diff options
Diffstat (limited to 'sys/dev/raidframe/rf_dagdegwr.c')
-rw-r--r-- | sys/dev/raidframe/rf_dagdegwr.c | 1502 |
1 files changed, 689 insertions, 813 deletions
diff --git a/sys/dev/raidframe/rf_dagdegwr.c b/sys/dev/raidframe/rf_dagdegwr.c index a712dd1e83b..407e69cdac6 100644 --- a/sys/dev/raidframe/rf_dagdegwr.c +++ b/sys/dev/raidframe/rf_dagdegwr.c @@ -1,5 +1,5 @@ -/* $OpenBSD: rf_dagdegwr.c,v 1.1 1999/01/11 14:29:07 niklas Exp $ */ -/* $NetBSD: rf_dagdegwr.c,v 1.1 1998/11/13 04:20:27 oster Exp $ */ +/* $OpenBSD: rf_dagdegwr.c,v 1.2 1999/02/16 00:02:29 niklas Exp $ */ +/* $NetBSD: rf_dagdegwr.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. @@ -32,108 +32,6 @@ * * code for creating degraded write DAGs * - * : - * Log: rf_dagdegwr.c,v - * Revision 1.23 1996/11/05 21:10:40 jimz - * failed pda generalization - * - * Revision 1.22 1996/08/23 14:49:48 jimz - * remove bogus assert from small write double deg DAG generator - * - * Revision 1.21 1996/08/21 05:09:44 jimz - * get rid of bogus fakery in DoubleDegSmallWrite - * - * Revision 1.20 1996/08/21 04:14:35 jimz - * cleanup doubledegsmallwrite - * NOTE: we need doubledeglargewrite - * - * Revision 1.19 1996/08/19 21:39:38 jimz - * CommonCreateSimpleDegradedWriteDAG() was unable to correctly create DAGs for - * complete stripe overwrite accesses- it assumed the necessity to read old - * data. Rather than do the "right" thing, and risk breaking a critical DAG so - * close to release, I made a no-op read node to stick in and link up in this - * case. Seems to work. - * - * Revision 1.18 1996/07/31 15:35:34 jimz - * evenodd changes; bugfixes for double-degraded archs, generalize - * some formerly PQ-only functions - * - * Revision 1.17 1996/07/28 20:31:39 jimz - * i386netbsd port - * true/false fixup - * - * Revision 1.16 1996/07/27 23:36:08 jimz - * Solaris port of simulator - * - * Revision 1.15 1996/07/27 16:30:19 jimz - * cleanup sweep - * - * Revision 1.14 1996/07/22 19:52:16 jimz - * switched node params to RF_DagParam_t, a union of - * a 64-bit int and a void *, for better portability - * attempted hpux port, but failed partway through for - * lack of a single C compiler capable of compiling all - * source files - * - * Revision 1.13 1996/06/09 02:36:46 jimz - * lots of little crufty cleanup- fixup whitespace - * issues, comment #ifdefs, improve typing in some - * places (esp size-related) - * - * Revision 1.12 1996/06/07 22:26:27 jimz - * type-ify which_ru (RF_ReconUnitNum_t) - * - * Revision 1.11 1996/06/07 21:33:04 jimz - * begin using consistent types for sector numbers, - * stripe numbers, row+col numbers, recon unit numbers - * - * Revision 1.10 1996/05/31 22:26:54 jimz - * fix a lot of mapping problems, memory allocation problems - * found some weird lock issues, fixed 'em - * more code cleanup - * - * Revision 1.9 1996/05/30 11:29:41 jimz - * Numerous bug fixes. Stripe lock release code disagreed with the taking code - * about when stripes should be locked (I made it consistent: no parity, no lock) - * There was a lot of extra serialization of I/Os which I've removed- a lot of - * it was to calculate values for the cache code, which is no longer with us. - * More types, function, macro cleanup. Added code to properly quiesce the array - * on shutdown. Made a lot of stuff array-specific which was (bogusly) general - * before. Fixed memory allocation, freeing bugs. - * - * Revision 1.8 1996/05/27 18:56:37 jimz - * more code cleanup - * better typing - * compiles in all 3 environments - * - * Revision 1.7 1996/05/24 22:17:04 jimz - * continue code + namespace cleanup - * typed a bunch of flags - * - * Revision 1.6 1996/05/24 04:28:55 jimz - * release cleanup ckpt - * - * Revision 1.5 1996/05/23 21:46:35 jimz - * checkpoint in code cleanup (release prep) - * lots of types, function names have been fixed - * - * Revision 1.4 1996/05/23 00:33:23 jimz - * code cleanup: move all debug decls to rf_options.c, all extern - * debug decls to rf_options.h, all debug vars preceded by rf_ - * - * Revision 1.3 1996/05/18 19:51:34 jimz - * major code cleanup- fix syntax, make some types consistent, - * add prototypes, clean out dead code, et cetera - * - * Revision 1.2 1996/05/08 21:01:24 jimz - * fixed up enum type names that were conflicting with other - * enums and function names (ie, "panic") - * future naming trends will be towards RF_ and rf_ for - * everything raidframe-related - * - * Revision 1.1 1996/05/03 19:21:50 wvcii - * Initial revision - * */ #include "rf_types.h" @@ -152,7 +50,7 @@ /****************************************************************************** * * General comments on DAG creation: - * + * * All DAGs in this file use roll-away error recovery. Each DAG has a single * commit node, usually called "Cmt." If an error occurs before the Cmt node * is reached, the execution engine will halt forward execution and work @@ -176,37 +74,39 @@ * the DAG creation routines to be replaced at this single point. */ -static RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG) +static +RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG) { - rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, - flags, allocList,1, rf_RecoveryXorFunc, RF_TRUE); + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, + flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE); } -void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList) - RF_Raid_t *raidPtr; - RF_AccessStripeMap_t *asmap; - RF_DagHeader_t *dag_h; - void *bp; - RF_RaidAccessFlags_t flags; - RF_AllocListElem_t *allocList; +void +rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; { - RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); - RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; - - RF_ASSERT( asmap->numDataFailed == 1 ); - dag_h->creator = "DegradedWriteDAG"; - - /* if the access writes only a portion of the failed unit, and also writes - * some portion of at least one surviving unit, we create two DAGs, one for - * the failed component and one for the non-failed component, and do them - * sequentially. Note that the fact that we're accessing only a portion of - * the failed unit indicates that the access either starts or ends in the - * failed unit, and hence we need create only two dags. This is inefficient - * in that the same data or parity can get read and written twice using this - * structure. I need to fix this to do the access all at once. - */ - RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)); - rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList); + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "DegradedWriteDAG"; + + /* if the access writes only a portion of the failed unit, and also + * writes some portion of at least one surviving unit, we create two + * DAGs, one for the failed component and one for the non-failed + * component, and do them sequentially. Note that the fact that we're + * accessing only a portion of the failed unit indicates that the + * access either starts or ends in the failed unit, and hence we need + * create only two dags. This is inefficient in that the same data or + * parity can get read and written twice using this structure. I need + * to fix this to do the access all at once. */ + RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)); + rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList); } @@ -250,363 +150,364 @@ void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList) * is used. *****************************************************************************/ -void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, - allocList, nfaults, redFunc, allowBufferRecycle) - RF_Raid_t *raidPtr; - RF_AccessStripeMap_t *asmap; - RF_DagHeader_t *dag_h; - void *bp; - RF_RaidAccessFlags_t flags; - RF_AllocListElem_t *allocList; - int nfaults; - int (*redFunc)(RF_DagNode_t *); - int allowBufferRecycle; +void +rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, nfaults, redFunc, allowBufferRecycle) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; + int nfaults; + int (*redFunc) (RF_DagNode_t *); + int allowBufferRecycle; { - int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, rdnodesFaked; - RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode; - RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode; - RF_SectorCount_t sectorsPerSU; - RF_ReconUnitNum_t which_ru; - char *xorTargetBuf = NULL; /* the target buffer for the XOR operation */ - char *overlappingPDAs; /* a temporary array of flags */ - RF_AccessStripeMapHeader_t *new_asm_h[2]; - RF_PhysDiskAddr_t *pda, *parityPDA; - RF_StripeNum_t parityStripeID; - RF_PhysDiskAddr_t *failedPDA; - RF_RaidLayout_t *layoutPtr; - - layoutPtr = &(raidPtr->Layout); - parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, - &which_ru); - sectorsPerSU = layoutPtr->sectorsPerStripeUnit; - /* failedPDA points to the pda within the asm that targets the failed disk */ - failedPDA = asmap->failedPDAs[0]; - - if (rf_dagDebug) - printf("[Creating degraded-write DAG]\n"); - - RF_ASSERT( asmap->numDataFailed == 1 ); - dag_h->creator = "SimpleDegradedWriteDAG"; - - /* - * Generate two ASMs identifying the surviving data - * we need in order to recover the lost data. - */ - /* overlappingPDAs array must be zero'd */ - RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); - rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, - &nXorBufs, NULL, overlappingPDAs, allocList); - - /* create all the nodes at once */ - nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is generated - * for the failed pda */ - - nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + - ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); - /* - * XXX - * - * There's a bug with a complete stripe overwrite- that means 0 reads - * of old data, and the rest of the DAG generation code doesn't like - * that. A release is coming, and I don't wanna risk breaking a critical - * DAG generator, so here's what I'm gonna do- if there's no read nodes, - * I'm gonna fake there being a read node, and I'm gonna swap in a - * no-op node in its place (to make all the link-up code happy). - * This should be fixed at some point. --jimz - */ - if (nRrdNodes == 0) { - nRrdNodes = 1; - rdnodesFaked = 1; - } - else { - rdnodesFaked = 0; - } - /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */ - nNodes = 5 + nfaults + nWndNodes + nRrdNodes; - RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), - (RF_DagNode_t *), allocList); - i = 0; - blockNode = &nodes[i]; i += 1; - commitNode = &nodes[i]; i += 1; - unblockNode = &nodes[i]; i += 1; - termNode = &nodes[i]; i += 1; - xorNode = &nodes[i]; i += 1; - wnpNode = &nodes[i]; i += 1; - wndNodes = &nodes[i]; i += nWndNodes; - rrdNodes = &nodes[i]; i += nRrdNodes; - if (nfaults == 2) { - wnqNode = &nodes[i]; i += 1; - } - else { - wnqNode = NULL; - } - RF_ASSERT(i == nNodes); - - /* this dag can not commit until all rrd and xor Nodes have completed */ - dag_h->numCommitNodes = 1; - dag_h->numCommits = 0; - dag_h->numSuccedents = 1; - - RF_ASSERT( nRrdNodes > 0 ); - rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, - NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList); - rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, - NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); - rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, - NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList); - rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, - NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); - rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, - nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList); - - /* - * Fill in the Rrd nodes. If any of the rrd buffers are the same size as - * the failed buffer, save a pointer to it so we can use it as the target - * of the XOR. The pdas in the rrd nodes have been range-restricted, so if - * a buffer is the same size as the failed buffer, it must also be at the - * same alignment within the SU. - */ - i = 0; - if (new_asm_h[0]) { - for (i=0, pda=new_asm_h[0]->stripeMap->physInfo; - i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed; - i++, pda=pda->next) - { - rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, - rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); - RF_ASSERT(pda); - rrdNodes[i].params[0].p = pda; - rrdNodes[i].params[1].p = pda->bufPtr; - rrdNodes[i].params[2].v = parityStripeID; - rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); - } - } - /* i now equals the number of stripe units accessed in new_asm_h[0] */ - if (new_asm_h[1]) { - for (j=0,pda=new_asm_h[1]->stripeMap->physInfo; - j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed; - j++, pda=pda->next) - { - rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, - rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); - RF_ASSERT(pda); - rrdNodes[i+j].params[0].p = pda; - rrdNodes[i+j].params[1].p = pda->bufPtr; - rrdNodes[i+j].params[2].v = parityStripeID; - rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); - if (allowBufferRecycle && (pda->numSector == failedPDA->numSector)) - xorTargetBuf = pda->bufPtr; - } - } - if (rdnodesFaked) { - /* - * This is where we'll init that fake noop read node - * (XXX should the wakeup func be different?) - */ - rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, - NULL, 1, 1, 0, 0, dag_h, "RrN", allocList); - } - - /* - * Make a PDA for the parity unit. The parity PDA should start at - * the same offset into the SU as the failed PDA. - */ - /* - * Danner comment: - * I don't think this copy is really necessary. - * We are in one of two cases here. - * (1) The entire failed unit is written. Then asmap->parityInfo will - * describe the entire parity. - * (2) We are only writing a subset of the failed unit and nothing - * else. Then the asmap->parityInfo describes the failed unit and - * the copy can also be avoided. - */ - - RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); - parityPDA->row = asmap->parityInfo->row; - parityPDA->col = asmap->parityInfo->col; - parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) - * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); - parityPDA->numSector = failedPDA->numSector; - - if (!xorTargetBuf) { - RF_CallocAndAdd(xorTargetBuf, 1, - rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); - } - - /* init the Wnp node */ - rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, - rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); - wnpNode->params[0].p = parityPDA; - wnpNode->params[1].p = xorTargetBuf; - wnpNode->params[2].v = parityStripeID; - wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); - - /* fill in the Wnq Node */ - if (nfaults == 2) { - { - RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), - (RF_PhysDiskAddr_t *), allocList); - parityPDA->row = asmap->qInfo->row; - parityPDA->col = asmap->qInfo->col; - parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU) - * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); - parityPDA->numSector = failedPDA->numSector; - - rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, - rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); - wnqNode->params[0].p = parityPDA; - RF_CallocAndAdd(xorNode->results[1], 1, - rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); - wnqNode->params[1].p = xorNode->results[1]; - wnqNode->params[2].v = parityStripeID; - wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); - } - } - - /* fill in the Wnd nodes */ - for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) { - if (pda == failedPDA) { - i--; - continue; - } - rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, - rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); - RF_ASSERT(pda); - wndNodes[i].params[0].p = pda; - wndNodes[i].params[1].p = pda->bufPtr; - wndNodes[i].params[2].v = parityStripeID; - wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); - } - - /* fill in the results of the xor node */ - xorNode->results[0] = xorTargetBuf; - - /* fill in the params of the xor node */ - - paramNum=0; - if (rdnodesFaked == 0) { - for (i=0; i<nRrdNodes; i++) { - /* all the Rrd nodes need to be xored together */ - xorNode->params[paramNum++] = rrdNodes[i].params[0]; - xorNode->params[paramNum++] = rrdNodes[i].params[1]; - } - } - for (i=0; i < nWndNodes; i++) { - /* any Wnd nodes that overlap the failed access need to be xored in */ - if (overlappingPDAs[i]) { - RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); - bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t)); - rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); - xorNode->params[paramNum++].p = pda; - xorNode->params[paramNum++].p = pda->bufPtr; - } - } - RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); - - /* - * Install the failed PDA into the xor param list so that the - * new data gets xor'd in. - */ - xorNode->params[paramNum++].p = failedPDA; - xorNode->params[paramNum++].p = failedPDA->bufPtr; - - /* - * The last 2 params to the recovery xor node are always the failed - * PDA and the raidPtr. install the failedPDA even though we have just - * done so above. This allows us to use the same XOR function for both - * degraded reads and degraded writes. - */ - xorNode->params[paramNum++].p = failedPDA; - xorNode->params[paramNum++].p = raidPtr; - RF_ASSERT( paramNum == 2*nXorBufs+2 ); - - /* - * Code to link nodes begins here - */ - - /* link header to block node */ - RF_ASSERT(blockNode->numAntecedents == 0); - dag_h->succedents[0] = blockNode; - - /* link block node to rd nodes */ - RF_ASSERT(blockNode->numSuccedents == nRrdNodes); - for (i = 0; i < nRrdNodes; i++) { - RF_ASSERT(rrdNodes[i].numAntecedents == 1); - blockNode->succedents[i] = &rrdNodes[i]; - rrdNodes[i].antecedents[0] = blockNode; - rrdNodes[i].antType[0] = rf_control; - } - - /* link read nodes to xor node*/ - RF_ASSERT(xorNode->numAntecedents == nRrdNodes); - for (i = 0; i < nRrdNodes; i++) { - RF_ASSERT(rrdNodes[i].numSuccedents == 1); - rrdNodes[i].succedents[0] = xorNode; - xorNode->antecedents[i] = &rrdNodes[i]; - xorNode->antType[i] = rf_trueData; - } - - /* link xor node to commit node */ - RF_ASSERT(xorNode->numSuccedents == 1); - RF_ASSERT(commitNode->numAntecedents == 1); - xorNode->succedents[0] = commitNode; - commitNode->antecedents[0] = xorNode; - commitNode->antType[0] = rf_control; - - /* link commit node to wnd nodes */ - RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes); - for (i = 0; i < nWndNodes; i++) { - RF_ASSERT(wndNodes[i].numAntecedents == 1); - commitNode->succedents[i] = &wndNodes[i]; - wndNodes[i].antecedents[0] = commitNode; - wndNodes[i].antType[0] = rf_control; - } - - /* link the commit node to wnp, wnq nodes */ - RF_ASSERT(wnpNode->numAntecedents == 1); - commitNode->succedents[nWndNodes] = wnpNode; - wnpNode->antecedents[0] = commitNode; - wnpNode->antType[0] = rf_control; - if (nfaults == 2) { - RF_ASSERT(wnqNode->numAntecedents == 1); - commitNode->succedents[nWndNodes + 1] = wnqNode; - wnqNode->antecedents[0] = commitNode; - wnqNode->antType[0] = rf_control; - } - - /* link write new data nodes to unblock node */ - RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults)); - for(i = 0; i < nWndNodes; i++) { - RF_ASSERT(wndNodes[i].numSuccedents == 1); - wndNodes[i].succedents[0] = unblockNode; - unblockNode->antecedents[i] = &wndNodes[i]; - unblockNode->antType[i] = rf_control; - } - - /* link write new parity node to unblock node */ - RF_ASSERT(wnpNode->numSuccedents == 1); - wnpNode->succedents[0] = unblockNode; - unblockNode->antecedents[nWndNodes] = wnpNode; - unblockNode->antType[nWndNodes] = rf_control; - - /* link write new q node to unblock node */ - if (nfaults == 2) { - RF_ASSERT(wnqNode->numSuccedents == 1); - wnqNode->succedents[0] = unblockNode; - unblockNode->antecedents[nWndNodes+1] = wnqNode; - unblockNode->antType[nWndNodes+1] = rf_control; - } - - /* link unblock node to term node */ - RF_ASSERT(unblockNode->numSuccedents == 1); - RF_ASSERT(termNode->numAntecedents == 1); - RF_ASSERT(termNode->numSuccedents == 0); - unblockNode->succedents[0] = termNode; - termNode->antecedents[0] = unblockNode; - termNode->antType[0] = rf_control; -} + int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, + rdnodesFaked; + RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode; + RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode; + RF_SectorCount_t sectorsPerSU; + RF_ReconUnitNum_t which_ru; + char *xorTargetBuf = NULL; /* the target buffer for the XOR + * operation */ + char *overlappingPDAs;/* a temporary array of flags */ + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_PhysDiskAddr_t *pda, *parityPDA; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *failedPDA; + RF_RaidLayout_t *layoutPtr; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, + &which_ru); + sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + /* failedPDA points to the pda within the asm that targets the failed + * disk */ + failedPDA = asmap->failedPDAs[0]; + + if (rf_dagDebug) + printf("[Creating degraded-write DAG]\n"); + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "SimpleDegradedWriteDAG"; + + /* + * Generate two ASMs identifying the surviving data + * we need in order to recover the lost data. + */ + /* overlappingPDAs array must be zero'd */ + RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); + rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, + &nXorBufs, NULL, overlappingPDAs, allocList); + + /* create all the nodes at once */ + nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is + * generated for the + * failed pda */ + + nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + + ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); + /* + * XXX + * + * There's a bug with a complete stripe overwrite- that means 0 reads + * of old data, and the rest of the DAG generation code doesn't like + * that. A release is coming, and I don't wanna risk breaking a critical + * DAG generator, so here's what I'm gonna do- if there's no read nodes, + * I'm gonna fake there being a read node, and I'm gonna swap in a + * no-op node in its place (to make all the link-up code happy). + * This should be fixed at some point. --jimz + */ + if (nRrdNodes == 0) { + nRrdNodes = 1; + rdnodesFaked = 1; + } else { + rdnodesFaked = 0; + } + /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */ + nNodes = 5 + nfaults + nWndNodes + nRrdNodes; + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + wndNodes = &nodes[i]; + i += nWndNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + RF_ASSERT(i == nNodes); + + /* this dag can not commit until all rrd and xor Nodes have completed */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + RF_ASSERT(nRrdNodes > 0); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList); + + /* + * Fill in the Rrd nodes. If any of the rrd buffers are the same size as + * the failed buffer, save a pointer to it so we can use it as the target + * of the XOR. The pdas in the rrd nodes have been range-restricted, so if + * a buffer is the same size as the failed buffer, it must also be at the + * same alignment within the SU. + */ + i = 0; + if (new_asm_h[0]) { + for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo; + i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + i++, pda = pda->next) { + rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i].params[0].p = pda; + rrdNodes[i].params[1].p = pda->bufPtr; + rrdNodes[i].params[2].v = parityStripeID; + rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* i now equals the number of stripe units accessed in new_asm_h[0] */ + if (new_asm_h[1]) { + for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; + j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + j++, pda = pda->next) { + rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i + j].params[0].p = pda; + rrdNodes[i + j].params[1].p = pda->bufPtr; + rrdNodes[i + j].params[2].v = parityStripeID; + rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + if (allowBufferRecycle && (pda->numSector == failedPDA->numSector)) + xorTargetBuf = pda->bufPtr; + } + } + if (rdnodesFaked) { + /* + * This is where we'll init that fake noop read node + * (XXX should the wakeup func be different?) + */ + rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "RrN", allocList); + } + /* + * Make a PDA for the parity unit. The parity PDA should start at + * the same offset into the SU as the failed PDA. + */ + /* Danner comment: I don't think this copy is really necessary. We are + * in one of two cases here. (1) The entire failed unit is written. + * Then asmap->parityInfo will describe the entire parity. (2) We are + * only writing a subset of the failed unit and nothing else. Then the + * asmap->parityInfo describes the failed unit and the copy can also + * be avoided. */ + + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->parityInfo->row; + parityPDA->col = asmap->parityInfo->col; + parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + if (!xorTargetBuf) { + RF_CallocAndAdd(xorTargetBuf, 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + } + /* init the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = parityPDA; + wnpNode->params[1].p = xorTargetBuf; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + /* fill in the Wnq Node */ + if (nfaults == 2) { + { + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), + (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->qInfo->row; + parityPDA->col = asmap->qInfo->col; + parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = parityPDA; + RF_CallocAndAdd(xorNode->results[1], 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* fill in the Wnd nodes */ + for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + continue; + } + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + /* fill in the results of the xor node */ + xorNode->results[0] = xorTargetBuf; + + /* fill in the params of the xor node */ + + paramNum = 0; + if (rdnodesFaked == 0) { + for (i = 0; i < nRrdNodes; i++) { + /* all the Rrd nodes need to be xored together */ + xorNode->params[paramNum++] = rrdNodes[i].params[0]; + xorNode->params[paramNum++] = rrdNodes[i].params[1]; + } + } + for (i = 0; i < nWndNodes; i++) { + /* any Wnd nodes that overlap the failed access need to be + * xored in */ + if (overlappingPDAs[i]) { + RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t)); + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); + xorNode->params[paramNum++].p = pda; + xorNode->params[paramNum++].p = pda->bufPtr; + } + } + RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); + + /* + * Install the failed PDA into the xor param list so that the + * new data gets xor'd in. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = failedPDA->bufPtr; + + /* + * The last 2 params to the recovery xor node are always the failed + * PDA and the raidPtr. install the failedPDA even though we have just + * done so above. This allows us to use the same XOR function for both + * degraded reads and degraded writes. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = raidPtr; + RF_ASSERT(paramNum == 2 * nXorBufs + 2); + + /* + * Code to link nodes begins here + */ + + /* link header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* link block node to rd nodes */ + RF_ASSERT(blockNode->numSuccedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rrdNodes[i]; + rrdNodes[i].antecedents[0] = blockNode; + rrdNodes[i].antType[0] = rf_control; + } + + /* link read nodes to xor node */ + RF_ASSERT(xorNode->numAntecedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + rrdNodes[i].succedents[0] = xorNode; + xorNode->antecedents[i] = &rrdNodes[i]; + xorNode->antType[i] = rf_trueData; + } + + /* link xor node to commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* link commit node to wnd nodes */ + RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = commitNode; + wndNodes[i].antType[0] = rf_control; + } + + /* link the commit node to wnp, wnq nodes */ + RF_ASSERT(wnpNode->numAntecedents == 1); + commitNode->succedents[nWndNodes] = wnpNode; + wnpNode->antecedents[0] = commitNode; + wnpNode->antType[0] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + commitNode->succedents[nWndNodes + 1] = wnqNode; + wnqNode->antecedents[0] = commitNode; + wnqNode->antType[0] = rf_control; + } + /* link write new data nodes to unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numSuccedents == 1); + wndNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNodes[i]; + unblockNode->antType[i] = rf_control; + } + + /* link write new parity node to unblock node */ + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes] = wnpNode; + unblockNode->antType[nWndNodes] = rf_control; + + /* link write new q node to unblock node */ + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes + 1] = wnqNode; + unblockNode->antType[nWndNodes + 1] = rf_control; + } + /* link unblock node to term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} #define CONS_PDA(if,start,num) \ pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ @@ -614,146 +515,139 @@ void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, pda_p->next = NULL; \ RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) -void rf_WriteGenerateFailedAccessASMs( - RF_Raid_t *raidPtr, - RF_AccessStripeMap_t *asmap, - RF_PhysDiskAddr_t **pdap, - int *nNodep, - RF_PhysDiskAddr_t **pqpdap, - int *nPQNodep, - RF_AllocListElem_t *allocList) +void +rf_WriteGenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t ** pdap, + int *nNodep, + RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, + RF_AllocListElem_t * allocList) { - RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); - int PDAPerDisk,i; - RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; - int numDataCol = layoutPtr->numDataCol; - int state; - unsigned napdas; - RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end; - RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; - RF_PhysDiskAddr_t *pda_p; - RF_RaidAddr_t sosAddr; - - /* determine how many pda's we will have to generate per unaccess stripe. - If there is only one failed data unit, it is one; if two, possibly two, - depending wether they overlap. */ - - fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector); - fone_end = fone_start + fone->numSector; - - if (asmap->numDataFailed==1) - { - PDAPerDisk = 1; - state = 1; - RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList); - pda_p = *pqpdap; - /* build p */ - CONS_PDA(parityInfo,fone_start,fone->numSector); - pda_p->type = RF_PDA_TYPE_PARITY; - pda_p++; - /* build q */ - CONS_PDA(qInfo,fone_start,fone->numSector); - pda_p->type = RF_PDA_TYPE_Q; - } - else - { - ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector); - ftwo_end = ftwo_start + ftwo->numSector; - if (fone->numSector + ftwo->numSector > secPerSU) - { - PDAPerDisk = 1; - state = 2; - RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList); - pda_p = *pqpdap; - CONS_PDA(parityInfo,0,secPerSU); - pda_p->type = RF_PDA_TYPE_PARITY; - pda_p++; - CONS_PDA(qInfo,0,secPerSU); - pda_p->type = RF_PDA_TYPE_Q; - } - else - { - PDAPerDisk = 2; - state = 3; - /* four of them, fone, then ftwo */ - RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList); - pda_p = *pqpdap; - CONS_PDA(parityInfo,fone_start,fone->numSector); - pda_p->type = RF_PDA_TYPE_PARITY; - pda_p++; - CONS_PDA(qInfo,fone_start,fone->numSector); - pda_p->type = RF_PDA_TYPE_Q; - pda_p++; - CONS_PDA(parityInfo,ftwo_start,ftwo->numSector); - pda_p->type = RF_PDA_TYPE_PARITY; - pda_p++; - CONS_PDA(qInfo,ftwo_start,ftwo->numSector); - pda_p->type = RF_PDA_TYPE_Q; + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int PDAPerDisk, i; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + int numDataCol = layoutPtr->numDataCol; + int state; + unsigned napdas; + RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end; + RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; + RF_PhysDiskAddr_t *pda_p; + RF_RaidAddr_t sosAddr; + + /* determine how many pda's we will have to generate per unaccess + * stripe. If there is only one failed data unit, it is one; if two, + * possibly two, depending wether they overlap. */ + + fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); + fone_end = fone_start + fone->numSector; + + if (asmap->numDataFailed == 1) { + PDAPerDisk = 1; + state = 1; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + /* build p */ + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + /* build q */ + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } else { + ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); + ftwo_end = ftwo_start + ftwo->numSector; + if (fone->numSector + ftwo->numSector > secPerSU) { + PDAPerDisk = 1; + state = 2; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_Q; + } else { + PDAPerDisk = 2; + state = 3; + /* four of them, fone, then ftwo */ + RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + pda_p++; + CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } } - } - /* figure out number of nonaccessed pda */ - napdas = PDAPerDisk * (numDataCol - 2); - *nPQNodep = PDAPerDisk; - - *nNodep = napdas; - if (napdas == 0) return; /* short circuit */ - - /* allocate up our list of pda's */ - - RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); - *pdap = pda_p; - - /* linkem together */ - for (i=0; i < (napdas-1); i++) - pda_p[i].next = pda_p+(i+1); - - sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); - for (i=0; i < numDataCol; i++) - { - if ((pda_p - (*pdap)) == napdas) - continue; - pda_p->type = RF_PDA_TYPE_DATA; - pda_p->raidAddress = sosAddr + (i * secPerSU); - (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); - /* skip over dead disks */ - if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) - continue; - switch (state) - { - case 1: /* fone */ - pda_p->numSector = fone->numSector; - pda_p->raidAddress += fone_start; - pda_p->startSector += fone_start; - RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList); - break; - case 2: /* full stripe */ - pda_p->numSector = secPerSU; - RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList); - break; - case 3: /* two slabs */ - pda_p->numSector = fone->numSector; - pda_p->raidAddress += fone_start; - pda_p->startSector += fone_start; - RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList); - pda_p++; - pda_p->type = RF_PDA_TYPE_DATA; - pda_p->raidAddress = sosAddr + (i * secPerSU); - (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); - pda_p->numSector = ftwo->numSector; - pda_p->raidAddress += ftwo_start; - pda_p->startSector += ftwo_start; - RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList); - break; - default: - RF_PANIC(); + /* figure out number of nonaccessed pda */ + napdas = PDAPerDisk * (numDataCol - 2); + *nPQNodep = PDAPerDisk; + + *nNodep = napdas; + if (napdas == 0) + return; /* short circuit */ + + /* allocate up our list of pda's */ + + RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + *pdap = pda_p; + + /* linkem together */ + for (i = 0; i < (napdas - 1); i++) + pda_p[i].next = pda_p + (i + 1); + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < numDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; } - pda_p++; - } - RF_ASSERT (pda_p - *pdap == napdas); - return; + RF_ASSERT(pda_p - *pdap == napdas); + return; } - #define DISK_NODE_PDA(node) ((node)->params[0].p) #define DISK_NODE_PARAMS(_node_,_p_) \ @@ -762,208 +656,190 @@ void rf_WriteGenerateFailedAccessASMs( (_node_).params[2].v = parityStripeID; \ (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) -void rf_DoubleDegSmallWrite( - RF_Raid_t *raidPtr, - RF_AccessStripeMap_t *asmap, - RF_DagHeader_t *dag_h, - void *bp, - RF_RaidAccessFlags_t flags, - RF_AllocListElem_t *allocList, - char *redundantReadNodeName, - char *redundantWriteNodeName, - char *recoveryNodeName, - int (*recovFunc)(RF_DagNode_t *)) +void +rf_DoubleDegSmallWrite( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + char *redundantReadNodeName, + char *redundantWriteNodeName, + char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)) { - RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); - RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes,*rqNodes, *wpNodes, *wqNodes, *termNode; - RF_PhysDiskAddr_t *pda, *pqPDAs; - RF_PhysDiskAddr_t *npdas; - int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i; - RF_ReconUnitNum_t which_ru; - int nPQNodes; - RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); - - /* simple small write case - - First part looks like a reconstruct-read of the failed data units. - Then a write of all data units not failed. */ - - - /* - Hdr - | - ------Block- - / / \ - Rrd Rrd ... Rrd Rp Rq - \ \ / - -------PQ----- - / \ \ - Wud Wp WQ - \ | / - --Unblock- - | - T - - Rrd = read recovery data (potentially none) - Wud = write user data (not incl. failed disks) - Wp = Write P (could be two) - Wq = Write Q (could be two) - - */ - - rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList); - - RF_ASSERT(asmap->numDataFailed == 1); - - nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); - nReadNodes = nRrdNodes + 2*nPQNodes; - nWriteNodes = nWudNodes+ 2*nPQNodes; - nNodes = 4 + nReadNodes + nWriteNodes; - - RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); - blockNode = nodes; - unblockNode = blockNode+1; - termNode = unblockNode+1; - recoveryNode = termNode+1; - rrdNodes = recoveryNode+1; - rpNodes = rrdNodes + nRrdNodes; - rqNodes = rpNodes + nPQNodes; - wudNodes = rqNodes + nPQNodes; - wpNodes = wudNodes + nWudNodes; - wqNodes = wpNodes + nPQNodes; - - dag_h->creator = "PQ_DDSimpleSmallWrite"; - dag_h->numSuccedents = 1; - dag_h->succedents[0] = blockNode; - rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); - termNode->antecedents[0] = unblockNode; - termNode->antType[0] = rf_control; - - /* init the block and unblock nodes */ - /* The block node has all the read nodes as successors */ - rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); - for (i=0; i < nReadNodes; i++) - blockNode->succedents[i] = rrdNodes+i; - - /* The unblock node has all the writes as successors */ - rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList); - for (i=0; i < nWriteNodes; i++) { - unblockNode->antecedents[i] = wudNodes+i; - unblockNode->antType[i] = rf_control; - } - unblockNode->succedents[0] = termNode; + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, + *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode; + RF_PhysDiskAddr_t *pda, *pqPDAs; + RF_PhysDiskAddr_t *npdas; + int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i; + RF_ReconUnitNum_t which_ru; + int nPQNodes; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); + + /* simple small write case - First part looks like a reconstruct-read + * of the failed data units. Then a write of all data units not + * failed. */ + + + /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \ + * / -------PQ----- / \ \ Wud Wp WQ \ | / + * --Unblock- | T + * + * Rrd = read recovery data (potentially none) Wud = write user data + * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q + * (could be two) + * + */ + + rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); + + RF_ASSERT(asmap->numDataFailed == 1); + + nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); + nReadNodes = nRrdNodes + 2 * nPQNodes; + nWriteNodes = nWudNodes + 2 * nPQNodes; + nNodes = 4 + nReadNodes + nWriteNodes; + + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + blockNode = nodes; + unblockNode = blockNode + 1; + termNode = unblockNode + 1; + recoveryNode = termNode + 1; + rrdNodes = recoveryNode + 1; + rpNodes = rrdNodes + nRrdNodes; + rqNodes = rpNodes + nPQNodes; + wudNodes = rqNodes + nPQNodes; + wpNodes = wudNodes + nWudNodes; + wqNodes = wpNodes + nPQNodes; + + dag_h->creator = "PQ_DDSimpleSmallWrite"; + dag_h->numSuccedents = 1; + dag_h->succedents[0] = blockNode; + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + + /* init the block and unblock nodes */ + /* The block node has all the read nodes as successors */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nReadNodes; i++) + blockNode->succedents[i] = rrdNodes + i; + + /* The unblock node has all the writes as successors */ + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nWriteNodes; i++) { + unblockNode->antecedents[i] = wudNodes + i; + unblockNode->antType[i] = rf_control; + } + unblockNode->succedents[0] = termNode; #define INIT_READ_NODE(node,name) \ rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ (node)->succedents[0] = recoveryNode; \ (node)->antecedents[0] = blockNode; \ (node)->antType[0] = rf_control; - - /* build the read nodes */ - pda = npdas; - for (i=0; i < nRrdNodes; i++, pda = pda->next) { - INIT_READ_NODE(rrdNodes+i,"rrd"); - DISK_NODE_PARAMS(rrdNodes[i],pda); - } - - /* read redundancy pdas */ - pda = pqPDAs; - INIT_READ_NODE(rpNodes,"Rp"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(rpNodes[0],pda); - pda++; - INIT_READ_NODE(rqNodes, redundantReadNodeName ); - RF_ASSERT(pda); - DISK_NODE_PARAMS(rqNodes[0],pda); - if (nPQNodes==2) - { - pda++; - INIT_READ_NODE(rpNodes+1,"Rp"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(rpNodes[1],pda); - pda++; - INIT_READ_NODE(rqNodes+1,redundantReadNodeName ); - RF_ASSERT(pda); - DISK_NODE_PARAMS(rqNodes[1],pda); - } - - /* the recovery node has all reads as precedessors and all writes as successors. - It generates a result for every write P or write Q node. - As parameters, it takes a pda per read and a pda per stripe of user data written. - It also takes as the last params the raidPtr and asm. - For results, it takes PDA for P & Q. */ - - - rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, - nWriteNodes, /* succesors */ - nReadNodes, /* preds */ - nReadNodes + nWudNodes + 3, /* params */ - 2 * nPQNodes, /* results */ - dag_h, recoveryNodeName, allocList); - - - - for (i=0; i < nReadNodes; i++ ) - { - recoveryNode->antecedents[i] = rrdNodes+i; - recoveryNode->antType[i] = rf_control; - recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes+i); - } - for (i=0; i < nWudNodes; i++) - { - recoveryNode->succedents[i] = wudNodes+i; - } - recoveryNode->params[nReadNodes+nWudNodes].p = asmap->failedPDAs[0]; - recoveryNode->params[nReadNodes+nWudNodes+1].p = raidPtr; - recoveryNode->params[nReadNodes+nWudNodes+2].p = asmap; - - for ( ; i < nWriteNodes; i++) - recoveryNode->succedents[i] = wudNodes+i; - - pda = pqPDAs; - recoveryNode->results[0] = pda; - pda++; - recoveryNode->results[1] = pda; - if ( nPQNodes == 2) - { - pda++; - recoveryNode->results[2] = pda; - pda++; - recoveryNode->results[3] = pda; - } - - /* fill writes */ + + /* build the read nodes */ + pda = npdas; + for (i = 0; i < nRrdNodes; i++, pda = pda->next) { + INIT_READ_NODE(rrdNodes + i, "rrd"); + DISK_NODE_PARAMS(rrdNodes[i], pda); + } + + /* read redundancy pdas */ + pda = pqPDAs; + INIT_READ_NODE(rpNodes, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[0], pda); + pda++; + INIT_READ_NODE(rqNodes, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_READ_NODE(rpNodes + 1, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[1], pda); + pda++; + INIT_READ_NODE(rqNodes + 1, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[1], pda); + } + /* the recovery node has all reads as precedessors and all writes as + * successors. It generates a result for every write P or write Q + * node. As parameters, it takes a pda per read and a pda per stripe + * of user data written. It also takes as the last params the raidPtr + * and asm. For results, it takes PDA for P & Q. */ + + + rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, + nWriteNodes, /* succesors */ + nReadNodes, /* preds */ + nReadNodes + nWudNodes + 3, /* params */ + 2 * nPQNodes, /* results */ + dag_h, recoveryNodeName, allocList); + + + + for (i = 0; i < nReadNodes; i++) { + recoveryNode->antecedents[i] = rrdNodes + i; + recoveryNode->antType[i] = rf_control; + recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i); + } + for (i = 0; i < nWudNodes; i++) { + recoveryNode->succedents[i] = wudNodes + i; + } + recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0]; + recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr; + recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap; + + for (; i < nWriteNodes; i++) + recoveryNode->succedents[i] = wudNodes + i; + + pda = pqPDAs; + recoveryNode->results[0] = pda; + pda++; + recoveryNode->results[1] = pda; + if (nPQNodes == 2) { + pda++; + recoveryNode->results[2] = pda; + pda++; + recoveryNode->results[3] = pda; + } + /* fill writes */ #define INIT_WRITE_NODE(node,name) \ rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ (node)->succedents[0] = unblockNode; \ (node)->antecedents[0] = recoveryNode; \ (node)->antType[0] = rf_control; - pda = asmap->physInfo; - for (i=0; i < nWudNodes; i++) - { - INIT_WRITE_NODE(wudNodes+i,"Wd"); - DISK_NODE_PARAMS(wudNodes[i],pda); - recoveryNode->params[nReadNodes+i].p = DISK_NODE_PDA(wudNodes+i); - pda = pda->next; - } - /* write redundancy pdas */ - pda = pqPDAs; - INIT_WRITE_NODE(wpNodes,"Wp"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(wpNodes[0],pda); - pda++; - INIT_WRITE_NODE(wqNodes,"Wq"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(wqNodes[0],pda); - if (nPQNodes==2) - { - pda++; - INIT_WRITE_NODE(wpNodes+1,"Wp"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(wpNodes[1],pda); - pda++; - INIT_WRITE_NODE(wqNodes+1,"Wq"); - RF_ASSERT(pda); - DISK_NODE_PARAMS(wqNodes[1],pda); - } + pda = asmap->physInfo; + for (i = 0; i < nWudNodes; i++) { + INIT_WRITE_NODE(wudNodes + i, "Wd"); + DISK_NODE_PARAMS(wudNodes[i], pda); + recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i); + pda = pda->next; + } + /* write redundancy pdas */ + pda = pqPDAs; + INIT_WRITE_NODE(wpNodes, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[0], pda); + pda++; + INIT_WRITE_NODE(wqNodes, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_WRITE_NODE(wpNodes + 1, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[1], pda); + pda++; + INIT_WRITE_NODE(wqNodes + 1, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[1], pda); + } } |