diff options
Diffstat (limited to 'usr.bin/learn/lib/eqn/L1.1f')
-rw-r--r-- | usr.bin/learn/lib/eqn/L1.1f | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/usr.bin/learn/lib/eqn/L1.1f b/usr.bin/learn/lib/eqn/L1.1f new file mode 100644 index 00000000000..72d7e53dd3f --- /dev/null +++ b/usr.bin/learn/lib/eqn/L1.1f @@ -0,0 +1,87 @@ +#print +You can also make equations that are ________indented a fixed amount from +the left margin, with the command + .EQ I +Again, if there is an equation number, it follows the I. + +Convert all the equations in "Example" to indented ones. +(Naturally I've changed it.) +You can do this with a single editor command. + +Print "Example" with neqn and nroff -ms, +then type "ready". +#once #create Ref +.LP + EQUIVALENCES OF ONE SORT AND ANOTHER +.LP +.EQ I (2.01) +bold x sup { n alpha } (t) ~->~ bold x sup alpha ( bold X ,t). +.EN +.sp +.EQ I (2.02) +sum from n F( bold x sup { n alpha } (t)) +~->~ 1 over OMEGA INT F( bold x sup alpha ( bold X ,t))d bold \|X +.EN +.EQ I (2.03) +bold x ( bold X ,t) ~==~ +sum from { alpha =1} to N +rho sup alpha over rho sup 0 bold x sup alpha ( bold X ,t) +.EN +.EQ I (2.08) +sum from {alpha =1} to N +U sup { mu alpha } V sup { mu alpha } ~=~ delta sup { mu nu } +.EN +.EQ I (2.06) +bold y sup { T mu } ( bold X ,t) +~==~ sum from {alpha =1} to N +U sup { mu alpha } +bold x sup alpha +( bold X ,t) +.EN +.EQ I +~ partial over {partial d} + ( epsilon sub 0 bold E sup T times bold B ) sub i +- m sub ij,\|j ~=~ +-q sup D E sub i sup T +-( bold ~j sup D times bold B ) sub i +.EN +#once #create Example +.LP + EQUIVALENCES OF ONE SORT AND ANOTHER +.LP +.EQ (2.01) +bold x sup { n alpha } (t) ~->~ bold x sup alpha ( bold X ,t). +.EN +.sp +.EQ (2.02) +sum from n F( bold x sup { n alpha } (t)) +~->~ 1 over OMEGA INT F( bold x sup alpha ( bold X ,t))d bold \|X +.EN +.EQ (2.03) +bold x ( bold X ,t) ~==~ +sum from { alpha =1} to N +rho sup alpha over rho sup 0 bold x sup alpha ( bold X ,t) +.EN +.EQ (2.08) +sum from {alpha =1} to N +U sup { mu alpha } V sup { mu alpha } ~=~ delta sup { mu nu } +.EN +.EQ (2.06) +bold y sup { T mu } ( bold X ,t) +~==~ sum from {alpha =1} to N +U sup { mu alpha } +bold x sup alpha +( bold X ,t) +.EN +.EQ +~ partial over {partial d} + ( epsilon sub 0 bold E sup T times bold B ) sub i +- m sub ij,\|j ~=~ +-q sup D E sub i sup T +-( bold ~j sup D times bold B ) sub i +.EN +#user +#cmp Ref Example +#log +#next +2.1a 10 |