!field_sqr(group, n1, &a->Z, ctx)) goto err; - if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err; - if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err; - if (!field_mul(group, n1, n0, n2, ctx)) goto err; - if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; - if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; - /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) - * = 3 * X_a^2 - 3 * Z_a^4 */ - } - else - { - if (!field_sqr(group, n0, &a->X, ctx)) goto err; - if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; - if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; - if (!field_sqr(group, n1, &a->Z, ctx)) goto err; - if (!field_sqr(group, n1, n1, ctx)) goto err; - if (!field_mul(group, n1, n1, &group->a, ctx)) goto err; - if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; + } else if (group->a_is_minus3) { + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!BN_mod_add_quick(n0, &a->X, n1, p)) + goto err; + if (!BN_mod_sub_quick(n2, &a->X, n1, p)) + goto err; + if (!field_mul(group, n1, n0, n2, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n0, n1, p)) + goto err; + if (!BN_mod_add_quick(n1, n0, n1, p)) + goto err; + /* + * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * + * Z_a^4 + */ + } else { + if (!field_sqr(group, n0, &a->X, ctx)) + goto err; + if (!BN_mod_lshift1_quick(n1, n0, p)) + goto err; + if (!BN_mod_add_quick(n0, n0, n1, p)) + goto err; + if (!field_sqr(group, n1, &a->Z, ctx)) + goto err; + if (!field_sqr(group, n1, n1, ctx)) + goto err; + if (!field_mul(group, n1, n1, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(n1, n1, n0, p)) + goto err; /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ - } + } /* Z_r */ - if (a->Z_is_one) - { - if (!BN_copy(n0, &a->Y)) goto err; - } - else - { - if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err; - } - if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err; + if (a->Z_is_one) { + if (!BN_copy(n0, &a->Y)) + goto err; + } else { + if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) + goto err; + } + if (!BN_mod_lshift1_quick(&r->Z, n0, p)) + goto err; r->Z_is_one = 0; /* Z_r = 2 * Y_a * Z_a */ /* n2 */ - if (!field_sqr(group, n3, &a->Y, ctx)) goto err; - if (!field_mul(group, n2, &a->X, n3, ctx)) goto err; - if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; + if (!field_sqr(group, n3, &a->Y, ctx)) + goto err; + if (!field_mul(group, n2, &a->X, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n2, n2, 2, p)) + goto err; /* n2 = 4 * X_a * Y_a^2 */ /* X_r */ - if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; - if (!field_sqr(group, &r->X, n1, ctx)) goto err; - if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err; + if (!BN_mod_lshift1_quick(n0, n2, p)) + goto err; + if (!field_sqr(group, &r->X, n1, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) + goto err; /* X_r = n1^2 - 2 * n2 */ - + /* n3 */ - if (!field_sqr(group, n0, n3, ctx)) goto err; - if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; + if (!field_sqr(group, n0, n3, ctx)) + goto err; + if (!BN_mod_lshift_quick(n3, n0, 3, p)) + goto err; /* n3 = 8 * Y_a^4 */ - + /* Y_r */ - if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err; - if (!field_mul(group, n0, n1, n0, ctx)) goto err; - if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err; + if (!BN_mod_sub_quick(n0, n2, &r->X, p)) + goto err; + if (!field_mul(group, n0, n1, n0, ctx)) + goto err; + if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) + goto err; /* Y_r = n1 * (n2 - X_r) - n3 */ ret = 1; - err: +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { +int +ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) +{ if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) /* point is its own inverse */ return 1; - + return BN_usub(&point->Y, &group->field, &point->Y); - } +} -int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) - { +int +ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) +{ return BN_is_zero(&point->Z); - } +} -int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) - { - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); +int +ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) +{ + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *rh, *tmp, *Z4, *Z6; @@ -938,199 +987,200 @@ int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_C if (EC_POINT_is_at_infinity(group, point)) return 1; - + field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; - } - + } BN_CTX_start(ctx); rh = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); Z4 = BN_CTX_get(ctx); Z6 = BN_CTX_get(ctx); - if (Z6 == NULL) goto err; - - /* We have a curve defined by a Weierstrass equation - * y^2 = x^3 + a*x + b. - * The point to consider is given in Jacobian projective coordinates - * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). - * Substituting this and multiplying by Z^6 transforms the above equation into - * Y^2 = X^3 + a*X*Z^4 + b*Z^6. - * To test this, we add up the right-hand side in 'rh'. + if (Z6 == NULL) + goto err; + + /* + * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x + * + b. The point to consider is given in Jacobian projective + * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). + * Substituting this and multiplying by Z^6 transforms the above + * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up + * the right-hand side in 'rh'. */ /* rh := X^2 */ - if (!field_sqr(group, rh, &point->X, ctx)) goto err; + if (!field_sqr(group, rh, &point->X, ctx)) + goto err; - if (!point->Z_is_one) - { - if (!field_sqr(group, tmp, &point->Z, ctx)) goto err; - if (!field_sqr(group, Z4, tmp, ctx)) goto err; - if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; + if (!point->Z_is_one) { + if (!field_sqr(group, tmp, &point->Z, ctx)) + goto err; + if (!field_sqr(group, Z4, tmp, ctx)) + goto err; + if (!field_mul(group, Z6, Z4, tmp, ctx)) + goto err; /* rh := (rh + a*Z^4)*X */ - if (group->a_is_minus3) - { - if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; - if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; - if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; - } - else - { - if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err; - if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; - } + if (group->a_is_minus3) { + if (!BN_mod_lshift1_quick(tmp, Z4, p)) + goto err; + if (!BN_mod_add_quick(tmp, tmp, Z4, p)) + goto err; + if (!BN_mod_sub_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } else { + if (!field_mul(group, tmp, Z4, &group->a, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; + } /* rh := rh + b*Z^6 */ - if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err; - if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; - } - else - { + if (!field_mul(group, tmp, &group->b, Z6, ctx)) + goto err; + if (!BN_mod_add_quick(rh, rh, tmp, p)) + goto err; + } else { /* point->Z_is_one */ /* rh := (rh + a)*X */ - if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err; - if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; + if (!BN_mod_add_quick(rh, rh, &group->a, p)) + goto err; + if (!field_mul(group, rh, rh, &point->X, ctx)) + goto err; /* rh := rh + b */ - if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err; - } + if (!BN_mod_add_quick(rh, rh, &group->b, p)) + goto err; + } /* 'lh' := Y^2 */ - if (!field_sqr(group, tmp, &point->Y, ctx)) goto err; + if (!field_sqr(group, tmp, &point->Y, ctx)) + goto err; ret = (0 == BN_ucmp(tmp, rh)); - err: +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - /* return values: - * -1 error - * 0 equal (in affine coordinates) - * 1 not equal +int +ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) +{ + /* + * return values: -1 error 0 equal (in affine coordinates) 1 + * not equal */ - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); + int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *Za23, *Zb23; const BIGNUM *tmp1_, *tmp2_; int ret = -1; - - if (EC_POINT_is_at_infinity(group, a)) - { - return EC_POINT_is_at_infinity(group, b) ? 0 : 1; - } + if (EC_POINT_is_at_infinity(group, a)) { + return EC_POINT_is_at_infinity(group, b) ? 0 : 1; + } if (EC_POINT_is_at_infinity(group, b)) return 1; - - if (a->Z_is_one && b->Z_is_one) - { - return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; - } + if (a->Z_is_one && b->Z_is_one) { + return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; + } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; - } - + } BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); Za23 = BN_CTX_get(ctx); Zb23 = BN_CTX_get(ctx); - if (Zb23 == NULL) goto end; + if (Zb23 == NULL) + goto end; - /* We have to decide whether - * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), - * or equivalently, whether - * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). + /* + * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, + * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = + * (X_b*Z_a^2, Y_b*Z_a^3). */ - if (!b->Z_is_one) - { - if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end; - if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end; + if (!b->Z_is_one) { + if (!field_sqr(group, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) + goto end; tmp1_ = tmp1; - } - else + } else tmp1_ = &a->X; - if (!a->Z_is_one) - { - if (!field_sqr(group, Za23, &a->Z, ctx)) goto end; - if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end; + if (!a->Z_is_one) { + if (!field_sqr(group, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->X, Za23, ctx)) + goto end; tmp2_ = tmp2; - } - else + } else tmp2_ = &b->X; - + /* compare X_a*Z_b^2 with X_b*Z_a^2 */ - if (BN_cmp(tmp1_, tmp2_) != 0) - { - ret = 1; /* points differ */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ goto end; - } - - - if (!b->Z_is_one) - { - if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end; - if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end; + } + if (!b->Z_is_one) { + if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) + goto end; + if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) + goto end; /* tmp1_ = tmp1 */ - } - else + } else tmp1_ = &a->Y; - if (!a->Z_is_one) - { - if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end; - if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end; + if (!a->Z_is_one) { + if (!field_mul(group, Za23, Za23, &a->Z, ctx)) + goto end; + if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) + goto end; /* tmp2_ = tmp2 */ - } - else + } else tmp2_ = &b->Y; /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ - if (BN_cmp(tmp1_, tmp2_) != 0) - { - ret = 1; /* points differ */ + if (BN_cmp(tmp1_, tmp2_) != 0) { + ret = 1; /* points differ */ goto end; - } - + } /* points are equal */ ret = 0; - end: +end: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { +int +ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) +{ BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; @@ -1138,38 +1188,38 @@ int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ct if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) return 1; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); - if (y == NULL) goto err; + if (y == NULL) + goto err; - if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; - if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; - if (!point->Z_is_one) - { + if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) + goto err; + if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) + goto err; + if (!point->Z_is_one) { ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); goto err; - } - + } ret = 1; - err: +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; - } +} -int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) - { +int +ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) +{ BN_CTX *new_ctx = NULL; BIGNUM *tmp0, *tmp1; size_t pow2 = 0; @@ -1180,171 +1230,179 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT if (num == 0) return 1; - if (ctx == NULL) - { + if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; - } - + } BN_CTX_start(ctx); tmp0 = BN_CTX_get(ctx); tmp1 = BN_CTX_get(ctx); - if (tmp0 == NULL || tmp1 == NULL) goto err; + if (tmp0 == NULL || tmp1 == NULL) + goto err; - /* Before converting the individual points, compute inverses of all Z values. - * Modular inversion is rather slow, but luckily we can do with a single - * explicit inversion, plus about 3 multiplications per input value. + /* + * Before converting the individual points, compute inverses of all Z + * values. Modular inversion is rather slow, but luckily we can do + * with a single explicit inversion, plus about 3 multiplications per + * input value. */ pow2 = 1; while (num > pow2) pow2 <<= 1; - /* Now pow2 is the smallest power of 2 satifsying pow2 >= num. - * We need twice that. */ + /* + * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We + * need twice that. + */ pow2 <<= 1; heap = malloc(pow2 * sizeof heap[0]); - if (heap == NULL) goto err; - - /* The array is used as a binary tree, exactly as in heapsort: - * - * heap[1] - * heap[2] heap[3] - * heap[4] heap[5] heap[6] heap[7] - * heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15] - * - * We put the Z's in the last line; - * then we set each other node to the product of its two child-nodes (where - * empty or 0 entries are treated as ones); - * then we invert heap[1]; - * then we invert each other node by replacing it by the product of its - * parent (after inversion) and its sibling (before inversion). + if (heap == NULL) + goto err; + + /* + * The array is used as a binary tree, exactly as in heapsort: + * + * heap[1] heap[2] heap[3] heap[4] heap[5] + * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] + * heap[12]heap[13] heap[14] heap[15] + * + * We put the Z's in the last line; then we set each other node to the + * product of its two child-nodes (where empty or 0 entries are + * treated as ones); then we invert heap[1]; then we invert each + * other node by replacing it by the product of its parent (after + * inversion) and its sibling (before inversion). */ heap[0] = NULL; - for (i = pow2/2 - 1; i > 0; i--) + for (i = pow2 / 2 - 1; i > 0; i--) heap[i] = NULL; for (i = 0; i < num; i++) - heap[pow2/2 + i] = &points[i]->Z; - for (i = pow2/2 + num; i < pow2; i++) + heap[pow2 / 2 + i] = &points[i]->Z; + for (i = pow2 / 2 + num; i < pow2; i++) heap[i] = NULL; - + /* set each node to the product of its children */ - for (i = pow2/2 - 1; i > 0; i--) - { + for (i = pow2 / 2 - 1; i > 0; i--) { heap[i] = BN_new(); - if (heap[i] == NULL) goto err; - - if (heap[2*i] != NULL) - { - if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1])) - { - if (!BN_copy(heap[i], heap[2*i])) goto err; - } - else - { - if (BN_is_zero(heap[2*i])) - { - if (!BN_copy(heap[i], heap[2*i + 1])) goto err; - } - else - { + if (heap[i] == NULL) + goto err; + + if (heap[2 * i] != NULL) { + if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { + if (!BN_copy(heap[i], heap[2 * i])) + goto err; + } else { + if (BN_is_zero(heap[2 * i])) { + if (!BN_copy(heap[i], heap[2 * i + 1])) + goto err; + } else { if (!group->meth->field_mul(group, heap[i], - heap[2*i], heap[2*i + 1], ctx)) goto err; - } + heap[2 * i], heap[2 * i + 1], ctx)) + goto err; } } } + } /* invert heap[1] */ - if (!BN_is_zero(heap[1])) - { - if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) - { + if (!BN_is_zero(heap[1])) { + if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); goto err; - } } - if (group->meth->field_encode != 0) - { - /* in the Montgomery case, we just turned R*H (representing H) - * into 1/(R*H), but we need R*(1/H) (representing 1/H); - * i.e. we have need to multiply by the Montgomery factor twice */ - if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; - if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; - } - + } + if (group->meth->field_encode != 0) { + /* + * in the Montgomery case, we just turned R*H (representing + * H) into 1/(R*H), but we need R*(1/H) (representing + * 1/H); i.e. we have need to multiply by the Montgomery + * factor twice + */ + if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) + goto err; + if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) + goto err; + } /* set other heap[i]'s to their inverses */ - for (i = 2; i < pow2/2 + num; i += 2) - { + for (i = 2; i < pow2 / 2 + num; i += 2) { /* i is even */ - if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) - { - if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err; - if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err; - if (!BN_copy(heap[i], tmp0)) goto err; - if (!BN_copy(heap[i + 1], tmp1)) goto err; - } - else - { - if (!BN_copy(heap[i], heap[i/2])) goto err; - } + if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { + if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) + goto err; + if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) + goto err; + if (!BN_copy(heap[i], tmp0)) + goto err; + if (!BN_copy(heap[i + 1], tmp1)) + goto err; + } else { + if (!BN_copy(heap[i], heap[i / 2])) + goto err; } + } - /* we have replaced all non-zero Z's by their inverses, now fix up all the points */ - for (i = 0; i < num; i++) - { + /* + * we have replaced all non-zero Z's by their inverses, now fix up + * all the points + */ + for (i = 0; i < num; i++) { EC_POINT *p = points[i]; - - if (!BN_is_zero(&p->Z)) - { - /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ - if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err; - if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err; + if (!BN_is_zero(&p->Z)) { + /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ - if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err; - if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err; - - if (group->meth->field_set_to_one != 0) - { - if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; - } - else - { - if (!BN_one(&p->Z)) goto err; - } - p->Z_is_one = 1; + if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) + goto err; + + if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) + goto err; + if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) + goto err; + + if (group->meth->field_set_to_one != 0) { + if (!group->meth->field_set_to_one(group, &p->Z, ctx)) + goto err; + } else { + if (!BN_one(&p->Z)) + goto err; } + p->Z_is_one = 1; } + } ret = 1; - - err: + +err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); - if (heap != NULL) - { - /* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */ - for (i = pow2/2 - 1; i > 0; i--) - { + if (heap != NULL) { + /* + * heap[pow2/2] .. heap[pow2-1] have not been allocated + * locally! + */ + for (i = pow2 / 2 - 1; i > 0; i--) { if (heap[i] != NULL) BN_clear_free(heap[i]); - } - free(heap); } - return ret; + free(heap); } + return ret; +} -int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { +int +ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) +{ return BN_mod_mul(r, a, b, &group->field, ctx); - } +} -int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) - { +int +ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) +{ return BN_mod_sqr(r, a, &group->field, ctx); - } +} |