diff options
Diffstat (limited to 'usr.sbin/bind/lib/isc/sha2.c')
-rw-r--r-- | usr.sbin/bind/lib/isc/sha2.c | 1234 |
1 files changed, 1234 insertions, 0 deletions
diff --git a/usr.sbin/bind/lib/isc/sha2.c b/usr.sbin/bind/lib/isc/sha2.c new file mode 100644 index 00000000000..3759f630db3 --- /dev/null +++ b/usr.sbin/bind/lib/isc/sha2.c @@ -0,0 +1,1234 @@ +/* + * Copyright (C) 2005, 2006 Internet Systems Consortium, Inc. ("ISC") + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH + * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY + * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, + * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM + * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE + * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR + * PERFORMANCE OF THIS SOFTWARE. + */ + +/* $ISC: sha2.c,v 1.2.2.12 2006/08/16 03:18:14 marka Exp $ */ + +/* $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $ */ +/* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */ + +/* + * sha2.c + * + * Version 1.0.0beta1 + * + * Written by Aaron D. Gifford <me@aarongifford.com> + * + * Copyright 2000 Aaron D. Gifford. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + */ + + +#include <config.h> + +#include <isc/assertions.h> +#include <isc/sha2.h> +#include <isc/string.h> +#include <isc/util.h> + +/* + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define ISC_SHA2_UNROLL_TRANSFORM + * + */ + +/*** SHA-256/384/512 Machine Architecture Definitions *****************/ +/* + * BYTE_ORDER NOTE: + * + * Please make sure that your system defines BYTE_ORDER. If your + * architecture is little-endian, make sure it also defines + * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are + * equivilent. + * + * If your system does not define the above, then you can do so by + * hand like this: + * + * #define LITTLE_ENDIAN 1234 + * #define BIG_ENDIAN 4321 + * + * And for little-endian machines, add: + * + * #define BYTE_ORDER LITTLE_ENDIAN + * + * Or for big-endian machines: + * + * #define BYTE_ORDER BIG_ENDIAN + * + * The FreeBSD machine this was written on defines BYTE_ORDER + * appropriately by including <sys/types.h> (which in turn includes + * <machine/endian.h> where the appropriate definitions are actually + * made). + */ +#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) +#ifndef BYTE_ORDER +#ifndef BIG_ENDIAN +#define BIG_ENDIAN 4321 +#endif +#ifndef LITTLE_ENDIAN +#define LITTLE_ENDIAN 1234 +#endif +#ifdef WORDS_BIGENDIAN +#define BYTE_ORDER BIG_ENDIAN +#else +#define BYTE_ORDER LITTLE_ENDIAN +#endif +#else +#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN +#endif +#endif + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +/* NOTE: Most of these are in sha2.h */ +#define ISC_SHA256_SHORT_BLOCK_LENGTH (ISC_SHA256_BLOCK_LENGTH - 8) +#define ISC_SHA384_SHORT_BLOCK_LENGTH (ISC_SHA384_BLOCK_LENGTH - 16) +#define ISC_SHA512_SHORT_BLOCK_LENGTH (ISC_SHA512_BLOCK_LENGTH - 16) + + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#if BYTE_ORDER == LITTLE_ENDIAN +#define REVERSE32(w,x) { \ + isc_uint32_t tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ +} +#ifdef WIN32 +#define REVERSE64(w,x) { \ + isc_uint64_t tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \ + ((tmp & 0x00ff00ff00ff00ffUL) << 8); \ + (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \ + ((tmp & 0x0000ffff0000ffffUL) << 16); \ +} +#else +#define REVERSE64(w,x) { \ + isc_uint64_t tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ + ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ + (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ + ((tmp & 0x0000ffff0000ffffULL) << 16); \ +} +#endif +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) { \ + (w)[0] += (isc_uint64_t)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-256/384/512 description document + * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this + * same "backwards" definition. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + +/*** INTERNAL FUNCTION PROTOTYPES *************************************/ +/* NOTE: These should not be accessed directly from outside this + * library -- they are intended for private internal visibility/use + * only. + */ +void isc_sha512_last(isc_sha512_t *); +void isc_sha256_transform(isc_sha256_t *, const isc_uint32_t*); +void isc_sha512_transform(isc_sha512_t *, const isc_uint64_t*); + + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-224 and SHA-256: */ +static const isc_uint32_t K256[64] = { + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, + 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, + 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, + 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, + 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, + 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, + 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, + 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, + 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, + 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, + 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, + 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, + 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL +}; + +/* Initial hash value H for SHA-224: */ +static const isc_uint32_t sha224_initial_hash_value[8] = { + 0xc1059ed8UL, + 0x367cd507UL, + 0x3070dd17UL, + 0xf70e5939UL, + 0xffc00b31UL, + 0x68581511UL, + 0x64f98fa7UL, + 0xbefa4fa4UL +}; + +/* Initial hash value H for SHA-256: */ +static const isc_uint32_t sha256_initial_hash_value[8] = { + 0x6a09e667UL, + 0xbb67ae85UL, + 0x3c6ef372UL, + 0xa54ff53aUL, + 0x510e527fUL, + 0x9b05688cUL, + 0x1f83d9abUL, + 0x5be0cd19UL +}; + +#ifdef WIN32 +/* Hash constant words K for SHA-384 and SHA-512: */ +static const isc_uint64_t K512[80] = { + 0x428a2f98d728ae22UL, 0x7137449123ef65cdUL, + 0xb5c0fbcfec4d3b2fUL, 0xe9b5dba58189dbbcUL, + 0x3956c25bf348b538UL, 0x59f111f1b605d019UL, + 0x923f82a4af194f9bUL, 0xab1c5ed5da6d8118UL, + 0xd807aa98a3030242UL, 0x12835b0145706fbeUL, + 0x243185be4ee4b28cUL, 0x550c7dc3d5ffb4e2UL, + 0x72be5d74f27b896fUL, 0x80deb1fe3b1696b1UL, + 0x9bdc06a725c71235UL, 0xc19bf174cf692694UL, + 0xe49b69c19ef14ad2UL, 0xefbe4786384f25e3UL, + 0x0fc19dc68b8cd5b5UL, 0x240ca1cc77ac9c65UL, + 0x2de92c6f592b0275UL, 0x4a7484aa6ea6e483UL, + 0x5cb0a9dcbd41fbd4UL, 0x76f988da831153b5UL, + 0x983e5152ee66dfabUL, 0xa831c66d2db43210UL, + 0xb00327c898fb213fUL, 0xbf597fc7beef0ee4UL, + 0xc6e00bf33da88fc2UL, 0xd5a79147930aa725UL, + 0x06ca6351e003826fUL, 0x142929670a0e6e70UL, + 0x27b70a8546d22ffcUL, 0x2e1b21385c26c926UL, + 0x4d2c6dfc5ac42aedUL, 0x53380d139d95b3dfUL, + 0x650a73548baf63deUL, 0x766a0abb3c77b2a8UL, + 0x81c2c92e47edaee6UL, 0x92722c851482353bUL, + 0xa2bfe8a14cf10364UL, 0xa81a664bbc423001UL, + 0xc24b8b70d0f89791UL, 0xc76c51a30654be30UL, + 0xd192e819d6ef5218UL, 0xd69906245565a910UL, + 0xf40e35855771202aUL, 0x106aa07032bbd1b8UL, + 0x19a4c116b8d2d0c8UL, 0x1e376c085141ab53UL, + 0x2748774cdf8eeb99UL, 0x34b0bcb5e19b48a8UL, + 0x391c0cb3c5c95a63UL, 0x4ed8aa4ae3418acbUL, + 0x5b9cca4f7763e373UL, 0x682e6ff3d6b2b8a3UL, + 0x748f82ee5defb2fcUL, 0x78a5636f43172f60UL, + 0x84c87814a1f0ab72UL, 0x8cc702081a6439ecUL, + 0x90befffa23631e28UL, 0xa4506cebde82bde9UL, + 0xbef9a3f7b2c67915UL, 0xc67178f2e372532bUL, + 0xca273eceea26619cUL, 0xd186b8c721c0c207UL, + 0xeada7dd6cde0eb1eUL, 0xf57d4f7fee6ed178UL, + 0x06f067aa72176fbaUL, 0x0a637dc5a2c898a6UL, + 0x113f9804bef90daeUL, 0x1b710b35131c471bUL, + 0x28db77f523047d84UL, 0x32caab7b40c72493UL, + 0x3c9ebe0a15c9bebcUL, 0x431d67c49c100d4cUL, + 0x4cc5d4becb3e42b6UL, 0x597f299cfc657e2aUL, + 0x5fcb6fab3ad6faecUL, 0x6c44198c4a475817UL +}; + +/* Initial hash value H for SHA-384: */ +static const isc_uint64_t sha384_initial_hash_value[8] = { + 0xcbbb9d5dc1059ed8UL, + 0x629a292a367cd507UL, + 0x9159015a3070dd17UL, + 0x152fecd8f70e5939UL, + 0x67332667ffc00b31UL, + 0x8eb44a8768581511UL, + 0xdb0c2e0d64f98fa7UL, + 0x47b5481dbefa4fa4UL +}; + +/* Initial hash value H for SHA-512: */ +static const isc_uint64_t sha512_initial_hash_value[8] = { + 0x6a09e667f3bcc908U, + 0xbb67ae8584caa73bUL, + 0x3c6ef372fe94f82bUL, + 0xa54ff53a5f1d36f1UL, + 0x510e527fade682d1UL, + 0x9b05688c2b3e6c1fUL, + 0x1f83d9abfb41bd6bUL, + 0x5be0cd19137e2179UL +}; +#else +/* Hash constant words K for SHA-384 and SHA-512: */ +static const isc_uint64_t K512[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +}; + +/* Initial hash value H for SHA-384: */ +static const isc_uint64_t sha384_initial_hash_value[8] = { + 0xcbbb9d5dc1059ed8ULL, + 0x629a292a367cd507ULL, + 0x9159015a3070dd17ULL, + 0x152fecd8f70e5939ULL, + 0x67332667ffc00b31ULL, + 0x8eb44a8768581511ULL, + 0xdb0c2e0d64f98fa7ULL, + 0x47b5481dbefa4fa4ULL +}; + +/* Initial hash value H for SHA-512: */ +static const isc_uint64_t sha512_initial_hash_value[8] = { + 0x6a09e667f3bcc908ULL, + 0xbb67ae8584caa73bULL, + 0x3c6ef372fe94f82bULL, + 0xa54ff53a5f1d36f1ULL, + 0x510e527fade682d1ULL, + 0x9b05688c2b3e6c1fULL, + 0x1f83d9abfb41bd6bULL, + 0x5be0cd19137e2179ULL +}; +#endif + +/* + * Constant used by SHA256/384/512_End() functions for converting the + * digest to a readable hexadecimal character string: + */ +static const char *sha2_hex_digits = "0123456789abcdef"; + + + +/*** SHA-224: *********************************************************/ +void +isc_sha224_init(isc_sha224_t *context) { + if (context == (isc_sha256_t *)0) { + return; + } + memcpy(context->state, sha224_initial_hash_value, + ISC_SHA256_DIGESTLENGTH); + memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH); + context->bitcount = 0; +} + +void +isc_sha224_update(isc_sha224_t *context, const isc_uint8_t* data, size_t len) { + isc_sha256_update((isc_sha256_t *)context, data, len); +} + +void +isc_sha224_final(isc_uint8_t digest[], isc_sha224_t *context) { + isc_uint8_t sha256_digest[ISC_SHA256_DIGESTLENGTH]; + isc_sha256_final(sha256_digest, (isc_sha256_t *)context); + memcpy(digest, sha256_digest, ISC_SHA224_DIGESTLENGTH); + memset(sha256_digest, 0, ISC_SHA256_DIGESTLENGTH); +} + +char * +isc_sha224_end(isc_sha224_t *context, char buffer[]) { + isc_uint8_t digest[ISC_SHA224_DIGESTLENGTH], *d = digest; + unsigned int i; + + /* Sanity check: */ + REQUIRE(context != (isc_sha224_t *)0); + + if (buffer != (char*)0) { + isc_sha224_final(digest, context); + + for (i = 0; i < ISC_SHA224_DIGESTLENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + memset(context, 0, sizeof(context)); + } + memset(digest, 0, ISC_SHA224_DIGESTLENGTH); + return buffer; +} + +char* +isc_sha224_data(const isc_uint8_t *data, size_t len, + char digest[ISC_SHA224_DIGESTSTRINGLENGTH]) +{ + isc_sha224_t context; + + isc_sha224_init(&context); + isc_sha224_update(&context, data, len); + return (isc_sha224_end(&context, digest)); +} + +/*** SHA-256: *********************************************************/ +void +isc_sha256_init(isc_sha256_t *context) { + if (context == (isc_sha256_t *)0) { + return; + } + memcpy(context->state, sha256_initial_hash_value, + ISC_SHA256_DIGESTLENGTH); + memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH); + context->bitcount = 0; +} + +#ifdef ISC_SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE32(*data++, W256[j]); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + (W256[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256(a,b,c,d,e,f,g,h) \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +void isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) { + isc_uint32_t a, b, c, d, e, f, g, h, s0, s1; + isc_uint32_t T1, *W256; + int j; + + W256 = (isc_uint32_t*)context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* ISC_SHA2_UNROLL_TRANSFORM */ + +void +isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) { + isc_uint32_t a, b, c, d, e, f, g, h, s0, s1; + isc_uint32_t T1, T2, *W256; + int j; + + W256 = (isc_uint32_t*)context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Copy data while converting to host byte order */ + REVERSE32(*data++,W256[j]); + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-256 compression function to update a..h with copy */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* ISC_SHA2_UNROLL_TRANSFORM */ + +void +isc_sha256_update(isc_sha256_t *context, const isc_uint8_t *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0U) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + REQUIRE(context != (isc_sha256_t *)0 && data != (isc_uint8_t*)0); + + usedspace = (unsigned int)((context->bitcount >> 3) % + ISC_SHA256_BLOCK_LENGTH); + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = ISC_SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + context->bitcount += freespace << 3; + len -= freespace; + data += freespace; + isc_sha256_transform(context, + (isc_uint32_t*)context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + context->bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= ISC_SHA256_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + memcpy(context->buffer, data, ISC_SHA256_BLOCK_LENGTH); + isc_sha256_transform(context, (isc_uint32_t*)context->buffer); + context->bitcount += ISC_SHA256_BLOCK_LENGTH << 3; + len -= ISC_SHA256_BLOCK_LENGTH; + data += ISC_SHA256_BLOCK_LENGTH; + } + if (len > 0U) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + context->bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void +isc_sha256_final(isc_uint8_t digest[], isc_sha256_t *context) { + isc_uint32_t *d = (isc_uint32_t*)digest; + unsigned int usedspace; + + /* Sanity check: */ + REQUIRE(context != (isc_sha256_t *)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (isc_uint8_t*)0) { + usedspace = (unsigned int)((context->bitcount >> 3) % + ISC_SHA256_BLOCK_LENGTH); +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount,context->bitcount); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= ISC_SHA256_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, + ISC_SHA256_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < ISC_SHA256_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, + ISC_SHA256_BLOCK_LENGTH - + usedspace); + } + /* Do second-to-last transform: */ + isc_sha256_transform(context, + (isc_uint32_t*)context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, + ISC_SHA256_SHORT_BLOCK_LENGTH); + } + } else { + /* Set-up for the last transform: */ + memset(context->buffer, 0, ISC_SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Set the bit count: */ + *(isc_uint64_t*)&context->buffer[ISC_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; + + /* Final transform: */ + isc_sha256_transform(context, (isc_uint32_t*)context->buffer); + +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 8; j++) { + REVERSE32(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + memcpy(d, context->state, ISC_SHA256_DIGESTLENGTH); +#endif + } + + /* Clean up state data: */ + memset(context, 0, sizeof(context)); + usedspace = 0; +} + +char * +isc_sha256_end(isc_sha256_t *context, char buffer[]) { + isc_uint8_t digest[ISC_SHA256_DIGESTLENGTH], *d = digest; + unsigned int i; + + /* Sanity check: */ + REQUIRE(context != (isc_sha256_t *)0); + + if (buffer != (char*)0) { + isc_sha256_final(digest, context); + + for (i = 0; i < ISC_SHA256_DIGESTLENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + memset(context, 0, sizeof(context)); + } + memset(digest, 0, ISC_SHA256_DIGESTLENGTH); + return buffer; +} + +char * +isc_sha256_data(const isc_uint8_t* data, size_t len, + char digest[ISC_SHA256_DIGESTSTRINGLENGTH]) +{ + isc_sha256_t context; + + isc_sha256_init(&context); + isc_sha256_update(&context, data, len); + return (isc_sha256_end(&context, digest)); +} + + +/*** SHA-512: *********************************************************/ +void +isc_sha512_init(isc_sha512_t *context) { + if (context == (isc_sha512_t *)0) { + return; + } + memcpy(context->state, sha512_initial_hash_value, + ISC_SHA512_DIGESTLENGTH); + memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +#ifdef ISC_SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE64(*data++, W512[j]); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + W512[j]; \ + (d) += T1, \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + (W512[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512(a,b,c,d,e,f,g,h) \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +void isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) { + isc_uint64_t a, b, c, d, e, f, g, h, s0, s1; + isc_uint64_t T1, *W512 = (isc_uint64_t*)context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* ISC_SHA2_UNROLL_TRANSFORM */ + +void +isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) { + isc_uint64_t a, b, c, d, e, f, g, h, s0, s1; + isc_uint64_t T1, T2, *W512 = (isc_uint64_t*)context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert TO host byte order */ + REVERSE64(*data++, W512[j]); + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-512 compression function to update a..h with copy */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* ISC_SHA2_UNROLL_TRANSFORM */ + +void isc_sha512_update(isc_sha512_t *context, const isc_uint8_t *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0U) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0); + + usedspace = (unsigned int)((context->bitcount[0] >> 3) % + ISC_SHA512_BLOCK_LENGTH); + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = ISC_SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + ADDINC128(context->bitcount, freespace << 3); + len -= freespace; + data += freespace; + isc_sha512_transform(context, + (isc_uint64_t*)context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + ADDINC128(context->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= ISC_SHA512_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + memcpy(context->buffer, data, ISC_SHA512_BLOCK_LENGTH); + isc_sha512_transform(context, (isc_uint64_t*)context->buffer); + ADDINC128(context->bitcount, ISC_SHA512_BLOCK_LENGTH << 3); + len -= ISC_SHA512_BLOCK_LENGTH; + data += ISC_SHA512_BLOCK_LENGTH; + } + if (len > 0U) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + ADDINC128(context->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void isc_sha512_last(isc_sha512_t *context) { + unsigned int usedspace; + + usedspace = (unsigned int)((context->bitcount[0] >> 3) % + ISC_SHA512_BLOCK_LENGTH); +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount[0],context->bitcount[0]); + REVERSE64(context->bitcount[1],context->bitcount[1]); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= ISC_SHA512_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, + ISC_SHA512_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < ISC_SHA512_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, + ISC_SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + isc_sha512_transform(context, + (isc_uint64_t*)context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH - 2); + } + } else { + /* Prepare for final transform: */ + memset(context->buffer, 0, ISC_SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits): */ + *(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; + *(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; + + /* Final transform: */ + isc_sha512_transform(context, (isc_uint64_t*)context->buffer); +} + +void isc_sha512_final(isc_uint8_t digest[], isc_sha512_t *context) { + isc_uint64_t *d = (isc_uint64_t*)digest; + + /* Sanity check: */ + REQUIRE(context != (isc_sha512_t *)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (isc_uint8_t*)0) { + isc_sha512_last(context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 8; j++) { + REVERSE64(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + memcpy(d, context->state, ISC_SHA512_DIGESTLENGTH); +#endif + } + + /* Zero out state data */ + memset(context, 0, sizeof(context)); +} + +char * +isc_sha512_end(isc_sha512_t *context, char buffer[]) { + isc_uint8_t digest[ISC_SHA512_DIGESTLENGTH], *d = digest; + unsigned int i; + + /* Sanity check: */ + REQUIRE(context != (isc_sha512_t *)0); + + if (buffer != (char*)0) { + isc_sha512_final(digest, context); + + for (i = 0; i < ISC_SHA512_DIGESTLENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + memset(context, 0, sizeof(context)); + } + memset(digest, 0, ISC_SHA512_DIGESTLENGTH); + return buffer; +} + +char * +isc_sha512_data(const isc_uint8_t *data, size_t len, + char digest[ISC_SHA512_DIGESTSTRINGLENGTH]) +{ + isc_sha512_t context; + + isc_sha512_init(&context); + isc_sha512_update(&context, data, len); + return (isc_sha512_end(&context, digest)); +} + + +/*** SHA-384: *********************************************************/ +void +isc_sha384_init(isc_sha384_t *context) { + if (context == (isc_sha384_t *)0) { + return; + } + memcpy(context->state, sha384_initial_hash_value, + ISC_SHA512_DIGESTLENGTH); + memset(context->buffer, 0, ISC_SHA384_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +void +isc_sha384_update(isc_sha384_t *context, const isc_uint8_t* data, size_t len) { + isc_sha512_update((isc_sha512_t *)context, data, len); +} + +void +isc_sha384_final(isc_uint8_t digest[], isc_sha384_t *context) { + isc_uint64_t *d = (isc_uint64_t*)digest; + + /* Sanity check: */ + REQUIRE(context != (isc_sha384_t *)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (isc_uint8_t*)0) { + isc_sha512_last((isc_sha512_t *)context); + + /* Save the hash data for output: */ +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 6; j++) { + REVERSE64(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + memcpy(d, context->state, ISC_SHA384_DIGESTLENGTH); +#endif + } + + /* Zero out state data */ + memset(context, 0, sizeof(context)); +} + +char * +isc_sha384_end(isc_sha384_t *context, char buffer[]) { + isc_uint8_t digest[ISC_SHA384_DIGESTLENGTH], *d = digest; + unsigned int i; + + /* Sanity check: */ + REQUIRE(context != (isc_sha384_t *)0); + + if (buffer != (char*)0) { + isc_sha384_final(digest, context); + + for (i = 0; i < ISC_SHA384_DIGESTLENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + memset(context, 0, sizeof(context)); + } + memset(digest, 0, ISC_SHA384_DIGESTLENGTH); + return buffer; +} + +char* +isc_sha384_data(const isc_uint8_t *data, size_t len, + char digest[ISC_SHA384_DIGESTSTRINGLENGTH]) +{ + isc_sha384_t context; + + isc_sha384_init(&context); + isc_sha384_update(&context, data, len); + return (isc_sha384_end(&context, digest)); +} |