diff options
Diffstat (limited to 'sys/dev/pci/if_em_hw.c')
-rw-r--r-- | sys/dev/pci/if_em_hw.c | 2840 |
1 files changed, 2182 insertions, 658 deletions
diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c index d3af7be0295..a782cf30f18 100644 --- a/sys/dev/pci/if_em_hw.c +++ b/sys/dev/pci/if_em_hw.c @@ -31,7 +31,7 @@ POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ -/* $OpenBSD: if_em_hw.c,v 1.18 2006/05/17 20:45:52 brad Exp $ */ +/* $OpenBSD: if_em_hw.c,v 1.19 2006/07/03 20:55:55 brad Exp $ */ /* if_em_hw.c * Shared functions for accessing and configuring the MAC @@ -41,7 +41,7 @@ POSSIBILITY OF SUCH DAMAGE. #include <sys/cdefs.h> __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $"); #endif - + #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> @@ -64,7 +64,7 @@ __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $"); #endif #include <uvm/uvm_extern.h> - + #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcidevs.h> @@ -107,8 +107,9 @@ static int32_t em_polarity_reversal_workaround(struct em_hw *hw); static int32_t em_set_phy_mode(struct em_hw *hw); static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer); static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length); -static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex); -static int32_t em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex); +static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, + uint16_t duplex); +static int32_t em_configure_kmrn_for_1000(struct em_hw *hw); /* IGP cable length table */ static const @@ -143,10 +144,10 @@ em_set_phy_type(struct em_hw *hw) { DEBUGFUNC("em_set_phy_type"); - if(hw->mac_type == em_undefined) + if (hw->mac_type == em_undefined) return -E1000_ERR_PHY_TYPE; - switch(hw->phy_id) { + switch (hw->phy_id) { case M88E1000_E_PHY_ID: case M88E1000_I_PHY_ID: case M88E1011_I_PHY_ID: @@ -154,13 +155,21 @@ em_set_phy_type(struct em_hw *hw) hw->phy_type = em_phy_m88; break; case IGP01E1000_I_PHY_ID: - if(hw->mac_type == em_82541 || - hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547 || - hw->mac_type == em_82547_rev_2) { + if (hw->mac_type == em_82541 || + hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547 || + hw->mac_type == em_82547_rev_2) { hw->phy_type = em_phy_igp; break; } + case IGP03E1000_E_PHY_ID: + hw->phy_type = em_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + hw->phy_type = em_phy_ife; + break; case GG82563_E_PHY_ID: if (hw->mac_type == em_80003es2lan) { hw->phy_type = em_phy_gg82563; @@ -189,7 +198,7 @@ em_phy_init_script(struct em_hw *hw) DEBUGFUNC("em_phy_init_script"); - if(hw->phy_init_script) { + if (hw->phy_init_script) { msec_delay(20); /* Save off the current value of register 0x2F5B to be restored at @@ -205,7 +214,7 @@ em_phy_init_script(struct em_hw *hw) msec_delay(5); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82541: case em_82547: em_write_phy_reg(hw, 0x1F95, 0x0001); @@ -242,22 +251,22 @@ em_phy_init_script(struct em_hw *hw) /* Now enable the transmitter */ em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(hw->mac_type == em_82547) { + if (hw->mac_type == em_82547) { uint16_t fused, fine, coarse; /* Move to analog registers page */ em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | @@ -337,8 +346,8 @@ em_set_mac_type(struct em_hw *hw) hw->mac_type = em_82546_rev_3; break; case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541ER_LOM: case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: hw->mac_type = em_82541; break; case E1000_DEV_ID_82541ER: @@ -377,16 +386,29 @@ em_set_mac_type(struct em_hw *hw) case E1000_DEV_ID_82573V_PM: hw->mac_type = em_82573; break; + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->mac_type = em_80003es2lan; break; + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IGP_M: + hw->mac_type = em_ich8lan; + break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } - switch(hw->mac_type) { + switch (hw->mac_type) { + case em_ich8lan: + hw->swfwhw_semaphore_present = TRUE; + hw->asf_firmware_present = TRUE; + break; case em_80003es2lan: hw->swfw_sync_present = TRUE; /* FALLTHROUGH */ @@ -420,7 +442,7 @@ em_set_media_type(struct em_hw *hw) DEBUGFUNC("em_set_media_type"); - if(hw->mac_type != em_82543) { + if (hw->mac_type != em_82543) { /* tbi_compatibility is only valid on 82543 */ hw->tbi_compatibility_en = FALSE; } @@ -439,6 +461,7 @@ em_set_media_type(struct em_hw *hw) case em_82542_rev2_1: hw->media_type = em_media_type_fiber; break; + case em_ich8lan: case em_82573: /* The STATUS_TBIMODE bit is reserved or reused for the this * device. @@ -479,16 +502,16 @@ em_reset_hw(struct em_hw *hw) DEBUGFUNC("em_reset_hw"); /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if(hw->mac_type == em_82542_rev2_0) { + if (hw->mac_type == em_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); em_pci_clear_mwi(hw); } - if(hw->bus_type == em_bus_type_pci_express) { + if (hw->bus_type == em_bus_type_pci_express) { /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ - if(em_disable_pciex_master(hw) != E1000_SUCCESS) { + if (em_disable_pciex_master(hw) != E1000_SUCCESS) { DEBUGOUT("PCI-E Master disable polling has failed.\n"); } } @@ -516,14 +539,14 @@ em_reset_hw(struct em_hw *hw) ctrl = E1000_READ_REG(hw, CTRL); /* Must reset the PHY before resetting the MAC */ - if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); msec_delay(5); } /* Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ - if(hw->mac_type == em_82573) { + if (hw->mac_type == em_82573) { timeout = 10; extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); @@ -533,14 +556,22 @@ em_reset_hw(struct em_hw *hw) E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; else extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; msec_delay(2); timeout--; - } while(timeout); + } while (timeout); + } + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac_type == em_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); } /* Issue a global reset to the MAC. This will reset the chip's @@ -550,7 +581,7 @@ em_reset_hw(struct em_hw *hw) */ DEBUGOUT("Issuing a global reset to MAC\n"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82544: case em_82540: case em_82545: @@ -566,6 +597,20 @@ em_reset_hw(struct em_hw *hw) /* Reset is performed on a shadow of the control register */ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); break; + case em_ich8lan: + if (!hw->phy_reset_disable && + em_check_phy_reset_block(hw) == E1000_SUCCESS) { + /* em_ich8lan PHY HW reset requires MAC CORE reset + * at the same time to make sure the interface between + * MAC and the external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + } + + em_get_software_flag(hw); + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + msec_delay(5); + break; default: E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; @@ -575,7 +620,7 @@ em_reset_hw(struct em_hw *hw) * device. Later controllers reload the EEPROM automatically, so just wait * for reload to complete. */ - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -607,9 +652,10 @@ em_reset_hw(struct em_hw *hw) /* FALLTHROUGH */ case em_82571: case em_82572: + case em_ich8lan: case em_80003es2lan: ret_val = em_get_auto_rd_done(hw); - if(ret_val) + if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; break; @@ -620,13 +666,13 @@ em_reset_hw(struct em_hw *hw) } /* Disable HW ARPs on ASF enabled adapters */ - if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) { + if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) { manc = E1000_READ_REG(hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(hw, MANC, manc); } - if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { em_phy_init_script(hw); /* Configure activity LED after PHY reset */ @@ -644,11 +690,17 @@ em_reset_hw(struct em_hw *hw) icr = E1000_READ_REG(hw, ICR); /* If MWI was previously enabled, reenable it. */ - if(hw->mac_type == em_82542_rev2_0) { - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if (hw->mac_type == em_82542_rev2_0) { + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) em_pci_set_mwi(hw); } + if (hw->mac_type == em_ich8lan) { + uint32_t kab = E1000_READ_REG(hw, KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, KABGTXD, kab); + } + return E1000_SUCCESS; } @@ -681,7 +733,7 @@ em_init_hw(struct em_hw *hw) /* Initialize Identification LED */ ret_val = em_id_led_init(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Initializing Identification LED\n"); return ret_val; } @@ -691,12 +743,15 @@ em_init_hw(struct em_hw *hw) /* Disabling VLAN filtering. */ DEBUGOUT("Initializing the IEEE VLAN\n"); - if (hw->mac_type < em_82545_rev_3) - E1000_WRITE_REG(hw, VET, 0); - em_clear_vfta(hw); + /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ + if (hw->mac_type != em_ich8lan) { + if (hw->mac_type < em_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + em_clear_vfta(hw); + } /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if(hw->mac_type == em_82542_rev2_0) { + if (hw->mac_type == em_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); em_pci_clear_mwi(hw); E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); @@ -710,37 +765,43 @@ em_init_hw(struct em_hw *hw) em_init_rx_addrs(hw); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if(hw->mac_type == em_82542_rev2_0) { + if (hw->mac_type == em_82542_rev2_0) { E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_FLUSH(hw); msec_delay(1); - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) em_pci_set_mwi(hw); } /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); mta_size = E1000_MC_TBL_SIZE; - for(i = 0; i < mta_size; i++) + if (hw->mac_type == em_ich8lan) + mta_size = E1000_MC_TBL_SIZE_ICH8LAN; + for (i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occuring when accessing our register space */ + E1000_WRITE_FLUSH(hw); + } /* Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it * gives equal priority to transmits and receives. Valid only on * 82542 and 82543 silicon. */ - if(hw->dma_fairness && hw->mac_type <= em_82543) { + if (hw->dma_fairness && hw->mac_type <= em_82543) { ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); } - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; default: /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if(hw->bus_type == em_bus_type_pcix) { + if (hw->bus_type == em_bus_type_pcix) { em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); @@ -748,9 +809,9 @@ em_init_hw(struct em_hw *hw) PCIX_COMMAND_MMRBC_SHIFT; stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> PCIX_STATUS_HI_MMRBC_SHIFT; - if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if(cmd_mmrbc > stat_mmrbc) { + if (cmd_mmrbc > stat_mmrbc) { pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, @@ -760,11 +821,15 @@ em_init_hw(struct em_hw *hw) break; } + /* More time needed for PHY to initialize */ + if (hw->mac_type == em_ich8lan) + msec_delay(15); + /* Call a subroutine to configure the link and setup flow control. */ ret_val = em_setup_link(hw); /* Set the transmit descriptor write-back policy */ - if(hw->mac_type > em_82544) { + if (hw->mac_type > em_82544) { ctrl = E1000_READ_REG(hw, TXDCTL); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; switch (hw->mac_type) { @@ -773,6 +838,7 @@ em_init_hw(struct em_hw *hw) case em_82571: case em_82572: case em_82573: + case em_ich8lan: case em_80003es2lan: ctrl |= E1000_TXDCTL_COUNT_DESC; break; @@ -781,7 +847,7 @@ em_init_hw(struct em_hw *hw) } if (hw->mac_type == em_82573) { - em_enable_tx_pkt_filtering(hw); + em_enable_tx_pkt_filtering(hw); } switch (hw->mac_type) { @@ -811,9 +877,10 @@ em_init_hw(struct em_hw *hw) /* FALLTHROUGH */ case em_82571: case em_82572: + case em_ich8lan: ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - if(hw->mac_type >= em_82571) + if (hw->mac_type >= em_82571) ctrl |= E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, TXDCTL1, ctrl); break; @@ -832,6 +899,11 @@ em_init_hw(struct em_hw *hw) */ em_clear_hw_cntrs(hw); + /* ICH8/Nahum No-snoop bits are opposite polarity. + * Set to snoop by default after reset. */ + if (hw->mac_type == em_ich8lan) + em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); @@ -857,10 +929,10 @@ em_adjust_serdes_amplitude(struct em_hw *hw) DEBUGFUNC("em_adjust_serdes_amplitude"); - if(hw->media_type != em_media_type_internal_serdes) + if (hw->media_type != em_media_type_internal_serdes) return E1000_SUCCESS; - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; @@ -873,11 +945,11 @@ em_adjust_serdes_amplitude(struct em_hw *hw) return ret_val; } - if(eeprom_data != EEPROM_RESERVED_WORD) { + if (eeprom_data != EEPROM_RESERVED_WORD) { /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -919,6 +991,7 @@ em_setup_link(struct em_hw *hw) */ if (hw->fc == em_fc_default) { switch (hw->mac_type) { + case em_ich8lan: case em_82573: hw->fc = em_fc_full; break; @@ -944,10 +1017,10 @@ em_setup_link(struct em_hw *hw) * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ - if(hw->mac_type == em_82542_rev2_0) + if (hw->mac_type == em_82542_rev2_0) hw->fc &= (~em_fc_tx_pause); - if((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) + if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) hw->fc &= (~em_fc_rx_pause); hw->original_fc = hw->fc; @@ -961,7 +1034,13 @@ em_setup_link(struct em_hw *hw) * signal detection. So this should be done before em_setup_pcs_link() * or em_phy_setup() is called. */ - if(hw->mac_type == em_82543) { + if (hw->mac_type == em_82543) { + ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); @@ -979,9 +1058,12 @@ em_setup_link(struct em_hw *hw) */ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); - E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */ + if (hw->mac_type != em_ich8lan) { + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + } E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); @@ -991,14 +1073,14 @@ em_setup_link(struct em_hw *hw) * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ - if(!(hw->fc & em_fc_tx_pause)) { + if (!(hw->fc & em_fc_tx_pause)) { E1000_WRITE_REG(hw, FCRTL, 0); E1000_WRITE_REG(hw, FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water marks * as well as (optionally) enabling the transmission of XON frames. */ - if(hw->fc_send_xon) { + if (hw->fc_send_xon) { E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); } else { @@ -1045,11 +1127,11 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * the EEPROM. */ ctrl = E1000_READ_REG(hw, CTRL); - if(hw->media_type == em_media_type_fiber) + if (hw->media_type == em_media_type_fiber) signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; ret_val = em_adjust_serdes_amplitude(hw); - if(ret_val) + if (ret_val) return ret_val; /* Take the link out of reset */ @@ -1057,7 +1139,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw) /* Adjust VCO speed to improve BER performance */ ret_val = em_set_vco_speed(hw); - if(ret_val) + if (ret_val) return ret_val; em_config_collision_dist(hw); @@ -1128,15 +1210,15 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * less than 500 milliseconds even if the other end is doing it in SW). * For internal serdes, we just assume a signal is present, then poll. */ - if(hw->media_type == em_media_type_internal_serdes || + if (hw->media_type == em_media_type_internal_serdes || (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { DEBUGOUT("Looking for Link\n"); - for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { msec_delay(10); status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_LU) break; + if (status & E1000_STATUS_LU) break; } - if(i == (LINK_UP_TIMEOUT / 10)) { + if (i == (LINK_UP_TIMEOUT / 10)) { DEBUGOUT("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call @@ -1145,7 +1227,7 @@ em_setup_fiber_serdes_link(struct em_hw *hw) * non-autonegotiating link partners. */ ret_val = em_check_for_link(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error while checking for link\n"); return ret_val; } @@ -1179,7 +1261,7 @@ em_copper_link_preconfig(struct em_hw *hw) * the PHY speed and duplex configuration is. In addition, we need to * perform a hardware reset on the PHY to take it out of reset. */ - if(hw->mac_type > em_82543) { + if (hw->mac_type > em_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -1187,13 +1269,13 @@ em_copper_link_preconfig(struct em_hw *hw) ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); E1000_WRITE_REG(hw, CTRL, ctrl); ret_val = em_phy_hw_reset(hw); - if(ret_val) + if (ret_val) return ret_val; } /* Make sure we have a valid PHY */ ret_val = em_detect_gig_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error, did not detect valid phy.\n"); return ret_val; } @@ -1201,19 +1283,19 @@ em_copper_link_preconfig(struct em_hw *hw) /* Set PHY to class A mode (if necessary) */ ret_val = em_set_phy_mode(hw); - if(ret_val) + if (ret_val) return ret_val; - if((hw->mac_type == em_82545_rev_3) || + if ((hw->mac_type == em_82545_rev_3) || (hw->mac_type == em_82546_rev_3)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); phy_data |= 0x00000008; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); } - if(hw->mac_type <= em_82543 || - hw->mac_type == em_82541 || hw->mac_type == em_82547 || - hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) + if (hw->mac_type <= em_82543 || + hw->mac_type == em_82541 || hw->mac_type == em_82547 || + hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) hw->phy_reset_disable = FALSE; return E1000_SUCCESS; @@ -1236,21 +1318,22 @@ em_copper_link_igp_setup(struct em_hw *hw) if (hw->phy_reset_disable) return E1000_SUCCESS; - + ret_val = em_phy_reset(hw); if (ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } - /* Wait 10ms for MAC to configure PHY from eeprom settings */ + /* Wait 15ms for MAC to configure PHY from eeprom settings */ msec_delay(15); - + if (hw->mac_type != em_ich8lan) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } /* disable lplu d3 during driver init */ ret_val = em_set_d3_lplu_state(hw, FALSE); @@ -1294,45 +1377,45 @@ em_copper_link_igp_setup(struct em_hw *hw) } } ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* set auto-master slave resolution settings */ - if(hw->autoneg) { + if (hw->autoneg) { em_ms_type phy_ms_setting = hw->master_slave; - if(hw->ffe_config_state == em_ffe_config_active) + if (hw->ffe_config_state == em_ffe_config_active) hw->ffe_config_state = em_ffe_config_enabled; - if(hw->dsp_config_state == em_dsp_config_activated) + if (hw->dsp_config_state == em_dsp_config_activated) hw->dsp_config_state = em_dsp_config_enabled; /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ - if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ - ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = em_write_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if(ret_val) + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* load defaults for future use */ @@ -1357,7 +1440,7 @@ em_copper_link_igp_setup(struct em_hw *hw) break; } ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -1378,12 +1461,12 @@ em_copper_link_ggp_setup(struct em_hw *hw) DEBUGFUNC("em_copper_link_ggp_setup"); - if(!hw->phy_reset_disable) { - + if (!hw->phy_reset_disable) { + /* Enable CRS on TX for half-duplex operation. */ ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; @@ -1392,7 +1475,7 @@ em_copper_link_ggp_setup(struct em_hw *hw) ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Options: @@ -1403,7 +1486,7 @@ em_copper_link_ggp_setup(struct em_hw *hw) * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; @@ -1428,11 +1511,11 @@ em_copper_link_ggp_setup(struct em_hw *hw) * 1 - Enabled */ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if(hw->disable_polarity_correction == 1) + if (hw->disable_polarity_correction == 1) phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ @@ -1487,11 +1570,10 @@ em_copper_link_ggp_setup(struct em_hw *hw) if (ret_val) return ret_val; - /* Disable Pass False Carrier on the PHY */ phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, phy_data); + if (ret_val) return ret_val; } @@ -1526,12 +1608,12 @@ em_copper_link_mgp_setup(struct em_hw *hw) DEBUGFUNC("em_copper_link_mgp_setup"); - if(hw->phy_reset_disable) + if (hw->phy_reset_disable) return E1000_SUCCESS; - + /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; @@ -1568,35 +1650,47 @@ em_copper_link_mgp_setup(struct em_hw *hw) * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if(hw->disable_polarity_correction == 1) + if (hw->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) - return ret_val; - - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) return ret_val; - phy_data |= M88E1000_EPSCR_TX_CLK_25; - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if(ret_val) - return ret_val; + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } } /* SW Reset the PHY so all changes take effect */ ret_val = em_phy_reset(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } @@ -1626,12 +1720,16 @@ em_copper_link_autoneg(struct em_hw *hw) /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ - if(hw->autoneg_advertised == 0) + if (hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + /* IFE phy only supports 10/100 */ + if (hw->phy_type == em_phy_ife) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = em_phy_setup_autoneg(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); return ret_val; } @@ -1641,20 +1739,20 @@ em_copper_link_autoneg(struct em_hw *hw) * the Auto Neg Restart bit in the PHY control register. */ ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ - if(hw->wait_autoneg_complete) { + if (hw->wait_autoneg_complete) { ret_val = em_wait_autoneg(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } @@ -1665,6 +1763,18 @@ em_copper_link_autoneg(struct em_hw *hw) return E1000_SUCCESS; } +/******************************************************************** +* Copper link setup for em_phy_ife (Fast Ethernet PHY) series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t +em_copper_link_ife_setup(struct em_hw *hw) +{ + if (hw->phy_reset_disable) + return E1000_SUCCESS; + return E1000_SUCCESS; +} /****************************************************************************** * Config the MAC and the PHY after link is up. @@ -1674,7 +1784,7 @@ em_copper_link_autoneg(struct em_hw *hw) * collision distance in the Transmit Control Register. * 2) Set up flow control on the MAC to that established with * the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. +* 3) Config DSP to improve Gigabit link quality for some PHY revisions. * * hw - Struct containing variables accessed by shared code ******************************************************************************/ @@ -1683,31 +1793,31 @@ em_copper_link_postconfig(struct em_hw *hw) { int32_t ret_val; DEBUGFUNC("em_copper_link_postconfig"); - - if(hw->mac_type >= em_82544) { + + if (hw->mac_type >= em_82544) { em_config_collision_dist(hw); } else { ret_val = em_config_mac_to_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } } ret_val = em_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Configuring Flow Control\n"); return ret_val; } /* Config DSP to improve Giga link quality */ - if(hw->phy_type == em_phy_igp) { + if (hw->phy_type == em_phy_igp) { ret_val = em_config_dsp_after_link_change(hw, TRUE); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Configuring DSP after link up\n"); return ret_val; } } - + return E1000_SUCCESS; } @@ -1728,6 +1838,7 @@ em_setup_copper_link(struct em_hw *hw) switch (hw->mac_type) { case em_80003es2lan: + case em_ich8lan: /* Set the mac to wait the maximum time between each * iteration and increase the max iterations when * polling the phy; this fixes erroneous timeouts at 10Mbps. */ @@ -1747,15 +1858,13 @@ em_setup_copper_link(struct em_hw *hw) /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = em_copper_link_preconfig(hw); - if(ret_val) + if (ret_val) return ret_val; switch (hw->mac_type) { case em_80003es2lan: - ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, - ®_data); - if (ret_val) - return ret_val; + /* Kumeran registers are written-only */ + reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); @@ -1767,32 +1876,37 @@ em_setup_copper_link(struct em_hw *hw) } if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) { ret_val = em_copper_link_igp_setup(hw); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->phy_type == em_phy_m88) { ret_val = em_copper_link_mgp_setup(hw); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->phy_type == em_phy_gg82563) { ret_val = em_copper_link_ggp_setup(hw); - if(ret_val) + if (ret_val) + return ret_val; + } else if (hw->phy_type == em_phy_ife) { + ret_val = em_copper_link_ife_setup(hw); + if (ret_val) return ret_val; } - if(hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ + if (hw->autoneg) { + /* Setup autoneg and flow control advertisement + * and perform autonegotiation */ ret_val = em_copper_link_autoneg(hw); - if(ret_val) - return ret_val; + if (ret_val) + return ret_val; } else { /* PHY will be set to 10H, 10F, 100H,or 100F * depending on value from forced_speed_duplex. */ DEBUGOUT("Forcing speed and duplex\n"); ret_val = em_phy_force_speed_duplex(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Forcing Speed and Duplex\n"); return ret_val; } @@ -1801,20 +1915,20 @@ em_setup_copper_link(struct em_hw *hw) /* Check link status. Wait up to 100 microseconds for link to become * valid. */ - for(i = 0; i < 10; i++) { + for (i = 0; i < 10; i++) { ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_LINK_STATUS) { + if (phy_data & MII_SR_LINK_STATUS) { /* Config the MAC and PHY after link is up */ ret_val = em_copper_link_postconfig(hw); - if(ret_val) + if (ret_val) return ret_val; - + DEBUGOUT("Valid link established!!!\n"); return E1000_SUCCESS; } @@ -1851,26 +1965,23 @@ em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; E1000_WRITE_REG(hw, TIPG, tipg); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + if (ret_val) return ret_val; - /* Enable pass false carrier when in half duplex mode. */ if (duplex == HALF_DUPLEX) reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - reg_data); - return ret_val; } static int32_t -em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex) +em_configure_kmrn_for_1000(struct em_hw *hw) { int32_t ret_val = E1000_SUCCESS; uint16_t reg_data; @@ -1890,18 +2001,14 @@ em_configure_kmrn_for_1000(struct em_hw *hw, uint16_t duplex) tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; E1000_WRITE_REG(hw, TIPG, tipg); + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); if (ret_val) return ret_val; - /* Disable Pass False Carrier on the PHY */ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - reg_data); - return ret_val; } @@ -1921,13 +2028,16 @@ em_phy_setup_autoneg(struct em_hw *hw) /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if(ret_val) + if (ret_val) return ret_val; - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if(ret_val) - return ret_val; + if (hw->phy_type != em_phy_ife) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } else + mii_1000t_ctrl_reg=0; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for @@ -1946,38 +2056,41 @@ em_phy_setup_autoneg(struct em_hw *hw) DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_HALF) { + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_FULL) { + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_HALF) { + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_FULL) { + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + if (hw->phy_type == em_phy_ife) { + DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); + } } /* Check for a software override of the flow control settings, and @@ -2034,14 +2147,16 @@ em_phy_setup_autoneg(struct em_hw *hw) } ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if(ret_val) + if (ret_val) return ret_val; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if(ret_val) - return ret_val; + if (hw->phy_type != em_phy_ife) { + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } return E1000_SUCCESS; } @@ -2080,7 +2195,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) /* Read the MII Control Register. */ ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if(ret_val) + if (ret_val) return ret_val; /* We need to disable autoneg in order to force link and duplex. */ @@ -2088,8 +2203,8 @@ em_phy_force_speed_duplex(struct em_hw *hw) mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; /* Are we forcing Full or Half Duplex? */ - if(hw->forced_speed_duplex == em_100_full || - hw->forced_speed_duplex == em_10_full) { + if (hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_10_full) { /* We want to force full duplex so we SET the full duplex bits in the * Device and MII Control Registers. */ @@ -2106,7 +2221,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) } /* Are we forcing 100Mbps??? */ - if(hw->forced_speed_duplex == em_100_full || + if (hw->forced_speed_duplex == em_100_full || hw->forced_speed_duplex == em_100_half) { /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ ctrl |= E1000_CTRL_SPD_100; @@ -2129,7 +2244,7 @@ em_phy_force_speed_duplex(struct em_hw *hw) if ((hw->phy_type == em_phy_m88) || (hw->phy_type == em_phy_gg82563)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI @@ -2137,32 +2252,44 @@ em_phy_force_speed_duplex(struct em_hw *hw) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); /* Need to reset the PHY or these changes will be ignored */ mii_ctrl_reg |= MII_CR_RESET; + /* Disable MDI-X support for 10/100 */ + } else if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PMC_AUTO_MDIX; + phy_data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); + if (ret_val) + return ret_val; } else { /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed or duplex are forced. */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } /* Write back the modified PHY MII control register. */ ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if(ret_val) + if (ret_val) return ret_val; usec_delay(1); @@ -2174,50 +2301,50 @@ em_phy_force_speed_duplex(struct em_hw *hw) * only if the user has set wait_autoneg_complete to 1, which is * the default. */ - if(hw->wait_autoneg_complete) { + if (hw->wait_autoneg_complete) { /* We will wait for autoneg to complete. */ DEBUGOUT("Waiting for forced speed/duplex link.\n"); mii_status_reg = 0; /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_LINK_STATUS) break; + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); } - if((i == 0) && + if ((i == 0) && ((hw->phy_type == em_phy_m88) || (hw->phy_type == em_phy_gg82563))) { /* We didn't get link. Reset the DSP and wait again for link. */ ret_val = em_phy_reset_dsp(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Resetting PHY DSP\n"); return ret_val; } } /* This loop will early-out if the link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { - if(mii_status_reg & MII_SR_LINK_STATUS) break; + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; } } @@ -2228,32 +2355,31 @@ em_phy_force_speed_duplex(struct em_hw *hw) * defaults back to a 2.5MHz clock when the PHY is reset. */ ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* In addition, because of the s/w reset above, we need to enable CRS on * TX. This must be set for both full and half duplex operation. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { + if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { ret_val = em_polarity_reversal_workaround(hw); - if(ret_val) + if (ret_val) return ret_val; } } else if (hw->phy_type == em_phy_gg82563) { @@ -2328,7 +2454,7 @@ em_config_mac_to_phy(struct em_hw *hw) DEBUGFUNC("em_config_mac_to_phy"); - /* 82544 or newer MAC, Auto Speed Detection takes care of + /* 82544 or newer MAC, Auto Speed Detection takes care of * MAC speed/duplex configuration.*/ if (hw->mac_type >= em_82544) return E1000_SUCCESS; @@ -2344,12 +2470,12 @@ em_config_mac_to_phy(struct em_hw *hw) * registers depending on negotiated values. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & M88E1000_PSSR_DPLX) + if (phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; - else + else ctrl &= ~E1000_CTRL_FD; em_config_collision_dist(hw); @@ -2357,9 +2483,9 @@ em_config_mac_to_phy(struct em_hw *hw) /* Set up speed in the Device Control register depending on * negotiated values. */ - if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; - else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; /* Write the configured values back to the Device Control Reg. */ @@ -2427,7 +2553,7 @@ em_force_mac_fc(struct em_hw *hw) } /* Disable TX Flow Control for 82542 (rev 2.0) */ - if(hw->mac_type == em_82542_rev2_0) + if (hw->mac_type == em_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -2461,11 +2587,12 @@ em_config_fc_after_link_up(struct em_hw *hw) * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ - if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) || - ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { + if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_internal_serdes) && + (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { ret_val = em_force_mac_fc(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2476,19 +2603,19 @@ em_config_fc_after_link_up(struct em_hw *hw) * has completed, and if so, how the PHY and link partner has * flow control configured. */ - if((hw->media_type == em_media_type_copper) && hw->autoneg) { + if ((hw->media_type == em_media_type_copper) && hw->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page Ability @@ -2497,11 +2624,11 @@ em_config_fc_after_link_up(struct em_hw *hw) */ ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); - if(ret_val) + if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register @@ -2538,15 +2665,15 @@ em_config_fc_after_link_up(struct em_hw *hw) * 1 | DC | 1 | DC | em_fc_full * */ - if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ - if(hw->original_fc == em_fc_full) { + if (hw->original_fc == em_fc_full) { hw->fc = em_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { @@ -2562,10 +2689,10 @@ em_config_fc_after_link_up(struct em_hw *hw) * 0 | 1 | 1 | 1 | em_fc_tx_pause * */ - else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = em_fc_tx_pause; DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); } @@ -2577,10 +2704,10 @@ em_config_fc_after_link_up(struct em_hw *hw) * 1 | 1 | 0 | 1 | em_fc_rx_pause * */ - else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = em_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); } @@ -2604,9 +2731,9 @@ em_config_fc_after_link_up(struct em_hw *hw) * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ - else if((hw->original_fc == em_fc_none || - hw->original_fc == em_fc_tx_pause) || - hw->fc_strict_ieee) { + else if ((hw->original_fc == em_fc_none || + hw->original_fc == em_fc_tx_pause) || + hw->fc_strict_ieee) { hw->fc = em_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } else { @@ -2619,19 +2746,19 @@ em_config_fc_after_link_up(struct em_hw *hw) * enabled per IEEE 802.3 spec. */ ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if(duplex == HALF_DUPLEX) + if (duplex == HALF_DUPLEX) hw->fc = em_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = em_force_mac_fc(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2670,13 +2797,13 @@ em_check_for_link(struct em_hw *hw) * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. */ - if((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) { + if ((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { rxcw = E1000_READ_REG(hw, RXCW); - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; - if(status & E1000_STATUS_LU) + if (status & E1000_STATUS_LU) hw->get_link_status = FALSE; } } @@ -2687,20 +2814,20 @@ em_check_for_link(struct em_hw *hw) * receive a Link Status Change interrupt or we have Rx Sequence * Errors. */ - if((hw->media_type == em_media_type_copper) && hw->get_link_status) { + if ((hw->media_type == em_media_type_copper) && hw->get_link_status) { /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. * Read the register twice since the link bit is sticky. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_LINK_STATUS) { + if (phy_data & MII_SR_LINK_STATUS) { hw->get_link_status = FALSE; /* Check if there was DownShift, must be checked immediately after * link-up */ @@ -2714,10 +2841,10 @@ em_check_for_link(struct em_hw *hw) * happen due to the execution of this workaround. */ - if((hw->mac_type == em_82544 || hw->mac_type == em_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == em_10_full || - hw->forced_speed_duplex == em_10_half)) { + if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { E1000_WRITE_REG(hw, IMC, 0xffffffff); ret_val = em_polarity_reversal_workaround(hw); icr = E1000_READ_REG(hw, ICR); @@ -2734,7 +2861,7 @@ em_check_for_link(struct em_hw *hw) /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ - if(!hw->autoneg) return -E1000_ERR_CONFIG; + if (!hw->autoneg) return -E1000_ERR_CONFIG; /* optimize the dsp settings for the igp phy */ em_config_dsp_after_link_change(hw, TRUE); @@ -2747,11 +2874,11 @@ em_check_for_link(struct em_hw *hw) * speed/duplex on the MAC to the current PHY speed/duplex * settings. */ - if(hw->mac_type >= em_82544) + if (hw->mac_type >= em_82544) em_config_collision_dist(hw); else { ret_val = em_config_mac_to_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } @@ -2762,7 +2889,7 @@ em_check_for_link(struct em_hw *hw) * have had to re-autoneg with a different link partner. */ ret_val = em_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2774,14 +2901,18 @@ em_check_for_link(struct em_hw *hw) * at gigabit speed, then TBI compatibility is not needed. If we are * at gigabit speed, we turn on TBI compatibility. */ - if(hw->tbi_compatibility_en) { + if (hw->tbi_compatibility_en) { uint16_t speed, duplex; - em_get_speed_and_duplex(hw, &speed, &duplex); - if(speed != SPEED_1000) { + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { /* If link speed is not set to gigabit speed, we do not need * to enable TBI compatibility. */ - if(hw->tbi_compatibility_on) { + if (hw->tbi_compatibility_on) { /* If we previously were in the mode, turn it off. */ rctl = E1000_READ_REG(hw, RCTL); rctl &= ~E1000_RCTL_SBP; @@ -2794,7 +2925,7 @@ em_check_for_link(struct em_hw *hw) * packets. Some frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ - if(!hw->tbi_compatibility_on) { + if (!hw->tbi_compatibility_on) { hw->tbi_compatibility_on = TRUE; rctl = E1000_READ_REG(hw, RCTL); rctl |= E1000_RCTL_SBP; @@ -2810,12 +2941,12 @@ em_check_for_link(struct em_hw *hw) * auto-negotiation time to complete, in case the cable was just plugged * in. The autoneg_failed flag does this. */ - else if((((hw->media_type == em_media_type_fiber) && + else if ((((hw->media_type == em_media_type_fiber) && ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == em_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if(hw->autoneg_failed == 0) { + (hw->media_type == em_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (hw->autoneg_failed == 0) { hw->autoneg_failed = 1; return 0; } @@ -2831,7 +2962,7 @@ em_check_for_link(struct em_hw *hw) /* Configure Flow Control after forcing link up. */ ret_val = em_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2841,9 +2972,9 @@ em_check_for_link(struct em_hw *hw) * Device Control register in an attempt to auto-negotiate with our link * partner. */ - else if(((hw->media_type == em_media_type_fiber) || - (hw->media_type == em_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + else if (((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); E1000_WRITE_REG(hw, TXCW, hw->txcw); E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); @@ -2853,12 +2984,12 @@ em_check_for_link(struct em_hw *hw) /* If we force link for non-auto-negotiation switch, check link status * based on MAC synchronization for internal serdes media type. */ - else if((hw->media_type == em_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + else if ((hw->media_type == em_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { /* SYNCH bit and IV bit are sticky. */ usec_delay(10); - if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if(!(rxcw & E1000_RXCW_IV)) { + if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if (!(rxcw & E1000_RXCW_IV)) { hw->serdes_link_down = FALSE; DEBUGOUT("SERDES: Link is up.\n"); } @@ -2867,8 +2998,8 @@ em_check_for_link(struct em_hw *hw) DEBUGOUT("SERDES: Link is down.\n"); } } - if((hw->media_type == em_media_type_internal_serdes) && - (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + if ((hw->media_type == em_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); } return E1000_SUCCESS; @@ -2892,12 +3023,12 @@ em_get_speed_and_duplex(struct em_hw *hw, DEBUGFUNC("em_get_speed_and_duplex"); - if(hw->mac_type >= em_82543) { + if (hw->mac_type >= em_82543) { status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_SPEED_1000) { + if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); - } else if(status & E1000_STATUS_SPEED_100) { + } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { @@ -2905,7 +3036,7 @@ em_get_speed_and_duplex(struct em_hw *hw, DEBUGOUT("10 Mbs, "); } - if(status & E1000_STATUS_FD) { + if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { @@ -2922,33 +3053,39 @@ em_get_speed_and_duplex(struct em_hw *hw, * if it is operating at half duplex. Here we set the duplex settings to * match the duplex in the link partner's capabilities. */ - if(hw->phy_type == em_phy_igp && hw->speed_downgraded) { + if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) *duplex = HALF_DUPLEX; else { ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) *duplex = HALF_DUPLEX; } } - if ((hw->mac_type == em_80003es2lan) && + if ((hw->mac_type == em_80003es2lan) && (hw->media_type == em_media_type_copper)) { if (*speed == SPEED_1000) - ret_val = em_configure_kmrn_for_1000(hw, *duplex); + ret_val = em_configure_kmrn_for_1000(hw); else ret_val = em_configure_kmrn_for_10_100(hw, *duplex); if (ret_val) return ret_val; } + if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) { + ret_val = em_kumeran_lock_loss_workaround(hw); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; } @@ -2968,17 +3105,17 @@ em_wait_autoneg(struct em_hw *hw) DEBUGOUT("Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_AUTONEG_COMPLETE) { + if (phy_data & MII_SR_AUTONEG_COMPLETE) { return E1000_SUCCESS; } msec_delay(100); @@ -3051,14 +3188,16 @@ em_shift_out_mdi_bits(struct em_hw *hw, /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - while(mask) { + while (mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and * then raising and lowering the Management Data Clock. A "0" is * shifted out to the PHY by setting the MDIO bit to "0" and then * raising and lowering the clock. */ - if(data & mask) ctrl |= E1000_CTRL_MDIO; - else ctrl &= ~E1000_CTRL_MDIO; + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); @@ -3109,12 +3248,13 @@ em_shift_in_mdi_bits(struct em_hw *hw) em_raise_mdi_clk(hw, &ctrl); em_lower_mdi_clk(hw, &ctrl); - for(data = 0, i = 0; i < 16; i++) { + for (data = 0, i = 0; i < 16; i++) { data = data << 1; em_raise_mdi_clk(hw, &ctrl); ctrl = E1000_READ_REG(hw, CTRL); /* Check to see if we shifted in a "1". */ - if(ctrl & E1000_CTRL_MDIO) data |= 1; + if (ctrl & E1000_CTRL_MDIO) + data |= 1; em_lower_mdi_clk(hw, &ctrl); } @@ -3134,10 +3274,13 @@ em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) DEBUGFUNC("em_swfw_sync_acquire"); + if (hw->swfwhw_semaphore_present) + return em_get_software_flag(hw); + if (!hw->swfw_sync_present) return em_get_hw_eeprom_semaphore(hw); - while(timeout) { + while (timeout) { if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; @@ -3173,6 +3316,11 @@ em_swfw_sync_release(struct em_hw *hw, uint16_t mask) DEBUGFUNC("em_swfw_sync_release"); + if (hw->swfwhw_semaphore_present) { + em_release_software_flag(hw); + return; + } + if (!hw->swfw_sync_present) { em_put_hw_eeprom_semaphore(hw); return; @@ -3215,12 +3363,13 @@ em_read_phy_reg(struct em_hw *hw, if (em_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if((hw->phy_type == em_phy_igp || + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if(ret_val) { + if (ret_val) { em_swfw_sync_release(hw, swfw); return ret_val; } @@ -3265,12 +3414,12 @@ em_read_phy_reg_ex(struct em_hw *hw, DEBUGFUNC("em_read_phy_reg_ex"); - if(reg_addr > MAX_PHY_REG_ADDRESS) { + if (reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if(hw->mac_type > em_82543) { + if (hw->mac_type > em_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. @@ -3282,16 +3431,16 @@ em_read_phy_reg_ex(struct em_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 64; i++) { + for (i = 0; i < 64; i++) { usec_delay(50); mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; + if (mdic & E1000_MDIC_READY) break; } - if(!(mdic & E1000_MDIC_READY)) { + if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); return -E1000_ERR_PHY; } - if(mdic & E1000_MDIC_ERROR) { + if (mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } @@ -3354,12 +3503,13 @@ em_write_phy_reg(struct em_hw *hw, if (em_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; - if((hw->phy_type == em_phy_igp || + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if(ret_val) { + if (ret_val) { em_swfw_sync_release(hw, swfw); return ret_val; } @@ -3404,12 +3554,12 @@ em_write_phy_reg_ex(struct em_hw *hw, DEBUGFUNC("em_write_phy_reg_ex"); - if(reg_addr > MAX_PHY_REG_ADDRESS) { + if (reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if(hw->mac_type > em_82543) { + if (hw->mac_type > em_82543) { /* Set up Op-code, Phy Address, register address, and data intended * for the PHY register in the MDI Control register. The MAC will take * care of interfacing with the PHY to send the desired data. @@ -3422,12 +3572,12 @@ em_write_phy_reg_ex(struct em_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 641; i++) { + for (i = 0; i < 641; i++) { usec_delay(5); mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; + if (mdic & E1000_MDIC_READY) break; } - if(!(mdic & E1000_MDIC_READY)) { + if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); return -E1000_ERR_PHY; } @@ -3539,7 +3689,7 @@ em_phy_hw_reset(struct em_hw *hw) DEBUGOUT("Resetting Phy...\n"); - if(hw->mac_type > em_82543) { + if (hw->mac_type > em_82543) { if ((hw->mac_type == em_80003es2lan) && (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { swfw = E1000_SWFW_PHY1_SM; @@ -3552,24 +3702,24 @@ em_phy_hw_reset(struct em_hw *hw) } /* Read the device control register and assert the E1000_CTRL_PHY_RST * bit. Then, take it out of reset. - * For pre-em_82571 hardware, we delay for 10ms between the assert + * For pre-em_82571 hardware, we delay for 10ms between the assert * and deassert. For em_82571 hardware and later, we instead delay * for 50us between and 10ms after the deassertion. */ ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); - - if (hw->mac_type < em_82571) + + if (hw->mac_type < em_82571) msec_delay(10); else usec_delay(100); - + E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); - + if (hw->mac_type >= em_82571) - msec_delay(10); + msec_delay_irq(10); em_swfw_sync_release(hw, swfw); } else { /* Read the Extended Device Control Register, assert the PHY_RESET_DIR @@ -3587,7 +3737,7 @@ em_phy_hw_reset(struct em_hw *hw) } usec_delay(150); - if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; @@ -3599,6 +3749,12 @@ em_phy_hw_reset(struct em_hw *hw) ret_val = em_get_phy_cfg_done(hw); em_release_software_semaphore(hw); + if ((hw->mac_type == em_ich8lan) && + (hw->phy_type == em_phy_igp_3)) { + ret_val = em_init_lcd_from_nvm(hw); + if (ret_val) + return ret_val; + } return ret_val; } @@ -3627,31 +3783,142 @@ em_phy_reset(struct em_hw *hw) case em_82541_rev_2: case em_82571: case em_82572: + case em_ich8lan: ret_val = em_phy_hw_reset(hw); - if(ret_val) + if (ret_val) return ret_val; + break; default: ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= MII_CR_RESET; ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; usec_delay(1); break; } - if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) + if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) em_phy_init_script(hw); return E1000_SUCCESS; } /****************************************************************************** +* Work-around for 82566 power-down: on D3 entry- +* 1) disable gigabit link +* 2) write VR power-down enable +* 3) read it back +* if successful continue, else issue LCD reset and repeat +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +void +em_phy_powerdown_workaround(struct em_hw *hw) +{ + int32_t reg; + uint16_t phy_data; + int32_t retry = 0; + + DEBUGFUNC("em_phy_powerdown_workaround"); + + if (hw->phy_type != em_phy_igp_3) + return; + + do { + /* Disable link */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* Write VR power-down enable */ + em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | + IGP3_VR_CTRL_MODE_SHUT); + + /* Read it back and test */ + em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); + + return; + +} + +/****************************************************************************** +* Work-around for 82566 Kumeran PCS lock loss: +* On link status change (i.e. PCI reset, speed change) and link is up and +* speed is gigabit- +* 0) if workaround is optionally disabled do nothing +* 1) wait 1ms for Kumeran link to come up +* 2) check Kumeran Diagnostic register PCS lock loss bit +* 3) if not set the link is locked (all is good), otherwise... +* 4) reset the PHY +* 5) repeat up to 10 times +* Note: this is only called for IGP3 copper when speed is 1gb. +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_kumeran_lock_loss_workaround(struct em_hw *hw) +{ + int32_t ret_val; + int32_t reg; + int32_t cnt; + uint16_t phy_data; + + if (hw->kmrn_lock_loss_workaround_disabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouls up link + * stability */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + + if (phy_data & MII_SR_LINK_STATUS) { + for (cnt = 0; cnt < 10; cnt++) { + /* read once to clear */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + em_phy_hw_reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* unable to acquire PCS lock */ + return E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code @@ -3668,8 +3935,8 @@ em_detect_gig_phy(struct em_hw *hw) /* The 82571 firmware may still be configuring the PHY. In this * case, we cannot access the PHY until the configuration is done. So * we explicitly set the PHY values. */ - if(hw->mac_type == em_82571 || - hw->mac_type == em_82572) { + if (hw->mac_type == em_82571 || + hw->mac_type == em_82572) { hw->phy_id = IGP01E1000_I_PHY_ID; hw->phy_type = em_phy_igp_2; return E1000_SUCCESS; @@ -3686,44 +3953,50 @@ em_detect_gig_phy(struct em_hw *hw) /* Read the PHY ID Registers to identify which PHY is onboard. */ ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if(ret_val) + if (ret_val) return ret_val; hw->phy_id = (uint32_t) (phy_id_high << 16); usec_delay(20); ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if(ret_val) + if (ret_val) return ret_val; hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82543: - if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; break; case em_82544: - if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; break; case em_82540: case em_82545: case em_82545_rev_3: case em_82546: case em_82546_rev_3: - if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; break; case em_82541: case em_82541_rev_2: case em_82547: case em_82547_rev_2: - if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; + if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; break; case em_82573: - if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; break; case em_80003es2lan: if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; break; + case em_ich8lan: + if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; + break; default: DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; @@ -3752,14 +4025,14 @@ em_phy_reset_dsp(struct em_hw *hw) do { if (hw->phy_type != em_phy_gg82563) { ret_val = em_write_phy_reg(hw, 29, 0x001d); - if(ret_val) break; + if (ret_val) break; } ret_val = em_write_phy_reg(hw, 30, 0x00c1); - if(ret_val) break; + if (ret_val) break; ret_val = em_write_phy_reg(hw, 30, 0x0000); - if(ret_val) break; + if (ret_val) break; ret_val = E1000_SUCCESS; - } while(0); + } while (0); return ret_val; } @@ -3791,23 +4064,23 @@ em_phy_igp_get_info(struct em_hw *hw, /* Check polarity status */ ret_val = em_check_polarity(hw, &polarity); - if(ret_val) + if (ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> IGP01E1000_PSSR_MDIX_SHIFT; - if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Local/Remote Receiver Information are only valid at 1000 Mbps */ ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -3817,19 +4090,19 @@ em_phy_igp_get_info(struct em_hw *hw, /* Get cable length */ ret_val = em_get_cable_length(hw, &min_length, &max_length); - if(ret_val) + if (ret_val) return ret_val; /* Translate to old method */ average = (max_length + min_length) / 2; - if(average <= em_igp_cable_length_50) + if (average <= em_igp_cable_length_50) phy_info->cable_length = em_cable_length_50; - else if(average <= em_igp_cable_length_80) + else if (average <= em_igp_cable_length_80) phy_info->cable_length = em_cable_length_50_80; - else if(average <= em_igp_cable_length_110) + else if (average <= em_igp_cable_length_110) phy_info->cable_length = em_cable_length_80_110; - else if(average <= em_igp_cable_length_140) + else if (average <= em_igp_cable_length_140) phy_info->cable_length = em_cable_length_110_140; else phy_info->cable_length = em_cable_length_140; @@ -3839,6 +4112,53 @@ em_phy_igp_get_info(struct em_hw *hw, } /****************************************************************************** +* Get PHY information from various PHY registers for ife PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +em_phy_ife_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, polarity; + + DEBUGFUNC("em_phy_ife_get_info"); + + phy_info->downshift = (em_downshift)hw->speed_downgraded; + phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal; + + ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + phy_info->polarity_correction = + (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> + IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; + + if (phy_info->polarity_correction == em_polarity_reversal_enabled) { + ret_val = em_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced. */ + polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> + IFE_PSC_FORCE_POLARITY_SHIFT; + } + phy_info->cable_polarity = polarity; + + ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> + IFE_PMC_MDIX_MODE_SHIFT; + + return E1000_SUCCESS; +} + +/****************************************************************************** * Get PHY information from various PHY registers fot m88 PHY only. * * hw - Struct containing variables accessed by shared code @@ -3858,7 +4178,7 @@ em_phy_m88_get_info(struct em_hw *hw, phy_info->downshift = (em_downshift)hw->speed_downgraded; ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->extended_10bt_distance = @@ -3870,12 +4190,12 @@ em_phy_m88_get_info(struct em_hw *hw, /* Check polarity status */ ret_val = em_check_polarity(hw, &polarity); - if(ret_val) - return ret_val; + if (ret_val) + return ret_val; phy_info->cable_polarity = polarity; ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> @@ -3898,7 +4218,7 @@ em_phy_m88_get_info(struct em_hw *hw, } ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -3935,27 +4255,30 @@ em_phy_get_info(struct em_hw *hw, phy_info->local_rx = em_1000t_rx_status_undefined; phy_info->remote_rx = em_1000t_rx_status_undefined; - if(hw->media_type != em_media_type_copper) { + if (hw->media_type != em_media_type_copper) { DEBUGOUT("PHY info is only valid for copper media\n"); return -E1000_ERR_CONFIG; } ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { DEBUGOUT("PHY info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } - if(hw->phy_type == em_phy_igp || + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) return em_phy_igp_get_info(hw, phy_info); + else if (hw->phy_type == em_phy_ife) + return em_phy_ife_get_info(hw, phy_info); else return em_phy_m88_get_info(hw, phy_info); } @@ -3965,7 +4288,7 @@ em_validate_mdi_setting(struct em_hw *hw) { DEBUGFUNC("em_validate_mdi_settings"); - if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { DEBUGOUT("Invalid MDI setting detected\n"); hw->mdix = 1; return -E1000_ERR_CONFIG; @@ -4012,7 +4335,7 @@ em_init_eeprom_params(struct em_hw *hw) eeprom->type = em_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; - if(eecd & E1000_EECD_SIZE) { + if (eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { @@ -4080,7 +4403,7 @@ em_init_eeprom_params(struct em_hw *hw) } eeprom->use_eerd = TRUE; eeprom->use_eewr = TRUE; - if(em_is_onboard_nvm_eeprom(hw) == FALSE) { + if (em_is_onboard_nvm_eeprom(hw) == FALSE) { eeprom->type = em_eeprom_flash; eeprom->word_size = 2048; @@ -4104,6 +4427,35 @@ em_init_eeprom_params(struct em_hw *hw) eeprom->use_eerd = TRUE; eeprom->use_eewr = FALSE; break; + case em_ich8lan: + { + int32_t i = 0; + uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); + + eeprom->type = em_eeprom_ich8; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + eeprom->word_size = E1000_SHADOW_RAM_WORDS; + + /* Zero the shadow RAM structure. But don't load it from NVM + * so as to save time for driver init */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + + hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * + ICH8_FLASH_SECTOR_SIZE; + + hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; + hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); + hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; + hw->flash_bank_size /= 2 * sizeof(uint16_t); + + break; + } default: break; } @@ -4112,17 +4464,17 @@ em_init_eeprom_params(struct em_hw *hw) /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to * 32KB (incremented by powers of 2). */ - if(hw->mac_type <= em_82547_rev_2) { + if (hw->mac_type <= em_82547_rev_2) { /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if(ret_val) + if (ret_val) return ret_val; eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier hardware, so we * bump eeprom_size up one to ensure that "1" (which maps to 256B) * is never the result used in the shifting logic below. */ - if(eeprom_size) + if (eeprom_size) eeprom_size++; } else { eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> @@ -4207,7 +4559,7 @@ em_shift_out_ee_bits(struct em_hw *hw, */ eecd &= ~E1000_EECD_DI; - if(data & mask) + if (data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); @@ -4220,7 +4572,7 @@ em_shift_out_ee_bits(struct em_hw *hw, mask = mask >> 1; - } while(mask); + } while (mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; @@ -4252,14 +4604,14 @@ em_shift_in_ee_bits(struct em_hw *hw, eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; - for(i = 0; i < count; i++) { + for (i = 0; i < count; i++) { data = data << 1; em_raise_ee_clk(hw, &eecd); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DI); - if(eecd & E1000_EECD_DO) + if (eecd & E1000_EECD_DO) data |= 1; em_lower_ee_clk(hw, &eecd); @@ -4290,17 +4642,17 @@ em_acquire_eeprom(struct em_hw *hw) if (hw->mac_type != em_82573) { /* Request EEPROM Access */ - if(hw->mac_type > em_82544) { + if (hw->mac_type > em_82544) { eecd |= E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); eecd = E1000_READ_REG(hw, EECD); - while((!(eecd & E1000_EECD_GNT)) && + while ((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; usec_delay(5); eecd = E1000_READ_REG(hw, EECD); } - if(!(eecd & E1000_EECD_GNT)) { + if (!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); DEBUGOUT("Could not acquire EEPROM grant\n"); @@ -4343,7 +4695,7 @@ em_standby_eeprom(struct em_hw *hw) eecd = E1000_READ_REG(hw, EECD); - if(eeprom->type == em_eeprom_microwire) { + if (eeprom->type == em_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); @@ -4366,7 +4718,7 @@ em_standby_eeprom(struct em_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); usec_delay(eeprom->delay_usec); - } else if(eeprom->type == em_eeprom_spi) { + } else if (eeprom->type == em_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); @@ -4400,7 +4752,7 @@ em_release_eeprom(struct em_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); usec_delay(hw->eeprom.delay_usec); - } else if(hw->eeprom.type == em_eeprom_microwire) { + } else if (hw->eeprom.type == em_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ @@ -4422,7 +4774,7 @@ em_release_eeprom(struct em_hw *hw) } /* Stop requesting EEPROM access */ - if(hw->mac_type > em_82544) { + if (hw->mac_type > em_82544) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); } @@ -4460,12 +4812,12 @@ em_spi_eeprom_ready(struct em_hw *hw) retry_count += 5; em_standby_eeprom(hw); - } while(retry_count < EEPROM_MAX_RETRY_SPI); + } while (retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ - if(retry_count >= EEPROM_MAX_RETRY_SPI) { + if (retry_count >= EEPROM_MAX_RETRY_SPI) { DEBUGOUT("SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } @@ -4496,7 +4848,7 @@ em_read_eeprom(struct em_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; @@ -4504,7 +4856,7 @@ em_read_eeprom(struct em_hw *hw, /* FLASH reads without acquiring the semaphore are safe */ if (em_is_onboard_nvm_eeprom(hw) == TRUE && - hw->eeprom.use_eerd == FALSE) { + hw->eeprom.use_eerd == FALSE) { switch (hw->mac_type) { case em_80003es2lan: break; @@ -4524,11 +4876,14 @@ em_read_eeprom(struct em_hw *hw, return ret_val; } - if(eeprom->type == em_eeprom_spi) { + if (eeprom->type == em_eeprom_ich8) + return em_read_eeprom_ich8(hw, offset, words, data); + + if (eeprom->type == em_eeprom_spi) { uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - if(em_spi_eeprom_ready(hw)) { + if (em_spi_eeprom_ready(hw)) { em_release_eeprom(hw); return -E1000_ERR_EEPROM; } @@ -4536,7 +4891,7 @@ em_read_eeprom(struct em_hw *hw, em_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if((eeprom->address_bits == 8) && (offset >= 128)) + if ((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ @@ -4552,7 +4907,7 @@ em_read_eeprom(struct em_hw *hw, word_in = em_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } - } else if(eeprom->type == em_eeprom_microwire) { + } else if (eeprom->type == em_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, @@ -4596,14 +4951,14 @@ em_read_eeprom_eerd(struct em_hw *hw, E1000_WRITE_REG(hw, EERD, eerd); error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - - if(error) { + + if (error) { break; } data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); - + } - + return error; } @@ -4629,24 +4984,24 @@ em_write_eeprom_eewr(struct em_hw *hw, return -E1000_ERR_SWFW_SYNC; for (i = 0; i < words; i++) { - register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | - ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | + register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | + ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | E1000_EEPROM_RW_REG_START; error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if(error) { + if (error) { break; - } + } E1000_WRITE_REG(hw, EEWR, register_value); - + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - - if(error) { + + if (error) { break; - } + } } - + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); return error; } @@ -4663,13 +5018,13 @@ em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) uint32_t i, reg = 0; int32_t done = E1000_ERR_EEPROM; - for(i = 0; i < attempts; i++) { - if(eerd == E1000_EEPROM_POLL_READ) + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) reg = E1000_READ_REG(hw, EERD); - else + else reg = E1000_READ_REG(hw, EEWR); - if(reg & E1000_EEPROM_RW_REG_DONE) { + if (reg & E1000_EEPROM_RW_REG_DONE) { done = E1000_SUCCESS; break; } @@ -4691,14 +5046,17 @@ em_is_onboard_nvm_eeprom(struct em_hw *hw) DEBUGFUNC("em_is_onboard_nvm_eeprom"); - if(hw->mac_type == em_82573) { + if (hw->mac_type == em_ich8lan) + return FALSE; + + if (hw->mac_type == em_82573) { eecd = E1000_READ_REG(hw, EECD); /* Isolate bits 15 & 16 */ eecd = ((eecd >> 15) & 0x03); /* If both bits are set, device is Flash type */ - if(eecd == 0x03) { + if (eecd == 0x03) { return FALSE; } } @@ -4741,15 +5099,29 @@ em_validate_eeprom_checksum(struct em_hw *hw) } } - for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + if (hw->mac_type == em_ich8lan) { + /* Drivers must allocate the shadow ram structure for the + * EEPROM checksum to be updated. Otherwise, this bit as well + * as the checksum must both be set correctly for this + * validation to pass. + */ + em_read_eeprom(hw, 0x19, 1, &eeprom_data); + if ((eeprom_data & 0x40) == 0) { + eeprom_data |= 0x40; + em_write_eeprom(hw, 0x19, 1, &eeprom_data); + em_update_eeprom_checksum(hw); + } + } + + for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } - if(checksum == (uint16_t) EEPROM_SUM) + if (checksum == (uint16_t) EEPROM_SUM) return E1000_SUCCESS; else { DEBUGOUT("EEPROM Checksum Invalid\n"); @@ -4768,24 +5140,33 @@ em_validate_eeprom_checksum(struct em_hw *hw) int32_t em_update_eeprom_checksum(struct em_hw *hw) { + uint32_t ctrl_ext; uint16_t checksum = 0; uint16_t i, eeprom_data; DEBUGFUNC("em_update_eeprom_checksum"); - for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } checksum = (uint16_t) EEPROM_SUM - checksum; - if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { DEBUGOUT("EEPROM Write Error\n"); return -E1000_ERR_EEPROM; } else if (hw->eeprom.type == em_eeprom_flash) { em_commit_shadow_ram(hw); + } else if (hw->eeprom.type == em_eeprom_ich8) { + em_commit_shadow_ram(hw); + /* Reload the EEPROM, or else modifications will not appear + * until after next adapter reset. */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + msec_delay(10); } return E1000_SUCCESS; } @@ -4815,21 +5196,24 @@ em_write_eeprom(struct em_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; } /* 82573 writes only through eewr */ - if(eeprom->use_eewr == TRUE) + if (eeprom->use_eewr == TRUE) return em_write_eeprom_eewr(hw, offset, words, data); + if (eeprom->type == em_eeprom_ich8) + return em_write_eeprom_ich8(hw, offset, words, data); + /* Prepare the EEPROM for writing */ if (em_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; - if(eeprom->type == em_eeprom_microwire) { + if (eeprom->type == em_eeprom_microwire) { status = em_write_eeprom_microwire(hw, offset, words, data); } else { status = em_write_eeprom_spi(hw, offset, words, data); @@ -4865,7 +5249,7 @@ em_write_eeprom_spi(struct em_hw *hw, while (widx < words) { uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; - if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; em_standby_eeprom(hw); @@ -4876,7 +5260,7 @@ em_write_eeprom_spi(struct em_hw *hw, em_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if((eeprom->address_bits == 8) && (offset >= 128)) + if ((eeprom->address_bits == 8) && (offset >= 128)) write_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ @@ -4898,7 +5282,7 @@ em_write_eeprom_spi(struct em_hw *hw, * operation, while the smaller eeproms are capable of an 8-byte * PAGE WRITE operation. Break the inner loop to pass new address */ - if((((offset + widx)*2) % eeprom->page_size) == 0) { + if ((((offset + widx)*2) % eeprom->page_size) == 0) { em_standby_eeprom(hw); break; } @@ -4964,12 +5348,12 @@ em_write_eeprom_microwire(struct em_hw *hw, * signal that the command has been completed by raising the DO signal. * If DO does not go high in 10 milliseconds, then error out. */ - for(i = 0; i < 200; i++) { + for (i = 0; i < 200; i++) { eecd = E1000_READ_REG(hw, EECD); - if(eecd & E1000_EECD_DO) break; + if (eecd & E1000_EECD_DO) break; usec_delay(50); } - if(i == 200) { + if (i == 200) { DEBUGOUT("EEPROM Write did not complete\n"); return -E1000_ERR_EEPROM; } @@ -5012,11 +5396,17 @@ em_commit_shadow_ram(struct em_hw *hw) uint32_t flop = 0; uint32_t i = 0; int32_t error = E1000_SUCCESS; - - /* The flop register will be used to determine if flash type is STM */ - flop = E1000_READ_REG(hw, FLOP); + uint32_t old_bank_offset = 0; + uint32_t new_bank_offset = 0; + uint32_t sector_retries = 0; + uint8_t low_byte = 0; + uint8_t high_byte = 0; + uint8_t temp_byte = 0; + boolean_t sector_write_failed = FALSE; if (hw->mac_type == em_82573) { + /* The flop register will be used to determine if flash type is STM */ + flop = E1000_READ_REG(hw, FLOP); for (i=0; i < attempts; i++) { eecd = E1000_READ_REG(hw, EECD); if ((eecd & E1000_EECD_FLUPD) == 0) { @@ -5050,6 +5440,106 @@ em_commit_shadow_ram(struct em_hw *hw) } } + if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) { + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written */ + if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { + new_bank_offset = hw->flash_bank_size * 2; + old_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 1); + } else { + old_bank_offset = hw->flash_bank_size * 2; + new_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 0); + } + + do { + sector_write_failed = FALSE; + /* Loop for every byte in the shadow RAM, + * which is in units of words. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM */ + if (hw->eeprom_shadow_ram[i].modified == TRUE) { + low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; + em_read_ich8_byte(hw, (i << 1) + old_bank_offset, + &temp_byte); + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, + low_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + high_byte = + (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); + em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, + &temp_byte); + usec_delay(100); + } else { + em_read_ich8_byte(hw, (i << 1) + old_bank_offset, + &low_byte); + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, + &high_byte); + } + + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress */ + if (i == E1000_ICH8_NVM_SIG_WORD) + high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; + + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset + 1, high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + if (sector_write_failed == FALSE) { + /* Clear the now not used entry in the cache */ + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. */ + if (sector_write_failed == FALSE) { + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b */ + em_read_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + &high_byte); + high_byte &= 0xBF; + error = em_verify_write_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase */ + error = em_verify_write_ich8_byte(hw, + E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, + 0); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + } + } while (++sector_retries < 10 && sector_write_failed == TRUE); + } + return error; } @@ -5069,7 +5559,7 @@ em_read_part_num(struct em_hw *hw, DEBUGFUNC("em_read_part_num"); /* Get word 0 from EEPROM */ - if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5077,7 +5567,7 @@ em_read_part_num(struct em_hw *hw, *part_num = (uint32_t) (eeprom_data << 16); /* Get word 1 from EEPROM */ - if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5101,9 +5591,9 @@ em_read_mac_addr(struct em_hw * hw) DEBUGFUNC("em_read_mac_addr"); - for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { offset = i >> 1; - if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5118,12 +5608,12 @@ em_read_mac_addr(struct em_hw * hw) case em_82546_rev_3: case em_82571: case em_80003es2lan: - if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) hw->perm_mac_addr[5] ^= 0x01; break; } - for(i = 0; i < NODE_ADDRESS_SIZE; i++) + for (i = 0; i < NODE_ADDRESS_SIZE; i++) hw->mac_addr[i] = hw->perm_mac_addr[i]; return E1000_SUCCESS; } @@ -5157,11 +5647,16 @@ em_init_rx_addrs(struct em_hw *hw) * the other port. */ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) rar_num -= 1; + if (hw->mac_type == em_ich8lan) + rar_num = E1000_RAR_ENTRIES_ICH8LAN; + /* Zero out the other 15 receive addresses. */ DEBUGOUT("Clearing RAR[1-15]\n"); - for(i = 1; i < rar_num; i++) { + for (i = 1; i < rar_num; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); } } @@ -5190,7 +5685,7 @@ em_mc_addr_list_update(struct em_hw *hw, uint32_t i; uint32_t num_rar_entry; uint32_t num_mta_entry; - + DEBUGFUNC("em_mc_addr_list_update"); /* Set the new number of MC addresses that we are being requested to use. */ @@ -5199,26 +5694,33 @@ em_mc_addr_list_update(struct em_hw *hw, /* Clear RAR[1-15] */ DEBUGOUT(" Clearing RAR[1-15]\n"); num_rar_entry = E1000_RAR_ENTRIES; + if (hw->mac_type == em_ich8lan) + num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; /* Reserve a spot for the Locally Administered Address to work around * an 82571 issue in which a reset on one port will reload the MAC on * the other port. */ if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) num_rar_entry -= 1; - for(i = rar_used_count; i < num_rar_entry; i++) { + for (i = rar_used_count; i < num_rar_entry; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); } /* Clear the MTA */ DEBUGOUT(" Clearing MTA\n"); num_mta_entry = E1000_NUM_MTA_REGISTERS; - for(i = 0; i < num_mta_entry; i++) { + if (hw->mac_type == em_ich8lan) + num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; + for (i = 0; i < num_mta_entry; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + E1000_WRITE_FLUSH(hw); } /* Add the new addresses */ - for(i = 0; i < mc_addr_count; i++) { + for (i = 0; i < mc_addr_count; i++) { DEBUGOUT(" Adding the multicast addresses:\n"); DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], @@ -5270,24 +5772,46 @@ em_hash_mc_addr(struct em_hw *hw, * LSB MSB */ case 0: - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + if (hw->mac_type == em_ich8lan) { + /* [47:38] i.e. 0x158 for above example address */ + hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); + } else { + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } break; case 1: - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + if (hw->mac_type == em_ich8lan) { + /* [46:37] i.e. 0x2B1 for above example address */ + hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); + } else { + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + } break; case 2: - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + if (hw->mac_type == em_ich8lan) { + /*[45:36] i.e. 0x163 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } else { + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } break; case 3: - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + if (hw->mac_type == em_ich8lan) { + /* [43:34] i.e. 0x18D for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } else { + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + } break; } hash_value &= 0xFFF; + if (hw->mac_type == em_ich8lan) + hash_value &= 0x3FF; return hash_value; } @@ -5315,6 +5839,8 @@ em_mta_set(struct em_hw *hw, * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 5) & 0x7F; + if (hw->mac_type == em_ich8lan) + hash_reg &= 0x1F; hash_bit = hash_value & 0x1F; mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); @@ -5325,12 +5851,15 @@ em_mta_set(struct em_hw *hw, * in the MTA, save off the previous entry before writing and * restore the old value after writing. */ - if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { + if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); } } @@ -5387,7 +5916,9 @@ em_rar_set(struct em_hw *hw, } E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(hw); } /****************************************************************************** @@ -5404,12 +5935,18 @@ em_write_vfta(struct em_hw *hw, { uint32_t temp; - if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { + if (hw->mac_type == em_ich8lan) + return; + + if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + E1000_WRITE_FLUSH(hw); } else { E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); } } @@ -5426,6 +5963,9 @@ em_clear_vfta(struct em_hw *hw) uint32_t vfta_offset = 0; uint32_t vfta_bit_in_reg = 0; + if (hw->mac_type == em_ich8lan) + return; + if (hw->mac_type == em_82573) { if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying a single VLAN @@ -5445,6 +5985,7 @@ em_clear_vfta(struct em_hw *hw) * manageability unit */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); } } @@ -5460,7 +6001,7 @@ em_id_led_init(struct em_hw * hw) DEBUGFUNC("em_id_led_init"); - if(hw->mac_type < em_82540) { + if (hw->mac_type < em_82540) { /* Nothing to do */ return E1000_SUCCESS; } @@ -5470,15 +6011,24 @@ em_id_led_init(struct em_hw * hw) hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; - if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } - if((eeprom_data== ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; - for(i = 0; i < 4; i++) { + + if ((hw->mac_type == em_82573) && + (eeprom_data == ID_LED_RESERVED_82573)) + eeprom_data = ID_LED_DEFAULT_82573; + else if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + if (hw->mac_type == em_ich8lan) + eeprom_data = ID_LED_DEFAULT_ICH8LAN; + else + eeprom_data = ID_LED_DEFAULT; + } + for (i = 0; i < 4; i++) { temp = (eeprom_data >> (i << 2)) & led_mask; - switch(temp) { + switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: @@ -5495,7 +6045,7 @@ em_id_led_init(struct em_hw * hw) /* Do nothing */ break; } - switch(temp) { + switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: @@ -5529,7 +6079,7 @@ em_setup_led(struct em_hw *hw) DEBUGFUNC("em_setup_led"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -5543,16 +6093,16 @@ em_setup_led(struct em_hw *hw) /* Turn off PHY Smart Power Down (if enabled) */ ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &hw->phy_spd_default); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, (uint16_t)(hw->phy_spd_default & ~IGP01E1000_GMII_SPD)); - if(ret_val) + if (ret_val) return ret_val; - /* Fall Through */ + /* FALLTHROUGH */ default: - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { ledctl = E1000_READ_REG(hw, LEDCTL); /* Save current LEDCTL settings */ hw->ledctl_default = ledctl; @@ -5563,7 +6113,7 @@ em_setup_led(struct em_hw *hw) ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); E1000_WRITE_REG(hw, LEDCTL, ledctl); - } else if(hw->media_type == em_media_type_copper) + } else if (hw->media_type == em_media_type_copper) E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); break; } @@ -5571,6 +6121,45 @@ em_setup_led(struct em_hw *hw) return E1000_SUCCESS; } + +/****************************************************************************** + * Used on 82571 and later Si that has LED blink bits. + * Callers must use their own timer and should have already called + * em_id_led_init() + * Call em_cleanup led() to stop blinking + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_blink_led_start(struct em_hw *hw) +{ + int16_t i; + uint32_t ledctl_blink = 0; + + DEBUGFUNC("em_id_led_blink_on"); + + if (hw->mac_type < em_82571) { + /* Nothing to do */ + return E1000_SUCCESS; + } + if (hw->media_type == em_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ + ledctl_blink = hw->ledctl_mode2; + for (i=0; i < 4; i++) + if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); + } + + E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + /****************************************************************************** * Restores the saved state of the SW controlable LED. * @@ -5583,7 +6172,7 @@ em_cleanup_led(struct em_hw *hw) DEBUGFUNC("em_cleanup_led"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -5597,10 +6186,14 @@ em_cleanup_led(struct em_hw *hw) /* Turn on PHY Smart Power Down (if previously enabled) */ ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, hw->phy_spd_default); - if(ret_val) + if (ret_val) return ret_val; - /* Fall Through */ + /* FALLTHROUGH */ default: + if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); + break; + } /* Restore LEDCTL settings */ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); break; @@ -5621,7 +6214,7 @@ em_led_on(struct em_hw *hw) DEBUGFUNC("em_led_on"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -5630,7 +6223,7 @@ em_led_on(struct em_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case em_82544: - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { /* Set SW Defineable Pin 0 to turn on the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -5641,11 +6234,14 @@ em_led_on(struct em_hw *hw) } break; default: - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if(hw->media_type == em_media_type_copper) { + } else if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + } else if (hw->media_type == em_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); return E1000_SUCCESS; } @@ -5669,7 +6265,7 @@ em_led_off(struct em_hw *hw) DEBUGFUNC("em_led_off"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82542_rev2_0: case em_82542_rev2_1: case em_82543: @@ -5678,7 +6274,7 @@ em_led_off(struct em_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case em_82544: - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn off the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -5689,11 +6285,14 @@ em_led_off(struct em_hw *hw) } break; default: - if(hw->media_type == em_media_type_fiber) { + if (hw->media_type == em_media_type_fiber) { /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; - } else if(hw->media_type == em_media_type_copper) { + } else if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + } else if (hw->media_type == em_media_type_copper) { E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); return E1000_SUCCESS; } @@ -5731,12 +6330,16 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, XOFFRXC); temp = E1000_READ_REG(hw, XOFFTXC); temp = E1000_READ_REG(hw, FCRUC); + + if (hw->mac_type != em_ich8lan) { temp = E1000_READ_REG(hw, PRC64); temp = E1000_READ_REG(hw, PRC127); temp = E1000_READ_REG(hw, PRC255); temp = E1000_READ_REG(hw, PRC511); temp = E1000_READ_REG(hw, PRC1023); temp = E1000_READ_REG(hw, PRC1522); + } + temp = E1000_READ_REG(hw, GPRC); temp = E1000_READ_REG(hw, BPRC); temp = E1000_READ_REG(hw, MPRC); @@ -5756,16 +6359,20 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, TOTH); temp = E1000_READ_REG(hw, TPR); temp = E1000_READ_REG(hw, TPT); + + if (hw->mac_type != em_ich8lan) { temp = E1000_READ_REG(hw, PTC64); temp = E1000_READ_REG(hw, PTC127); temp = E1000_READ_REG(hw, PTC255); temp = E1000_READ_REG(hw, PTC511); temp = E1000_READ_REG(hw, PTC1023); temp = E1000_READ_REG(hw, PTC1522); + } + temp = E1000_READ_REG(hw, MPTC); temp = E1000_READ_REG(hw, BPTC); - if(hw->mac_type < em_82543) return; + if (hw->mac_type < em_82543) return; temp = E1000_READ_REG(hw, ALGNERRC); temp = E1000_READ_REG(hw, RXERRC); @@ -5774,16 +6381,19 @@ em_clear_hw_cntrs(struct em_hw *hw) temp = E1000_READ_REG(hw, TSCTC); temp = E1000_READ_REG(hw, TSCTFC); - if(hw->mac_type <= em_82544) return; + if (hw->mac_type <= em_82544) return; temp = E1000_READ_REG(hw, MGTPRC); temp = E1000_READ_REG(hw, MGTPDC); temp = E1000_READ_REG(hw, MGTPTC); - if(hw->mac_type <= em_82547_rev_2) return; + if (hw->mac_type <= em_82547_rev_2) return; temp = E1000_READ_REG(hw, IAC); temp = E1000_READ_REG(hw, ICRXOC); + + if (hw->mac_type == em_ich8lan) return; + temp = E1000_READ_REG(hw, ICRXPTC); temp = E1000_READ_REG(hw, ICRXATC); temp = E1000_READ_REG(hw, ICTXPTC); @@ -5808,8 +6418,8 @@ em_reset_adaptive(struct em_hw *hw) { DEBUGFUNC("em_reset_adaptive"); - if(hw->adaptive_ifs) { - if(!hw->ifs_params_forced) { + if (hw->adaptive_ifs) { + if (!hw->ifs_params_forced) { hw->current_ifs_val = 0; hw->ifs_min_val = IFS_MIN; hw->ifs_max_val = IFS_MAX; @@ -5836,12 +6446,12 @@ em_update_adaptive(struct em_hw *hw) { DEBUGFUNC("em_update_adaptive"); - if(hw->adaptive_ifs) { - if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { - if(hw->tx_packet_delta > MIN_NUM_XMITS) { + if (hw->adaptive_ifs) { + if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { + if (hw->tx_packet_delta > MIN_NUM_XMITS) { hw->in_ifs_mode = TRUE; - if(hw->current_ifs_val < hw->ifs_max_val) { - if(hw->current_ifs_val == 0) + if (hw->current_ifs_val < hw->ifs_max_val) { + if (hw->current_ifs_val == 0) hw->current_ifs_val = hw->ifs_min_val; else hw->current_ifs_val += hw->ifs_step_size; @@ -5849,7 +6459,7 @@ em_update_adaptive(struct em_hw *hw) } } } else { - if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { hw->current_ifs_val = 0; hw->in_ifs_mode = FALSE; E1000_WRITE_REG(hw, AIT, 0); @@ -5896,46 +6506,46 @@ em_tbi_adjust_stats(struct em_hw *hw, * This could be simplified if all environments supported * 64-bit integers. */ - if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) stats->gorch++; /* Is this a broadcast or multicast? Check broadcast first, * since the test for a multicast frame will test positive on * a broadcast frame. */ - if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) /* Broadcast packet */ stats->bprc++; - else if(*mac_addr & 0x01) + else if (*mac_addr & 0x01) /* Multicast packet */ stats->mprc++; - if(frame_len == hw->max_frame_size) { + if (frame_len == hw->max_frame_size) { /* In this case, the hardware has overcounted the number of * oversize frames. */ - if(stats->roc > 0) + if (stats->roc > 0) stats->roc--; } /* Adjust the bin counters when the extra byte put the frame in the * wrong bin. Remember that the frame_len was adjusted above. */ - if(frame_len == 64) { + if (frame_len == 64) { stats->prc64++; stats->prc127--; - } else if(frame_len == 127) { + } else if (frame_len == 127) { stats->prc127++; stats->prc255--; - } else if(frame_len == 255) { + } else if (frame_len == 255) { stats->prc255++; stats->prc511--; - } else if(frame_len == 511) { + } else if (frame_len == 511) { stats->prc511++; stats->prc1023--; - } else if(frame_len == 1023) { + } else if (frame_len == 1023) { stats->prc1023++; stats->prc1522--; - } else if(frame_len == 1522) { + } else if (frame_len == 1522) { stats->prc1522++; } } @@ -5964,6 +6574,7 @@ em_get_bus_info(struct em_hw *hw) hw->bus_width = em_bus_width_pciex_1; break; case em_82571: + case em_ich8lan: case em_80003es2lan: hw->bus_type = em_bus_type_pci_express; hw->bus_speed = em_bus_speed_2500; @@ -5974,10 +6585,10 @@ em_get_bus_info(struct em_hw *hw) hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? em_bus_type_pcix : em_bus_type_pci; - if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? em_bus_speed_66 : em_bus_speed_120; - } else if(hw->bus_type == em_bus_type_pci) { + } else if (hw->bus_type == em_bus_type_pci) { hw->bus_speed = (status & E1000_STATUS_PCI66) ? em_bus_speed_66 : em_bus_speed_33; } else { @@ -6062,8 +6673,6 @@ em_get_cable_length(struct em_hw *hw, { int32_t ret_val; uint16_t agc_value = 0; - uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1; - uint16_t max_agc = 0; uint16_t i, phy_data; uint16_t cable_length; @@ -6072,11 +6681,11 @@ em_get_cable_length(struct em_hw *hw, *min_length = *max_length = 0; /* Use old method for Phy older than IGP */ - if(hw->phy_type == em_phy_m88) { + if (hw->phy_type == em_phy_m88) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; @@ -6135,36 +6744,38 @@ em_get_cable_length(struct em_hw *hw, return -E1000_ERR_PHY; break; } - } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */ + } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ + uint16_t cur_agc_value; + uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D}; /* Read the AGC registers for all channels */ - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; - cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - /* Array bound check. */ - if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc == 0)) + /* Value bound check. */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) return -E1000_ERR_PHY; - agc_value += cur_agc; + agc_value += cur_agc_value; /* Update minimal AGC value. */ - if(min_agc > cur_agc) - min_agc = cur_agc; + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; } /* Remove the minimal AGC result for length < 50m */ - if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { - agc_value -= min_agc; + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { + agc_value -= min_agc_value; /* Get the average length of the remaining 3 channels */ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); @@ -6180,7 +6791,10 @@ em_get_cable_length(struct em_hw *hw, IGP01E1000_AGC_RANGE) : 0; *max_length = em_igp_cable_length_table[agc_value] + IGP01E1000_AGC_RANGE; - } else if (hw->phy_type == em_phy_igp_2) { + } else if (hw->phy_type == em_phy_igp_2 || + hw->phy_type == em_phy_igp_3) { + uint16_t cur_agc_index, max_agc_index = 0; + uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, @@ -6192,22 +6806,30 @@ em_get_cable_length(struct em_hw *hw, if (ret_val) return ret_val; - /* Getting bits 15:9, which represent the combination of course and + /* Getting bits 15:9, which represent the combination of course and * fine gain values. The result is a number that can be put into * the lookup table to obtain the approximate cable length. */ - cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; - /* Remove min & max AGC values from calculation. */ - if (em_igp_2_cable_length_table[min_agc] > em_igp_2_cable_length_table[cur_agc]) - min_agc = cur_agc; - if (em_igp_2_cable_length_table[max_agc] < em_igp_2_cable_length_table[cur_agc]) - max_agc = cur_agc; + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; - agc_value += em_igp_2_cable_length_table[cur_agc]; + /* Remove min & max AGC values from calculation. */ + if (em_igp_2_cable_length_table[min_agc_index] > + em_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (em_igp_2_cable_length_table[max_agc_index] < + em_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += em_igp_2_cable_length_table[cur_agc_index]; } - agc_value -= (em_igp_2_cable_length_table[min_agc] + em_igp_2_cable_length_table[max_agc]); + agc_value -= (em_igp_2_cable_length_table[min_agc_index] + + em_igp_2_cable_length_table[max_agc_index]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ @@ -6249,27 +6871,28 @@ em_check_polarity(struct em_hw *hw, /* return the Polarity bit in the Status register. */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> M88E1000_PSSR_REV_POLARITY_SHIFT; - } else if(hw->phy_type == em_phy_igp || + } else if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) { /* Read the Status register to check the speed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to * find the polarity status */ - if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Read the GIG initialization PCS register (0x00B4) */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Check the polarity bits */ @@ -6279,6 +6902,13 @@ em_check_polarity(struct em_hw *hw, * 100 Mbps this bit is always 0) */ *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; } + } else if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, + &phy_data); + if (ret_val) + return ret_val; + *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> + IFE_PESC_POLARITY_REVERSED_SHIFT; } return E1000_SUCCESS; } @@ -6291,7 +6921,7 @@ em_check_polarity(struct em_hw *hw, * 1 - Downshift ocured. * * returns: - E1000_ERR_XXX - * E1000_SUCCESS + * E1000_SUCCESS * * For phy's older then IGP, this function reads the Downshift bit in the Phy * Specific Status register. For IGP phy's, it reads the Downgrade bit in the @@ -6306,11 +6936,12 @@ em_check_downshift(struct em_hw *hw) DEBUGFUNC("em_check_downshift"); - if(hw->phy_type == em_phy_igp || + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || hw->phy_type == em_phy_igp_2) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data); - if(ret_val) + if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; @@ -6318,11 +6949,14 @@ em_check_downshift(struct em_hw *hw) (hw->phy_type == em_phy_gg82563)) { ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> M88E1000_PSSR_DOWNSHIFT_SHIFT; + } else if (hw->phy_type == em_phy_ife) { + /* em_phy_ife supports 10/100 speed only */ + hw->speed_downgraded = FALSE; } return E1000_SUCCESS; @@ -6355,40 +6989,42 @@ em_config_dsp_after_link_change(struct em_hw *hw, DEBUGFUNC("em_config_dsp_after_link_change"); - if(hw->phy_type != em_phy_igp) + if (hw->phy_type != em_phy_igp) return E1000_SUCCESS; - if(link_up) { + if (link_up) { ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if(speed == SPEED_1000) { + if (speed == SPEED_1000) { - em_get_cable_length(hw, &min_length, &max_length); + ret_val = em_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; - if((hw->dsp_config_state == em_dsp_config_enabled) && + if ((hw->dsp_config_state == em_dsp_config_enabled) && min_length >= em_igp_cable_length_50) { - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = em_write_phy_reg(hw, dsp_reg_array[i], phy_data); - if(ret_val) + if (ret_val) return ret_val; } hw->dsp_config_state = em_dsp_config_activated; } - if((hw->ffe_config_state == em_ffe_config_enabled) && + if ((hw->ffe_config_state == em_ffe_config_enabled) && (min_length < em_igp_cable_length_50)) { uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; @@ -6397,70 +7033,70 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* clear previous idle error counts */ ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - for(i = 0; i < ffe_idle_err_timeout; i++) { + for (i = 0; i < ffe_idle_err_timeout; i++) { usec_delay(1000); ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { hw->ffe_config_state = em_ffe_config_active; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_CM_CP); - if(ret_val) + if (ret_val) return ret_val; break; } - if(idle_errs) + if (idle_errs) ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } } } else { - if(hw->dsp_config_state == em_dsp_config_activated) { + if (hw->dsp_config_state == em_dsp_config_activated) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if(ret_val) + if (ret_val) return ret_val; - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if(ret_val) + if (ret_val) return ret_val; } ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); @@ -6468,40 +7104,40 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* Now enable the transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; hw->dsp_config_state = em_dsp_config_enabled; } - if(hw->ffe_config_state == em_ffe_config_active) { + if (hw->ffe_config_state == em_ffe_config_active) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_DEFAULT); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); @@ -6509,7 +7145,7 @@ em_config_dsp_after_link_change(struct em_hw *hw, /* Now enable the transmitter */ ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; hw->ffe_config_state = em_ffe_config_enabled; @@ -6534,20 +7170,20 @@ em_set_phy_mode(struct em_hw *hw) DEBUGFUNC("em_set_phy_mode"); - if((hw->mac_type == em_82545_rev_3) && - (hw->media_type == em_media_type_copper)) { + if ((hw->mac_type == em_82545_rev_3) && + (hw->media_type == em_media_type_copper)) { ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if(ret_val) { + if (ret_val) { return ret_val; } - if((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if(ret_val) + if (ret_val) return ret_val; hw->phy_reset_disable = FALSE; @@ -6575,39 +7211,51 @@ int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active) { + uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("em_set_d3_lplu_state"); - if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2) + if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 + && hw->phy_type != em_phy_igp_3) return E1000_SUCCESS; /* During driver activity LPLU should not be used or it will attain link * from the lowest speeds starting from 10Mbps. The capability is used for * Dx transitions and states */ - if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { + if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if(ret_val) + if (ret_val) return ret_val; + } else if (hw->mac_type == em_ich8lan) { + /* MAC writes into PHY register based on the state transition + * and start auto-negotiation. SW driver can overwrite the settings + * in CSR PHY power control E1000_PHY_CTRL register. */ + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if(ret_val) + if (ret_val) return ret_val; } - if(!active) { - if(hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { + if (!active) { + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { phy_data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else { + if (hw->mac_type == em_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data &= ~IGP02E1000_PM_D3_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during @@ -6617,13 +7265,13 @@ em_set_d3_lplu_state(struct em_hw *hw, if (hw->smart_speed == em_smart_speed_on) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->smart_speed == em_smart_speed_off) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -6634,36 +7282,41 @@ em_set_d3_lplu_state(struct em_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } - } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - if(hw->mac_type == em_82541_rev_2 || - hw->mac_type == em_82547_rev_2) { + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { phy_data |= IGP01E1000_GMII_FLEX_SPD; ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else { + if (hw->mac_type == em_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data |= IGP02E1000_PM_D3_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -6688,22 +7341,32 @@ int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active) { + uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("em_set_d0_lplu_state"); - if(hw->mac_type <= em_82547_rev_2) + if (hw->mac_type <= em_82547_rev_2) return E1000_SUCCESS; + if (hw->mac_type == em_ich8lan) { + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if(ret_val) + if (ret_val) return ret_val; + } if (!active) { + if (hw->mac_type == em_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { phy_data &= ~IGP02E1000_PM_D0_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during * Dx states where the power conservation is most important. During @@ -6712,13 +7375,13 @@ em_set_d0_lplu_state(struct em_hw *hw, if (hw->smart_speed == em_smart_speed_on) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->smart_speed == em_smart_speed_off) { ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -6729,26 +7392,31 @@ em_set_d0_lplu_state(struct em_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } } else { - - phy_data |= IGP02E1000_PM_D0_LPLU; + + if (hw->mac_type == em_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data |= IGP02E1000_PM_D0_LPLU; ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; + } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -6769,7 +7437,7 @@ em_set_vco_speed(struct em_hw *hw) DEBUGFUNC("em_set_vco_speed"); - switch(hw->mac_type) { + switch (hw->mac_type) { case em_82545_rev_3: case em_82546_rev_3: break; @@ -6780,39 +7448,39 @@ em_set_vco_speed(struct em_hw *hw) /* Set PHY register 30, page 5, bit 8 to 0 */ ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Set PHY register 30, page 4, bit 11 to 1 */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PHY_VCO_REG_BIT11; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if(ret_val) + if (ret_val) return ret_val; return E1000_SUCCESS; @@ -6828,7 +7496,7 @@ int32_t em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) { uint8_t i; - uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; + uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; length = (length >> 2); @@ -6847,7 +7515,7 @@ em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) * and also checks whether the previous command is completed. * It busy waits in case of previous command is not completed. * - * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or + * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or * timeout * - E1000_SUCCESS for success. ****************************************************************************/ @@ -6871,7 +7539,7 @@ em_mng_enable_host_if(struct em_hw * hw) msec_delay_irq(1); } - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { DEBUGOUT("Previous command timeout failed .\n"); return -E1000_ERR_HOST_INTERFACE_COMMAND; } @@ -6891,7 +7559,7 @@ em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer, { uint8_t *tmp; uint8_t *bufptr = buffer; - uint32_t data; + uint32_t data = 0; uint16_t remaining, i, j, prev_bytes; /* sum = only sum of the data and it is not checksum */ @@ -6971,15 +7639,17 @@ em_mng_write_cmd_header(struct em_hw * hw, buffer = (uint8_t *) hdr; i = length; - while(i--) + while (i--) sum += buffer[i]; hdr->checksum = 0 - sum; length >>= 2; /* The device driver writes the relevant command block into the ram area. */ - for (i = 0; i < length; i++) + for (i = 0; i < length; i++) { E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } return E1000_SUCCESS; } @@ -6992,8 +7662,7 @@ em_mng_write_cmd_header(struct em_hw * hw, * returns - E1000_SUCCESS for success. ****************************************************************************/ int32_t -em_mng_write_commit( - struct em_hw * hw) +em_mng_write_commit(struct em_hw * hw) { uint32_t hicr; @@ -7011,15 +7680,18 @@ em_mng_write_commit( * returns - TRUE when the mode is IAMT or FALSE. ****************************************************************************/ boolean_t -em_check_mng_mode( - struct em_hw *hw) +em_check_mng_mode(struct em_hw *hw) { uint32_t fwsm; fwsm = E1000_READ_REG(hw, FWSM); - if((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + if (hw->mac_type == em_ich8lan) { + if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + } else if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) return TRUE; return FALSE; @@ -7162,31 +7834,31 @@ em_polarity_reversal_workaround(struct em_hw *hw) /* Disable the transmitter on the PHY */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if(ret_val) + if (ret_val) return ret_val; /* This loop will early-out if the NO link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be clear. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; msec_delay_irq(100); } @@ -7196,40 +7868,40 @@ em_polarity_reversal_workaround(struct em_hw *hw) /* Now we will re-enable the transmitter on the PHY */ ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if(ret_val) + if (ret_val) return ret_val; /* This loop will early-out if the link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be set. */ ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_LINK_STATUS) break; + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay_irq(100); } return E1000_SUCCESS; @@ -7306,15 +7978,15 @@ em_disable_pciex_master(struct em_hw *hw) em_set_pci_express_master_disable(hw); - while(timeout) { - if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + while (timeout) { + if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; else usec_delay(100); timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Master requests are pending.\n"); return -E1000_ERR_MASTER_REQUESTS_PENDING; } @@ -7347,13 +8019,15 @@ em_get_auto_rd_done(struct em_hw *hw) case em_82572: case em_82573: case em_80003es2lan: - while(timeout) { - if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; + case em_ich8lan: + while (timeout) { + if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) + break; else msec_delay(1); timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); return -E1000_ERR_RESET; } @@ -7388,13 +8062,13 @@ em_get_phy_cfg_done(struct em_hw *hw) switch (hw->mac_type) { default: - msec_delay(10); + msec_delay_irq(10); break; case em_80003es2lan: /* Separate *_CFG_DONE_* bit for each port */ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; - /* Fall Through */ + /* FALLTHROUGH */ case em_82571: case em_82572: while (timeout) { @@ -7434,7 +8108,7 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw) DEBUGFUNC("em_get_hw_eeprom_semaphore"); - if(!hw->eeprom_semaphore_present) + if (!hw->eeprom_semaphore_present) return E1000_SUCCESS; if (hw->mac_type == em_80003es2lan) { @@ -7445,20 +8119,20 @@ em_get_hw_eeprom_semaphore(struct em_hw *hw) /* Get the FW semaphore. */ timeout = hw->eeprom.word_size + 1; - while(timeout) { + while (timeout) { swsm = E1000_READ_REG(hw, SWSM); swsm |= E1000_SWSM_SWESMBI; E1000_WRITE_REG(hw, SWSM, swsm); /* if we managed to set the bit we got the semaphore. */ swsm = E1000_READ_REG(hw, SWSM); - if(swsm & E1000_SWSM_SWESMBI) + if (swsm & E1000_SWSM_SWESMBI) break; usec_delay(50); timeout--; } - if(!timeout) { + if (!timeout) { /* Release semaphores */ em_put_hw_eeprom_semaphore(hw); DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); @@ -7483,7 +8157,7 @@ em_put_hw_eeprom_semaphore(struct em_hw *hw) DEBUGFUNC("em_put_hw_eeprom_semaphore"); - if(!hw->eeprom_semaphore_present) + if (!hw->eeprom_semaphore_present) return; swsm = E1000_READ_REG(hw, SWSM); @@ -7516,16 +8190,16 @@ em_get_software_semaphore(struct em_hw *hw) if (hw->mac_type != em_80003es2lan) return E1000_SUCCESS; - while(timeout) { + while (timeout) { swsm = E1000_READ_REG(hw, SWSM); /* If SMBI bit cleared, it is now set and we hold the semaphore */ - if(!(swsm & E1000_SWSM_SMBI)) + if (!(swsm & E1000_SWSM_SMBI)) break; msec_delay_irq(1); timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_RESET; } @@ -7571,6 +8245,13 @@ int32_t em_check_phy_reset_block(struct em_hw *hw) { uint32_t manc = 0; + uint32_t fwsm = 0; + + if (hw->mac_type == em_ich8lan) { + fwsm = E1000_READ_REG(hw, FWSM); + return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS + : E1000_BLK_PHY_RESET; + } if (hw->mac_type > em_82547_rev_2) manc = E1000_READ_REG(hw, MANC); @@ -7594,11 +8275,854 @@ em_arc_subsystem_valid(struct em_hw *hw) case em_82573: case em_80003es2lan: fwsm = E1000_READ_REG(hw, FWSM); - if((fwsm & E1000_FWSM_MODE_MASK) != 0) + if ((fwsm & E1000_FWSM_MODE_MASK) != 0) return TRUE; break; + case em_ich8lan: + return TRUE; default: break; } return FALSE; } + + +/****************************************************************************** + * Configure PCI-Ex no-snoop + * + * hw - Struct containing variables accessed by shared code. + * no_snoop - Bitmap of no-snoop events. + * + * returns: E1000_SUCCESS + * + *****************************************************************************/ +int32_t +em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) +{ + uint32_t gcr_reg = 0; + + DEBUGFUNC("em_set_pci_ex_no_snoop"); + + if (hw->bus_type == em_bus_type_unknown) + em_get_bus_info(hw); + + if (hw->bus_type != em_bus_type_pci_express) + return E1000_SUCCESS; + + if (no_snoop) { + gcr_reg = E1000_READ_REG(hw, GCR); + gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); + gcr_reg |= no_snoop; + E1000_WRITE_REG(hw, GCR, gcr_reg); + } + if (hw->mac_type == em_ich8lan) { + uint32_t ctrl_ext; + + E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); + + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Get software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +em_get_software_flag(struct em_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t extcnf_ctrl; + + DEBUGFUNC("em_get_software_flag"); + + if (hw->mac_type == em_ich8lan) { + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW locks the resource too long.\n"); + return -E1000_ERR_CONFIG; + } + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Release software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +void +em_release_software_flag(struct em_hw *hw) +{ + uint32_t extcnf_ctrl; + + DEBUGFUNC("em_release_software_flag"); + + if (hw->mac_type == em_ich8lan) { + extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + } + + return; +} + +/*************************************************************************** + * + * Disable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +em_ife_disable_dynamic_power_down(struct em_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("em_ife_disable_dynamic_power_down"); + + if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/*************************************************************************** + * + * Enable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +em_ife_enable_dynamic_power_down(struct em_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("em_ife_enable_dynamic_power_down"); + + if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/****************************************************************************** + * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access + * register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +int32_t +em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + int32_t error = E1000_SUCCESS; + uint32_t flash_bank = 0; + uint32_t act_offset = 0; + uint32_t bank_offset = 0; + uint16_t word = 0; + uint16_t i = 0; + + /* We need to know which is the valid flash bank. In the event + * that we didn't allocate eeprom_shadow_ram, we may not be + * managing flash_bank. So it cannot be trusted and needs + * to be updated with each read. + */ + /* Value of bit 22 corresponds to the flash bank we're on. */ + flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; + + /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ + bank_offset = flash_bank * (hw->flash_bank_size * 2); + + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + for (i = 0; i < words; i++) { + if (hw->eeprom_shadow_ram != NULL && + hw->eeprom_shadow_ram[offset+i].modified == TRUE) { + data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; + } else { + /* The NVM part needs a byte offset, hence * 2 */ + act_offset = bank_offset + ((offset + i) * 2); + error = em_read_ich8_word(hw, act_offset, &word); + if (error != E1000_SUCCESS) + break; + data[i] = word; + } + } + + em_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access + * register. Actually, writes are written to the shadow ram cache in the hw + * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to + * the NVM, which occurs when the NVM checksum is updated. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to write + * words - number of words to write + * data - words to write to the EEPROM + *****************************************************************************/ +int32_t +em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + /* A driver can write to the NVM only if it has eeprom_shadow_ram + * allocated. Subsequent reads to the modified words are read from + * this cached structure as well. Writes will only go into this + * cached structure unless it's followed by a call to + * em_update_eeprom_checksum() where it will commit the changes + * and clear the "modified" field. + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < words; i++) { + if ((offset + i) < E1000_SHADOW_RAM_WORDS) { + hw->eeprom_shadow_ram[offset+i].modified = TRUE; + hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; + } else { + error = -E1000_ERR_EEPROM; + break; + } + } + } else { + /* Drivers have the option to not allocate eeprom_shadow_ram as long + * as they don't perform any NVM writes. An attempt in doing so + * will result in this error. + */ + error = -E1000_ERR_EEPROM; + } + + em_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +em_ich8_cycle_init(struct em_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + int32_t i = 0; + + DEBUGFUNC("em_ich8_cycle_init"); + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* May be check the Flash Des Valid bit in Hw status */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); + return error; + } + + /* Clear FCERR in Hw status by writing 1 */ + /* Clear DAEL in Hw status by writing a 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress bit to check + * against, in order to start a new cycle or FDONE bit should be changed + * in the hardware so that it is 1 after harware reset, which can then be + * used as an indication whether a cycle is in progress or has been + * completed .. we should also have some software semaphore mechanism to + * guard FDONE or the cycle in progress bit so that two threads access to + * those bits can be sequentiallized or a way so that 2 threads dont + * start the cycle at the same time */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* There is no cycle running at present, so we can start a cycle */ + /* Begin by setting Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + error = E1000_SUCCESS; + } else { + /* otherwise poll for sometime so the current cycle has a chance + * to end before giving up. */ + for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + error = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (error == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + return error; +} + +/****************************************************************************** + * This function starts a flash cycle and waits for its completion + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + uint32_t i = 0; + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + usec_delay(1); + i++; + } while (i < timeout); + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { + error = E1000_SUCCESS; + } + return error; +} + +/****************************************************************************** + * Reads a byte or word from the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte or word to read. + * size - Size of data to read, 1=byte 2=word + * data - Pointer to the word to store the value read. + *****************************************************************************/ +int32_t +em_read_ich8_data(struct em_hw *hw, uint32_t index, + uint32_t size, uint16_t* data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("em_read_ich8_data"); + + if (size < 1 || size > 2 || data == 0x0 || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + /* TODO: TBD maybe check the index against the size of flash */ + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it and try the whole + * sequence a few more times, else read in (shift in) the Flash Data0, + * the order is least significant byte first msb to lsb */ + if (error == E1000_SUCCESS) { + flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); + if (size == 1) { + *data = (uint8_t)(flash_data & 0x000000FF); + } else if (size == 2) { + *data = (uint16_t)(flash_data & 0x0000FFFF); + } + break; + } else { + /* If we've gotten here, then things are probably completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Writes One /two bytes to the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte/word to read. + * size - Size of data to read, 1=byte 2=word + * data - The byte(s) to write to the NVM. + *****************************************************************************/ +int32_t +em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, + uint16_t data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("em_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + if (size == 1) + flash_data = (uint32_t)data & 0x00FF; + else + flash_data = (uint32_t)data; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it and try the whole + * sequence a few more times else done */ + error = em_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + if (error == E1000_SUCCESS) { + break; + } else { + /* If we're here, then things are most likely completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Reads a single byte from the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The index of the byte to read. + * data - Pointer to a byte to store the value read. + *****************************************************************************/ +int32_t +em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = 0; + + status = em_read_ich8_data(hw, index, 1, &word); + if (status == E1000_SUCCESS) { + *data = (uint8_t)word; + } + + return status; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * Performs verification by reading back the value and then going through + * a retry algorithm before giving up. + * + * hw - pointer to em_hw structure + * index - The index of the byte to write. + * byte - The byte to write to the NVM. + *****************************************************************************/ +int32_t +em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) +{ + int32_t error = E1000_SUCCESS; + int32_t program_retries; + uint8_t temp_byte; + + em_write_ich8_byte(hw, index, byte); + usec_delay(100); + + for (program_retries = 0; program_retries < 100; program_retries++) { + em_read_ich8_byte(hw, index, &temp_byte); + if (temp_byte == byte) + break; + usec_delay(10); + em_write_ich8_byte(hw, index, byte); + usec_delay(100); + } + if (program_retries == 100) + error = E1000_ERR_EEPROM; + + return error; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The index of the byte to read. + * data - The byte to write to the NVM. + *****************************************************************************/ +int32_t +em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = (uint16_t)data; + + status = em_write_ich8_data(hw, index, 1, word); + + return status; +} + +/****************************************************************************** + * Reads a word from the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The starting byte index of the word to read. + * data - Pointer to a word to store the value read. + *****************************************************************************/ +int32_t +em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) +{ + int32_t status = E1000_SUCCESS; + status = em_read_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Writes a word to the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The starting byte index of the word to read. + * data - The word to write to the NVM. + *****************************************************************************/ +int32_t +em_write_ich8_word(struct em_hw *hw, uint32_t index, uint16_t data) +{ + int32_t status = E1000_SUCCESS; + status = em_write_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. + * segment N is 4096 * N + flash_reg_addr. + * + * hw - pointer to em_hw structure + * segment - 0 for first segment, 1 for second segment, etc. + *****************************************************************************/ +int32_t +em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t segment) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + int32_t count = 0; + int32_t error = E1000_ERR_EEPROM; + int32_t iteration, seg_size; + int32_t sector_size; + int32_t j = 0; + int32_t error_flag = 0; + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ + /* 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector can be + * calculated as = segment * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = segment * 4096 + * 10: Error condition + * 11: The Hw sector size is much bigger than the size asked to + * erase...error condition */ + if (hsfsts.hsf_status.berasesz == 0x0) { + /* Hw sector size 256 */ + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; + iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; + } else if (hsfsts.hsf_status.berasesz == 0x1) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; + iteration = 1; + } else if (hsfsts.hsf_status.berasesz == 0x3) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; + iteration = 1; + } else { + return error; + } + + for (j = 0; j < iteration ; j++) { + do { + count++; + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) { + error_flag = 1; + break; + } + + /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash + * Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of an index within the block into Flash + * Linear address field in Flash Address. This probably needs to + * be calculated here based off the on-chip segment size and the + * software segment size assumed (4K) */ + /* TBD */ + flash_linear_address = segment * sector_size + j * seg_size; + flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; + flash_linear_address += hw->flash_base_addr; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = em_ich8_flash_cycle(hw, 1000000); + /* Check if FCERR is set to 1. If 1, clear it and try the whole + * sequence a few more times else Done */ + if (error == E1000_SUCCESS) { + break; + } else { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* repeat for some time before giving up */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + error_flag = 1; + break; + } + } + } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); + if (error_flag == 1) + break; + } + if (error_flag != 1) + error = E1000_SUCCESS; + return error; +} + +/****************************************************************************** + * + * Reverse duplex setting without breaking the link. + * + * hw: Struct containing variables accessed by shared code + * + *****************************************************************************/ +int32_t +em_duplex_reversal(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + if (hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + + ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data ^= MII_CR_FULL_DUPLEX; + + ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; + ret_val = em_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); + + return ret_val; +} + +int32_t +em_init_lcd_from_nvm_config_region(struct em_hw *hw, + uint32_t cnf_base_addr, uint32_t cnf_size) +{ + uint32_t ret_val = E1000_SUCCESS; + uint16_t word_addr, reg_data, reg_addr; + uint16_t i; + + /* cnf_base_addr is in DWORD */ + word_addr = (uint16_t)(cnf_base_addr << 1); + + /* cnf_size is returned in size of dwords */ + for (i = 0; i < cnf_size; i++) { + ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, ®_data); + if (ret_val) + return ret_val; + + ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); + if (ret_val) + return ret_val; + + ret_val = em_get_software_flag(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); + + em_release_software_flag(hw); + } + + return ret_val; +} + +int32_t +em_init_lcd_from_nvm(struct em_hw *hw) +{ + uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; + + if (hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + + /* Check if SW needs configure the PHY */ + reg_data = E1000_READ_REG(hw, FEXTNVM); + if (!(reg_data & FEXTNVM_SW_CONFIG)) + return E1000_SUCCESS; + + /* Wait for basic configuration completes before proceeding*/ + loop = 0; + do { + reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + loop++; + } while ((!reg_data) && (loop < 50)); + + /* Clear the Init Done bit for the next init event */ + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, STATUS, reg_data); + + /* Make sure HW does not configure LCD from PHY extended configuration + before SW configuration */ + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { + reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); + cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; + cnf_size >>= 16; + if (cnf_size) { + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; + /* cnf_base_addr is in DWORD */ + cnf_base_addr >>= 16; + + /* Configure LCD from extended configuration region. */ + ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr, + cnf_size); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} |