diff options
Diffstat (limited to 'sys/dev/pci/if_bnx.c')
-rw-r--r-- | sys/dev/pci/if_bnx.c | 5564 |
1 files changed, 5564 insertions, 0 deletions
diff --git a/sys/dev/pci/if_bnx.c b/sys/dev/pci/if_bnx.c new file mode 100644 index 00000000000..f6115692561 --- /dev/null +++ b/sys/dev/pci/if_bnx.c @@ -0,0 +1,5564 @@ +/* $OpenBSD: if_bnx.c,v 1.1 2006/06/26 04:57:54 brad Exp $ */ + +/*- + * Copyright (c) 2006 Broadcom Corporation + * David Christensen <davidch@broadcom.com>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of Broadcom Corporation nor the name of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written consent. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +#if 0 +#include <sys/cdefs.h> +__FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $"); +#endif + +/* + * The following controllers are supported by this driver: + * BCM5706C A2, A3 + * BCM5708C B1 + * + * The following controllers are not supported by this driver: + * (These are not "Production" versions of the controller.) + * + * BCM5706C A0, A1 + * BCM5706S A0, A1, A2, A3 + * BCM5708C A0, B0 + * BCM5708S A0, B0, B1 + */ + +#define BNX_DEBUG + +#include <dev/pci/if_bnxreg.h> +#include <dev/pci/if_bnxfw.h> + +/****************************************************************************/ +/* BNX Driver Version */ +/****************************************************************************/ +char bnx_driver_version[] = "v0.9.6"; + +/****************************************************************************/ +/* BNX Debug Options */ +/****************************************************************************/ +#ifdef BNX_DEBUG + u32 bnx_debug = BNX_WARN; + + /* 0 = Never */ + /* 1 = 1 in 2,147,483,648 */ + /* 256 = 1 in 8,388,608 */ + /* 2048 = 1 in 1,048,576 */ + /* 65536 = 1 in 32,768 */ + /* 1048576 = 1 in 2,048 */ + /* 268435456 = 1 in 8 */ + /* 536870912 = 1 in 4 */ + /* 1073741824 = 1 in 2 */ + + /* Controls how often the l2_fhdr frame error check will fail. */ + int bnx_debug_l2fhdr_status_check = 0; + + /* Controls how often the unexpected attention check will fail. */ + int bnx_debug_unexpected_attention = 0; + + /* Controls how often to simulate an mbuf allocation failure. */ + int bnx_debug_mbuf_allocation_failure = 0; + + /* Controls how often to simulate a DMA mapping failure. */ + int bnx_debug_dma_map_addr_failure = 0; + + /* Controls how often to simulate a bootcode failure. */ + int bnx_debug_bootcode_running_failure = 0; +#endif + +/****************************************************************************/ +/* PCI Device ID Table */ +/* */ +/* Used by bnx_probe() to identify the devices supported by this driver. */ +/****************************************************************************/ +const struct pci_matchid bnx_devices[] = { + { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706 }, + { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S }, + { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708 }, + { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S } +}; + +/****************************************************************************/ +/* Supported Flash NVRAM device data. */ +/****************************************************************************/ +static struct flash_spec flash_table[] = +{ + /* Slow EEPROM */ + {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, + 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, + SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, + "EEPROM - slow"}, + /* Expansion entry 0001 */ + {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 0001"}, + /* Saifun SA25F010 (non-buffered flash) */ + /* strap, cfg1, & write1 need updates */ + {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, + "Non-buffered flash (128kB)"}, + /* Saifun SA25F020 (non-buffered flash) */ + /* strap, cfg1, & write1 need updates */ + {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, + "Non-buffered flash (256kB)"}, + /* Expansion entry 0100 */ + {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 0100"}, + /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ + {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, + 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, + ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, + "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, + /* Entry 0110: ST M45PE20 (non-buffered flash)*/ + {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, + 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, + ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, + "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, + /* Saifun SA25F005 (non-buffered flash) */ + /* strap, cfg1, & write1 need updates */ + {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, + "Non-buffered flash (64kB)"}, + /* Fast EEPROM */ + {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, + 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, + SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, + "EEPROM - fast"}, + /* Expansion entry 1001 */ + {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 1001"}, + /* Expansion entry 1010 */ + {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 1010"}, + /* ATMEL AT45DB011B (buffered flash) */ + {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, + 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, + BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, + "Buffered flash (128kB)"}, + /* Expansion entry 1100 */ + {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 1100"}, + /* Expansion entry 1101 */ + {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, + 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, + SAIFUN_FLASH_BYTE_ADDR_MASK, 0, + "Entry 1101"}, + /* Ateml Expansion entry 1110 */ + {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, + 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, + BUFFERED_FLASH_BYTE_ADDR_MASK, 0, + "Entry 1110 (Atmel)"}, + /* ATMEL AT45DB021B (buffered flash) */ + {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, + 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, + BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, + "Buffered flash (256kB)"}, +}; + +/****************************************************************************/ +/* OpenBSD device entry points. */ +/****************************************************************************/ +int bnx_probe (struct device *, void *, void *); +void bnx_attach (struct device *, struct device *, void *); +#if 0 +void bnx_detach (void *); +#endif +void bnx_shutdown (void *); + +/****************************************************************************/ +/* BNX Debug Data Structure Dump Routines */ +/****************************************************************************/ +#ifdef BNX_DEBUG +void bnx_dump_mbuf (struct bnx_softc *, struct mbuf *); +void bnx_dump_tx_mbuf_chain (struct bnx_softc *, int, int); +void bnx_dump_rx_mbuf_chain (struct bnx_softc *, int, int); +void bnx_dump_txbd (struct bnx_softc *, int, struct tx_bd *); +void bnx_dump_rxbd (struct bnx_softc *, int, struct rx_bd *); +void bnx_dump_l2fhdr (struct bnx_softc *, int, struct l2_fhdr *); +void bnx_dump_tx_chain (struct bnx_softc *, int, int); +void bnx_dump_rx_chain (struct bnx_softc *, int, int); +void bnx_dump_status_block (struct bnx_softc *); +void bnx_dump_stats_block (struct bnx_softc *); +void bnx_dump_driver_state (struct bnx_softc *); +void bnx_dump_hw_state (struct bnx_softc *); +void bnx_breakpoint (struct bnx_softc *); +#endif + +/****************************************************************************/ +/* BNX Register/Memory Access Routines */ +/****************************************************************************/ +u32 bnx_reg_rd_ind (struct bnx_softc *, u32); +void bnx_reg_wr_ind (struct bnx_softc *, u32, u32); +void bnx_ctx_wr (struct bnx_softc *, u32, u32, u32); +int bnx_miibus_read_reg (struct device *, int, int); +void bnx_miibus_write_reg (struct device *, int, int, int); +void bnx_miibus_statchg (struct device *); + +/****************************************************************************/ +/* BNX NVRAM Access Routines */ +/****************************************************************************/ +int bnx_acquire_nvram_lock (struct bnx_softc *); +int bnx_release_nvram_lock (struct bnx_softc *); +void bnx_enable_nvram_access (struct bnx_softc *); +void bnx_disable_nvram_access (struct bnx_softc *); +int bnx_nvram_read_dword (struct bnx_softc *, u32, u8 *, u32); +int bnx_init_nvram (struct bnx_softc *); +int bnx_nvram_read (struct bnx_softc *, u32, u8 *, int); +int bnx_nvram_test (struct bnx_softc *); +#ifdef BNX_NVRAM_WRITE_SUPPORT +int bnx_enable_nvram_write (struct bnx_softc *); +void bnx_disable_nvram_write (struct bnx_softc *); +int bnx_nvram_erase_page (struct bnx_softc *, u32); +int bnx_nvram_write_dword (struct bnx_softc *, u32, u8 *, u32); +int bnx_nvram_write (struct bnx_softc *, u32, u8 *, int); +#endif + +/****************************************************************************/ +/* */ +/****************************************************************************/ +int bnx_dma_alloc (struct bnx_softc *); +void bnx_dma_free (struct bnx_softc *); +void bnx_release_resources (struct bnx_softc *); +void bnx_dma_map_tx_desc (void *, bus_dmamap_t); + +/****************************************************************************/ +/* BNX Firmware Synchronization and Load */ +/****************************************************************************/ +int bnx_fw_sync (struct bnx_softc *, u32); +void bnx_load_rv2p_fw (struct bnx_softc *, u32 *, u32, u32); +void bnx_load_cpu_fw (struct bnx_softc *, struct cpu_reg *, struct fw_info *); +void bnx_init_cpus (struct bnx_softc *); + +void bnx_stop (struct bnx_softc *); +int bnx_reset (struct bnx_softc *, u32); +int bnx_chipinit (struct bnx_softc *); +int bnx_blockinit (struct bnx_softc *); +int bnx_get_buf (struct bnx_softc *, struct mbuf *, u16 *, u16 *, u32 *); + +int bnx_init_tx_chain (struct bnx_softc *); +int bnx_init_rx_chain (struct bnx_softc *); +void bnx_free_rx_chain (struct bnx_softc *); +void bnx_free_tx_chain (struct bnx_softc *); + +int bnx_tx_encap (struct bnx_softc *, struct mbuf *, u16 *, u16 *, u32 *); +void bnx_start (struct ifnet *); +int bnx_ioctl (struct ifnet *, u_long, caddr_t); +void bnx_watchdog (struct ifnet *); +int bnx_ifmedia_upd (struct ifnet *); +void bnx_ifmedia_sts (struct ifnet *, struct ifmediareq *); +void bnx_init (void *); + +void bnx_init_context (struct bnx_softc *); +void bnx_get_mac_addr (struct bnx_softc *); +void bnx_set_mac_addr (struct bnx_softc *); +void bnx_phy_intr (struct bnx_softc *); +void bnx_rx_intr (struct bnx_softc *); +void bnx_tx_intr (struct bnx_softc *); +void bnx_disable_intr (struct bnx_softc *); +void bnx_enable_intr (struct bnx_softc *); + +int bnx_intr (void *); +void bnx_set_rx_mode (struct bnx_softc *); +void bnx_stats_update (struct bnx_softc *); +void bnx_tick (void *); + +/****************************************************************************/ +/* OpenBSD device dispatch table. */ +/****************************************************************************/ +struct cfattach bnx_ca = { + sizeof(struct bnx_softc), bnx_probe, bnx_attach +}; + +struct cfdriver bnx_cd = { + 0, "bnx", DV_IFNET +}; + +/****************************************************************************/ +/* Device probe function. */ +/* */ +/* Compares the device to the driver's list of supported devices and */ +/* reports back to the OS whether this is the right driver for the device. */ +/* */ +/* Returns: */ +/* BUS_PROBE_DEFAULT on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_probe(struct device *parent, void *match, void *aux) +{ + return (pci_matchbyid((struct pci_attach_args *)aux, bnx_devices, + sizeof(bnx_devices)/sizeof(bnx_devices[0]))); +} + +/****************************************************************************/ +/* Device attach function. */ +/* */ +/* Allocates device resources, performs secondary chip identification, */ +/* resets and initializes the hardware, and initializes driver instance */ +/* variables. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +void +bnx_attach(struct device *parent, struct device *self, void *aux) +{ + struct bnx_softc *sc = (struct bnx_softc *)self; + struct pci_attach_args *pa = aux; + pci_chipset_tag_t pc = pa->pa_pc; + pci_intr_handle_t ih; + const char *intrstr = NULL; + struct ifnet *ifp; + u32 val; + pcireg_t memtype; + bus_size_t size; + + sc->bnx_pa = *pa; + + /* + * Map control/status registers. + */ + memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0); + switch (memtype) { + case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: + case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: + if (pci_mapreg_map(pa, BNX_PCI_BAR0, + memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle, + NULL, &size, 0) == 0) + break; + default: + printf(": can't find mem space\n"); + return; + } + + if (pci_intr_map(pa, &ih)) { + printf(": couldn't map interrupt\n"); + goto bnx_attach_fail; + } + + intrstr = pci_intr_string(pc, ih); + + /* + * Configure byte swap and enable indirect register access. + * Rely on CPU to do target byte swapping on big endian systems. + * Access to registers outside of PCI configurtion space are not + * valid until this is done. + */ + pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, + BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | + BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); + + /* Save ASIC revsion info. */ + sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); + + /* Weed out any non-production controller revisions. */ + switch(BNX_CHIP_ID(sc)) { + case BNX_CHIP_ID_5706_A0: + case BNX_CHIP_ID_5706_A1: + case BNX_CHIP_ID_5708_A0: + case BNX_CHIP_ID_5708_B0: + printf(": unsupported controller revision (%c%d)!\n", + (((pci_conf_read(pa->pa_pc, pa->pa_tag, 0x08) & 0xf0) >> 4) + 'A'), + (pci_conf_read(pa->pa_pc, pa->pa_tag, 0x08) & 0xf)); + goto bnx_attach_fail; + } + + if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) { + printf(": SerDes controllers are not supported!\n"); + goto bnx_attach_fail; + } + +#if 0 + /* + * The embedded PCIe to PCI-X bridge (EPB) + * in the 5708 cannot address memory above + * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). + */ + if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) + sc->max_bus_addr = BNX_BUS_SPACE_MAXADDR; + else + sc->max_bus_addr = BUS_SPACE_MAXADDR; +#endif + + /* + * Find the base address for shared memory access. + * Newer versions of bootcode use a signature and offset + * while older versions use a fixed address. + */ + val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); + if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) + sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0); + else + sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; + + DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); + + /* Set initial device and PHY flags */ + sc->bnx_flags = 0; + sc->bnx_phy_flags = 0; + + /* Get PCI bus information (speed and type). */ + val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); + if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { + u32 clkreg; + + sc->bnx_flags |= BNX_PCIX_FLAG; + + clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); + + clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; + switch (clkreg) { + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: + sc->bus_speed_mhz = 133; + break; + + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: + sc->bus_speed_mhz = 100; + break; + + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: + sc->bus_speed_mhz = 66; + break; + + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: + sc->bus_speed_mhz = 50; + break; + + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: + case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: + sc->bus_speed_mhz = 33; + break; + } + } else { + if (val & BNX_PCICFG_MISC_STATUS_M66EN) + sc->bus_speed_mhz = 66; + else + sc->bus_speed_mhz = 33; + } + + if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) + sc->bnx_flags |= BNX_PCI_32BIT_FLAG; + + /* Reset the controller. */ + if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) + goto bnx_attach_fail; + + /* Initialize the controller. */ + if (bnx_chipinit(sc)) { + printf(": Controller initialization failed!\n"); + goto bnx_attach_fail; + } + + /* Perform NVRAM test. */ + if (bnx_nvram_test(sc)) { + printf(": NVRAM test failed!\n"); + goto bnx_attach_fail; + } + + /* Fetch the permanent Ethernet MAC address. */ + bnx_get_mac_addr(sc); + + /* + * Trip points control how many BDs + * should be ready before generating an + * interrupt while ticks control how long + * a BD can sit in the chain before + * generating an interrupt. Set the default + * values for the RX and TX rings. + */ + +#ifdef BNX_DRBUG + /* Force more frequent interrupts. */ + sc->bnx_tx_quick_cons_trip_int = 1; + sc->bnx_tx_quick_cons_trip = 1; + sc->bnx_tx_ticks_int = 0; + sc->bnx_tx_ticks = 0; + + sc->bnx_rx_quick_cons_trip_int = 1; + sc->bnx_rx_quick_cons_trip = 1; + sc->bnx_rx_ticks_int = 0; + sc->bnx_rx_ticks = 0; +#else + sc->bnx_tx_quick_cons_trip_int = 20; + sc->bnx_tx_quick_cons_trip = 20; + sc->bnx_tx_ticks_int = 80; + sc->bnx_tx_ticks = 80; + + sc->bnx_rx_quick_cons_trip_int = 6; + sc->bnx_rx_quick_cons_trip = 6; + sc->bnx_rx_ticks_int = 18; + sc->bnx_rx_ticks = 18; +#endif + + /* Update statistics once every second. */ + sc->bnx_stats_ticks = 1000000 & 0xffff00; + + /* + * The copper based NetXtreme II controllers + * use an integrated PHY at address 1 while + * the SerDes controllers use a PHY at + * address 2. + */ + sc->bnx_phy_addr = 1; + + if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) { + sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; + sc->bnx_flags |= BNX_NO_WOL_FLAG; + if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) { + sc->bnx_phy_addr = 2; + val = REG_RD_IND(sc, sc->bnx_shmem_base + + BNX_SHARED_HW_CFG_CONFIG); + if (val & BNX_SHARED_HW_CFG_PHY_2_5G) + sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG; + } + } + + if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) { + printf(": SerDes is not supported by this driver!\n"); + goto bnx_attach_fail; + } + + /* Allocate DMA memory resources. */ + sc->bnx_dmatag = pa->pa_dmat; + if (bnx_dma_alloc(sc)) { + printf("%s: DMA resource allocation failed!\n", + sc->bnx_dev.dv_xname); + goto bnx_attach_fail; + } + + /* Initialize the ifnet interface. */ + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = bnx_ioctl; + ifp->if_start = bnx_start; + ifp->if_timer = 0; + ifp->if_watchdog = bnx_watchdog; + if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) + ifp->if_baudrate = IF_Gbps(2.5); + else + ifp->if_baudrate = IF_Gbps(1); + ifp->if_hardmtu = BNX_MAX_JUMBO_MTU; + IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD); + IFQ_SET_READY(&ifp->if_snd); + bcopy(sc->eaddr, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); + bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ); + + /* Assume a standard 1500 byte MTU size for mbuf allocations. */ + sc->mbuf_alloc_size = MCLBYTES; + + /* Hookup IRQ last. */ + sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc, + sc->bnx_dev.dv_xname); + if (sc->bnx_intrhand == NULL) { + printf(": couldn't establish interrupt"); + if (intrstr != NULL) + printf(" at %s", intrstr); + printf("\n"); + goto bnx_attach_fail; + } + + printf(": %s, address %s\n", intrstr, + ether_sprintf(sc->arpcom.ac_enaddr)); + + sc->bnx_mii.mii_ifp = ifp; + sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; + sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; + sc->bnx_mii.mii_statchg = bnx_miibus_statchg; + + /* Look for our PHY. */ + ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd, + bnx_ifmedia_sts); + mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff, + MII_PHY_ANY, MII_OFFSET_ANY, 0); + + if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) { + printf("%s: no PHY found!\n", sc->bnx_dev.dv_xname); + ifmedia_add(&sc->bnx_mii.mii_media, + IFM_ETHER|IFM_MANUAL, 0, NULL); + ifmedia_set(&sc->bnx_mii.mii_media, + IFM_ETHER|IFM_MANUAL); + } else { + ifmedia_set(&sc->bnx_mii.mii_media, + IFM_ETHER|IFM_AUTO); + } + + /* Attach to the Ethernet interface list. */ + if_attach(ifp); + ether_ifattach(ifp); + + timeout_set(&sc->bnx_timeout, bnx_tick, sc); + + /* Print some important debugging info. */ + DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); + + goto bnx_attach_exit; + +bnx_attach_fail: + bnx_release_resources(sc); + +bnx_attach_exit: + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); +} + +/****************************************************************************/ +/* Device detach function. */ +/* */ +/* Stops the controller, resets the controller, and releases resources. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +#if 0 +void +bnx_detach(void *xsc) +{ + struct bnx_softc *sc; + struct ifnet *ifp = &sc->arpcom.ac_if; + + sc = device_get_softc(dev); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Stop and reset the controller. */ + bnx_stop(sc); + bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); + + ether_ifdetach(ifp); + + /* If we have a child device on the MII bus remove it too. */ + if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) { + ifmedia_removeall(&sc->bnx_ifmedia); + } else { + bus_generic_detach(dev); + device_delete_child(dev, sc->bnx_mii); + } + + /* Release all remaining resources. */ + bnx_release_resources(sc); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return(0); +} +#endif + +/****************************************************************************/ +/* Device shutdown function. */ +/* */ +/* Stops and resets the controller. */ +/* */ +/* Returns: */ +/* Nothing */ +/****************************************************************************/ +void +bnx_shutdown(void *xsc) +{ + struct bnx_softc *sc = (struct bnx_softc *)xsc; + + bnx_stop(sc); + bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); +} + +/****************************************************************************/ +/* Indirect register read. */ +/* */ +/* Reads NetXtreme II registers using an index/data register pair in PCI */ +/* configuration space. Using this mechanism avoids issues with posted */ +/* reads but is much slower than memory-mapped I/O. */ +/* */ +/* Returns: */ +/* The value of the register. */ +/****************************************************************************/ +u32 +bnx_reg_rd_ind(struct bnx_softc *sc, u32 offset) +{ + struct pci_attach_args *pa = &(sc->bnx_pa); + + pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, offset); +#ifdef BNX_DEBUG + { + u32 val; + val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); + DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", + __FUNCTION__, offset, val); + return val; + } +#else + return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); +#endif +} + +/****************************************************************************/ +/* Indirect register write. */ +/* */ +/* Writes NetXtreme II registers using an index/data register pair in PCI */ +/* configuration space. Using this mechanism avoids issues with posted */ +/* writes but is muchh slower than memory-mapped I/O. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_reg_wr_ind(struct bnx_softc *sc, u32 offset, u32 val) +{ + struct pci_attach_args *pa = &(sc->bnx_pa); + + DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", + __FUNCTION__, offset, val); + + pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, offset); + pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); +} + +/****************************************************************************/ +/* Context memory write. */ +/* */ +/* The NetXtreme II controller uses context memory to track connection */ +/* information for L2 and higher network protocols. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_ctx_wr(struct bnx_softc *sc, u32 cid_addr, u32 offset, u32 val) +{ + + DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " + "val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val); + + offset += cid_addr; + REG_WR(sc, BNX_CTX_DATA_ADR, offset); + REG_WR(sc, BNX_CTX_DATA, val); +} + +/****************************************************************************/ +/* PHY register read. */ +/* */ +/* Implements register reads on the MII bus. */ +/* */ +/* Returns: */ +/* The value of the register. */ +/****************************************************************************/ +int +bnx_miibus_read_reg(struct device *dev, int phy, int reg) +{ + struct bnx_softc *sc = (struct bnx_softc *)dev; + u32 val; + int i; + + /* Make sure we are accessing the correct PHY address. */ + if (phy != sc->bnx_phy_addr) { + DBPRINT(sc, BNX_VERBOSE, "Invalid PHY address %d for PHY read!\n", phy); + return(0); + } + + if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { + val = REG_RD(sc, BNX_EMAC_MDIO_MODE); + val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; + + REG_WR(sc, BNX_EMAC_MDIO_MODE, val); + REG_RD(sc, BNX_EMAC_MDIO_MODE); + + DELAY(40); + } + + val = BNX_MIPHY(phy) | BNX_MIREG(reg) | + BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | + BNX_EMAC_MDIO_COMM_START_BUSY; + REG_WR(sc, BNX_EMAC_MDIO_COMM, val); + + for (i = 0; i < BNX_PHY_TIMEOUT; i++) { + DELAY(10); + + val = REG_RD(sc, BNX_EMAC_MDIO_COMM); + if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { + DELAY(5); + + val = REG_RD(sc, BNX_EMAC_MDIO_COMM); + val &= BNX_EMAC_MDIO_COMM_DATA; + + break; + } + } + + if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { + BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", + __FILE__, __LINE__, phy, reg); + val = 0x0; + } else { + val = REG_RD(sc, BNX_EMAC_MDIO_COMM); + } + + DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", + __FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff); + + if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { + val = REG_RD(sc, BNX_EMAC_MDIO_MODE); + val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; + + REG_WR(sc, BNX_EMAC_MDIO_MODE, val); + REG_RD(sc, BNX_EMAC_MDIO_MODE); + + DELAY(40); + } + + return (val & 0xffff); + +} + +/****************************************************************************/ +/* PHY register write. */ +/* */ +/* Implements register writes on the MII bus. */ +/* */ +/* Returns: */ +/* The value of the register. */ +/****************************************************************************/ +void +bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val) +{ + struct bnx_softc *sc = (struct bnx_softc *)dev; + u32 val1; + int i; + + /* Make sure we are accessing the correct PHY address. */ + if (phy != sc->bnx_phy_addr) { + DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n", phy); + return; + } + + DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", + __FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff); + + if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { + val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); + val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; + + REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); + REG_RD(sc, BNX_EMAC_MDIO_MODE); + + DELAY(40); + } + + val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | + BNX_EMAC_MDIO_COMM_COMMAND_WRITE | + BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; + REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); + + for (i = 0; i < BNX_PHY_TIMEOUT; i++) { + DELAY(10); + + val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); + if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { + DELAY(5); + break; + } + } + + if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) + BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", + __FILE__, __LINE__); + + if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { + val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); + val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; + + REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); + REG_RD(sc, BNX_EMAC_MDIO_MODE); + + DELAY(40); + } +} + +/****************************************************************************/ +/* MII bus status change. */ +/* */ +/* Called by the MII bus driver when the PHY establishes link to set the */ +/* MAC interface registers. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_miibus_statchg(struct device *dev) +{ + struct bnx_softc *sc = (struct bnx_softc *)dev; + struct mii_data *mii = &sc->bnx_mii; + + BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT); + + /* Set MII or GMII inerface based on the speed negotiated by the PHY. */ + if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { + DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n"); + BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII); + } else { + DBPRINT(sc, BNX_INFO, "Setting MII interface.\n"); + BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII); + } + + /* Set half or full duplex based on the duplicity negotiated by the PHY. */ + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); + BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX); + } else { + DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); + BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX); + } +} + + +/****************************************************************************/ +/* Acquire NVRAM lock. */ +/* */ +/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ +/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ +/* for use by the driver. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_acquire_nvram_lock(struct bnx_softc *sc) +{ + u32 val; + int j; + + DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); + + /* Request access to the flash interface. */ + REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); + for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { + val = REG_RD(sc, BNX_NVM_SW_ARB); + if (val & BNX_NVM_SW_ARB_ARB_ARB2) + break; + + DELAY(5); + } + + if (j >= NVRAM_TIMEOUT_COUNT) { + DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); + return EBUSY; + } + + return 0; +} + +/****************************************************************************/ +/* Release NVRAM lock. */ +/* */ +/* When the caller is finished accessing NVRAM the lock must be released. */ +/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ +/* for use by the driver. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_release_nvram_lock(struct bnx_softc *sc) +{ + int j; + u32 val; + + DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); + + /* + * Relinquish nvram interface. + */ + REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); + + for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { + val = REG_RD(sc, BNX_NVM_SW_ARB); + if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) + break; + + DELAY(5); + } + + if (j >= NVRAM_TIMEOUT_COUNT) { + DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n"); + return EBUSY; + } + + return 0; +} + +#ifdef BNX_NVRAM_WRITE_SUPPORT +/****************************************************************************/ +/* Enable NVRAM write access. */ +/* */ +/* Before writing to NVRAM the caller must enable NVRAM writes. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_enable_nvram_write(struct bnx_softc *sc) +{ + u32 val; + + DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); + + val = REG_RD(sc, BNX_MISC_CFG); + REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); + + if (!sc->bnx_flash_info->buffered) { + int j; + + REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); + REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); + + for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { + DELAY(5); + + val = REG_RD(sc, BNX_NVM_COMMAND); + if (val & BNX_NVM_COMMAND_DONE) + break; + } + + if (j >= NVRAM_TIMEOUT_COUNT) { + DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); + return EBUSY; + } + } + return 0; +} + +/****************************************************************************/ +/* Disable NVRAM write access. */ +/* */ +/* When the caller is finished writing to NVRAM write access must be */ +/* disabled. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_disable_nvram_write(struct bnx_softc *sc) +{ + u32 val; + + DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); + + val = REG_RD(sc, BNX_MISC_CFG); + REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); +} +#endif + +/****************************************************************************/ +/* Enable NVRAM access. */ +/* */ +/* Before accessing NVRAM for read or write operations the caller must */ +/* enabled NVRAM access. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_enable_nvram_access(struct bnx_softc *sc) +{ + u32 val; + + DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); + + val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); + /* Enable both bits, even on read. */ + REG_WR(sc, BNX_NVM_ACCESS_ENABLE, + val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); +} + +/****************************************************************************/ +/* Disable NVRAM access. */ +/* */ +/* When the caller is finished accessing NVRAM access must be disabled. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_disable_nvram_access(struct bnx_softc *sc) +{ + u32 val; + + DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); + + val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); + + /* Disable both bits, even after read. */ + REG_WR(sc, BNX_NVM_ACCESS_ENABLE, + val & ~(BNX_NVM_ACCESS_ENABLE_EN | + BNX_NVM_ACCESS_ENABLE_WR_EN)); +} + +#ifdef BNX_NVRAM_WRITE_SUPPORT +/****************************************************************************/ +/* Erase NVRAM page before writing. */ +/* */ +/* Non-buffered flash parts require that a page be erased before it is */ +/* written. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_erase_page(struct bnx_softc *sc, u32 offset) +{ + u32 cmd; + int j; + + /* Buffered flash doesn't require an erase. */ + if (sc->bnx_flash_info->buffered) + return 0; + + DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); + + /* Build an erase command. */ + cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | + BNX_NVM_COMMAND_DOIT; + + /* + * Clear the DONE bit separately, set the NVRAM adress to erase, + * and issue the erase command. + */ + REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); + REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); + REG_WR(sc, BNX_NVM_COMMAND, cmd); + + /* Wait for completion. */ + for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { + u32 val; + + DELAY(5); + + val = REG_RD(sc, BNX_NVM_COMMAND); + if (val & BNX_NVM_COMMAND_DONE) + break; + } + + if (j >= NVRAM_TIMEOUT_COUNT) { + DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); + return EBUSY; + } + + return 0; +} +#endif /* BNX_NVRAM_WRITE_SUPPORT */ + +/****************************************************************************/ +/* Read a dword (32 bits) from NVRAM. */ +/* */ +/* Read a 32 bit word from NVRAM. The caller is assumed to have already */ +/* obtained the NVRAM lock and enabled the controller for NVRAM access. */ +/* */ +/* Returns: */ +/* 0 on success and the 32 bit value read, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_read_dword(struct bnx_softc *sc, u32 offset, u8 *ret_val, + u32 cmd_flags) +{ + u32 cmd; + int i, rc = 0; + + /* Build the command word. */ + cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; + + /* Calculate the offset for buffered flash. */ + if (sc->bnx_flash_info->buffered) { + offset = ((offset / sc->bnx_flash_info->page_size) << + sc->bnx_flash_info->page_bits) + + (offset % sc->bnx_flash_info->page_size); + } + + /* + * Clear the DONE bit separately, set the address to read, + * and issue the read. + */ + REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); + REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); + REG_WR(sc, BNX_NVM_COMMAND, cmd); + + /* Wait for completion. */ + for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { + u32 val; + + DELAY(5); + + val = REG_RD(sc, BNX_NVM_COMMAND); + if (val & BNX_NVM_COMMAND_DONE) { + val = REG_RD(sc, BNX_NVM_READ); + + val = bnx_be32toh(val); + memcpy(ret_val, &val, 4); + break; + } + } + + /* Check for errors. */ + if (i >= NVRAM_TIMEOUT_COUNT) { + BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", + __FILE__, __LINE__, offset); + rc = EBUSY; + } + + return(rc); +} + +#ifdef BNX_NVRAM_WRITE_SUPPORT +/****************************************************************************/ +/* Write a dword (32 bits) to NVRAM. */ +/* */ +/* Write a 32 bit word to NVRAM. The caller is assumed to have already */ +/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ +/* enabled NVRAM write access. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_write_dword(struct bnx_softc *sc, u32 offset, u8 *val, + u32 cmd_flags) +{ + u32 cmd, val32; + int j; + + /* Build the command word. */ + cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; + + /* Calculate the offset for buffered flash. */ + if (sc->bnx_flash_info->buffered) { + offset = ((offset / sc->bnx_flash_info->page_size) << + sc->bnx_flash_info->page_bits) + + (offset % sc->bnx_flash_info->page_size); + } + + /* + * Clear the DONE bit separately, convert NVRAM data to big-endian, + * set the NVRAM address to write, and issue the write command + */ + REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); + memcpy(&val32, val, 4); + val32 = htobe32(val32); + REG_WR(sc, BNX_NVM_WRITE, val32); + REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); + REG_WR(sc, BNX_NVM_COMMAND, cmd); + + /* Wait for completion. */ + for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { + DELAY(5); + + if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) + break; + } + if (j >= NVRAM_TIMEOUT_COUNT) { + BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", + __FILE__, __LINE__, offset); + return EBUSY; + } + + return 0; +} +#endif /* BNX_NVRAM_WRITE_SUPPORT */ + +/****************************************************************************/ +/* Initialize NVRAM access. */ +/* */ +/* Identify the NVRAM device in use and prepare the NVRAM interface to */ +/* access that device. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_init_nvram(struct bnx_softc *sc) +{ + u32 val; + int j, entry_count, rc; + struct flash_spec *flash; + + DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Determine the selected interface. */ + val = REG_RD(sc, BNX_NVM_CFG1); + + entry_count = sizeof(flash_table) / sizeof(struct flash_spec); + + rc = 0; + + /* + * Flash reconfiguration is required to support additional + * NVRAM devices not directly supported in hardware. + * Check if the flash interface was reconfigured + * by the bootcode. + */ + + if (val & 0x40000000) { + /* Flash interface reconfigured by bootcode. */ + + DBPRINT(sc,BNX_INFO_LOAD, + "bnx_init_nvram(): Flash WAS reconfigured.\n"); + + for (j = 0, flash = &flash_table[0]; j < entry_count; + j++, flash++) { + if ((val & FLASH_BACKUP_STRAP_MASK) == + (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { + sc->bnx_flash_info = flash; + break; + } + } + } else { + /* Flash interface not yet reconfigured. */ + u32 mask; + + DBPRINT(sc,BNX_INFO_LOAD, + "bnx_init_nvram(): Flash was NOT reconfigured.\n"); + + if (val & (1 << 23)) + mask = FLASH_BACKUP_STRAP_MASK; + else + mask = FLASH_STRAP_MASK; + + /* Look for the matching NVRAM device configuration data. */ + for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { + + /* Check if the device matches any of the known devices. */ + if ((val & mask) == (flash->strapping & mask)) { + /* Found a device match. */ + sc->bnx_flash_info = flash; + + /* Request access to the flash interface. */ + if ((rc = bnx_acquire_nvram_lock(sc)) != 0) + return rc; + + /* Reconfigure the flash interface. */ + bnx_enable_nvram_access(sc); + REG_WR(sc, BNX_NVM_CFG1, flash->config1); + REG_WR(sc, BNX_NVM_CFG2, flash->config2); + REG_WR(sc, BNX_NVM_CFG3, flash->config3); + REG_WR(sc, BNX_NVM_WRITE1, flash->write1); + bnx_disable_nvram_access(sc); + bnx_release_nvram_lock(sc); + + break; + } + } + } + + /* Check if a matching device was found. */ + if (j == entry_count) { + sc->bnx_flash_info = NULL; + BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", + __FILE__, __LINE__); + rc = ENODEV; + } + + /* Write the flash config data to the shared memory interface. */ + val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); + val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; + if (val) + sc->bnx_flash_size = val; + else + sc->bnx_flash_size = sc->bnx_flash_info->total_size; + + DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = 0x%08X\n", + sc->bnx_flash_info->total_size); + + DBPRINT(sc,BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return rc; +} + +/****************************************************************************/ +/* Read an arbitrary range of data from NVRAM. */ +/* */ +/* Prepares the NVRAM interface for access and reads the requested data */ +/* into the supplied buffer. */ +/* */ +/* Returns: */ +/* 0 on success and the data read, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_read(struct bnx_softc *sc, u32 offset, u8 *ret_buf, + int buf_size) +{ + int rc = 0; + u32 cmd_flags, offset32, len32, extra; + + if (buf_size == 0) + return 0; + + /* Request access to the flash interface. */ + if ((rc = bnx_acquire_nvram_lock(sc)) != 0) + return rc; + + /* Enable access to flash interface */ + bnx_enable_nvram_access(sc); + + len32 = buf_size; + offset32 = offset; + extra = 0; + + cmd_flags = 0; + + if (offset32 & 3) { + u8 buf[4]; + u32 pre_len; + + offset32 &= ~3; + pre_len = 4 - (offset & 3); + + if (pre_len >= len32) { + pre_len = len32; + cmd_flags = BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; + } + else { + cmd_flags = BNX_NVM_COMMAND_FIRST; + } + + rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); + + if (rc) + return rc; + + memcpy(ret_buf, buf + (offset & 3), pre_len); + + offset32 += 4; + ret_buf += pre_len; + len32 -= pre_len; + } + + if (len32 & 3) { + extra = 4 - (len32 & 3); + len32 = (len32 + 4) & ~3; + } + + if (len32 == 4) { + u8 buf[4]; + + if (cmd_flags) + cmd_flags = BNX_NVM_COMMAND_LAST; + else + cmd_flags = BNX_NVM_COMMAND_FIRST | + BNX_NVM_COMMAND_LAST; + + rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); + + memcpy(ret_buf, buf, 4 - extra); + } + else if (len32 > 0) { + u8 buf[4]; + + /* Read the first word. */ + if (cmd_flags) + cmd_flags = 0; + else + cmd_flags = BNX_NVM_COMMAND_FIRST; + + rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); + + /* Advance to the next dword. */ + offset32 += 4; + ret_buf += 4; + len32 -= 4; + + while (len32 > 4 && rc == 0) { + rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); + + /* Advance to the next dword. */ + offset32 += 4; + ret_buf += 4; + len32 -= 4; + } + + if (rc) + return rc; + + cmd_flags = BNX_NVM_COMMAND_LAST; + rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); + + memcpy(ret_buf, buf, 4 - extra); + } + + /* Disable access to flash interface and release the lock. */ + bnx_disable_nvram_access(sc); + bnx_release_nvram_lock(sc); + + return rc; +} + +#ifdef BNX_NVRAM_WRITE_SUPPORT +/****************************************************************************/ +/* Write an arbitrary range of data from NVRAM. */ +/* */ +/* Prepares the NVRAM interface for write access and writes the requested */ +/* data from the supplied buffer. The caller is responsible for */ +/* calculating any appropriate CRCs. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_write(struct bnx_softc *sc, u32 offset, u8 *data_buf, + int buf_size) +{ + u32 written, offset32, len32; + u8 *buf, start[4], end[4]; + int rc = 0; + int align_start, align_end; + + buf = data_buf; + offset32 = offset; + len32 = buf_size; + align_start = align_end = 0; + + if ((align_start = (offset32 & 3))) { + offset32 &= ~3; + len32 += align_start; + if ((rc = bnx_nvram_read(sc, offset32, start, 4))) + return rc; + } + + if (len32 & 3) { + if ((len32 > 4) || !align_start) { + align_end = 4 - (len32 & 3); + len32 += align_end; + if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, + end, 4))) { + return rc; + } + } + } + + if (align_start || align_end) { + buf = malloc(len32, M_DEVBUF, M_NOWAIT); + if (buf == 0) + return ENOMEM; + if (align_start) { + memcpy(buf, start, 4); + } + if (align_end) { + memcpy(buf + len32 - 4, end, 4); + } + memcpy(buf + align_start, data_buf, buf_size); + } + + written = 0; + while ((written < len32) && (rc == 0)) { + u32 page_start, page_end, data_start, data_end; + u32 addr, cmd_flags; + int i; + u8 flash_buffer[264]; + + /* Find the page_start addr */ + page_start = offset32 + written; + page_start -= (page_start % sc->bnx_flash_info->page_size); + /* Find the page_end addr */ + page_end = page_start + sc->bnx_flash_info->page_size; + /* Find the data_start addr */ + data_start = (written == 0) ? offset32 : page_start; + /* Find the data_end addr */ + data_end = (page_end > offset32 + len32) ? + (offset32 + len32) : page_end; + + /* Request access to the flash interface. */ + if ((rc = bnx_acquire_nvram_lock(sc)) != 0) + goto nvram_write_end; + + /* Enable access to flash interface */ + bnx_enable_nvram_access(sc); + + cmd_flags = BNX_NVM_COMMAND_FIRST; + if (sc->bnx_flash_info->buffered == 0) { + int j; + + /* Read the whole page into the buffer + * (non-buffer flash only) */ + for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { + if (j == (sc->bnx_flash_info->page_size - 4)) { + cmd_flags |= BNX_NVM_COMMAND_LAST; + } + rc = bnx_nvram_read_dword(sc, + page_start + j, + &flash_buffer[j], + cmd_flags); + + if (rc) + goto nvram_write_end; + + cmd_flags = 0; + } + } + + /* Enable writes to flash interface (unlock write-protect) */ + if ((rc = bnx_enable_nvram_write(sc)) != 0) + goto nvram_write_end; + + /* Erase the page */ + if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) + goto nvram_write_end; + + /* Re-enable the write again for the actual write */ + bnx_enable_nvram_write(sc); + + /* Loop to write back the buffer data from page_start to + * data_start */ + i = 0; + if (sc->bnx_flash_info->buffered == 0) { + for (addr = page_start; addr < data_start; + addr += 4, i += 4) { + + rc = bnx_nvram_write_dword(sc, addr, + &flash_buffer[i], cmd_flags); + + if (rc != 0) + goto nvram_write_end; + + cmd_flags = 0; + } + } + + /* Loop to write the new data from data_start to data_end */ + for (addr = data_start; addr < data_end; addr += 4, i++) { + if ((addr == page_end - 4) || + ((sc->bnx_flash_info->buffered) && + (addr == data_end - 4))) { + + cmd_flags |= BNX_NVM_COMMAND_LAST; + } + rc = bnx_nvram_write_dword(sc, addr, buf, + cmd_flags); + + if (rc != 0) + goto nvram_write_end; + + cmd_flags = 0; + buf += 4; + } + + /* Loop to write back the buffer data from data_end + * to page_end */ + if (sc->bnx_flash_info->buffered == 0) { + for (addr = data_end; addr < page_end; + addr += 4, i += 4) { + + if (addr == page_end-4) { + cmd_flags = BNX_NVM_COMMAND_LAST; + } + rc = bnx_nvram_write_dword(sc, addr, + &flash_buffer[i], cmd_flags); + + if (rc != 0) + goto nvram_write_end; + + cmd_flags = 0; + } + } + + /* Disable writes to flash interface (lock write-protect) */ + bnx_disable_nvram_write(sc); + + /* Disable access to flash interface */ + bnx_disable_nvram_access(sc); + bnx_release_nvram_lock(sc); + + /* Increment written */ + written += data_end - data_start; + } + +nvram_write_end: + if (align_start || align_end) + free(buf, M_DEVBUF); + + return rc; +} +#endif /* BNX_NVRAM_WRITE_SUPPORT */ + +/****************************************************************************/ +/* Verifies that NVRAM is accessible and contains valid data. */ +/* */ +/* Reads the configuration data from NVRAM and verifies that the CRC is */ +/* correct. */ +/* */ +/* Returns: */ +/* 0 on success, positive value on failure. */ +/****************************************************************************/ +int +bnx_nvram_test(struct bnx_softc *sc) +{ + u32 buf[BNX_NVRAM_SIZE / 4]; + u8 *data = (u8 *) buf; + int rc = 0; + u32 magic, csum; + + /* + * Check that the device NVRAM is valid by reading + * the magic value at offset 0. + */ + if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) + goto bnx_nvram_test_done; + + magic = bnx_be32toh(buf[0]); + if (magic != BNX_NVRAM_MAGIC) { + rc = ENODEV; + BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " + "Found: 0x%08X\n", + __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic); + goto bnx_nvram_test_done; + } + + /* + * Verify that the device NVRAM includes valid + * configuration data. + */ + if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0) + goto bnx_nvram_test_done; + + csum = ether_crc32_le(data, 0x100); + if (csum != BNX_CRC32_RESIDUAL) { + rc = ENODEV; + BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information NVRAM CRC! " + "Expected: 0x%08X, Found: 0x%08X\n", + __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); + goto bnx_nvram_test_done; + } + + csum = ether_crc32_le(data + 0x100, 0x100); + if (csum != BNX_CRC32_RESIDUAL) { + BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration Information " + "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", + __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); + rc = ENODEV; + } + +bnx_nvram_test_done: + return rc; +} + +/****************************************************************************/ +/* Free any DMA memory owned by the driver. */ +/* */ +/* Scans through each data structre that requires DMA memory and frees */ +/* the memory if allocated. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_dma_free(struct bnx_softc *sc) +{ + int i; + + DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Destroy the status block. */ + if (sc->status_block != NULL) { + bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block, + BNX_STATUS_BLK_SZ); + bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg, + sc->status_rseg); + sc->status_block = NULL; + } + if (sc->status_map != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->status_map); + bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map); + } + + /* Destroy the statistics block. */ + if (sc->stats_block != NULL) { + bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block, + BNX_STATS_BLK_SZ); + bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg, + sc->stats_rseg); + sc->stats_block = NULL; + } + if (sc->stats_map != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map); + bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map); + } + + /* Free, unmap and destroy all TX buffer descriptor chain pages. */ + for (i = 0; i < TX_PAGES; i++ ) { + if (sc->tx_bd_chain[i] != NULL) { + bus_dmamem_unmap(sc->bnx_dmatag, + (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); + bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], + sc->tx_bd_chain_rseg[i]); + sc->tx_bd_chain[i] = NULL; + } + + if (sc->tx_bd_chain_map[i] != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->tx_bd_chain_map[i]); + bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_bd_chain_map[i]); + } + + } + + /* Unload and destroy the TX mbuf maps. */ + for (i = 0; i < TOTAL_TX_BD; i++) { + if (sc->tx_mbuf_map[i] != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]); + bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]); + } + } + + /* Free, unmap and destroy all RX buffer descriptor chain pages. */ + for (i = 0; i < RX_PAGES; i++ ) { + if (sc->rx_bd_chain[i] != NULL) { + bus_dmamem_unmap(sc->bnx_dmatag, + (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); + bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], + sc->rx_bd_chain_rseg[i]); + sc->rx_bd_chain[i] = NULL; + } + + if (sc->rx_bd_chain_map[i] != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->rx_bd_chain_map[i]); + bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_bd_chain_map[i]); + } + + } + + /* Unload and destroy the RX mbuf maps. */ + for (i = 0; i < TOTAL_RX_BD; i++) { + if (sc->rx_mbuf_map[i] != NULL) { + bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]); + bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]); + } + } + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); +} + +/****************************************************************************/ +/* Map TX buffers into TX buffer descriptors. */ +/* */ +/* Given a series of DMA memory containting an outgoing frame, map the */ +/* segments into the tx_bd structure used by the hardware. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_dma_map_tx_desc(void *arg, bus_dmamap_t map) +{ + struct bnx_dmamap_arg *map_arg; + struct bnx_softc *sc; + struct tx_bd *txbd = NULL; + int i = 0, nseg; + u16 prod, chain_prod; + u32 prod_bseq; +#ifdef BNX_DEBUG + u16 debug_prod; +#endif + + map_arg = arg; + sc = map_arg->sc; + nseg = map->dm_nsegs; + + /* Signal error to caller if there's too many segments */ + if (nseg > map_arg->maxsegs) { + DBPRINT(sc, BNX_WARN, + "%s(): Mapped TX descriptors: max segs = %d, " + "actual segs = %d\n", + __FUNCTION__, map_arg->maxsegs, nseg); + + map_arg->maxsegs = 0; + return; + } + + /* prod points to an empty tx_bd at this point. */ + prod = map_arg->prod; + chain_prod = map_arg->chain_prod; + prod_bseq = map_arg->prod_bseq; + +#ifdef BNX_DEBUG + debug_prod = chain_prod; +#endif + + DBPRINT(sc, BNX_INFO_SEND, + "%s(): Start: prod = 0x%04X, chain_prod = %04X, " + "prod_bseq = 0x%08X\n", + __FUNCTION__, prod, chain_prod, prod_bseq); + + /* + * Cycle through each mbuf segment that makes up + * the outgoing frame, gathering the mapping info + * for that segment and creating a tx_bd to for + * the mbuf. + */ + + txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; + + /* Setup the first tx_bd for the first segment. */ + txbd->tx_bd_haddr_lo = htole32(BNX_ADDR_LO(map->dm_segs[i].ds_addr)); + txbd->tx_bd_haddr_hi = htole32(BNX_ADDR_HI(map->dm_segs[i].ds_addr)); + txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len); + txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags | + TX_BD_FLAGS_START); + prod_bseq += map->dm_segs[i].ds_len; + + /* Setup any remaing segments. */ + for (i = 1; i < nseg; i++) { + prod = NEXT_TX_BD(prod); + chain_prod = TX_CHAIN_IDX(prod); + + txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; + + txbd->tx_bd_haddr_lo = htole32(BNX_ADDR_LO(map->dm_segs[i].ds_addr)); + txbd->tx_bd_haddr_hi = htole32(BNX_ADDR_HI(map->dm_segs[i].ds_addr)); + txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len); + txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags); + + prod_bseq += map->dm_segs[i].ds_len; + } + + /* Set the END flag on the last TX buffer descriptor. */ + txbd->tx_bd_vlan_tag_flags |= htole16(TX_BD_FLAGS_END); + + DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg)); + + DBPRINT(sc, BNX_INFO_SEND, + "%s(): End: prod = 0x%04X, chain_prod = %04X, " + "prod_bseq = 0x%08X\n", + __FUNCTION__, prod, chain_prod, prod_bseq); + + /* prod points to the last tx_bd at this point. */ + map_arg->maxsegs = nseg; + map_arg->prod = prod; + map_arg->chain_prod = chain_prod; + map_arg->prod_bseq = prod_bseq; +} + +/****************************************************************************/ +/* Allocate any DMA memory needed by the driver. */ +/* */ +/* Allocates DMA memory needed for the various global structures needed by */ +/* hardware. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_dma_alloc(struct bnx_softc *sc) +{ + int i, rc = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* + * Allocate DMA memory for the status block, map the memory into DMA + * space, and fetch the physical address of the block. + */ + if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, + BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1, + &sc->status_rseg, BUS_DMA_NOWAIT)) { + printf(": Could not allocate status block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg, + BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)) { + printf(": Could not map status block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1, + BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) { + printf(": Could not create status block DMA map!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map, + sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { + printf(": Could not load status block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; + bzero(sc->status_block, BNX_STATUS_BLK_SZ); + + /* DRC - Fix for 64 bit addresses. */ + DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", + (u32) sc->status_block_paddr); + + /* + * Allocate DMA memory for the statistics block, map the memory into + * DMA space, and fetch the physical address of the block. + */ + if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ, + BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1, + &sc->stats_rseg, BUS_DMA_NOWAIT)) { + printf(": Could not allocate stats block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg, + BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)) { + printf(": Could not map stats block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1, + BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) { + printf(": Could not create stats block DMA map!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map, + sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { + printf(": Could not load status block DMA memory!\n"); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; + bzero(sc->stats_block, BNX_STATS_BLK_SZ); + + /* DRC - Fix for 64 bit address. */ + DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", + (u32) sc->stats_block_paddr); + + /* + * Allocate DMA memory for the TX buffer descriptor chain, + * and fetch the physical address of the block. + */ + for (i = 0; i < TX_PAGES; i++) { + if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, + BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1, + &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { + printf(": Could not allocate TX desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], + sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ, + (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) { + printf(": Could not map TX desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1, + BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, + &sc->tx_bd_chain_map[i])) { + printf(": Could not create Tx desc %d DMA map!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i], + (caddr_t)sc->tx_bd_chain[i], BNX_STATS_BLK_SZ, NULL, + BUS_DMA_NOWAIT)) { + printf(": Could not load TX desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + sc->tx_bd_chain_paddr[i] = sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; + + /* DRC - Fix for 64 bit systems. */ + DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", + i, (u32) sc->tx_bd_chain_paddr[i]); + } + + /* + * Create DMA maps for the TX buffer mbufs. + */ + for (i = 0; i < TOTAL_TX_BD; i++) { + if (bus_dmamap_create(sc->bnx_dmatag, MCLBYTES * BNX_MAX_SEGMENTS, + BNX_MAX_SEGMENTS, MCLBYTES, 0, BUS_DMA_NOWAIT, + &sc->tx_mbuf_map[i])) { + printf(": Could not create Tx mbuf %d DMA map!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + } + + /* + * Allocate DMA memory for the Rx buffer descriptor chain, + * and fetch the physical address of the block. + */ + for (i = 0; i < RX_PAGES; i++) { + if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, + BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1, + &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { + printf(": Could not allocate Rx desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], + sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ, + (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) { + printf(": Could not map Rx desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1, + BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, + &sc->rx_bd_chain_map[i])) { + printf(": Could not create Rx desc %d DMA map!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i], + (caddr_t)sc->rx_bd_chain[i], BNX_STATS_BLK_SZ, NULL, + BUS_DMA_NOWAIT)) { + printf(": Could not load Rx desc %d DMA memory!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + + bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); + sc->rx_bd_chain_paddr[i] = sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; + + /* DRC - Fix for 64 bit systems. */ + DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", + i, (u32) sc->rx_bd_chain_paddr[i]); + } + + /* + * Create DMA maps for the Rx buffer mbufs. + */ + for (i = 0; i < TOTAL_RX_BD; i++) { + if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU, + BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT, + &sc->rx_mbuf_map[i])) { + printf(": Could not create Rx mbuf %d DMA map!\n", i); + rc = ENOMEM; + goto bnx_dma_alloc_exit; + } + } + + bnx_dma_alloc_exit: + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return(rc); +} + +/****************************************************************************/ +/* Release all resources used by the driver. */ +/* */ +/* Releases all resources acquired by the driver including interrupts, */ +/* interrupt handler, interfaces, mutexes, and DMA memory. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_release_resources(struct bnx_softc *sc) +{ + struct pci_attach_args *pa = &(sc->bnx_pa); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + bnx_dma_free(sc); + + if (sc->bnx_intrhand != NULL) + pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); +} + +/****************************************************************************/ +/* Firmware synchronization. */ +/* */ +/* Before performing certain events such as a chip reset, synchronize with */ +/* the firmware first. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_fw_sync(struct bnx_softc *sc, u32 msg_data) +{ + int i, rc = 0; + u32 val; + + /* Don't waste any time if we've timed out before. */ + if (sc->bnx_fw_timed_out) { + rc = EBUSY; + goto bnx_fw_sync_exit; + } + + /* Increment the message sequence number. */ + sc->bnx_fw_wr_seq++; + msg_data |= sc->bnx_fw_wr_seq; + + DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", msg_data); + + /* Send the message to the bootcode driver mailbox. */ + REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); + + /* Wait for the bootcode to acknowledge the message. */ + for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { + /* Check for a response in the bootcode firmware mailbox. */ + val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB); + if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ)) + break; + DELAY(1000); + } + + /* If we've timed out, tell the bootcode that we've stopped waiting. */ + if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) && + ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) { + + BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! " + "msg_data = 0x%08X\n", + __FILE__, __LINE__, msg_data); + + msg_data &= ~BNX_DRV_MSG_CODE; + msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT; + + REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); + + sc->bnx_fw_timed_out = 1; + rc = EBUSY; + } + +bnx_fw_sync_exit: + return (rc); +} + +/****************************************************************************/ +/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_load_rv2p_fw(struct bnx_softc *sc, u32 *rv2p_code, + u32 rv2p_code_len, u32 rv2p_proc) +{ + int i; + u32 val; + + for (i = 0; i < rv2p_code_len; i += 8) { + REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code); + rv2p_code++; + REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code); + rv2p_code++; + + if (rv2p_proc == RV2P_PROC1) { + val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR; + REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val); + } + else { + val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR; + REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val); + } + } + + /* Reset the processor, un-stall is done later. */ + if (rv2p_proc == RV2P_PROC1) { + REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET); + } + else { + REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET); + } +} + +/****************************************************************************/ +/* Load RISC processor firmware. */ +/* */ +/* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ +/* associated with a particular processor. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, + struct fw_info *fw) +{ + u32 offset; + u32 val; + + /* Halt the CPU. */ + val = REG_RD_IND(sc, cpu_reg->mode); + val |= cpu_reg->mode_value_halt; + REG_WR_IND(sc, cpu_reg->mode, val); + REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); + + /* Load the Text area. */ + offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); + if (fw->text) { + int j; + + for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { + REG_WR_IND(sc, offset, fw->text[j]); + } + } + + /* Load the Data area. */ + offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); + if (fw->data) { + int j; + + for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { + REG_WR_IND(sc, offset, fw->data[j]); + } + } + + /* Load the SBSS area. */ + offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); + if (fw->sbss) { + int j; + + for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { + REG_WR_IND(sc, offset, fw->sbss[j]); + } + } + + /* Load the BSS area. */ + offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); + if (fw->bss) { + int j; + + for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { + REG_WR_IND(sc, offset, fw->bss[j]); + } + } + + /* Load the Read-Only area. */ + offset = cpu_reg->spad_base + + (fw->rodata_addr - cpu_reg->mips_view_base); + if (fw->rodata) { + int j; + + for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { + REG_WR_IND(sc, offset, fw->rodata[j]); + } + } + + /* Clear the pre-fetch instruction. */ + REG_WR_IND(sc, cpu_reg->inst, 0); + REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); + + /* Start the CPU. */ + val = REG_RD_IND(sc, cpu_reg->mode); + val &= ~cpu_reg->mode_value_halt; + REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); + REG_WR_IND(sc, cpu_reg->mode, val); +} + +/****************************************************************************/ +/* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ +/* */ +/* Loads the firmware for each CPU and starts the CPU. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_init_cpus(struct bnx_softc *sc) +{ + struct cpu_reg cpu_reg; + struct fw_info fw; + + /* Initialize the RV2P processor. */ + bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1), RV2P_PROC1); + bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2), RV2P_PROC2); + + /* Initialize the RX Processor. */ + cpu_reg.mode = BNX_RXP_CPU_MODE; + cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; + cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; + cpu_reg.state = BNX_RXP_CPU_STATE; + cpu_reg.state_value_clear = 0xffffff; + cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; + cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; + cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; + cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; + cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; + cpu_reg.spad_base = BNX_RXP_SCRATCH; + cpu_reg.mips_view_base = 0x8000000; + + fw.ver_major = bnx_RXP_b06FwReleaseMajor; + fw.ver_minor = bnx_RXP_b06FwReleaseMinor; + fw.ver_fix = bnx_RXP_b06FwReleaseFix; + fw.start_addr = bnx_RXP_b06FwStartAddr; + + fw.text_addr = bnx_RXP_b06FwTextAddr; + fw.text_len = bnx_RXP_b06FwTextLen; + fw.text_index = 0; + fw.text = bnx_RXP_b06FwText; + + fw.data_addr = bnx_RXP_b06FwDataAddr; + fw.data_len = bnx_RXP_b06FwDataLen; + fw.data_index = 0; + fw.data = bnx_RXP_b06FwData; + + fw.sbss_addr = bnx_RXP_b06FwSbssAddr; + fw.sbss_len = bnx_RXP_b06FwSbssLen; + fw.sbss_index = 0; + fw.sbss = bnx_RXP_b06FwSbss; + + fw.bss_addr = bnx_RXP_b06FwBssAddr; + fw.bss_len = bnx_RXP_b06FwBssLen; + fw.bss_index = 0; + fw.bss = bnx_RXP_b06FwBss; + + fw.rodata_addr = bnx_RXP_b06FwRodataAddr; + fw.rodata_len = bnx_RXP_b06FwRodataLen; + fw.rodata_index = 0; + fw.rodata = bnx_RXP_b06FwRodata; + + DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); + bnx_load_cpu_fw(sc, &cpu_reg, &fw); + + /* Initialize the TX Processor. */ + cpu_reg.mode = BNX_TXP_CPU_MODE; + cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; + cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; + cpu_reg.state = BNX_TXP_CPU_STATE; + cpu_reg.state_value_clear = 0xffffff; + cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; + cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; + cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; + cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; + cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; + cpu_reg.spad_base = BNX_TXP_SCRATCH; + cpu_reg.mips_view_base = 0x8000000; + + fw.ver_major = bnx_TXP_b06FwReleaseMajor; + fw.ver_minor = bnx_TXP_b06FwReleaseMinor; + fw.ver_fix = bnx_TXP_b06FwReleaseFix; + fw.start_addr = bnx_TXP_b06FwStartAddr; + + fw.text_addr = bnx_TXP_b06FwTextAddr; + fw.text_len = bnx_TXP_b06FwTextLen; + fw.text_index = 0; + fw.text = bnx_TXP_b06FwText; + + fw.data_addr = bnx_TXP_b06FwDataAddr; + fw.data_len = bnx_TXP_b06FwDataLen; + fw.data_index = 0; + fw.data = bnx_TXP_b06FwData; + + fw.sbss_addr = bnx_TXP_b06FwSbssAddr; + fw.sbss_len = bnx_TXP_b06FwSbssLen; + fw.sbss_index = 0; + fw.sbss = bnx_TXP_b06FwSbss; + + fw.bss_addr = bnx_TXP_b06FwBssAddr; + fw.bss_len = bnx_TXP_b06FwBssLen; + fw.bss_index = 0; + fw.bss = bnx_TXP_b06FwBss; + + fw.rodata_addr = bnx_TXP_b06FwRodataAddr; + fw.rodata_len = bnx_TXP_b06FwRodataLen; + fw.rodata_index = 0; + fw.rodata = bnx_TXP_b06FwRodata; + + DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); + bnx_load_cpu_fw(sc, &cpu_reg, &fw); + + /* Initialize the TX Patch-up Processor. */ + cpu_reg.mode = BNX_TPAT_CPU_MODE; + cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; + cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; + cpu_reg.state = BNX_TPAT_CPU_STATE; + cpu_reg.state_value_clear = 0xffffff; + cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; + cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; + cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; + cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; + cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; + cpu_reg.spad_base = BNX_TPAT_SCRATCH; + cpu_reg.mips_view_base = 0x8000000; + + fw.ver_major = bnx_TPAT_b06FwReleaseMajor; + fw.ver_minor = bnx_TPAT_b06FwReleaseMinor; + fw.ver_fix = bnx_TPAT_b06FwReleaseFix; + fw.start_addr = bnx_TPAT_b06FwStartAddr; + + fw.text_addr = bnx_TPAT_b06FwTextAddr; + fw.text_len = bnx_TPAT_b06FwTextLen; + fw.text_index = 0; + fw.text = bnx_TPAT_b06FwText; + + fw.data_addr = bnx_TPAT_b06FwDataAddr; + fw.data_len = bnx_TPAT_b06FwDataLen; + fw.data_index = 0; + fw.data = bnx_TPAT_b06FwData; + + fw.sbss_addr = bnx_TPAT_b06FwSbssAddr; + fw.sbss_len = bnx_TPAT_b06FwSbssLen; + fw.sbss_index = 0; + fw.sbss = bnx_TPAT_b06FwSbss; + + fw.bss_addr = bnx_TPAT_b06FwBssAddr; + fw.bss_len = bnx_TPAT_b06FwBssLen; + fw.bss_index = 0; + fw.bss = bnx_TPAT_b06FwBss; + + fw.rodata_addr = bnx_TPAT_b06FwRodataAddr; + fw.rodata_len = bnx_TPAT_b06FwRodataLen; + fw.rodata_index = 0; + fw.rodata = bnx_TPAT_b06FwRodata; + + DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); + bnx_load_cpu_fw(sc, &cpu_reg, &fw); + + /* Initialize the Completion Processor. */ + cpu_reg.mode = BNX_COM_CPU_MODE; + cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; + cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; + cpu_reg.state = BNX_COM_CPU_STATE; + cpu_reg.state_value_clear = 0xffffff; + cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; + cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; + cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; + cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; + cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; + cpu_reg.spad_base = BNX_COM_SCRATCH; + cpu_reg.mips_view_base = 0x8000000; + + fw.ver_major = bnx_COM_b06FwReleaseMajor; + fw.ver_minor = bnx_COM_b06FwReleaseMinor; + fw.ver_fix = bnx_COM_b06FwReleaseFix; + fw.start_addr = bnx_COM_b06FwStartAddr; + + fw.text_addr = bnx_COM_b06FwTextAddr; + fw.text_len = bnx_COM_b06FwTextLen; + fw.text_index = 0; + fw.text = bnx_COM_b06FwText; + + fw.data_addr = bnx_COM_b06FwDataAddr; + fw.data_len = bnx_COM_b06FwDataLen; + fw.data_index = 0; + fw.data = bnx_COM_b06FwData; + + fw.sbss_addr = bnx_COM_b06FwSbssAddr; + fw.sbss_len = bnx_COM_b06FwSbssLen; + fw.sbss_index = 0; + fw.sbss = bnx_COM_b06FwSbss; + + fw.bss_addr = bnx_COM_b06FwBssAddr; + fw.bss_len = bnx_COM_b06FwBssLen; + fw.bss_index = 0; + fw.bss = bnx_COM_b06FwBss; + + fw.rodata_addr = bnx_COM_b06FwRodataAddr; + fw.rodata_len = bnx_COM_b06FwRodataLen; + fw.rodata_index = 0; + fw.rodata = bnx_COM_b06FwRodata; + + DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); + bnx_load_cpu_fw(sc, &cpu_reg, &fw); +} + +/****************************************************************************/ +/* Initialize context memory. */ +/* */ +/* Clears the memory associated with each Context ID (CID). */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_init_context(struct bnx_softc *sc) +{ + u32 vcid; + + vcid = 96; + while (vcid) { + u32 vcid_addr, pcid_addr, offset; + + vcid--; + + vcid_addr = GET_CID_ADDR(vcid); + pcid_addr = vcid_addr; + + REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00); + REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr); + + /* Zero out the context. */ + for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) { + CTX_WR(sc, 0x00, offset, 0); + } + + REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr); + REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr); + } +} + +/****************************************************************************/ +/* Fetch the permanent MAC address of the controller. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_get_mac_addr(struct bnx_softc *sc) +{ + u32 mac_lo = 0, mac_hi = 0; + + /* + * The NetXtreme II bootcode populates various NIC + * power-on and runtime configuration items in a + * shared memory area. The factory configured MAC + * address is available from both NVRAM and the + * shared memory area so we'll read the value from + * shared memory for speed. + */ + + mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + + BNX_PORT_HW_CFG_MAC_UPPER); + mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + + BNX_PORT_HW_CFG_MAC_LOWER); + + if ((mac_lo == 0) && (mac_hi == 0)) { + BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n", + __FILE__, __LINE__); + } else { + sc->eaddr[0] = (u_char)(mac_hi >> 8); + sc->eaddr[1] = (u_char)(mac_hi >> 0); + sc->eaddr[2] = (u_char)(mac_lo >> 24); + sc->eaddr[3] = (u_char)(mac_lo >> 16); + sc->eaddr[4] = (u_char)(mac_lo >> 8); + sc->eaddr[5] = (u_char)(mac_lo >> 0); + } + + DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); +} + +/****************************************************************************/ +/* Program the MAC address. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_set_mac_addr(struct bnx_softc *sc) +{ + u32 val; + u8 *mac_addr = sc->eaddr; + + DBPRINT(sc, BNX_INFO, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); + + val = (mac_addr[0] << 8) | mac_addr[1]; + + REG_WR(sc, BNX_EMAC_MAC_MATCH0, val); + + val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | + (mac_addr[4] << 8) | mac_addr[5]; + + REG_WR(sc, BNX_EMAC_MAC_MATCH1, val); +} + +/****************************************************************************/ +/* Stop the controller. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_stop(struct bnx_softc *sc) +{ + struct ifnet *ifp = &sc->arpcom.ac_if; + struct ifmedia_entry *ifm; + struct mii_data *mii = NULL; + int mtmp, itmp; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + mii = &sc->bnx_mii; + + timeout_del(&sc->bnx_timeout); + + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + + /* Disable the transmit/receive blocks. */ + REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); + REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); + DELAY(20); + + bnx_disable_intr(sc); + + /* Tell firmware that the driver is going away. */ + bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL); + + /* Free the RX lists. */ + bnx_free_rx_chain(sc); + + /* Free TX buffers. */ + bnx_free_tx_chain(sc); + + /* + * Isolate/power down the PHY, but leave the media selection + * unchanged so that things will be put back to normal when + * we bring the interface back up. + */ + + itmp = ifp->if_flags; + ifp->if_flags |= IFF_UP; + /* + * If we are called from bnx_detach(), mii is already NULL. + */ + if (mii != NULL) { + ifm = mii->mii_media.ifm_cur; + mtmp = ifm->ifm_media; + ifm->ifm_media = IFM_ETHER|IFM_NONE; + mii_mediachg(mii); + ifm->ifm_media = mtmp; + } + + ifp->if_flags = itmp; + ifp->if_timer = 0; + + sc->bnx_link = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + +} + +int +bnx_reset(struct bnx_softc *sc, u32 reset_code) +{ + u32 val; + int i, rc = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Wait for pending PCI transactions to complete. */ + REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, + BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | + BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | + BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | + BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); + val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); + DELAY(5); + + /* Assume bootcode is running. */ + sc->bnx_fw_timed_out = 0; + + /* Give the firmware a chance to prepare for the reset. */ + rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code); + if (rc) + goto bnx_reset_exit; + + /* Set a firmware reminder that this is a soft reset. */ + REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE, + BNX_DRV_RESET_SIGNATURE_MAGIC); + + /* Dummy read to force the chip to complete all current transactions. */ + val = REG_RD(sc, BNX_MISC_ID); + + /* Chip reset. */ + val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | + BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | + BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; + REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val); + + /* Allow up to 30us for reset to complete. */ + for (i = 0; i < 10; i++) { + val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG); + if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | + BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { + break; + } + DELAY(10); + } + + /* Check that reset completed successfully. */ + if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | + BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { + BNX_PRINTF(sc, "%s(%d): Reset failed!\n", + __FILE__, __LINE__); + rc = EBUSY; + goto bnx_reset_exit; + } + + /* Make sure byte swapping is properly configured. */ + val = REG_RD(sc, BNX_PCI_SWAP_DIAG0); + if (val != 0x01020304) { + BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n", + __FILE__, __LINE__); + rc = ENODEV; + goto bnx_reset_exit; + } + + /* Just completed a reset, assume that firmware is running again. */ + sc->bnx_fw_timed_out = 0; + + /* Wait for the firmware to finish its initialization. */ + rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code); + if (rc) + BNX_PRINTF(sc, "%s(%d): Firmware did not complete initialization!\n", + __FILE__, __LINE__); + +bnx_reset_exit: + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return (rc); +} + +int +bnx_chipinit(struct bnx_softc *sc) +{ + struct pci_attach_args *pa = &(sc->bnx_pa); + u32 val; + int rc = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Make sure the interrupt is not active. */ + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); + + /* Initialize DMA byte/word swapping, configure the number of DMA */ + /* channels and PCI clock compensation delay. */ + val = BNX_DMA_CONFIG_DATA_BYTE_SWAP | + BNX_DMA_CONFIG_DATA_WORD_SWAP | +#if BYTE_ORDER == BIG_ENDIAN + BNX_DMA_CONFIG_CNTL_BYTE_SWAP | +#endif + BNX_DMA_CONFIG_CNTL_WORD_SWAP | + DMA_READ_CHANS << 12 | + DMA_WRITE_CHANS << 16; + + val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY; + + if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) + val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP; + + /* + * This setting resolves a problem observed on certain Intel PCI + * chipsets that cannot handle multiple outstanding DMA operations. + * See errata E9_5706A1_65. + */ + if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && + (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) && + !(sc->bnx_flags & BNX_PCIX_FLAG)) + val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA; + + REG_WR(sc, BNX_DMA_CONFIG, val); + + /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ + if (sc->bnx_flags & BNX_PCIX_FLAG) { + u16 val; + + val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD); + pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD, val & ~0x2); + } + + /* Enable the RX_V2P and Context state machines before access. */ + REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, + BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | + BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | + BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); + + /* Initialize context mapping and zero out the quick contexts. */ + bnx_init_context(sc); + + /* Initialize the on-boards CPUs */ + bnx_init_cpus(sc); + + /* Prepare NVRAM for access. */ + if (bnx_init_nvram(sc)) { + rc = ENODEV; + goto bnx_chipinit_exit; + } + + /* Set the kernel bypass block size */ + val = REG_RD(sc, BNX_MQ_CONFIG); + val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE; + val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; + REG_WR(sc, BNX_MQ_CONFIG, val); + + val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); + REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val); + REG_WR(sc, BNX_MQ_KNL_WIND_END, val); + + val = (BCM_PAGE_BITS - 8) << 24; + REG_WR(sc, BNX_RV2P_CONFIG, val); + + /* Configure page size. */ + val = REG_RD(sc, BNX_TBDR_CONFIG); + val &= ~BNX_TBDR_CONFIG_PAGE_SIZE; + val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; + REG_WR(sc, BNX_TBDR_CONFIG, val); + +bnx_chipinit_exit: + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return(rc); +} + +/****************************************************************************/ +/* Initialize the controller in preparation to send/receive traffic. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_blockinit(struct bnx_softc *sc) +{ + u32 reg, val; + int rc = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Load the hardware default MAC address. */ + bnx_set_mac_addr(sc); + + /* Set the Ethernet backoff seed value */ + val = sc->eaddr[0] + (sc->eaddr[1] << 8) + + (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); + REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val); + + sc->last_status_idx = 0; + sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE; + + /* Set up link change interrupt generation. */ + REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK); + + /* Program the physical address of the status block. */ + REG_WR(sc, BNX_HC_STATUS_ADDR_L, + BNX_ADDR_LO(sc->status_block_paddr)); + REG_WR(sc, BNX_HC_STATUS_ADDR_H, + BNX_ADDR_HI(sc->status_block_paddr)); + + /* Program the physical address of the statistics block. */ + REG_WR(sc, BNX_HC_STATISTICS_ADDR_L, + BNX_ADDR_LO(sc->stats_block_paddr)); + REG_WR(sc, BNX_HC_STATISTICS_ADDR_H, + BNX_ADDR_HI(sc->stats_block_paddr)); + + /* Program various host coalescing parameters. */ + REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, + (sc->bnx_tx_quick_cons_trip_int << 16) | sc->bnx_tx_quick_cons_trip); + REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, + (sc->bnx_rx_quick_cons_trip_int << 16) | sc->bnx_rx_quick_cons_trip); + REG_WR(sc, BNX_HC_COMP_PROD_TRIP, + (sc->bnx_comp_prod_trip_int << 16) | sc->bnx_comp_prod_trip); + REG_WR(sc, BNX_HC_TX_TICKS, + (sc->bnx_tx_ticks_int << 16) | sc->bnx_tx_ticks); + REG_WR(sc, BNX_HC_RX_TICKS, + (sc->bnx_rx_ticks_int << 16) | sc->bnx_rx_ticks); + REG_WR(sc, BNX_HC_COM_TICKS, + (sc->bnx_com_ticks_int << 16) | sc->bnx_com_ticks); + REG_WR(sc, BNX_HC_CMD_TICKS, + (sc->bnx_cmd_ticks_int << 16) | sc->bnx_cmd_ticks); + REG_WR(sc, BNX_HC_STATS_TICKS, + (sc->bnx_stats_ticks & 0xffff00)); + REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, + 0xbb8); /* 3ms */ + REG_WR(sc, BNX_HC_CONFIG, + (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE | + BNX_HC_CONFIG_COLLECT_STATS)); + + /* Clear the internal statistics counters. */ + REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW); + + /* Verify that bootcode is running. */ + reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE); + + DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), + BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", + __FILE__, __LINE__); + reg = 0); + + if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) != + BNX_DEV_INFO_SIGNATURE_MAGIC) { + BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, " + "Expected: 08%08X\n", __FILE__, __LINE__, + (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK), + BNX_DEV_INFO_SIGNATURE_MAGIC); + rc = ENODEV; + goto bnx_blockinit_exit; + } + + /* Check if any management firmware is running. */ + reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE); + if (reg & (BNX_PORT_FEATURE_ASF_ENABLED | BNX_PORT_FEATURE_IMD_ENABLED)) { + DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); + sc->bnx_flags |= BNX_MFW_ENABLE_FLAG; + } + + sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV); + DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); + + /* Allow bootcode to apply any additional fixes before enabling MAC. */ + rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET); + + /* Enable link state change interrupt generation. */ + REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); + + /* Enable all remaining blocks in the MAC. */ + REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff); + REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); + DELAY(20); + +bnx_blockinit_exit: + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return (rc); +} + +/****************************************************************************/ +/* Encapsulate an mbuf cluster into the rx_bd chain. */ +/* */ +/* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ +/* This routine will map an mbuf cluster into 1 or more rx_bd's as */ +/* necessary. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u16 *prod, u16 *chain_prod, + u32 *prod_bseq) +{ + bus_dmamap_t map; + struct mbuf *m_new = NULL; + struct rx_bd *rxbd; + int i, rc = 0; +#ifdef BNX_DEBUG + u16 debug_chain_prod = *chain_prod; +#endif + + DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", + __FUNCTION__); + + /* Make sure the inputs are valid. */ + DBRUNIF((*chain_prod > MAX_RX_BD), + printf("%s: RX producer out of range: 0x%04X > 0x%04X\n", + *chain_prod, (u16) MAX_RX_BD)); + + DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " + "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); + + if (m == NULL) { + + DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure), + BNX_PRINTF(sc, "%s(%d): Simulating mbuf allocation failure.\n", + __FILE__, __LINE__); + sc->mbuf_alloc_failed++; + rc = ENOBUFS; + goto bnx_get_buf_exit); + + /* This is a new mbuf allocation. */ + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + + DBPRINT(sc, BNX_WARN, "%s(%d): RX mbuf header allocation failed!\n", + __FILE__, __LINE__); + + DBRUNIF(1, sc->mbuf_alloc_failed++); + + rc = ENOBUFS; + goto bnx_get_buf_exit; + } + + DBRUNIF(1, sc->rx_mbuf_alloc++); + if (sc->mbuf_alloc_size <= MCLBYTES) + MCLGET(m_new, M_DONTWAIT); + else + MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + + DBPRINT(sc, BNX_WARN, "%s(%d): RX mbuf chain allocation failed!\n", + __FILE__, __LINE__); + + m_freem(m_new); + + DBRUNIF(1, sc->rx_mbuf_alloc--); + DBRUNIF(1, sc->mbuf_alloc_failed++); + + rc = ENOBUFS; + goto bnx_get_buf_exit; + } + + m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; + } else { + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; + m_new->m_data = m_new->m_ext.ext_buf; + } + + /* Map the mbuf cluster into device memory. */ + map = sc->rx_mbuf_map[*chain_prod]; + if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) { + BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n", + __FILE__, __LINE__); + + m_freem(m_new); + + DBRUNIF(1, sc->rx_mbuf_alloc--); + + rc = ENOBUFS; + goto bnx_get_buf_exit; + } + + /* Watch for overflow. */ + DBRUNIF((sc->free_rx_bd > USABLE_RX_BD), + printf("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n", + sc->free_rx_bd, (u16) USABLE_RX_BD)); + + DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), + sc->rx_low_watermark = sc->free_rx_bd); + + /* Setup the rx_bd for the first segment. */ + rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; + + rxbd->rx_bd_haddr_lo = htole32(BNX_ADDR_LO(map->dm_segs[0].ds_addr)); + rxbd->rx_bd_haddr_hi = htole32(BNX_ADDR_HI(map->dm_segs[0].ds_addr)); + rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len); + rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START); + *prod_bseq += map->dm_segs[0].ds_len; + + for (i = 1; i < map->dm_nsegs; i++) { + + *prod = NEXT_RX_BD(*prod); + *chain_prod = RX_CHAIN_IDX(*prod); + + rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; + + rxbd->rx_bd_haddr_lo = htole32(BNX_ADDR_LO(map->dm_segs[i].ds_addr)); + rxbd->rx_bd_haddr_hi = htole32(BNX_ADDR_HI(map->dm_segs[i].ds_addr)); + rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len); + rxbd->rx_bd_flags = 0; + *prod_bseq += map->dm_segs[i].ds_len; + } + + rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END); + + /* Save the mbuf and update our counter. */ + sc->rx_mbuf_ptr[*chain_prod] = m_new; + sc->free_rx_bd -= map->dm_nsegs; + + DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, + map->dm_nsegs)); + + DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " + "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); + +bnx_get_buf_exit: + DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n", + __FUNCTION__); + + return(rc); +} + +/****************************************************************************/ +/* Allocate memory and initialize the TX data structures. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_init_tx_chain(struct bnx_softc *sc) +{ + struct tx_bd *txbd; + u32 val; + int i, rc = 0; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Set the initial TX producer/consumer indices. */ + sc->tx_prod = 0; + sc->tx_cons = 0; + sc->tx_prod_bseq = 0; + sc->used_tx_bd = 0; + DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); + + /* + * The NetXtreme II supports a linked-list structure called + * a Buffer Descriptor Chain (or BD chain). A BD chain + * consists of a series of 1 or more chain pages, each of which + * consists of a fixed number of BD entries. + * The last BD entry on each page is a pointer to the next page + * in the chain, and the last pointer in the BD chain + * points back to the beginning of the chain. + */ + + /* Set the TX next pointer chain entries. */ + for (i = 0; i < TX_PAGES; i++) { + int j; + + txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; + + /* Check if we've reached the last page. */ + if (i == (TX_PAGES - 1)) + j = 0; + else + j = i + 1; + + txbd->tx_bd_haddr_hi = htole32(BNX_ADDR_HI(sc->tx_bd_chain_paddr[j])); + txbd->tx_bd_haddr_lo = htole32(BNX_ADDR_LO(sc->tx_bd_chain_paddr[j])); + } + + /* + * Initialize the context ID for an L2 TX chain. + */ + val = BNX_L2CTX_TYPE_TYPE_L2; + val |= BNX_L2CTX_TYPE_SIZE_L2; + CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val); + + val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); + CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val); + + /* Point the hardware to the first page in the chain. */ + val = BNX_ADDR_HI(sc->tx_bd_chain_paddr[0]); + CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val); + val = BNX_ADDR_LO(sc->tx_bd_chain_paddr[0]); + CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val); + + DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD)); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return(rc); +} + +/****************************************************************************/ +/* Free memory and clear the TX data structures. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_free_tx_chain(struct bnx_softc *sc) +{ + int i; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ + for (i = 0; i < TOTAL_TX_BD; i++) { + if (sc->tx_mbuf_ptr[i] != NULL) { + if (sc->tx_mbuf_map != NULL) + bus_dmamap_sync(sc->bnx_dmatag, + sc->tx_mbuf_map[i], 0, + sc->tx_mbuf_map[i]->dm_mapsize, + BUS_DMASYNC_POSTWRITE); + m_freem(sc->tx_mbuf_ptr[i]); + sc->tx_mbuf_ptr[i] = NULL; + DBRUNIF(1, sc->tx_mbuf_alloc--); + } + } + + /* Clear each TX chain page. */ + for (i = 0; i < TX_PAGES; i++) + bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); + + /* Check if we lost any mbufs in the process. */ + DBRUNIF((sc->tx_mbuf_alloc), + printf("%s: Memory leak! Lost %d mbufs " + "from tx chain!\n", + sc->tx_mbuf_alloc)); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); +} + +/****************************************************************************/ +/* Allocate memory and initialize the RX data structures. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_init_rx_chain(struct bnx_softc *sc) +{ + struct rx_bd *rxbd; + int i, rc = 0; + u16 prod, chain_prod; + u32 prod_bseq, val; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Initialize the RX producer and consumer indices. */ + sc->rx_prod = 0; + sc->rx_cons = 0; + sc->rx_prod_bseq = 0; + sc->free_rx_bd = BNX_RX_SLACK_SPACE; + DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); + + /* Initialize the RX next pointer chain entries. */ + for (i = 0; i < RX_PAGES; i++) { + int j; + + rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; + + /* Check if we've reached the last page. */ + if (i == (RX_PAGES - 1)) + j = 0; + else + j = i + 1; + + /* Setup the chain page pointers. */ + rxbd->rx_bd_haddr_hi = htole32(BNX_ADDR_HI(sc->rx_bd_chain_paddr[j])); + rxbd->rx_bd_haddr_lo = htole32(BNX_ADDR_LO(sc->rx_bd_chain_paddr[j])); + } + + /* Initialize the context ID for an L2 RX chain. */ + val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; + val |= BNX_L2CTX_CTX_TYPE_SIZE_L2; + val |= 0x02 << 8; + CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val); + + /* Point the hardware to the first page in the chain. */ + val = BNX_ADDR_HI(sc->rx_bd_chain_paddr[0]); + CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val); + val = BNX_ADDR_LO(sc->rx_bd_chain_paddr[0]); + CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val); + + /* Allocate mbuf clusters for the rx_bd chain. */ + prod = prod_bseq = 0; + while (prod < BNX_RX_SLACK_SPACE) { + chain_prod = RX_CHAIN_IDX(prod); + if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) { + printf("%s: Error filling RX chain: rx_bd[0x%04X]!\n", + chain_prod); + rc = ENOBUFS; + break; + } + prod = NEXT_RX_BD(prod); + } + + /* Save the RX chain producer index. */ + sc->rx_prod = prod; + sc->rx_prod_bseq = prod_bseq; + + for (i = 0; i < RX_PAGES; i++) { + bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, + sc->rx_bd_chain_map[i]->dm_mapsize, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + } + + /* Tell the chip about the waiting rx_bd's. */ + REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); + REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); + + DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + return(rc); +} + +/****************************************************************************/ +/* Free memory and clear the RX data structures. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_free_rx_chain(struct bnx_softc *sc) +{ + int i; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + /* Free any mbufs still in the RX mbuf chain. */ + for (i = 0; i < TOTAL_RX_BD; i++) { + if (sc->rx_mbuf_ptr[i] != NULL) { + if (sc->rx_mbuf_map[i] != NULL) + bus_dmamap_sync(sc->bnx_dmatag, + sc->rx_mbuf_map[i], 0, + sc->rx_mbuf_map[i]->dm_mapsize, + BUS_DMASYNC_POSTREAD); + m_freem(sc->rx_mbuf_ptr[i]); + sc->rx_mbuf_ptr[i] = NULL; + DBRUNIF(1, sc->rx_mbuf_alloc--); + } + } + + /* Clear each RX chain page. */ + for (i = 0; i < RX_PAGES; i++) + bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); + + /* Check if we lost any mbufs in the process. */ + DBRUNIF((sc->rx_mbuf_alloc), + printf("%s: Memory leak! Lost %d mbufs from rx chain!\n", + sc->rx_mbuf_alloc)); + + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); +} + +/****************************************************************************/ +/* Set media options. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_ifmedia_upd(struct ifnet *ifp) +{ + struct bnx_softc *sc; + struct mii_data *mii; + struct ifmedia *ifm; + int rc = 0; + + sc = ifp->if_softc; + ifm = &sc->bnx_ifmedia; + + /* DRC - ToDo: Add SerDes support. */ + + mii = &sc->bnx_mii; + sc->bnx_link = 0; + if (mii->mii_instance) { + struct mii_softc *miisc; + for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; + miisc = LIST_NEXT(miisc, mii_list)) + mii_phy_reset(miisc); + } + mii_mediachg(mii); + + return(rc); +} + +/****************************************************************************/ +/* Reports current media status. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) +{ + struct bnx_softc *sc; + struct mii_data *mii; + int s; + + sc = ifp->if_softc; + + s = splnet(); + + mii = &sc->bnx_mii; + + /* DRC - ToDo: Add SerDes support. */ + + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + + splx(s); +} + +/****************************************************************************/ +/* Handles PHY generated interrupt events. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_phy_intr(struct bnx_softc *sc) +{ + u32 new_link_state, old_link_state; + + new_link_state = sc->status_block->status_attn_bits & + STATUS_ATTN_BITS_LINK_STATE; + old_link_state = sc->status_block->status_attn_bits_ack & + STATUS_ATTN_BITS_LINK_STATE; + + /* Handle any changes if the link state has changed. */ + if (new_link_state != old_link_state) { + + DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); + + sc->bnx_link = 0; + timeout_del(&sc->bnx_timeout); + bnx_tick(sc); + + /* Update the status_attn_bits_ack field in the status block. */ + if (new_link_state) { + REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD, + STATUS_ATTN_BITS_LINK_STATE); + DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); + } else { + REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD, + STATUS_ATTN_BITS_LINK_STATE); + DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); + } + + } + + /* Acknowledge the link change interrupt. */ + REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE); +} + +/****************************************************************************/ +/* Handles received frame interrupt events. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_rx_intr(struct bnx_softc *sc) +{ + struct status_block *sblk = sc->status_block; + struct ifnet *ifp = &sc->arpcom.ac_if; + u16 hw_cons, sw_cons, sw_chain_cons, sw_prod, sw_chain_prod; + u32 sw_prod_bseq; + struct l2_fhdr *l2fhdr; + int i; + + DBRUNIF(1, sc->rx_interrupts++); + + /* Prepare the RX chain pages to be accessed by the host CPU. */ + for (i = 0; i < RX_PAGES; i++) + bus_dmamap_sync(sc->bnx_dmatag, + sc->rx_bd_chain_map[i], 0, + sc->rx_bd_chain_map[i]->dm_mapsize, + BUS_DMASYNC_POSTWRITE); + + /* Get the hardware's view of the RX consumer index. */ + hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; + if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) + hw_cons++; + + /* Get working copies of the driver's view of the RX indices. */ + sw_cons = sc->rx_cons; + sw_prod = sc->rx_prod; + sw_prod_bseq = sc->rx_prod_bseq; + + DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " + "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", + __FUNCTION__, sw_prod, sw_cons, + sw_prod_bseq); + + /* Prevent speculative reads from getting ahead of the status block. */ + bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, + BUS_SPACE_BARRIER_READ); + + DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), + sc->rx_low_watermark = sc->free_rx_bd); + + /* + * Scan through the receive chain as long + * as there is work to do. + */ + while (sw_cons != hw_cons) { + struct mbuf *m; + struct rx_bd *rxbd; + unsigned int len; + u32 status; + + /* Convert the producer/consumer indices to an actual rx_bd index. */ + sw_chain_cons = RX_CHAIN_IDX(sw_cons); + sw_chain_prod = RX_CHAIN_IDX(sw_prod); + + /* Get the used rx_bd. */ + rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; + sc->free_rx_bd++; + + DBRUN(BNX_VERBOSE_RECV, + printf("%s(): ", __FUNCTION__); + bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); + + /* The mbuf is stored with the last rx_bd entry of a packet. */ + if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { + + /* Validate that this is the last rx_bd. */ + DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)), + printf("%s: Unexpected mbuf found in rx_bd[0x%04X]!\n", + sw_chain_cons); + bnx_breakpoint(sc)); + + /* DRC - ToDo: If the received packet is small, say less */ + /* than 128 bytes, allocate a new mbuf here, */ + /* copy the data to that mbuf, and recycle */ + /* the mapped jumbo frame. */ + + /* Unmap the mbuf from DMA space. */ + bus_dmamap_sync(sc->bnx_dmatag, + sc->rx_mbuf_map[sw_chain_cons], 0, + sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(sc->bnx_dmatag, + sc->rx_mbuf_map[sw_chain_cons]); + + /* Remove the mbuf from the driver's chain. */ + m = sc->rx_mbuf_ptr[sw_chain_cons]; + sc->rx_mbuf_ptr[sw_chain_cons] = NULL; + + /* + * Frames received on the NetXteme II are prepended + * with the l2_fhdr structure which provides status + * information about the received frame (including + * VLAN tags and checksum info) and are also + * automatically adjusted to align the IP header + * (i.e. two null bytes are inserted before the + * Ethernet header). + */ + l2fhdr = mtod(m, struct l2_fhdr *); + + len = l2fhdr->l2_fhdr_pkt_len; + status = l2fhdr->l2_fhdr_status; + + DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), + printf("Simulating l2_fhdr status error.\n"); + status = status | L2_FHDR_ERRORS_PHY_DECODE); + + /* Watch for unusual sized frames. */ + DBRUNIF(((len < BNX_MIN_MTU) || (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), + printf("%s: Unusual frame size found. " + "Min(%d), Actual(%d), Max(%d)\n", + (int) BNX_MIN_MTU, + len, (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN); + bnx_dump_mbuf(sc, m); + bnx_breakpoint(sc)); + + len -= ETHER_CRC_LEN; + + /* Check the received frame for errors. */ + if (status & (L2_FHDR_ERRORS_BAD_CRC | + L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | + L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { + + ifp->if_ierrors++; + DBRUNIF(1, sc->l2fhdr_status_errors++); + + /* Reuse the mbuf for a new frame. */ + if (bnx_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { + + DBRUNIF(1, bnx_breakpoint(sc)); + panic("%s: Can't reuse RX mbuf!\n", sc->bnx_dev.dv_xname); + + } + goto bnx_rx_int_next_rx; + } + + /* + * Get a new mbuf for the rx_bd. If no new + * mbufs are available then reuse the current mbuf, + * log an ierror on the interface, and generate + * an error in the system log. + */ + if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { + + DBRUN(BNX_WARN, + printf("%s: Failed to allocate " + "new mbuf, incoming frame dropped!\n")); + + ifp->if_ierrors++; + + /* Try and reuse the exisitng mbuf. */ + if (bnx_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) { + + DBRUNIF(1, bnx_breakpoint(sc)); + panic("%s: Double mbuf allocation failure!", sc->bnx_dev.dv_xname); + + } + goto bnx_rx_int_next_rx; + } + + /* Skip over the l2_fhdr when passing the data up the stack. */ + m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); + + /* Adjust the packet length to match the received data. */ + m->m_pkthdr.len = m->m_len = len; + + /* Send the packet to the appropriate interface. */ + m->m_pkthdr.rcvif = ifp; + + DBRUN(BNX_VERBOSE_RECV, + struct ether_header *eh; + eh = mtod(m, struct ether_header *); + printf("%s: to: %6D, from: %6D, type: 0x%04X\n", + __FUNCTION__, eh->ether_dhost, ":", + eh->ether_shost, ":", htons(eh->ether_type))); + +#ifdef BNX_CKSUM + /* Validate the checksum if offload enabled. */ + if (ifp->if_capenable & IFCAP_RXCSUM) { + + /* Check for an IP datagram. */ + if (status & L2_FHDR_STATUS_IP_DATAGRAM) { + m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; + + /* Check if the IP checksum is valid. */ + if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) + m->m_pkthdr.csum_flags |= CSUM_IP_VALID; + else + DBPRINT(sc, BNX_WARN_SEND, + "%s(): Invalid IP checksum = 0x%04X!\n", + __FUNCTION__, l2fhdr->l2_fhdr_ip_xsum); + } + + /* Check for a valid TCP/UDP frame. */ + if (status & (L2_FHDR_STATUS_TCP_SEGMENT | + L2_FHDR_STATUS_UDP_DATAGRAM)) { + + /* Check for a good TCP/UDP checksum. */ + if ((status & (L2_FHDR_ERRORS_TCP_XSUM | + L2_FHDR_ERRORS_UDP_XSUM)) == 0) { + m->m_pkthdr.csum_data = + l2fhdr->l2_fhdr_tcp_udp_xsum; + m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID + | CSUM_PSEUDO_HDR); + } else + DBPRINT(sc, BNX_WARN_SEND, + "%s(): Invalid TCP/UDP checksum = 0x%04X!\n", + __FUNCTION__, l2fhdr->l2_fhdr_tcp_udp_xsum); + } + } +#endif + +#if NBPFILTER > 0 + /* + * Handle BPF listeners. Let the BPF + * user see the packet. + */ + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); +#endif + + /* Pass the mbuf off to the upper layers. */ + ifp->if_ipackets++; + DBPRINT(sc, BNX_VERBOSE_RECV, "%s(): Passing received frame up.\n", + __FUNCTION__); + ether_input_mbuf(ifp, m); + DBRUNIF(1, sc->rx_mbuf_alloc--); + +bnx_rx_int_next_rx: + sw_prod = NEXT_RX_BD(sw_prod); + } + + sw_cons = NEXT_RX_BD(sw_cons); + + /* Refresh hw_cons to see if there's new work */ + if (sw_cons == hw_cons) { + hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; + if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) + hw_cons++; + } + + /* Prevent speculative reads from getting ahead of the status block. */ + bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, + BUS_SPACE_BARRIER_READ); + } + + for (i = 0; i < RX_PAGES; i++) + bus_dmamap_sync(sc->bnx_dmatag, + sc->rx_bd_chain_map[i], 0, + sc->rx_bd_chain_map[i]->dm_mapsize, + BUS_DMASYNC_PREWRITE); + + sc->rx_cons = sw_cons; + sc->rx_prod = sw_prod; + sc->rx_prod_bseq = sw_prod_bseq; + + REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); + REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); + + DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " + "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", + __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); +} + +/****************************************************************************/ +/* Handles transmit completion interrupt events. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_tx_intr(struct bnx_softc *sc) +{ + struct status_block *sblk = sc->status_block; + struct ifnet *ifp = &sc->arpcom.ac_if; + u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; + + DBRUNIF(1, sc->tx_interrupts++); + + /* Get the hardware's view of the TX consumer index. */ + hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; + + /* Skip to the next entry if this is a chain page pointer. */ + if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) + hw_tx_cons++; + + sw_tx_cons = sc->tx_cons; + + /* Prevent speculative reads from getting ahead of the status block. */ + bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, + BUS_SPACE_BARRIER_READ); + + /* Cycle through any completed TX chain page entries. */ + while (sw_tx_cons != hw_tx_cons) { +#ifdef BNX_DEBUG + struct tx_bd *txbd = NULL; +#endif + sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); + + DBPRINT(sc, BNX_INFO_SEND, + "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " + "sw_tx_chain_cons = 0x%04X\n", + __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); + + DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), + printf("%s: TX chain consumer out of range! " + " 0x%04X > 0x%04X\n", + sw_tx_chain_cons, + (int) MAX_TX_BD); + bnx_breakpoint(sc)); + + DBRUNIF(1, + txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] + [TX_IDX(sw_tx_chain_cons)]); + + DBRUNIF((txbd == NULL), + printf("%s: Unexpected NULL tx_bd[0x%04X]!\n", + sw_tx_chain_cons); + bnx_breakpoint(sc)); + + DBRUN(BNX_INFO_SEND, + printf("%s: ", __FUNCTION__); + bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); + + /* + * Free the associated mbuf. Remember + * that only the last tx_bd of a packet + * has an mbuf pointer and DMA map. + */ + if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { + + /* Validate that this is the last tx_bd. */ + DBRUNIF((!(txbd->tx_bd_vlan_tag_flags & TX_BD_FLAGS_END)), + printf("%s: tx_bd END flag not set but " + "txmbuf == NULL!\n"); + bnx_breakpoint(sc)); + + DBRUN(BNX_INFO_SEND, + printf("%s: Unloading map/freeing mbuf " + "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); + + /* Unmap the mbuf. */ + bus_dmamap_unload(sc->bnx_dmatag, + sc->tx_mbuf_map[sw_tx_chain_cons]); + + /* Free the mbuf. */ + m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); + sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; + DBRUNIF(1, sc->tx_mbuf_alloc--); + + ifp->if_opackets++; + } + + sc->used_tx_bd--; + sw_tx_cons = NEXT_TX_BD(sw_tx_cons); + + /* Refresh hw_cons to see if there's new work. */ + hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; + if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) + hw_tx_cons++; + + /* Prevent speculative reads from getting ahead of the status block. */ + bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, + BUS_SPACE_BARRIER_READ); + } + + /* Clear the TX timeout timer. */ + ifp->if_timer = 0; + + /* Clear the tx hardware queue full flag. */ + if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) { + DBRUNIF((ifp->if_flags & IFF_OACTIVE), + printf("%s: TX chain is open for business! Used tx_bd = %d\n", + sc->used_tx_bd)); + ifp->if_flags &= ~IFF_OACTIVE; + } + + sc->tx_cons = sw_tx_cons; +} + +/****************************************************************************/ +/* Disables interrupt generation. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_disable_intr(struct bnx_softc *sc) +{ + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_MASK_INT); + REG_RD(sc, BNX_PCICFG_INT_ACK_CMD); +} + +/****************************************************************************/ +/* Enables interrupt generation. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_enable_intr(struct bnx_softc *sc) +{ + u32 val; + + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | + BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); + + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); + + val = REG_RD(sc, BNX_HC_COMMAND); + REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW); +} + +/****************************************************************************/ +/* Handles controller initialization. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_init(void *xsc) +{ + struct bnx_softc *sc = (struct bnx_softc *)xsc; + struct ifnet *ifp = &sc->arpcom.ac_if; + u32 ether_mtu; + int s; + + DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); + + s = splnet(); + + bnx_stop(sc); + + if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) { + printf("%s: Controller reset failed!\n"); + goto bnx_init_locked_exit; + } + + if (bnx_chipinit(sc)) { + printf("%s: Controller initialization failed!\n"); + goto bnx_init_locked_exit; + } + + if (bnx_blockinit(sc)) { + printf("%s: Block initialization failed!\n"); + goto bnx_init_locked_exit; + } + + /* Load our MAC address. */ + bcopy(sc->arpcom.ac_enaddr, sc->eaddr, ETHER_ADDR_LEN); + bnx_set_mac_addr(sc); + + /* Calculate and program the Ethernet MTU size. */ +#if 0 + ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN; +#else + ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN; +#endif + + DBPRINT(sc, BNX_INFO, "%s(): setting mtu = %d\n",__FUNCTION__, ether_mtu); + + /* + * Program the mtu and enable jumbo frame + * support. Also set the mbuf + * allocation count for RX frames. + */ +#if 0 + REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu | + BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA); + sc->mbuf_alloc_size = BNX_MAX_MRU; /* MJUM9BYTES */ +#else + REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu); + sc->mbuf_alloc_size = MCLBYTES; +#endif + + /* Calculate the RX Ethernet frame size for rx_bd's. */ + sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; + + DBPRINT(sc, BNX_INFO, + "%s(): mclbytes = %d, mbuf_alloc_size = %d, " + "max_frame_size = %d\n", + __FUNCTION__, (int) MCLBYTES, sc->mbuf_alloc_size, sc->max_frame_size); + + /* Program appropriate promiscuous/multicast filtering. */ + bnx_set_rx_mode(sc); + + /* Init RX buffer descriptor chain. */ + bnx_init_rx_chain(sc); + + /* Init TX buffer descriptor chain. */ + bnx_init_tx_chain(sc); + + /* Enable host interrupts. */ + bnx_enable_intr(sc); + + bnx_ifmedia_upd(ifp); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + timeout_add(&sc->bnx_timeout, hz); + +bnx_init_locked_exit: + DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); + + splx(s); + + return; +} + +/****************************************************************************/ +/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ +/* memory visible to the controller. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m_head, u16 *prod, + u16 *chain_prod, u32 *prod_bseq) +{ + u32 vlan_tag_flags = 0; +#ifdef BNX_VLAN + struct m_tag *mtag; +#endif + struct bnx_dmamap_arg map_arg; + bus_dmamap_t map; + int i, rc = 0; + +#ifdef BNX_CKSUM + /* Transfer any checksum offload flags to the bd. */ + if (m_head->m_pkthdr.csum_flags) { + if (m_head->m_pkthdr.csum_flags & CSUM_IP) + vlan_tag_flags |= TX_BD_FLAGS_IP_CKSUM; + if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) + vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; + } +#endif + +#ifdef BNX_VLAN + /* Transfer any VLAN tags to the bd. */ + mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head); + if (mtag != NULL) + vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG | + (VLAN_TAG_VALUE(mtag) << 16)); +#endif + + /* Map the mbuf into DMAable memory. */ + map = sc->tx_mbuf_map[*chain_prod]; + map_arg.sc = sc; + map_arg.prod = *prod; + map_arg.chain_prod = *chain_prod; + map_arg.prod_bseq = *prod_bseq; + map_arg.tx_flags = vlan_tag_flags; + map_arg.maxsegs = USABLE_TX_BD - sc->used_tx_bd - + BNX_TX_SLACK_SPACE; + +#if 0 + KASSERT(map_arg.maxsegs > 0, ("Invalid TX maxsegs value!")); +#endif + + for (i = 0; i < TX_PAGES; i++) + map_arg.tx_chain[i] = sc->tx_bd_chain[i]; + + /* Map the mbuf into our DMA address space. */ + if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_head, + BUS_DMA_NOWAIT)) { + printf("%s: Error mapping mbuf into TX chain!\n", + sc->bnx_dev.dv_xname); + rc = ENOBUFS; + goto bnx_tx_encap_exit; + } + bnx_dma_map_tx_desc(&map_arg, map); + + /* + * Ensure that the map for this transmission + * is placed at the array index of the last + * descriptor in this chain. This is done + * because a single map is used for all + * segments of the mbuf and we don't want to + * delete the map before all of the segments + * have been freed. + */ + sc->tx_mbuf_map[*chain_prod] = + sc->tx_mbuf_map[map_arg.chain_prod]; + sc->tx_mbuf_map[map_arg.chain_prod] = map; + sc->tx_mbuf_ptr[map_arg.chain_prod] = m_head; + sc->used_tx_bd += map_arg.maxsegs; + + DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), + sc->tx_hi_watermark = sc->used_tx_bd); + + DBRUNIF(1, sc->tx_mbuf_alloc++); + + DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, *chain_prod, + map_arg.maxsegs)); + + /* prod still points the last used tx_bd at this point. */ + *prod = map_arg.prod; + *chain_prod = map_arg.chain_prod; + *prod_bseq = map_arg.prod_bseq; + +bnx_tx_encap_exit: + + return(rc); +} + +/****************************************************************************/ +/* Main transmit routine. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_start(struct ifnet *ifp) +{ + struct bnx_softc *sc = ifp->if_softc; + struct mbuf *m_head = NULL; + int count = 0; + u16 tx_prod, tx_chain_prod; + u32 tx_prod_bseq; + + /* If there's no link or the transmit queue is empty then just exit. */ + if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) { + DBPRINT(sc, BNX_INFO_SEND, "%s(): No link or transmit queue empty.\n", + __FUNCTION__); + goto bnx_start_locked_exit; + } + + /* prod points to the next free tx_bd. */ + tx_prod = sc->tx_prod; + tx_chain_prod = TX_CHAIN_IDX(tx_prod); + tx_prod_bseq = sc->tx_prod_bseq; + + DBPRINT(sc, BNX_INFO_SEND, + "%s(): Start: tx_prod = 0x%04X, tx_chain_prod = %04X, " + "tx_prod_bseq = 0x%08X\n", + __FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq); + + /* Keep adding entries while there is space in the ring. */ + while (sc->tx_mbuf_ptr[tx_chain_prod] == NULL) { + + /* Check for any frames to send. */ + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + /* + * Pack the data into the transmit ring. If we + * don't have room, place the mbuf back at the + * head of the queue and set the OACTIVE flag + * to wait for the NIC to drain the chain. + */ + if (bnx_tx_encap(sc, m_head, &tx_prod, &tx_chain_prod, &tx_prod_bseq)) { + IF_PREPEND(&ifp->if_snd, m_head); + ifp->if_flags |= IFF_OACTIVE; + DBPRINT(sc, BNX_INFO_SEND, + "TX chain is closed for business! Total tx_bd used = %d\n", + sc->used_tx_bd); + break; + } + + count++; + +#if NBPFILTER > 0 + /* Send a copy of the frame to any BPF listeners. */ + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); +#endif + + tx_prod = NEXT_TX_BD(tx_prod); + tx_chain_prod = TX_CHAIN_IDX(tx_prod); + } + + if (count == 0) { + /* no packets were dequeued */ + DBPRINT(sc, BNX_VERBOSE_SEND, "%s(): No packets were dequeued\n", + __FUNCTION__); + goto bnx_start_locked_exit; + } + + /* Update the driver's counters. */ + sc->tx_prod = tx_prod; + sc->tx_prod_bseq = tx_prod_bseq; + + DBPRINT(sc, BNX_INFO_SEND, + "%s(): End: tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " + "tx_prod_bseq = 0x%08X\n", + __FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq); + + /* Start the transmit. */ + REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod); + REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); + + /* Set the tx timeout. */ + ifp->if_timer = BNX_TX_TIMEOUT; + +bnx_start_locked_exit: + return; +} + +/****************************************************************************/ +/* Handles any IOCTL calls from the operating system. */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data) +{ + struct bnx_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + struct ifaddr *ifa = (struct ifaddr *)data; + struct mii_data *mii; + int s, error = 0; + + s = splnet(); + + if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { + splx(s); + return (error); + } + + switch (command) { + case SIOCSIFADDR: + ifp->if_flags |= IFF_UP; + if (!(ifp->if_flags & IFF_RUNNING)) + bnx_init(sc); +#ifdef INET + if (ifa->ifa_addr->sa_family == AF_INET) + arp_ifinit(&sc->arpcom, ifa); +#endif /* INET */ + break; + case SIOCSIFMTU: + if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu) + error = EINVAL; + else if (ifp->if_mtu != ifr->ifr_mtu) + ifp->if_mtu = ifr->ifr_mtu; + break; + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + if ((ifp->if_flags & IFF_RUNNING) && + ((ifp->if_flags ^ sc->bnx_if_flags) & + (IFF_ALLMULTI | IFF_PROMISC)) != 0) { + bnx_set_rx_mode(sc); + } else { + if (!(ifp->if_flags & IFF_RUNNING)) + bnx_init(ifp); + } + } else { + if (ifp->if_flags & IFF_RUNNING) + bnx_stop(sc); + } + sc->bnx_if_flags = ifp->if_flags; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + error = (command == SIOCADDMULTI) + ? ether_addmulti(ifr, &sc->arpcom) + : ether_delmulti(ifr, &sc->arpcom); + + if (error == ENETRESET) { + if (ifp->if_flags & IFF_RUNNING) + bnx_set_rx_mode(sc); + error = 0; + } + break; + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", + sc->bnx_phy_flags); + + if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) { + error = ifmedia_ioctl(ifp, ifr, + &sc->bnx_ifmedia, command); + } else { + mii = &sc->bnx_mii; + error = ifmedia_ioctl(ifp, ifr, + &mii->mii_media, command); + } + break; + default: + error = ENOTTY; + break; + } + + splx(s); + + return (error); +} + +/****************************************************************************/ +/* Transmit timeout handler. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_watchdog(struct ifnet *ifp) +{ + struct bnx_softc *sc = ifp->if_softc; + + DBRUN(BNX_WARN_SEND, + bnx_dump_driver_state(sc); + bnx_dump_status_block(sc)); + + printf("%s: Watchdog timeout occurred, resetting!\n"); + + /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ + + bnx_init(sc); + + ifp->if_oerrors++; +} + +/* + * Interrupt handler. + */ +/****************************************************************************/ +/* Main interrupt entry point. Verifies that the controller generated the */ +/* interrupt and then calls a separate routine for handle the various */ +/* interrupt causes (PHY, TX, RX). */ +/* */ +/* Returns: */ +/* 0 for success, positive value for failure. */ +/****************************************************************************/ +int +bnx_intr(void *xsc) +{ + struct bnx_softc *sc; + struct ifnet *ifp; + u32 status_attn_bits; + + sc = xsc; + ifp = &sc->arpcom.ac_if; + + DBRUNIF(1, sc->interrupts_generated++); + + bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, + sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); + + /* + * If the hardware status block index + * matches the last value read by the + * driver and we haven't asserted our + * interrupt then there's nothing to do. + */ + if ((sc->status_block->status_idx == sc->last_status_idx) && + (REG_RD(sc, BNX_PCICFG_MISC_STATUS) & BNX_PCICFG_MISC_STATUS_INTA_VALUE)) + return (0); + + /* Ack the interrupt and stop others from occuring. */ + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | + BNX_PCICFG_INT_ACK_CMD_MASK_INT); + + /* Keep processing data as long as there is work to do. */ + for (;;) { + + status_attn_bits = sc->status_block->status_attn_bits; + + DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), + printf("Simulating unexpected status attention bit set."); + status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); + + /* Was it a link change interrupt? */ + if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != + (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) + bnx_phy_intr(sc); + + /* If any other attention is asserted then the chip is toast. */ + if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != + (sc->status_block->status_attn_bits_ack & + ~STATUS_ATTN_BITS_LINK_STATE))) { + + DBRUN(1, sc->unexpected_attentions++); + + printf("%s: Fatal attention detected: 0x%08X\n", + sc->status_block->status_attn_bits); + + DBRUN(BNX_FATAL, + if (bnx_debug_unexpected_attention == 0) + bnx_breakpoint(sc)); + + bnx_init(sc); + return (1); + } + + /* Check for any completed RX frames. */ + if (sc->status_block->status_rx_quick_consumer_index0 != sc->hw_rx_cons) + bnx_rx_intr(sc); + + /* Check for any completed TX frames. */ + if (sc->status_block->status_tx_quick_consumer_index0 != sc->hw_tx_cons) + bnx_tx_intr(sc); + + /* Save the status block index value for use during the next interrupt. */ + sc->last_status_idx = sc->status_block->status_idx; + + /* Prevent speculative reads from getting ahead of the status block. */ + bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, + BUS_SPACE_BARRIER_READ); + + /* If there's no work left then exit the interrupt service routine. */ + if ((sc->status_block->status_rx_quick_consumer_index0 == sc->hw_rx_cons) && + (sc->status_block->status_tx_quick_consumer_index0 == sc->hw_tx_cons)) + break; + + } + + bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, + sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE); + + /* Re-enable interrupts. */ + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx | + BNX_PCICFG_INT_ACK_CMD_MASK_INT); + REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, + BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); + + /* Handle any frames that arrived while handling the interrupt. */ + if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd)) + bnx_start(ifp); + + return (1); +} + +/****************************************************************************/ +/* Programs the various packet receive modes (broadcast and multicast). */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_set_rx_mode(struct bnx_softc *sc) +{ + struct arpcom *ac = &sc->arpcom; + struct ifnet *ifp = &ac->ac_if; + struct ether_multi *enm; + struct ether_multistep step; + u32 hashes[4] = { 0, 0, 0, 0 }; + u32 rx_mode, sort_mode; + int h, i; + + /* Initialize receive mode default settings. */ + rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS | + BNX_EMAC_RX_MODE_KEEP_VLAN_TAG); + sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN; + + /* + * ASF/IPMI/UMP firmware requires that VLAN tag stripping + * be enbled. + */ + if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG)) + rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG; + + /* + * Check for promiscuous, all multicast, or selected + * multicast address filtering. + */ + if (ifp->if_flags & IFF_PROMISC) { + DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); + + /* Enable promiscuous mode. */ + rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS; + sort_mode |= BNX_RPM_SORT_USER0_PROM_EN; + } else if (ifp->if_flags & IFF_ALLMULTI) { +allmulti: + DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); + + /* Enable all multicast addresses. */ + for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) + REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); + sort_mode |= BNX_RPM_SORT_USER0_MC_EN; + } else { + /* Accept one or more multicast(s). */ + DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); + + ETHER_FIRST_MULTI(step, ac, enm); + while (enm != NULL) { + if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { + ifp->if_flags |= IFF_ALLMULTI; + goto allmulti; + } + h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x7F; + hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); + ETHER_NEXT_MULTI(step, enm); + } + + for (i = 0; i < 4; i++) + REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); + + sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN; + } + + /* Only make changes if the recive mode has actually changed. */ + if (rx_mode != sc->rx_mode) { + DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", + rx_mode); + + sc->rx_mode = rx_mode; + REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); + } + + /* Disable and clear the exisitng sort before enabling a new sort. */ + REG_WR(sc, BNX_RPM_SORT_USER0, 0x0); + REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode); + REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA); +} + +/****************************************************************************/ +/* Called periodically to updates statistics from the controllers */ +/* statistics block. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_stats_update(struct bnx_softc *sc) +{ + struct ifnet *ifp = &sc->arpcom.ac_if; + struct statistics_block *stats; + + DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__); + + stats = (struct statistics_block *) sc->stats_block; + + /* + * Update the interface statistics from the + * hardware statistics. + */ + ifp->if_collisions = (u_long) stats->stat_EtherStatsCollisions; + + ifp->if_ierrors = (u_long) stats->stat_EtherStatsUndersizePkts + + (u_long) stats->stat_EtherStatsOverrsizePkts + + (u_long) stats->stat_IfInMBUFDiscards + + (u_long) stats->stat_Dot3StatsAlignmentErrors + + (u_long) stats->stat_Dot3StatsFCSErrors; + + ifp->if_oerrors = (u_long) stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + + (u_long) stats->stat_Dot3StatsExcessiveCollisions + + (u_long) stats->stat_Dot3StatsLateCollisions; + + /* + * Certain controllers don't report + * carrier sense errors correctly. + * See errata E11_5708CA0_1165. + */ + if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && + !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) + ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; + + /* + * Update the sysctl statistics from the + * hardware statistics. + */ + sc->stat_IfHCInOctets = + ((u64) stats->stat_IfHCInOctets_hi << 32) + + (u64) stats->stat_IfHCInOctets_lo; + + sc->stat_IfHCInBadOctets = + ((u64) stats->stat_IfHCInBadOctets_hi << 32) + + (u64) stats->stat_IfHCInBadOctets_lo; + + sc->stat_IfHCOutOctets = + ((u64) stats->stat_IfHCOutOctets_hi << 32) + + (u64) stats->stat_IfHCOutOctets_lo; + + sc->stat_IfHCOutBadOctets = + ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + + (u64) stats->stat_IfHCOutBadOctets_lo; + + sc->stat_IfHCInUcastPkts = + ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + + (u64) stats->stat_IfHCInUcastPkts_lo; + + sc->stat_IfHCInMulticastPkts = + ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + + (u64) stats->stat_IfHCInMulticastPkts_lo; + + sc->stat_IfHCInBroadcastPkts = + ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + + (u64) stats->stat_IfHCInBroadcastPkts_lo; + + sc->stat_IfHCOutUcastPkts = + ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + + (u64) stats->stat_IfHCOutUcastPkts_lo; + + sc->stat_IfHCOutMulticastPkts = + ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + + (u64) stats->stat_IfHCOutMulticastPkts_lo; + + sc->stat_IfHCOutBroadcastPkts = + ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + + (u64) stats->stat_IfHCOutBroadcastPkts_lo; + + sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = + stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; + + sc->stat_Dot3StatsCarrierSenseErrors = + stats->stat_Dot3StatsCarrierSenseErrors; + + sc->stat_Dot3StatsFCSErrors = + stats->stat_Dot3StatsFCSErrors; + + sc->stat_Dot3StatsAlignmentErrors = + stats->stat_Dot3StatsAlignmentErrors; + + sc->stat_Dot3StatsSingleCollisionFrames = + stats->stat_Dot3StatsSingleCollisionFrames; + + sc->stat_Dot3StatsMultipleCollisionFrames = + stats->stat_Dot3StatsMultipleCollisionFrames; + + sc->stat_Dot3StatsDeferredTransmissions = + stats->stat_Dot3StatsDeferredTransmissions; + + sc->stat_Dot3StatsExcessiveCollisions = + stats->stat_Dot3StatsExcessiveCollisions; + + sc->stat_Dot3StatsLateCollisions = + stats->stat_Dot3StatsLateCollisions; + + sc->stat_EtherStatsCollisions = + stats->stat_EtherStatsCollisions; + + sc->stat_EtherStatsFragments = + stats->stat_EtherStatsFragments; + + sc->stat_EtherStatsJabbers = + stats->stat_EtherStatsJabbers; + + sc->stat_EtherStatsUndersizePkts = + stats->stat_EtherStatsUndersizePkts; + + sc->stat_EtherStatsOverrsizePkts = + stats->stat_EtherStatsOverrsizePkts; + + sc->stat_EtherStatsPktsRx64Octets = + stats->stat_EtherStatsPktsRx64Octets; + + sc->stat_EtherStatsPktsRx65Octetsto127Octets = + stats->stat_EtherStatsPktsRx65Octetsto127Octets; + + sc->stat_EtherStatsPktsRx128Octetsto255Octets = + stats->stat_EtherStatsPktsRx128Octetsto255Octets; + + sc->stat_EtherStatsPktsRx256Octetsto511Octets = + stats->stat_EtherStatsPktsRx256Octetsto511Octets; + + sc->stat_EtherStatsPktsRx512Octetsto1023Octets = + stats->stat_EtherStatsPktsRx512Octetsto1023Octets; + + sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = + stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; + + sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = + stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; + + sc->stat_EtherStatsPktsTx64Octets = + stats->stat_EtherStatsPktsTx64Octets; + + sc->stat_EtherStatsPktsTx65Octetsto127Octets = + stats->stat_EtherStatsPktsTx65Octetsto127Octets; + + sc->stat_EtherStatsPktsTx128Octetsto255Octets = + stats->stat_EtherStatsPktsTx128Octetsto255Octets; + + sc->stat_EtherStatsPktsTx256Octetsto511Octets = + stats->stat_EtherStatsPktsTx256Octetsto511Octets; + + sc->stat_EtherStatsPktsTx512Octetsto1023Octets = + stats->stat_EtherStatsPktsTx512Octetsto1023Octets; + + sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = + stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; + + sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = + stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; + + sc->stat_XonPauseFramesReceived = + stats->stat_XonPauseFramesReceived; + + sc->stat_XoffPauseFramesReceived = + stats->stat_XoffPauseFramesReceived; + + sc->stat_OutXonSent = + stats->stat_OutXonSent; + + sc->stat_OutXoffSent = + stats->stat_OutXoffSent; + + sc->stat_FlowControlDone = + stats->stat_FlowControlDone; + + sc->stat_MacControlFramesReceived = + stats->stat_MacControlFramesReceived; + + sc->stat_XoffStateEntered = + stats->stat_XoffStateEntered; + + sc->stat_IfInFramesL2FilterDiscards = + stats->stat_IfInFramesL2FilterDiscards; + + sc->stat_IfInRuleCheckerDiscards = + stats->stat_IfInRuleCheckerDiscards; + + sc->stat_IfInFTQDiscards = + stats->stat_IfInFTQDiscards; + + sc->stat_IfInMBUFDiscards = + stats->stat_IfInMBUFDiscards; + + sc->stat_IfInRuleCheckerP4Hit = + stats->stat_IfInRuleCheckerP4Hit; + + sc->stat_CatchupInRuleCheckerDiscards = + stats->stat_CatchupInRuleCheckerDiscards; + + sc->stat_CatchupInFTQDiscards = + stats->stat_CatchupInFTQDiscards; + + sc->stat_CatchupInMBUFDiscards = + stats->stat_CatchupInMBUFDiscards; + + sc->stat_CatchupInRuleCheckerP4Hit = + stats->stat_CatchupInRuleCheckerP4Hit; + + DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__); +} + +void +bnx_tick(void *xsc) +{ + struct bnx_softc *sc = xsc; + struct ifnet *ifp = &sc->arpcom.ac_if; + struct mii_data *mii = NULL; + u32 msg; + + /* Tell the firmware that the driver is still running. */ +#ifdef BNX_DEBUG + msg = (u32) BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE; +#else + msg = (u32) ++sc->bnx_fw_drv_pulse_wr_seq; +#endif + REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg); + + /* Update the statistics from the hardware statistics block. */ + bnx_stats_update(sc); + + /* Schedule the next tick. */ + timeout_add(&sc->bnx_timeout, hz); + + /* If link is up already up then we're done. */ + if (sc->bnx_link) + goto bnx_tick_locked_exit; + + /* DRC - ToDo: Add SerDes support and check SerDes link here. */ + + mii = &sc->bnx_mii; + mii_tick(mii); + + /* Check if the link has come up. */ + if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE && + IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { + sc->bnx_link++; + /* Now that link is up, handle any outstanding TX traffic. */ + if (!IFQ_IS_EMPTY(&ifp->if_snd)) + bnx_start(ifp); + } + +bnx_tick_locked_exit: + return; +} + +/****************************************************************************/ +/* BNX Debug Routines */ +/****************************************************************************/ +#ifdef BNX_DEBUG + +/****************************************************************************/ +/* Prints out information about an mbuf. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) +{ + u32 val_hi, val_lo; + struct mbuf *mp = m; + + if (m == NULL) { + /* Index out of range. */ + printf("mbuf ptr is null!\n"); + return; + } + + while (mp) { + val_hi = BNX_ADDR_HI(mp); + val_lo = BNX_ADDR_LO(mp); + printf("mbuf: vaddr = 0x%08X:%08X, m_len = %d, m_flags = ", + val_hi, val_lo, mp->m_len); + + if (mp->m_flags & M_EXT) + printf("M_EXT "); + if (mp->m_flags & M_PKTHDR) + printf("M_PKTHDR "); + printf("\n"); + + if (mp->m_flags & M_EXT) { + val_hi = BNX_ADDR_HI(mp->m_ext.ext_buf); + val_lo = BNX_ADDR_LO(mp->m_ext.ext_buf); + printf("- m_ext: vaddr = 0x%08X:%08X, ext_size = 0x%04X\n", + val_hi, val_lo, mp->m_ext.ext_size); + } + + mp = mp->m_next; + } + + +} + +/****************************************************************************/ +/* Prints out the mbufs in the TX mbuf chain. */ +/* */ +/* Returns: */ +/* Nothing. */ +/****************************************************************************/ +void +bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) +{ + struct mbuf *m; + int i; + + BNX_PRINTF(sc, + "----------------------------" + " tx mbuf data " + "----------------------------\n"); + + for (i = 0; i < count; i++) { + m = sc->tx_mbuf_ptr[chain_prod]; + BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod); + bnx_dump_mbuf(sc, m); + chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); + } + + BNX_PRINTF(sc, + "----------------------------" + "----------------" + "----------------------------\n"); +} + +/* + * This routine prints the RX mbuf chain. + */ +void +bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) +{ + struct mbuf *m; + int i; + + BNX_PRINTF(sc, + "----------------------------" + " rx mbuf data " + "----------------------------\n"); + + for (i = 0; i < count; i++) { + m = sc->rx_mbuf_ptr[chain_prod]; + BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod); + bnx_dump_mbuf(sc, m); + chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); + } + + + BNX_PRINTF(sc, + "----------------------------" + "----------------" + "----------------------------\n"); +} + +void +bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) +{ + if (idx > MAX_TX_BD) + /* Index out of range. */ + BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); + else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) + /* TX Chain page pointer. */ + BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", + idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); + else + /* Normal tx_bd entry. */ + BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " + "flags = 0x%08X\n", idx, + txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, + txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag_flags); +} + +void +bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) +{ + if (idx > MAX_RX_BD) + /* Index out of range. */ + BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); + else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) + /* TX Chain page pointer. */ + BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", + idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); + else + /* Normal tx_bd entry. */ + BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " + "flags = 0x%08X\n", idx, + rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, + rxbd->rx_bd_len, rxbd->rx_bd_flags); +} + +void +bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) +{ + BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, " + "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " + "tcp_udp_xsum = 0x%04X\n", idx, + l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, + l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, + l2fhdr->l2_fhdr_tcp_udp_xsum); +} + +/* + * This routine prints the TX chain. + */ +void +bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) +{ + struct tx_bd *txbd; + int i; + + /* First some info about the tx_bd chain structure. */ + BNX_PRINTF(sc, + "----------------------------" + " tx_bd chain " + "----------------------------\n"); + + BNX_PRINTF(sc, "page size = 0x%08X, tx chain pages = 0x%08X\n", + (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); + + BNX_PRINTF(sc, "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", + (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); + + BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); + + BNX_PRINTF(sc, "" + "-----------------------------" + " tx_bd data " + "-----------------------------\n"); + + /* Now print out the tx_bd's themselves. */ + for (i = 0; i < count; i++) { + txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; + bnx_dump_txbd(sc, tx_prod, txbd); + tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); + } + + BNX_PRINTF(sc, + "-----------------------------" + "--------------" + "-----------------------------\n"); +} + +/* + * This routine prints the RX chain. + */ +void +bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) +{ + struct rx_bd *rxbd; + int i; + + /* First some info about the tx_bd chain structure. */ + BNX_PRINTF(sc, + "----------------------------" + " rx_bd chain " + "----------------------------\n"); + + BNX_PRINTF(sc, "----- RX_BD Chain -----\n"); + + BNX_PRINTF(sc, "page size = 0x%08X, rx chain pages = 0x%08X\n", + (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); + + BNX_PRINTF(sc, "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", + (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); + + BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); + + BNX_PRINTF(sc, + "----------------------------" + " rx_bd data " + "----------------------------\n"); + + /* Now print out the rx_bd's themselves. */ + for (i = 0; i < count; i++) { + rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; + bnx_dump_rxbd(sc, rx_prod, rxbd); + rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); + } + + BNX_PRINTF(sc, + "----------------------------" + "--------------" + "----------------------------\n"); +} + +/* + * This routine prints the status block. + */ +void +bnx_dump_status_block(struct bnx_softc *sc) +{ + struct status_block *sblk; + + sblk = sc->status_block; + + BNX_PRINTF(sc, "----------------------------- Status Block " + "-----------------------------\n"); + + BNX_PRINTF(sc, "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n", + sblk->status_attn_bits, sblk->status_attn_bits_ack, + sblk->status_idx); + + BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n", + sblk->status_rx_quick_consumer_index0, + sblk->status_tx_quick_consumer_index0); + + BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx); + + /* Theses indices are not used for normal L2 drivers. */ + if (sblk->status_rx_quick_consumer_index1 || + sblk->status_tx_quick_consumer_index1) + BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", + sblk->status_rx_quick_consumer_index1, + sblk->status_tx_quick_consumer_index1); + + if (sblk->status_rx_quick_consumer_index2 || + sblk->status_tx_quick_consumer_index2) + BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", + sblk->status_rx_quick_consumer_index2, + sblk->status_tx_quick_consumer_index2); + + if (sblk->status_rx_quick_consumer_index3 || + sblk->status_tx_quick_consumer_index3) + BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", + sblk->status_rx_quick_consumer_index3, + sblk->status_tx_quick_consumer_index3); + + if (sblk->status_rx_quick_consumer_index4 || + sblk->status_rx_quick_consumer_index5) + BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", + sblk->status_rx_quick_consumer_index4, + sblk->status_rx_quick_consumer_index5); + + if (sblk->status_rx_quick_consumer_index6 || + sblk->status_rx_quick_consumer_index7) + BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", + sblk->status_rx_quick_consumer_index6, + sblk->status_rx_quick_consumer_index7); + + if (sblk->status_rx_quick_consumer_index8 || + sblk->status_rx_quick_consumer_index9) + BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", + sblk->status_rx_quick_consumer_index8, + sblk->status_rx_quick_consumer_index9); + + if (sblk->status_rx_quick_consumer_index10 || + sblk->status_rx_quick_consumer_index11) + BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", + sblk->status_rx_quick_consumer_index10, + sblk->status_rx_quick_consumer_index11); + + if (sblk->status_rx_quick_consumer_index12 || + sblk->status_rx_quick_consumer_index13) + BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", + sblk->status_rx_quick_consumer_index12, + sblk->status_rx_quick_consumer_index13); + + if (sblk->status_rx_quick_consumer_index14 || + sblk->status_rx_quick_consumer_index15) + BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", + sblk->status_rx_quick_consumer_index14, + sblk->status_rx_quick_consumer_index15); + + if (sblk->status_completion_producer_index || + sblk->status_cmd_consumer_index) + BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n", + sblk->status_completion_producer_index, + sblk->status_cmd_consumer_index); + + BNX_PRINTF(sc, "-------------------------------------------" + "-----------------------------\n"); +} + +/* + * This routine prints the statistics block. + */ +void +bnx_dump_stats_block(struct bnx_softc *sc) +{ + struct statistics_block *sblk; + + sblk = sc->stats_block; + + BNX_PRINTF(sc, "" + "-----------------------------" + " Stats Block " + "-----------------------------\n"); + + BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, " + "IfHcInBadOctets = 0x%08X:%08X\n", + sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo, + sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo); + + BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, " + "IfHcOutBadOctets = 0x%08X:%08X\n", + sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo, + sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo); + + BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, " + "IfHcInMulticastPkts = 0x%08X:%08X\n", + sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo, + sblk->stat_IfHCInMulticastPkts_hi, sblk->stat_IfHCInMulticastPkts_lo); + + BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, " + "IfHcOutUcastPkts = 0x%08X:%08X\n", + sblk->stat_IfHCInBroadcastPkts_hi, sblk->stat_IfHCInBroadcastPkts_lo, + sblk->stat_IfHCOutUcastPkts_hi, sblk->stat_IfHCOutUcastPkts_lo); + + BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, IfHcOutBroadcastPkts = 0x%08X:%08X\n", + sblk->stat_IfHCOutMulticastPkts_hi, sblk->stat_IfHCOutMulticastPkts_lo, + sblk->stat_IfHCOutBroadcastPkts_hi, sblk->stat_IfHCOutBroadcastPkts_lo); + + if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) + BNX_PRINTF(sc, "0x%08X : " + "emac_tx_stat_dot3statsinternalmactransmiterrors\n", + sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); + + if (sblk->stat_Dot3StatsCarrierSenseErrors) + BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n", + sblk->stat_Dot3StatsCarrierSenseErrors); + + if (sblk->stat_Dot3StatsFCSErrors) + BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n", + sblk->stat_Dot3StatsFCSErrors); + + if (sblk->stat_Dot3StatsAlignmentErrors) + BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n", + sblk->stat_Dot3StatsAlignmentErrors); + + if (sblk->stat_Dot3StatsSingleCollisionFrames) + BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n", + sblk->stat_Dot3StatsSingleCollisionFrames); + + if (sblk->stat_Dot3StatsMultipleCollisionFrames) + BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n", + sblk->stat_Dot3StatsMultipleCollisionFrames); + + if (sblk->stat_Dot3StatsDeferredTransmissions) + BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n", + sblk->stat_Dot3StatsDeferredTransmissions); + + if (sblk->stat_Dot3StatsExcessiveCollisions) + BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n", + sblk->stat_Dot3StatsExcessiveCollisions); + + if (sblk->stat_Dot3StatsLateCollisions) + BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n", + sblk->stat_Dot3StatsLateCollisions); + + if (sblk->stat_EtherStatsCollisions) + BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n", + sblk->stat_EtherStatsCollisions); + + if (sblk->stat_EtherStatsFragments) + BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n", + sblk->stat_EtherStatsFragments); + + if (sblk->stat_EtherStatsJabbers) + BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n", + sblk->stat_EtherStatsJabbers); + + if (sblk->stat_EtherStatsUndersizePkts) + BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n", + sblk->stat_EtherStatsUndersizePkts); + + if (sblk->stat_EtherStatsOverrsizePkts) + BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n", + sblk->stat_EtherStatsOverrsizePkts); + + if (sblk->stat_EtherStatsPktsRx64Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n", + sblk->stat_EtherStatsPktsRx64Octets); + + if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", + sblk->stat_EtherStatsPktsRx65Octetsto127Octets); + + if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", + sblk->stat_EtherStatsPktsRx128Octetsto255Octets); + + if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", + sblk->stat_EtherStatsPktsRx256Octetsto511Octets); + + if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", + sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); + + if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", + sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); + + if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", + sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); + + if (sblk->stat_EtherStatsPktsTx64Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n", + sblk->stat_EtherStatsPktsTx64Octets); + + if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", + sblk->stat_EtherStatsPktsTx65Octetsto127Octets); + + if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", + sblk->stat_EtherStatsPktsTx128Octetsto255Octets); + + if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", + sblk->stat_EtherStatsPktsTx256Octetsto511Octets); + + if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", + sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); + + if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", + sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); + + if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) + BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", + sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); + + if (sblk->stat_XonPauseFramesReceived) + BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n", + sblk->stat_XonPauseFramesReceived); + + if (sblk->stat_XoffPauseFramesReceived) + BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n", + sblk->stat_XoffPauseFramesReceived); + + if (sblk->stat_OutXonSent) + BNX_PRINTF(sc, "0x%08X : OutXonSent\n", + sblk->stat_OutXonSent); + + if (sblk->stat_OutXoffSent) + BNX_PRINTF(sc, "0x%08X : OutXoffSent\n", + sblk->stat_OutXoffSent); + + if (sblk->stat_FlowControlDone) + BNX_PRINTF(sc, "0x%08X : FlowControlDone\n", + sblk->stat_FlowControlDone); + + if (sblk->stat_MacControlFramesReceived) + BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n", + sblk->stat_MacControlFramesReceived); + + if (sblk->stat_XoffStateEntered) + BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n", + sblk->stat_XoffStateEntered); + + if (sblk->stat_IfInFramesL2FilterDiscards) + BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n", + sblk->stat_IfInFramesL2FilterDiscards); + + if (sblk->stat_IfInRuleCheckerDiscards) + BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n", + sblk->stat_IfInRuleCheckerDiscards); + + if (sblk->stat_IfInFTQDiscards) + BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n", + sblk->stat_IfInFTQDiscards); + + if (sblk->stat_IfInMBUFDiscards) + BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n", + sblk->stat_IfInMBUFDiscards); + + if (sblk->stat_IfInRuleCheckerP4Hit) + BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n", + sblk->stat_IfInRuleCheckerP4Hit); + + if (sblk->stat_CatchupInRuleCheckerDiscards) + BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n", + sblk->stat_CatchupInRuleCheckerDiscards); + + if (sblk->stat_CatchupInFTQDiscards) + BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n", + sblk->stat_CatchupInFTQDiscards); + + if (sblk->stat_CatchupInMBUFDiscards) + BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n", + sblk->stat_CatchupInMBUFDiscards); + + if (sblk->stat_CatchupInRuleCheckerP4Hit) + BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n", + sblk->stat_CatchupInRuleCheckerP4Hit); + + BNX_PRINTF(sc, + "-----------------------------" + "--------------" + "-----------------------------\n"); +} + +void +bnx_dump_driver_state(struct bnx_softc *sc) +{ + u32 val_hi, val_lo; + + BNX_PRINTF(sc, + "-----------------------------" + " Driver State " + "-----------------------------\n"); + + val_hi = BNX_ADDR_HI(sc); + val_lo = BNX_ADDR_LO(sc); + BNX_PRINTF(sc, "0x%08X:%08X - (sc) driver softc structure virtual address\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->status_block); + val_lo = BNX_ADDR_LO(sc->status_block); + BNX_PRINTF(sc, "0x%08X:%08X - (sc->status_block) status block virtual address\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->stats_block); + val_lo = BNX_ADDR_LO(sc->stats_block); + BNX_PRINTF(sc, "0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->tx_bd_chain); + val_lo = BNX_ADDR_LO(sc->tx_bd_chain); + BNX_PRINTF(sc, + "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->rx_bd_chain); + val_lo = BNX_ADDR_LO(sc->rx_bd_chain); + BNX_PRINTF(sc, + "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->tx_mbuf_ptr); + val_lo = BNX_ADDR_LO(sc->tx_mbuf_ptr); + BNX_PRINTF(sc, + "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", + val_hi, val_lo); + + val_hi = BNX_ADDR_HI(sc->rx_mbuf_ptr); + val_lo = BNX_ADDR_LO(sc->rx_mbuf_ptr); + BNX_PRINTF(sc, + "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", + val_hi, val_lo); + + BNX_PRINTF(sc, " 0x%08X - (sc->interrupts_generated) h/w intrs\n", + sc->interrupts_generated); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", + sc->rx_interrupts); + + BNX_PRINTF(sc, " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", + sc->tx_interrupts); + + BNX_PRINTF(sc, " 0x%08X - (sc->last_status_idx) status block index\n", + sc->last_status_idx); + + BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n", + sc->tx_prod); + + BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n", + sc->tx_cons); + + BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", + sc->tx_prod_bseq); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n", + sc->rx_prod); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n", + sc->rx_cons); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", + sc->rx_prod_bseq); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", + sc->rx_mbuf_alloc); + + BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n", + sc->free_rx_bd); + + BNX_PRINTF(sc, "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", + sc->rx_low_watermark, (u32) USABLE_RX_BD); + + BNX_PRINTF(sc, " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n", + sc->tx_mbuf_alloc); + + BNX_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", + sc->rx_mbuf_alloc); + + BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n", + sc->used_tx_bd); + + BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", + sc->tx_hi_watermark, (u32) USABLE_TX_BD); + + BNX_PRINTF(sc, " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n", + sc->mbuf_alloc_failed); + + BNX_PRINTF(sc, + "-----------------------------" + "--------------" + "-----------------------------\n"); +} + +void +bnx_dump_hw_state(struct bnx_softc *sc) +{ + u32 val1; + int i; + + BNX_PRINTF(sc, + "----------------------------" + " Hardware State " + "----------------------------\n"); + + BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver); + + val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n", + val1, BNX_MISC_ENABLE_STATUS_BITS); + + val1 = REG_RD(sc, BNX_DMA_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS); + + val1 = REG_RD(sc, BNX_CTX_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS); + + val1 = REG_RD(sc, BNX_EMAC_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, BNX_EMAC_STATUS); + + val1 = REG_RD(sc, BNX_RPM_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS); + + val1 = REG_RD(sc, BNX_TBDR_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, BNX_TBDR_STATUS); + + val1 = REG_RD(sc, BNX_TDMA_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, BNX_TDMA_STATUS); + + val1 = REG_RD(sc, BNX_HC_STATUS); + BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS); + + BNX_PRINTF(sc, + "----------------------------" + "----------------" + "----------------------------\n"); + + BNX_PRINTF(sc, + "----------------------------" + " Register Dump " + "----------------------------\n"); + + for (i = 0x400; i < 0x8000; i += 0x10) + BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", + i, REG_RD(sc, i), REG_RD(sc, i + 0x4), + REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); + + BNX_PRINTF(sc, + "----------------------------" + "----------------" + "----------------------------\n"); +} + +void +bnx_breakpoint(struct bnx_softc *sc) +{ + + /* Unreachable code to shut the compiler up about unused functions. */ + if (0) { + bnx_dump_txbd(sc, 0, NULL); + bnx_dump_rxbd(sc, 0, NULL); + bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); + bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); + bnx_dump_l2fhdr(sc, 0, NULL); + bnx_dump_tx_chain(sc, 0, USABLE_TX_BD); + bnx_dump_rx_chain(sc, 0, USABLE_RX_BD); + bnx_dump_status_block(sc); + bnx_dump_stats_block(sc); + bnx_dump_driver_state(sc); + bnx_dump_hw_state(sc); + } + + bnx_dump_driver_state(sc); + /* Print the important status block fields. */ + bnx_dump_status_block(sc); + +#if 0 + /* Call the debugger. */ + breakpoint(); +#endif + + return; +} +#endif |