summaryrefslogtreecommitdiff
path: root/sys/arch/sun3/dev/zsvar.h
diff options
context:
space:
mode:
Diffstat (limited to 'sys/arch/sun3/dev/zsvar.h')
-rw-r--r--sys/arch/sun3/dev/zsvar.h152
1 files changed, 0 insertions, 152 deletions
diff --git a/sys/arch/sun3/dev/zsvar.h b/sys/arch/sun3/dev/zsvar.h
deleted file mode 100644
index eebeea54ff8..00000000000
--- a/sys/arch/sun3/dev/zsvar.h
+++ /dev/null
@@ -1,152 +0,0 @@
-/* $NetBSD: zsvar.h,v 1.7 1995/04/11 02:41:49 mycroft Exp $ */
-
-/*
- * Copyright (c) 1994 Gordon W. Ross
- * Copyright (c) 1992, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * This software was developed by the Computer Systems Engineering group
- * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
- * contributed to Berkeley.
- *
- * All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Lawrence Berkeley Laboratory.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * @(#)zsvar.h 8.1 (Berkeley) 6/11/93
- */
-
-/*
- * Software state, per zs channel.
- *
- * The zs chip has insufficient buffering, so we provide a software
- * buffer using a two-level interrupt scheme. The hardware (high priority)
- * interrupt simply grabs the `cause' of the interrupt and stuffs it into
- * a ring buffer. It then schedules a software interrupt; the latter
- * empties the ring as fast as it can, hoping to avoid overflow.
- *
- * Interrupts can happen because of:
- * - received data;
- * - transmit pseudo-DMA done; and
- * - status change.
- * These are all stored together in the (single) ring. The size of the
- * ring is a power of two, to make % operations fast. Since we need two
- * bits to distinguish the interrupt type, and up to 16 for the received
- * data plus RR1 status, we use 32 bits per ring entry.
- *
- * When the value is a character + RR1 status, the character is in the
- * upper 8 bits of the RR1 status.
- */
-#define ZLRB_RING_SIZE 256 /* ZS line ring buffer size */
-#define ZLRB_RING_MASK 255 /* mask for same */
-
-/* 0 is reserved (means "no interrupt") */
-#define ZRING_RINT 1 /* receive data interrupt */
-#define ZRING_XINT 2 /* transmit done interrupt */
-#define ZRING_SINT 3 /* status change interrupt */
-
-#define ZRING_TYPE(x) ((x) & 3)
-#define ZRING_VALUE(x) ((x) >> 8)
-#define ZRING_MAKE(t, v) ((t) | (v) << 8)
-
-struct zs_chanstate {
- struct zs_chanstate *cs_next; /* linked list for zshard() */
- volatile struct zschan *cs_zc; /* points to hardware regs */
- int cs_unit; /* unit number */
- struct tty *cs_ttyp; /* ### */
-
- /*
- * We must keep a copy of the write registers as they are
- * mostly write-only and we sometimes need to set and clear
- * individual bits (e.g., in WR3). Not all of these are
- * needed but 16 bytes is cheap and this makes the addressing
- * simpler. Unfortunately, we can only write to some registers
- * when the chip is not actually transmitting, so whenever
- * we are expecting a `transmit done' interrupt the preg array
- * is allowed to `get ahead' of the current values. In a
- * few places we must change the current value of a register,
- * rather than (or in addition to) the pending value; for these
- * cs_creg[] contains the current value.
- */
- u_char cs_creg[16]; /* current values */
- u_char cs_preg[16]; /* pending values */
- u_char cs_heldchange; /* change pending (creg != preg) */
- u_char cs_rr0; /* last rr0 processed */
-
- /* pure software data, per channel */
- char cs_softcar; /* software carrier */
- char cs_conk; /* is console keyboard, decode L1-A */
- char cs_brkabort; /* abort (as if via L1-A) on BREAK */
- char cs_kgdb; /* enter debugger on frame char */
- char cs_consio; /* port does /dev/console I/O */
- char cs_xxx; /* (spare) */
- int cs_speed; /* default baud rate (from ROM) */
-
- /*
- * The transmit byte count and address are used for pseudo-DMA
- * output in the hardware interrupt code. PDMA can be suspended
- * to get pending changes done; heldtbc is used for this. It can
- * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
- */
- int cs_tbc; /* transmit byte count */
- caddr_t cs_tba; /* transmit buffer address */
- int cs_heldtbc; /* held tbc while xmission stopped */
-
- /*
- * Printing an overrun error message often takes long enough to
- * cause another overrun, so we only print one per second.
- */
- long cs_rotime; /* time of last ring overrun */
- long cs_fotime; /* time of last fifo overrun */
-
- /*
- * The ring buffer.
- */
- u_int cs_rbget; /* ring buffer `get' index */
- volatile u_int cs_rbput; /* ring buffer `put' index */
- int cs_rbuf[ZLRB_RING_SIZE];/* type, value pairs */
-};
-
-/*
- * N.B.: the keyboard is channel 1, the mouse channel 0; ttyb is 1, ttya
- * is 0. In other words, the things are BACKWARDS.
- */
-#define ZS_CHAN_A 1
-#define ZS_CHAN_B 0
-
-/*
- * Macros to read and write individual registers (except 0) in a channel.
- * The ZS chip requires a 1.6 uSec. recovery time between accesses.
- */
-#define ZS_READ(c, r) zs_read(c, r)
-#define ZS_WRITE(c, r, v) zs_write(c, r, v)
-#define ZS_DELAY() delay2us()