From c6114f8901bd269105a2d6f7131dea78a070ecb6 Mon Sep 17 00:00:00 2001 From: Nathan Binkert Date: Tue, 24 Sep 2002 18:56:03 +0000 Subject: Driver for Intel PRO/1000 gigabit ethernet adapters. This driver should work with all current models of gigabit ethernet adapters. Driver written by Intel Ported from FreeBSD by Henric Jungheim bus_dma and endian support by me. --- sys/dev/pci/files.pci | 8 +- sys/dev/pci/if_em.c | 2612 +++++++++++++++++++++++++++++++++ sys/dev/pci/if_em.h | 189 +++ sys/dev/pci/if_em_hw.c | 3567 +++++++++++++++++++++++++++++++++++++++++++++ sys/dev/pci/if_em_hw.h | 1784 +++++++++++++++++++++++ sys/dev/pci/if_em_osdep.h | 131 ++ 6 files changed, 8290 insertions(+), 1 deletion(-) create mode 100644 sys/dev/pci/if_em.c create mode 100644 sys/dev/pci/if_em.h create mode 100644 sys/dev/pci/if_em_hw.c create mode 100644 sys/dev/pci/if_em_hw.h create mode 100644 sys/dev/pci/if_em_osdep.h diff --git a/sys/dev/pci/files.pci b/sys/dev/pci/files.pci index 3bb17a3d590..908da3c0032 100644 --- a/sys/dev/pci/files.pci +++ b/sys/dev/pci/files.pci @@ -1,4 +1,4 @@ -# $OpenBSD: files.pci,v 1.142 2002/08/05 19:02:19 mickey Exp $ +# $OpenBSD: files.pci,v 1.143 2002/09/24 18:56:01 nate Exp $ # $NetBSD: files.pci,v 1.20 1996/09/24 17:47:15 christos Exp $ # # Config file and device description for machine-independent PCI code. @@ -274,6 +274,12 @@ file dev/pci/if_xl_pci.c xl_pci attach fxp at pci with fxp_pci file dev/pci/if_fxp_pci.c fxp_pci +# Intel Pro/1000 +device em: ether, ifnet, ifmedia +attach em at pci +file dev/pci/if_em.c em +file dev/pci/if_em_hw.c em + # DEC/Intel 21143 and "tulip" clone ethernet attach dc at pci with dc_pci file dev/pci/if_dc_pci.c dc_pci diff --git a/sys/dev/pci/if_em.c b/sys/dev/pci/if_em.c new file mode 100644 index 00000000000..f83e9f099d1 --- /dev/null +++ b/sys/dev/pci/if_em.c @@ -0,0 +1,2612 @@ +/************************************************************************** + +Copyright (c) 2001-2002 Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms of the Software, with or +without modification, are permitted provided that the following conditions +are met: + + 1. Redistributions of source code of the Software may retain the above + copyright notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form of the Software may reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors shall be used to endorse or promote products derived from + this Software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD$*/ + +#include "bpfilter.h" +#include "vlan.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#ifdef INET +#include +#include +#include +#include +#include +#endif + +#if NVLAN > 0 +#include +#include +#endif + +#if NBPFILTER > 0 +#include +#endif + +#include + +#include +#include +#include + +#include + +/********************************************************************* + * Set this to one to display debug statistics + *********************************************************************/ +int em_display_debug_stats = 0; + +/********************************************************************* + * Linked list of board private structures for all NICs found + *********************************************************************/ +#if 0 +struct em_softc *em_em_softc_list = NULL; +#endif + +/********************************************************************* + * Driver version + *********************************************************************/ + +char em_driver_version[] = "1.3.14"; + + +/********************************************************************* + * PCI Device ID Table + *********************************************************************/ +struct em_device +{ + u_int16_t vendor_id; + u_int16_t device_id; + int match; +}; + +struct em_device em_devs[] = +{ + /* Intel(R) PRO/1000 Network Connection */ + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_SC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_SC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LX, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_SC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_SC, 2}, + { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_LX, 2}, +}; + +/********************************************************************* + * Function prototypes + *********************************************************************/ +int em_probe(struct device *, void *, void *); +void em_attach(struct device *, struct device *, void *); + +#if 0 +int em_detach(void *); +int em_shutdown(void *); +#endif +int em_intr(void *); +void em_start(struct ifnet *); +int em_ioctl(struct ifnet *, IOCTL_CMD_TYPE, caddr_t); +void em_watchdog(struct ifnet *); +void em_init(void *); +void em_stop(void *); +void em_media_status(struct ifnet *, struct ifmediareq *); +int em_media_change(struct ifnet *); +void em_identify_hardware(struct em_softc *); +int em_allocate_pci_resources(struct em_softc *); +void em_free_pci_resources(struct em_softc *); +void em_local_timer(void *); +int em_hardware_init(struct em_softc *); +void em_setup_interface(struct em_softc *); +int em_setup_transmit_structures(struct em_softc *); +void em_initialize_transmit_unit(struct em_softc *); +int em_setup_receive_structures(struct em_softc *); +void em_initialize_receive_unit(struct em_softc *); +void em_enable_intr(struct em_softc *); +void em_disable_intr(struct em_softc *); +void em_free_transmit_structures(struct em_softc *); +void em_free_receive_structures(struct em_softc *); +void em_update_stats_counters(struct em_softc *); +void em_clean_transmit_interrupts(struct em_softc *); +int em_allocate_receive_structures(struct em_softc *); +int em_allocate_transmit_structures(struct em_softc *); +void em_process_receive_interrupts(struct em_softc *); +void em_receive_checksum(struct em_softc *, + struct em_rx_desc * rx_desc, + struct mbuf *); +#if 0 +void em_transmit_checksum_setup(struct em_softc *, + struct mbuf *, + struct em_tx_buffer *, + u_int32_t *, + u_int32_t *); +#endif /* 0 */ +void em_set_promisc(struct em_softc *); +void em_disable_promisc(struct em_softc *); +void em_set_multi(struct em_softc *); +void em_print_hw_stats(struct em_softc *); +void em_print_link_status(struct em_softc *); +int em_get_buf(struct em_rx_buffer *, struct em_softc *, + struct mbuf *); +void em_enable_vlans(struct em_softc *em_softc); + + +int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm, + bus_size_t size); +void em_free_dma(struct em_softc *sc, struct em_dmamap *emm); + +/********************************************************************* + * FreeBSD Device Interface Entry Points + *********************************************************************/ + +struct cfattach em_ca = { + sizeof(struct em_softc), em_probe, em_attach +}; + +struct cfdriver em_cd = { + 0, "em", DV_IFNET +}; + +/********************************************************************* + * Device identification routine + * + * em_probe determines if the driver should be loaded on + * adapter based on PCI vendor/device id of the adapter. + * + * return 0 on success, positive on failure + *********************************************************************/ + +int +em_probe(struct device *parent, void *match, void *aux) +{ + struct pci_attach_args *pa = (struct pci_attach_args *)aux; + int i; + + INIT_DEBUGOUT("em_probe: begin"); + + for (i = 0; i < sizeof(em_devs) / sizeof(em_devs[0]); i++) { + if (PCI_VENDOR(pa->pa_id) == em_devs[i].vendor_id && + PCI_PRODUCT(pa->pa_id) == em_devs[i].device_id) + return (em_devs[i].match); + } + + return (0); +} + +/********************************************************************* + * Device initialization routine + * + * The attach entry point is called when the driver is being loaded. + * This routine identifies the type of hardware, allocates all resources + * and initializes the hardware. + * + *********************************************************************/ + +void +em_attach(struct device *parent, struct device *self, void *aux) +{ + struct pci_attach_args *pa = aux; +#if 0 + pci_chipset_tag_t pc = pa->pa_pc; +#endif + struct em_softc *sc = (struct em_softc *)self; + int s; + int tsize, rsize; + + INIT_DEBUGOUT("em_attach: begin"); + s = splimp(); + + sc->osdep.em_pa = *pa; + + timeout_set(&sc->em_timeout, em_local_timer, sc); + + /* Determine hardware revision */ + em_identify_hardware(sc); + + /* Parameters (to be read from user) */ + sc->num_tx_desc = MAX_TXD; + sc->num_rx_desc = MAX_RXD; + sc->tx_int_delay = TIDV; + sc->rx_int_delay = RIDV; + sc->hw.autoneg = DO_AUTO_NEG; + sc->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT; + sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; + sc->hw.tbi_compatibility_en = TRUE; + sc->rx_buffer_len = EM_RXBUFFER_2048; + + sc->hw.fc_high_water = FC_DEFAULT_HI_THRESH; + sc->hw.fc_low_water = FC_DEFAULT_LO_THRESH; + sc->hw.fc_pause_time = FC_DEFAULT_TX_TIMER; + sc->hw.fc_send_xon = TRUE; + sc->hw.fc = em_fc_full; + + /* Set the max frame size assuming standard ethernet sized frames */ + sc->hw.max_frame_size = + ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN; + + sc->hw.min_frame_size = + MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN; + + /* This controls when hardware reports transmit completion status. */ + if ((EM_REPORT_TX_EARLY == 0) || (EM_REPORT_TX_EARLY == 1)) { + sc->hw.report_tx_early = EM_REPORT_TX_EARLY; + } else { + if (sc->hw.mac_type < em_82543) { + sc->hw.report_tx_early = 0; + } else { + sc->hw.report_tx_early = 1; + } + } + + if (em_allocate_pci_resources(sc)) { + printf("%s: Allocation of PCI resources failed\n", + sc->sc_dv.dv_xname); + em_free_pci_resources(sc); + splx(s); + return; + } + + tsize = EM_ROUNDUP(sc->num_tx_desc * + sizeof(struct em_tx_desc), 4096); + + /* Allocate Transmit Descriptor ring */ + if(em_malloc_dma(sc, &sc->osdep.em_tx, tsize)) { + printf("%s: Unable to allocate TxDescriptor memory\n", + sc->sc_dv.dv_xname); + em_free_pci_resources(sc); + splx(s); + return; + } + + sc->tx_desc_base = (struct em_tx_desc *)sc->osdep.em_tx.emm_kva; + + rsize = EM_ROUNDUP(sc->num_rx_desc * + sizeof(struct em_rx_desc), 4096); + + /* Allocate Receive Descriptor ring */ + if(em_malloc_dma(sc, &sc->osdep.em_rx, rsize)) { + printf("%s: Unable to allocate rx_desc memory\n", + sc->sc_dv.dv_xname); + em_free_pci_resources(sc); + em_free_dma(sc, &sc->osdep.em_tx); + splx(s); + return; + } + + sc->rx_desc_base = (struct em_rx_desc *)sc->osdep.em_rx.emm_kva; + + /* Initialize the hardware */ + if (em_hardware_init(sc)) { + printf("%s: Unable to initialize the hardware\n", + sc->sc_dv.dv_xname); + em_free_pci_resources(sc); + em_free_dma(sc, &sc->osdep.em_tx); + em_free_dma(sc, &sc->osdep.em_rx); + splx(s); + return; + } + + /* Copy the permanent MAC address out of the EEPROM */ + if (em_read_mac_addr(&sc->hw) < 0) { + printf("%s: EEPROM read error while reading mac address\n", + sc->sc_dv.dv_xname); + return; + } + + memcpy((char *)&sc->arpcom.ac_enaddr, sc->hw.mac_addr, + ETH_LENGTH_OF_ADDRESS); + + /* Setup OS specific network interface */ + em_setup_interface(sc); + + /* Initialize statistics */ + em_clear_hw_cntrs(&sc->hw); + em_update_stats_counters(sc); + sc->hw.get_link_status = 1; + em_check_for_link(&sc->hw); + + /* Print the link status */ + if (sc->link_active == 1) { + em_get_speed_and_duplex(&sc->hw, &sc->link_speed, + &sc->link_duplex); + } + + INIT_DEBUGOUT("em_attach: end"); + splx(s); +} + +/********************************************************************* + * Device removal routine + * + * The detach entry point is called when the driver is being removed. + * This routine stops the em_softc and deallocates all the resources + * that were allocated for driver operation. + * + * return 0 on success, positive on failure + *********************************************************************/ +#if 0 +int +em_detach(void* arg) +{ + struct em_softc *sc = arg; + struct ifnet *ifp = &sc->arpcom.ac_if; + int s; + + INIT_DEBUGOUT("em_detach: begin"); + s = splimp(); + + em_stop(sc); + em_phy_hw_reset(&sc->hw); + if_detach(ifp); + ether_ifdetach(ifp); + em_free_pci_resources(sc); + + /* Free Transmit Descriptor ring */ + if (sc->tx_desc_base) { + em_free_dma(sc, &sc->osdep.em_tx); + sc->tx_desc_base = NULL; + } + + /* Free Receive Descriptor ring */ + if (sc->rx_desc_base) { + em_free_dma(sc, &sc->osdep.em_rx); + sc->rx_desc_base = NULL; + } + +#if 0 + /* Remove from the em_softc list */ + if (em_em_softc_list == sc) + em_em_softc_list = sc->next; + if (sc->next != NULL) + sc->next->prev = sc->prev; + if (sc->prev != NULL) + sc->prev->next = sc->next; +#endif /* 0 */ + + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + ifp->if_timer = 0; + + splx(s); + return(0); +} + +int +em_shutdown(void* arg) +{ + struct em_softc *sc = arg; + em_stop(sc); + return(0); +} + +#endif /* 0 */ + +/********************************************************************* + * Transmit entry point + * + * em_start is called by the stack to initiate a transmit. + * The driver will remain in this routine as long as there are + * packets to transmit and transmit resources are available. + * In case resources are not available stack is notified and + * the packet is requeued. + **********************************************************************/ + +void +em_start(struct ifnet *ifp) +{ + int i, s; + struct mbuf *m_head; + u_int32_t txd_upper; + u_int32_t txd_lower; + struct em_tx_buffer *tx_buffer; + struct em_tx_desc *current_tx_desc = NULL; + struct em_softc * sc = ifp->if_softc; + + if (!sc->link_active) + return; + + s = splimp(); + + for(;;) { + struct ifvlan *ifv = NULL; + + IFQ_POLL(&ifp->if_snd, m_head); + + if (m_head == NULL) break; + + if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD) + em_clean_transmit_interrupts(sc); + + if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD) { + ifp->if_flags |= IFF_OACTIVE; + sc->no_tx_desc_avail++; + break; + } + + tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list); + if (!tx_buffer) { + sc->no_tx_buffer_avail1++; + /* + * OK so we should not get here but I've seen + * it so let us try to clean up and then try + * to get a tx_buffer again and only break if + * we still don't get one. + */ + em_clean_transmit_interrupts(sc); + tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list); + if (!tx_buffer) { + ifp->if_flags |= IFF_OACTIVE; + sc->no_tx_buffer_avail2++; + break; + } + } + + IFQ_DEQUEUE(&ifp->if_snd, m_head); + + SIMPLEQ_REMOVE_HEAD(&sc->free_tx_buffer_list, tx_buffer, + em_tx_entry); + + tx_buffer->num_tx_desc_used = 0; + tx_buffer->m_head = m_head; +#if 0 + if (ifp->if_hwassist > 0) { + em_transmit_checksum_setup(sc, m_head, tx_buffer, + &txd_upper, &txd_lower); + } else { +#endif + txd_upper = 0; + txd_lower = 0; +#if 0 + } +#endif + + /* Find out if we are in vlan mode */ + if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == + (M_PROTO1|M_PKTHDR) && + m_head->m_pkthdr.rcvif != NULL && + m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) + ifv = m_head->m_pkthdr.rcvif->if_softc; + + if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat, + tx_buffer->dmamap, + m_head, BUS_DMA_NOWAIT)) + return; + + for (i = 0; i < tx_buffer->dmamap->dm_nsegs; i++) { + bus_addr_t addr= tx_buffer->dmamap->dm_segs[i].ds_addr; + bus_size_t len = tx_buffer->dmamap->dm_segs[i].ds_len; + + current_tx_desc = sc->next_avail_tx_desc; + current_tx_desc->buffer_addr = htole64(addr); + + current_tx_desc->lower.data = htole32(txd_lower | len); + current_tx_desc->upper.data = htole32(txd_upper); + + if (current_tx_desc == sc->last_tx_desc) + sc->next_avail_tx_desc = + sc->first_tx_desc; + else + sc->next_avail_tx_desc++; + + sc->num_tx_desc_avail--; + tx_buffer->num_tx_desc_used++; + } + + /* Put this tx_buffer at the end in the "in use" list */ + SIMPLEQ_INSERT_TAIL(&sc->used_tx_buffer_list, tx_buffer, + em_tx_entry); + + if (ifv != NULL) { + /* Tell hardware to add tag */ + current_tx_desc->lower.data |= + htole32(E1000_TXD_CMD_VLE); + + /* Set the vlan id */ + current_tx_desc->upper.fields.special = + htole16(ifv->ifv_tag); + } + + /* + * Last Descriptor of Packet needs End Of Packet + * (EOP), Report Status (RS) and append Ethernet CRC + * (IFCS) bits set. + */ + current_tx_desc->lower.data |= + htole32(sc->txd_cmd|E1000_TXD_CMD_EOP); + +#if NBPFILTER > 0 + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, m_head); +#endif + + /* + * Advance the Transmit Descriptor Tail (Tdt), this + * tells the E1000 that this frame is available to + * transmit. + */ + E1000_WRITE_REG(&sc->hw, TDT, + (((_BSD_PTRDIFF_T_) sc->next_avail_tx_desc - + (_BSD_PTRDIFF_T_) sc->first_tx_desc) >> 4)); + } /* end of while loop */ + + splx(s); + + /* Set timeout in case chip has problems transmitting */ + ifp->if_timer = EM_TX_TIMEOUT; + + return; +} + +/********************************************************************* + * Ioctl entry point + * + * em_ioctl is called when the user wants to configure the + * interface. + * + * return 0 on success, positive on failure + **********************************************************************/ + +int +em_ioctl(struct ifnet *ifp, IOCTL_CMD_TYPE command, caddr_t data) +{ + int s, error = 0; + struct ifreq *ifr = (struct ifreq *) data; + struct ifaddr *ifa = (struct ifaddr *)data; + struct em_softc * sc = ifp->if_softc; + + s = splimp(); + + if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { + splx(s); + return (error); + } + + switch (command) { + case SIOCSIFADDR: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFADDR (Set Interface " + "Addr)"); + ifp->if_flags |= IFF_UP; + switch (ifa->ifa_addr->sa_family) { +#ifdef INET + case AF_INET: + em_init(sc); + arp_ifinit(&sc->arpcom, ifa); + break; +#endif /* INET */ + default: + em_init(sc); + break; + } + break; + case SIOCSIFMTU: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); + if (ifr->ifr_mtu > MAX_JUMBO_FRAME_SIZE - ETHER_HDR_LEN) { + error = EINVAL; + } else { + ifp->if_mtu = ifr->ifr_mtu; + sc->hw.max_frame_size = + ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; + em_init(sc); + } + break; + case SIOCSIFFLAGS: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface " + "Flags)"); + if (ifp->if_flags & IFF_UP) { + if (ifp->if_flags & IFF_RUNNING && + ifp->if_flags & IFF_PROMISC) { + em_set_promisc(sc); + } else if (ifp->if_flags & IFF_RUNNING && + !(ifp->if_flags & IFF_PROMISC)) { + em_disable_promisc(sc); + } else + em_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) { + em_stop(sc); + } + } + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); +#if 0 + if (ifp->if_flags & IFF_RUNNING) { + em_disable_intr(sc); + em_set_multi(sc); + if (sc->hw.mac_type == em_82542_rev2_0) + em_initialize_receive_unit(sc); + em_enable_intr(sc); + } + break; +#endif /* 0 */ + error = (command == SIOCADDMULTI) + ? ether_addmulti(ifr, &sc->arpcom) + : ether_delmulti(ifr, &sc->arpcom); + + if (error == ENETRESET) { + if (ifp->if_flags & IFF_RUNNING) { + em_disable_intr(sc); + em_set_multi(sc); + if (sc->hw.mac_type == em_82542_rev2_0) + em_initialize_receive_unit(sc); + em_enable_intr(sc); + } + error = 0; + } + break; + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface " + "Media)"); + error = ifmedia_ioctl(ifp, ifr, &sc->media, command); + break; +#if 0 + case SIOCSIFCAP: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); + mask = ifr->ifr_reqcap ^ ifp->if_capenable; + if (mask & IFCAP_HWCSUM) { + if (IFCAP_HWCSUM & ifp->if_capenable) + ifp->if_capenable &= ~IFCAP_HWCSUM; + else + ifp->if_capenable |= IFCAP_HWCSUM; + if (ifp->if_flags & IFF_RUNNING) + em_init(sc); + } + break; +#endif /* 0 */ + default: + IOCTL_DEBUGOUT1("ioctl received: UNKNOWN (0x%d)\n", + (int)command); + error = EINVAL; + } + + splx(s); + return(error); +} + +void +em_set_promisc(struct em_softc * sc) +{ + + u_int32_t reg_rctl; + struct ifnet *ifp = &sc->arpcom.ac_if; + + reg_rctl = E1000_READ_REG(&sc->hw, RCTL); + + if (ifp->if_flags & IFF_PROMISC) { + reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + } else if (ifp->if_flags & IFF_ALLMULTI) { + reg_rctl |= E1000_RCTL_MPE; + reg_rctl &= ~E1000_RCTL_UPE; + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + } + + return; +} + +void +em_disable_promisc(struct em_softc * sc) +{ + u_int32_t reg_rctl; + + reg_rctl = E1000_READ_REG(&sc->hw, RCTL); + + reg_rctl &= (~E1000_RCTL_UPE); + reg_rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + + return; +} + + +/********************************************************************* + * Multicast Update + * + * This routine is called whenever multicast address list is updated. + * + **********************************************************************/ + +void +em_set_multi(struct em_softc * sc) +{ + u_int32_t reg_rctl = 0; + u_int8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS]; + u_int16_t pci_cmd_word; +#if 0 + struct ifmultiaddr *ifma; +#endif + int mcnt = 0; + struct pci_attach_args *pa = &sc->osdep.em_pa; +#if 0 + struct ifnet *ifp = &sc->arpcom.ac_if; +#endif + + IOCTL_DEBUGOUT("em_set_multi: begin"); + + if (sc->hw.mac_type == em_82542_rev2_0) { + reg_rctl = E1000_READ_REG(&sc->hw, RCTL); + if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { + pci_cmd_word = sc->hw.pci_cmd_word & + ~CMD_MEM_WRT_INVALIDATE; + pci_conf_write(pa->pa_pc, pa->pa_tag, + PCI_COMMAND_STATUS_REG, pci_cmd_word); + } + reg_rctl |= E1000_RCTL_RST; + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + msec_delay(5); + } + +#if 0 +#if __FreeBSD_version < 500000 + LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { +#else + TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { +#endif + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS); + mcnt++; + } +#endif /* 0 */ + + if (mcnt > MAX_NUM_MULTICAST_ADDRESSES) { + reg_rctl = E1000_READ_REG(&sc->hw, RCTL); + reg_rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + } else + em_mc_addr_list_update(&sc->hw, mta, mcnt, 0); + + if (sc->hw.mac_type == em_82542_rev2_0) { + reg_rctl = E1000_READ_REG(&sc->hw, RCTL); + reg_rctl &= ~E1000_RCTL_RST; + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + msec_delay(5); + if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { + pci_conf_write(pa->pa_pc, pa->pa_tag, + PCI_COMMAND_STATUS_REG, + sc->hw.pci_cmd_word); + } + } + + return; +} + +/********************************************************************* + * Watchdog entry point + * + * This routine is called whenever hardware quits transmitting. + * + **********************************************************************/ + +void +em_watchdog(struct ifnet *ifp) +{ + struct em_softc * sc; + sc = ifp->if_softc; + + /* If we are in this routine because of pause frames, then + * don't reset the hardware. + */ + if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_TXOFF) { + ifp->if_timer = EM_TX_TIMEOUT; + return; + } + + printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname); + + ifp->if_flags &= ~IFF_RUNNING; + + em_stop(sc); + em_init(sc); + + ifp->if_oerrors++; + return; +} + +/********************************************************************* + * Timer routine + * + * This routine checks for link status and updates statistics. + * + **********************************************************************/ + +void +em_local_timer(void *arg) +{ + int s; + struct ifnet *ifp; + struct em_softc * sc = arg; + ifp = &sc->arpcom.ac_if; + + s = splimp(); + + em_check_for_link(&sc->hw); + em_print_link_status(sc); + em_update_stats_counters(sc); + if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING) { + em_print_hw_stats(sc); + } + timeout_add(&sc->em_timeout, 2*hz); + + splx(s); + return; +} + +void +em_print_link_status(struct em_softc * sc) +{ + if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) { + if (sc->link_active == 0) { + em_get_speed_and_duplex(&sc->hw, + &sc->link_speed, + &sc->link_duplex); + printf("%s: Link is up %d Mbps %s\n", + sc->sc_dv.dv_xname, + sc->link_speed, + ((sc->link_duplex == FULL_DUPLEX) ? + "Full Duplex" : "Half Duplex")); + sc->link_active = 1; + } + } else { + if (sc->link_active == 1) { + sc->link_speed = 0; + sc->link_duplex = 0; + printf("%s: Link is Down\n", sc->sc_dv.dv_xname); + sc->link_active = 0; + } + } + + return; +} + +/********************************************************************* + * Init entry point + * + * This routine is used in two ways. It is used by the stack as + * init entry point in network interface structure. It is also used + * by the driver as a hw/sw initialization routine to get to a + * consistent state. + * + * return 0 on success, positive on failure + **********************************************************************/ + +void +em_init(void *arg) +{ + int s; + struct ifnet *ifp; + struct em_softc * sc= arg; + + INIT_DEBUGOUT("em_init: begin"); + + s = splimp(); + + em_stop(sc); + + /* Initialize the hardware */ + if (em_hardware_init(sc)) { + printf("%s: Unable to initialize the hardware\n", + sc->sc_dv.dv_xname); + splx(s); + return; + } + + em_enable_vlans(sc); + + /* Prepare transmit descriptors and buffers */ + if (em_setup_transmit_structures(sc)) { + printf("%s: Could not setup transmit structures\n", + sc->sc_dv.dv_xname); + em_stop(sc); + splx(s); + return; + } + em_initialize_transmit_unit(sc); + + /* Setup Multicast table */ + em_set_multi(sc); + + /* Prepare receive descriptors and buffers */ + if (em_setup_receive_structures(sc)) { + printf("%s: Could not setup receive structures\n", + sc->sc_dv.dv_xname); + em_stop(sc); + splx(s); + return; + } + em_initialize_receive_unit(sc); + + ifp = &sc->arpcom.ac_if; + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + +#if 0 + if (sc->hw.mac_type >= em_82543) { + if (ifp->if_capenable & IFCAP_TXCSUM) + ifp->if_hwassist = EM_CHECKSUM_FEATURES; + else + ifp->if_hwassist = 0; + } +#endif /* 0 */ + + timeout_add(&sc->em_timeout, 2*hz); + em_clear_hw_cntrs(&sc->hw); + em_enable_intr(sc); + + splx(s); + return; +} + + +/********************************************************************* + * + * This routine disables all traffic on the em_softc by issuing a + * global reset on the MAC and deallocates TX/RX buffers. + * + **********************************************************************/ + +void +em_stop(void *arg) +{ + struct ifnet *ifp; + struct em_softc * sc = arg; + ifp = &sc->arpcom.ac_if; + + INIT_DEBUGOUT("em_stop: begin\n"); + em_disable_intr(sc); + em_reset_hw(&sc->hw); + timeout_del(&sc->em_timeout); + em_free_transmit_structures(sc); + em_free_receive_structures(sc); + + + /* Tell the stack that the interface is no longer active */ + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + + return; +} + +/********************************************************************* + * + * Interrupt Service routine + * + **********************************************************************/ + +int +em_intr(void *arg) +{ + u_int32_t loop_cnt = EM_MAX_INTR; + u_int32_t reg_icr; + struct ifnet *ifp; + struct em_softc *sc= arg; + + ifp = &sc->arpcom.ac_if; + + em_disable_intr(sc); + while (loop_cnt > 0 && + (reg_icr = E1000_READ_REG(&sc->hw, ICR)) != 0) { + + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + timeout_del(&sc->em_timeout); + sc->hw.get_link_status = 1; + em_check_for_link(&sc->hw); + em_print_link_status(sc); + timeout_add(&sc->em_timeout, 2*hz); + } + + if (ifp->if_flags & IFF_RUNNING) { + em_process_receive_interrupts(sc); + em_clean_transmit_interrupts(sc); + } + loop_cnt--; + } + + em_enable_intr(sc); + + if (ifp->if_flags & IFF_RUNNING && IFQ_IS_EMPTY(&ifp->if_snd) == 0) + em_start(ifp); + + return (EM_MAX_INTR != loop_cnt); +} + + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called whenever the user queries the status of + * the interface using ifconfig. + * + **********************************************************************/ +void +em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) +{ + struct em_softc * sc= ifp->if_softc; + + INIT_DEBUGOUT("em_media_status: begin"); + + em_check_for_link(&sc->hw); + if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) { + if (sc->link_active == 0) { + em_get_speed_and_duplex(&sc->hw, + &sc->link_speed, + &sc->link_duplex); + sc->link_active = 1; + } + } else { + if (sc->link_active == 1) { + sc->link_speed = 0; + sc->link_duplex = 0; + sc->link_active = 0; + } + } + + ifmr->ifm_status = IFM_AVALID; + ifmr->ifm_active = IFM_ETHER; + + if (!sc->link_active) + return; + + ifmr->ifm_status |= IFM_ACTIVE; + + if (sc->hw.media_type == em_media_type_fiber) { + ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; + } else { + switch (sc->link_speed) { + case 10: + ifmr->ifm_active |= IFM_10_T; + break; + case 100: + ifmr->ifm_active |= IFM_100_TX; + break; + case 1000: +#if __FreeBSD_version < 500000 + ifmr->ifm_active |= IFM_1000_TX; +#else + ifmr->ifm_active |= IFM_1000_T; +#endif + break; + } + if (sc->link_duplex == FULL_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + else + ifmr->ifm_active |= IFM_HDX; + } + return; +} + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called when the user changes speed/duplex using + * media/mediopt option with ifconfig. + * + **********************************************************************/ +int +em_media_change(struct ifnet *ifp) +{ + struct em_softc * sc = ifp->if_softc; + struct ifmedia *ifm = &sc->media; + + INIT_DEBUGOUT("em_media_change: begin"); + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return(EINVAL); + + switch (IFM_SUBTYPE(ifm->ifm_media)) { + case IFM_AUTO: + sc->hw.autoneg = DO_AUTO_NEG; + sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; + break; + case IFM_1000_SX: +#if __FreeBSD_version < 500000 + case IFM_1000_TX: +#else + case IFM_1000_T: +#endif + sc->hw.autoneg = DO_AUTO_NEG; + sc->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case IFM_100_TX: + sc->hw.autoneg = FALSE; + sc->hw.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + sc->hw.forced_speed_duplex = em_100_full; + else + sc->hw.forced_speed_duplex = em_100_half; + break; + case IFM_10_T: + sc->hw.autoneg = FALSE; + sc->hw.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + sc->hw.forced_speed_duplex = em_10_full; + else + sc->hw.forced_speed_duplex = em_10_half; + break; + default: + printf("%s: Unsupported media type\n", sc->sc_dv.dv_xname); + } + + em_init(sc); + + return(0); +} +/* Section end: Other registered entry points */ + + +/********************************************************************* + * + * Determine hardware revision. + * + **********************************************************************/ +void +em_identify_hardware(struct em_softc * sc) +{ + u_int32_t reg; + struct pci_attach_args *pa = &sc->osdep.em_pa; + + /* Make sure our PCI config space has the necessary stuff set */ + sc->hw.pci_cmd_word = pci_conf_read(pa->pa_pc, pa->pa_tag, + PCI_COMMAND_STATUS_REG); + if (!((sc->hw.pci_cmd_word & PCI_COMMAND_MASTER_ENABLE) && + (sc->hw.pci_cmd_word & PCI_COMMAND_MEM_ENABLE))) { + printf("%s: Memory Access and/or Bus Master bits not set!\n", + sc->sc_dv.dv_xname); + sc->hw.pci_cmd_word |= + (PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE); + pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, + sc->hw.pci_cmd_word); + } + + /* Save off the information about this board */ + sc->hw.vendor_id = PCI_VENDOR(pa->pa_id); + sc->hw.device_id = PCI_PRODUCT(pa->pa_id); + + reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); + sc->hw.revision_id = PCI_REVISION(reg); + + reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); + + sc->hw.subsystem_vendor_id = PCI_VENDOR(reg); + sc->hw.subsystem_id = PCI_PRODUCT(reg); + + /* Set MacType, etc. based on this PCI info */ + switch (sc->hw.device_id) { + case E1000_DEV_ID_82542: + sc->hw.mac_type = (sc->hw.revision_id == 3) ? + em_82542_rev2_1 : em_82542_rev2_0; + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + sc->hw.mac_type = em_82543; + break; + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + sc->hw.mac_type = em_82544; + break; + case E1000_DEV_ID_82540EM: + sc->hw.mac_type = em_82540; + break; + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545EM_COPPER: + sc->hw.mac_type = em_82545; + break; + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_COPPER: + sc->hw.mac_type = em_82546; + break; + default: + INIT_DEBUGOUT1("Unknown device id 0x%x", sc->hw.device_id); + } + return; +} + +int +em_allocate_pci_resources(struct em_softc * sc) +{ + int i, val, rid; + pci_intr_handle_t ih; + const char *intrstr = NULL; + struct pci_attach_args *pa = &sc->osdep.em_pa; + pci_chipset_tag_t pc = pa->pa_pc; + + val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_MMBA); + if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) { + printf(": mmba isn't memory"); + return (ENXIO); + } + if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE(val), 0, + &sc->osdep.em_btag, &sc->osdep.em_bhandle, + &sc->osdep.em_membase, &sc->osdep.em_memsize, 0)) { + printf(": can't find mem space"); + return (ENXIO); + } + +#if 0 + if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_32BIT, 0, + &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase, + &sc->osdep.em_memsize, 0) && + pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_64BIT, 0, + &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase, + &sc->osdep.em_memsize, 0)) { + printf(": can't find mem space"); + return (ENXIO); + } +#endif /* 0 */ + + if (sc->hw.mac_type > em_82543) { + /* Figure our where our IO BAR is ? */ + rid = EM_MMBA; + for (i = 0; i < 5; i++) { + val = pci_conf_read(pa->pa_pc, pa->pa_tag, rid); + if (val & 0x00000001) { + sc->io_rid = rid; + break; + } + rid += 4; + } + if (pci_mapreg_map(pa, rid, PCI_MAPREG_TYPE_IO, 0, + &sc->osdep.em_iobtag, + &sc->osdep.em_iobhandle, + &sc->osdep.em_iobase, + &sc->osdep.em_iosize, 0)) { + printf(": can't find io space"); + return (ENXIO); + } + } + + if (pci_intr_map(pa, &ih)) { + printf(": couldn't map interrupt\n"); + return (ENXIO); + } + + intrstr = pci_intr_string(pc, ih); + sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, em_intr, sc, + sc->sc_dv.dv_xname); + if (sc->sc_intrhand == NULL) { + printf(": couldn't establish interrupt"); + if (intrstr != NULL) + printf(" at %s", intrstr); + printf("\n"); + return (ENXIO); + } + printf(": %s\n", intrstr); + + sc->hw.back = &sc->osdep; + + return(0); +} + +void +em_free_pci_resources(struct em_softc* sc) +{ + struct pci_attach_args *pa = &sc->osdep.em_pa; + pci_chipset_tag_t pc = pa->pa_pc; + + if(sc->sc_intrhand) + pci_intr_disestablish(pc, sc->sc_intrhand); + sc->sc_intrhand = 0; + + if(sc->osdep.em_iobase) + bus_space_unmap(sc->osdep.em_iobtag, sc->osdep.em_iobhandle, + sc->osdep.em_iosize); + sc->osdep.em_iobase = 0; + + if(sc->osdep.em_membase) + bus_space_unmap(sc->osdep.em_btag, sc->osdep.em_bhandle, + sc->osdep.em_memsize); + sc->osdep.em_membase = 0; + +} + +/********************************************************************* + * + * Initialize the hardware to a configuration as specified by the + * em_softc structure. The controller is reset, the EEPROM is + * verified, the MAC address is set, then the shared initialization + * routines are called. + * + **********************************************************************/ +int +em_hardware_init(struct em_softc * sc) +{ + /* Issue a global reset */ + em_reset_hw(&sc->hw); + + /* Make sure we have a good EEPROM before we read from it */ + if (em_validate_eeprom_checksum(&sc->hw) < 0) { + printf("%s: The EEPROM Checksum Is Not Valid\n", + sc->sc_dv.dv_xname); + return(EIO); + } + + if (em_read_part_num(&sc->hw, &(sc->part_num)) < 0) { + printf("%s: EEPROM read error while reading part number\n", + sc->sc_dv.dv_xname); + return(EIO); + } + + if (em_init_hw(&sc->hw) < 0) { + printf("%s: Hardware Initialization Failed", + sc->sc_dv.dv_xname); + return(EIO); + } + + em_check_for_link(&sc->hw); + if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) + sc->link_active = 1; + else + sc->link_active = 0; + + if (sc->link_active) { + em_get_speed_and_duplex(&sc->hw, + &sc->link_speed, + &sc->link_duplex); + } else { + sc->link_speed = 0; + sc->link_duplex = 0; + } + + return(0); +} + +/********************************************************************* + * + * Setup networking device structure and register an interface. + * + **********************************************************************/ +void +em_setup_interface(struct em_softc * sc) +{ + struct ifnet *ifp; + INIT_DEBUGOUT("em_setup_interface: begin"); + + ifp = &sc->arpcom.ac_if; + ifp->if_mtu = ETHERMTU; + ifp->if_output = ether_output; + ifp->if_baudrate = 1000000000; +#if 0 + ifp->if_init = em_init; +#endif + ifp->if_softc = sc; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = em_ioctl; + ifp->if_start = em_start; + ifp->if_watchdog = em_watchdog; + IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1); + IFQ_SET_READY(&ifp->if_snd); + + bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ); + + +#if 0 + if (sc->hw.mac_type >= em_82543) { + ifp->if_capabilities = IFCAP_HWCSUM; + ifp->if_capenable = ifp->if_capabilities; + } +#endif /* 0 */ + + /* + * Specify the media types supported by this em_softc and register + * callbacks to update media and link information + */ + ifmedia_init(&sc->media, IFM_IMASK, em_media_change, + em_media_status); + if (sc->hw.media_type == em_media_type_fiber) { + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX, + 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, + 0, NULL); + } else { + ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, + 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, + 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, + 0, NULL); +#if __FreeBSD_version < 500000 + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX | IFM_FDX, + 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX, 0, NULL); +#else + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, + 0, NULL); + ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); +#endif + } + ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); + ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO); + + if_attach(ifp); + ether_ifattach(ifp); + + return; +} + + +/********************************************************************* + * + * Allocate memory for tx_buffer structures. The tx_buffer stores all + * the information needed to transmit a packet on the wire. + * + **********************************************************************/ +int +em_allocate_transmit_structures(struct em_softc * sc) +{ + if (!(sc->tx_buffer_area = + (struct em_tx_buffer *) malloc(sizeof(struct em_tx_buffer) * + sc->num_tx_desc, M_DEVBUF, + M_NOWAIT))) { + printf("%s: Unable to allocate tx_buffer memory\n", + sc->sc_dv.dv_xname); + return ENOMEM; + } + + bzero(sc->tx_buffer_area, + sizeof(struct em_tx_buffer) * sc->num_tx_desc); + + return 0; +} + +/********************************************************************* + * + * Allocate and initialize transmit structures. + * + **********************************************************************/ +int +em_setup_transmit_structures(struct em_softc* sc) +{ + struct em_tx_buffer *tx_buffer; + int i; + + if (em_allocate_transmit_structures(sc)) + return ENOMEM; + + sc->first_tx_desc = sc->tx_desc_base; + sc->last_tx_desc = + sc->first_tx_desc + (sc->num_tx_desc - 1); + + + SIMPLEQ_INIT(&sc->free_tx_buffer_list); + SIMPLEQ_INIT(&sc->used_tx_buffer_list); + + tx_buffer = sc->tx_buffer_area; + + /* Setup the linked list of the tx_buffer's */ + for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) { + bzero((void *) tx_buffer, sizeof(struct em_tx_buffer)); + if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat, MCLBYTES, 32, + MCLBYTES, 0, BUS_DMA_NOWAIT, + &tx_buffer->dmamap)) + return ENOBUFS; + SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list, + tx_buffer, em_tx_entry); + } + + bzero((void *) sc->first_tx_desc, + (sizeof(struct em_tx_desc)) * sc->num_tx_desc); + + /* Setup TX descriptor pointers */ + sc->next_avail_tx_desc = sc->first_tx_desc; + sc->oldest_used_tx_desc = sc->first_tx_desc; + + /* Set number of descriptors available */ + sc->num_tx_desc_avail = sc->num_tx_desc; + + /* Set checksum context */ + sc->active_checksum_context = OFFLOAD_NONE; + + return 0; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +void +em_initialize_transmit_unit(struct em_softc * sc) +{ + u_int32_t reg_tctl; + u_int32_t reg_tipg = 0; + + /* Setup the Base and Length of the Tx Descriptor Ring */ + E1000_WRITE_REG(&sc->hw, TDBAL, + sc->osdep.em_tx.emm_dmamap->dm_segs[0].ds_addr); + E1000_WRITE_REG(&sc->hw, TDBAH, 0); + E1000_WRITE_REG(&sc->hw, TDLEN, + sc->num_tx_desc * + sizeof(struct em_tx_desc)); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG(&sc->hw, TDH, 0); + E1000_WRITE_REG(&sc->hw, TDT, 0); + + + HW_DEBUGOUT2("Base = %x, Length = %x\n", + E1000_READ_REG(&sc->hw, TDBAL), + E1000_READ_REG(&sc->hw, TDLEN)); + + + /* Set the default values for the Tx Inter Packet Gap timer */ + switch (sc->hw.mac_type) { + case em_82543: + case em_82544: + case em_82540: + case em_82545: + case em_82546: + if (sc->hw.media_type == em_media_type_fiber) + reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + break; + case em_82542_rev2_0: + case em_82542_rev2_1: + reg_tipg = DEFAULT_82542_TIPG_IPGT; + reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + break; + default: + printf("%s: Invalid mac type detected\n", sc->sc_dv.dv_xname); + } + E1000_WRITE_REG(&sc->hw, TIPG, reg_tipg); + E1000_WRITE_REG(&sc->hw, TIDV, sc->tx_int_delay); + + /* Program the Transmit Control Register */ + reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); + if (sc->link_duplex == 1) { + reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; + } else { + reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; + } + E1000_WRITE_REG(&sc->hw, TCTL, reg_tctl); + + /* Setup Transmit Descriptor Settings for this adapter */ + sc->txd_cmd = E1000_TXD_CMD_IFCS; + + if (sc->tx_int_delay > 0) + sc->txd_cmd |= E1000_TXD_CMD_IDE; + + if (sc->hw.report_tx_early == 1) + sc->txd_cmd |= E1000_TXD_CMD_RS; + else + sc->txd_cmd |= E1000_TXD_CMD_RPS; + + return; +} + +/********************************************************************* + * + * Free all transmit related data structures. + * + **********************************************************************/ +void +em_free_transmit_structures(struct em_softc* sc) +{ + struct em_tx_buffer *tx_buffer; + int i; + + INIT_DEBUGOUT("free_transmit_structures: begin"); + + if (sc->tx_buffer_area != NULL) { + tx_buffer = sc->tx_buffer_area; + for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) { + if (tx_buffer->m_head != NULL) + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + } + if (sc->tx_buffer_area != NULL) { + free(sc->tx_buffer_area, M_DEVBUF); + sc->tx_buffer_area = NULL; + } + return; +} + +/********************************************************************* + * + * The offload context needs to be set when we transfer the first + * packet of a particular protocol (TCP/UDP). We change the + * context only if the protocol type changes. + * + **********************************************************************/ +#if 0 +void +em_transmit_checksum_setup(struct em_softc * sc, + struct mbuf *mp, + struct em_tx_buffer *tx_buffer, + u_int32_t *txd_upper, + u_int32_t *txd_lower) +{ + struct em_context_desc *TXD; + struct em_tx_desc * current_tx_desc; + if (mp->m_pkthdr.csum_flags) { + + if (mp->m_pkthdr.csum_flags & CSUM_TCP) { + *txd_upper = E1000_TXD_POPTS_TXSM << 8; + *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + if (sc->active_checksum_context == OFFLOAD_TCP_IP) + return; + else + sc->active_checksum_context = OFFLOAD_TCP_IP; + + } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) { + *txd_upper = E1000_TXD_POPTS_TXSM << 8; + *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + if (sc->active_checksum_context == OFFLOAD_UDP_IP) + return; + else + sc->active_checksum_context = OFFLOAD_UDP_IP; + } else { + *txd_upper = 0; + *txd_lower = 0; + return; + } + } else { + *txd_upper = 0; + *txd_lower = 0; + return; + } + + /* If we reach this point, the checksum offload context + * needs to be reset. + */ + current_tx_desc = sc->next_avail_tx_desc; + TXD = (struct em_context_desc *)current_tx_desc; + + TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN; + TXD->lower_setup.ip_fields.ipcso = + ETHER_HDR_LEN + offsetof(struct ip, ip_sum); + TXD->lower_setup.ip_fields.ipcse = + ETHER_HDR_LEN + sizeof(struct ip) - 1; + + TXD->upper_setup.tcp_fields.tucss = + ETHER_HDR_LEN + sizeof(struct ip); + TXD->upper_setup.tcp_fields.tucse = 0; + + if (sc->active_checksum_context == OFFLOAD_TCP_IP) { + TXD->upper_setup.tcp_fields.tucso = + ETHER_HDR_LEN + sizeof(struct ip) + + offsetof(struct tcphdr, th_sum); + } else if (sc->active_checksum_context == OFFLOAD_UDP_IP) { + TXD->upper_setup.tcp_fields.tucso = + ETHER_HDR_LEN + sizeof(struct ip) + + offsetof(struct udphdr, uh_sum); + } + + TXD->tcp_seg_setup.data = 0; + TXD->cmd_and_length = E1000_TXD_CMD_DEXT; + + if (current_tx_desc == sc->last_tx_desc) + sc->next_avail_tx_desc = sc->first_tx_desc; + else + sc->next_avail_tx_desc++; + + sc->num_tx_desc_avail--; + + tx_buffer->num_tx_desc_used++; + return; +} +#endif /* 0 */ + + +/********************************************************************* + * + * Get a buffer from system mbuf buffer pool. + * + **********************************************************************/ +int +em_get_buf(struct em_rx_buffer *rx_buffer, struct em_softc *sc, + struct mbuf *mp) +{ + struct mbuf *nmp; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + if (mp == NULL) { + MGETHDR(nmp, M_DONTWAIT, MT_DATA); + if (nmp == NULL) { + sc->mbuf_alloc_failed++; + return(ENOBUFS); + } + MCLGET(nmp, M_DONTWAIT); + if ((nmp->m_flags & M_EXT) == 0) { + m_freem(nmp); + sc->mbuf_cluster_failed++; + return(ENOBUFS); + } + nmp->m_len = nmp->m_pkthdr.len = MCLBYTES; + } else { + nmp = mp; + nmp->m_len = nmp->m_pkthdr.len = MCLBYTES; + nmp->m_data = nmp->m_ext.ext_buf; + nmp->m_next = NULL; + } + + if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat, + rx_buffer->dmamap, + nmp, BUS_DMA_NOWAIT)) + return(ENOBUFS); + + if (ifp->if_mtu <= ETHERMTU) + m_adj(nmp, ETHER_ALIGN); + + rx_buffer->m_head = nmp; + rx_buffer->buffer_addr = + rx_buffer->dmamap->dm_segs[0].ds_addr + ETHER_ALIGN; + + return(0); +} + +/********************************************************************* + * + * Allocate memory for rx_buffer structures. Since we use one + * rx_buffer per received packet, the maximum number of rx_buffer's + * that we'll need is equal to the number of receive descriptors + * that we've allocated. + * + **********************************************************************/ +int +em_allocate_receive_structures(struct em_softc* sc) +{ + int i; + struct em_rx_buffer *rx_buffer; + + if (!(sc->rx_buffer_area = + (struct em_rx_buffer *) malloc(sizeof(struct em_rx_buffer) * + sc->num_rx_desc, M_DEVBUF, + M_NOWAIT))) { + printf("%s: Unable to allocate rx_buffer memory\n", + sc->sc_dv.dv_xname); + return(ENOMEM); + } + + bzero(sc->rx_buffer_area, + sizeof(struct em_rx_buffer) * sc->num_rx_desc); + + for (i = 0, rx_buffer = sc->rx_buffer_area; + i < sc->num_rx_desc; i++, rx_buffer++) { + + if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat, + MCLBYTES, 1, MCLBYTES, 0, + BUS_DMA_NOWAIT, + &rx_buffer->dmamap)) + return ENOBUFS; + + if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) { + rx_buffer->m_head = NULL; + return(ENOBUFS); + } + } + + return(0); +} + +/********************************************************************* + * + * Allocate and initialize receive structures. + * + **********************************************************************/ +int +em_setup_receive_structures(struct em_softc * sc) +{ + struct em_rx_buffer *rx_buffer; + struct em_rx_desc *rx_desc; + int i; + + if (em_allocate_receive_structures(sc)) + return ENOMEM; + + SIMPLEQ_INIT(&sc->rx_buffer_list); + + sc->first_rx_desc = + (struct em_rx_desc *) sc->rx_desc_base; + sc->last_rx_desc = + sc->first_rx_desc + (sc->num_rx_desc - 1); + + rx_buffer = (struct em_rx_buffer *) sc->rx_buffer_area; + + bzero((void *) sc->first_rx_desc, + (sizeof(struct em_rx_desc)) * sc->num_rx_desc); + + /* Build a linked list of rx_buffer's */ + for (i = 0, rx_desc = sc->first_rx_desc; + i < sc->num_rx_desc; + i++, rx_buffer++, rx_desc++) { + if (rx_buffer->m_head == NULL) + printf("%s: Receive buffer memory not allocated", + sc->sc_dv.dv_xname); + else { + rx_desc->buffer_addr = htole64(rx_buffer->buffer_addr); + SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list, + rx_buffer, em_rx_entry); + } + } + + /* Setup our descriptor pointers */ + sc->next_rx_desc_to_check = sc->first_rx_desc; + + return(0); +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +void +em_initialize_receive_unit(struct em_softc * sc) +{ + u_int32_t reg_rctl; +#if 0 + u_int32_t reg_rxcsum; +#endif + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + /* + * Make sure receives are disabled while setting up the + * descriptor ring + */ + E1000_WRITE_REG(&sc->hw, RCTL, 0); + + /* Set the Receive Delay Timer Register */ + E1000_WRITE_REG(&sc->hw, RDTR, + sc->rx_int_delay | E1000_RDT_FPDB); + + /* Setup the Base and Length of the Rx Descriptor Ring */ + E1000_WRITE_REG(&sc->hw, RDBAL, + sc->osdep.em_rx.emm_dmamap->dm_segs[0].ds_addr); + E1000_WRITE_REG(&sc->hw, RDBAH, 0); + E1000_WRITE_REG(&sc->hw, RDLEN, sc->num_rx_desc * + sizeof(struct em_rx_desc)); + + /* Setup the HW Rx Head and Tail Descriptor Pointers */ + E1000_WRITE_REG(&sc->hw, RDH, 0); + E1000_WRITE_REG(&sc->hw, RDT, + (((_BSD_PTRDIFF_T_) sc->last_rx_desc - + (_BSD_PTRDIFF_T_) sc->first_rx_desc) >> 4)); + + /* Setup the Receive Control Register */ + reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (sc->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); + + if (sc->hw.tbi_compatibility_on == TRUE) + reg_rctl |= E1000_RCTL_SBP; + + + switch (sc->rx_buffer_len) { + default: + case EM_RXBUFFER_2048: + reg_rctl |= E1000_RCTL_SZ_2048; + break; + case EM_RXBUFFER_4096: + reg_rctl |= E1000_RCTL_SZ_4096|E1000_RCTL_BSEX|E1000_RCTL_LPE; + break; + case EM_RXBUFFER_8192: + reg_rctl |= E1000_RCTL_SZ_8192|E1000_RCTL_BSEX|E1000_RCTL_LPE; + break; + case EM_RXBUFFER_16384: + reg_rctl |= E1000_RCTL_SZ_16384|E1000_RCTL_BSEX|E1000_RCTL_LPE; + break; + } + + if (ifp->if_mtu > ETHERMTU) + reg_rctl |= E1000_RCTL_LPE; + +#if 0 + /* Enable 82543 Receive Checksum Offload for TCP and UDP */ + if ((sc->hw.mac_type >= em_82543) && + (ifp->if_capenable & IFCAP_RXCSUM)) { + reg_rxcsum = E1000_READ_REG(&sc->hw, RXCSUM); + reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); + E1000_WRITE_REG(&sc->hw, RXCSUM, reg_rxcsum); + } +#endif /* 0 */ + + /* Enable Receives */ + E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); + + return; +} + +/********************************************************************* + * + * Free receive related data structures. + * + **********************************************************************/ +void +em_free_receive_structures(struct em_softc * sc) +{ + struct em_rx_buffer *rx_buffer; + int i; + + INIT_DEBUGOUT("free_receive_structures: begin"); + + if (sc->rx_buffer_area != NULL) { + rx_buffer = sc->rx_buffer_area; + for (i = 0; i < sc->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } + } + if (sc->rx_buffer_area != NULL) { + free(sc->rx_buffer_area, M_DEVBUF); + sc->rx_buffer_area = NULL; + } + return; +} + +/********************************************************************* + * + * This routine executes in interrupt context. It replenishes + * the mbufs in the descriptor and sends data which has been + * dma'ed into host memory to upper layer. + * + *********************************************************************/ +void +em_process_receive_interrupts(struct em_softc* sc) +{ + struct mbuf *mp; + struct ifnet *ifp; + struct ether_header *eh; + u_int16_t len; + u_int8_t last_byte; + u_int8_t accept_frame = 0; + u_int8_t eop = 0; + u_int32_t pkt_len = 0; + + /* Pointer to the receive descriptor being examined. */ + struct em_rx_desc *current_desc; + struct em_rx_desc *last_desc_processed; + struct em_rx_buffer *rx_buffer; + + ifp = &sc->arpcom.ac_if; + current_desc = sc->next_rx_desc_to_check; + + if (!((current_desc->status) & E1000_RXD_STAT_DD)) { +#ifdef DBG_STATS + sc->no_pkts_avail++; +#endif + return; + } + + while (current_desc->status & E1000_RXD_STAT_DD) { + + /* Get a pointer to the actual receive buffer */ + rx_buffer = SIMPLEQ_FIRST(&sc->rx_buffer_list); + + if (rx_buffer == NULL) { + printf("%s: Found null rx_buffer\n", + sc->sc_dv.dv_xname); + return; + } + + mp = rx_buffer->m_head; + accept_frame = 1; + + if (current_desc->status & E1000_RXD_STAT_EOP) { + eop = 1; + len = letoh16(current_desc->length) - ETHER_CRC_LEN; + } else { + eop = 0; + len = letoh16(current_desc->length); + } + + if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { + + /* Compute packet length for tbi_accept macro */ + pkt_len = letoh16(current_desc->length); + if (sc->fmp != NULL) { + pkt_len += sc->fmp->m_pkthdr.len; + } + + last_byte = *(mtod(rx_buffer->m_head,caddr_t) + + letoh16(current_desc->length) - 1); + + if (TBI_ACCEPT(&sc->hw, current_desc->status, + current_desc->errors, + pkt_len, last_byte)) { + em_tbi_adjust_stats(&sc->hw, + &sc->stats, + pkt_len, + sc->hw.mac_addr); + len--; + } else { + accept_frame = 0; + } + } + + if (accept_frame) { + + if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) { + sc->dropped_pkts++; + em_get_buf(rx_buffer, sc, mp); + if (sc->fmp != NULL) m_freem(sc->fmp); + sc->fmp = NULL; + sc->lmp = NULL; + break; + } + + /* Assign correct length to the current fragment */ + mp->m_len = len; + + if (sc->fmp == NULL) { + mp->m_pkthdr.len = len; + sc->fmp = mp; /* Store the first mbuf */ + sc->lmp = mp; + } else { + /* Chain mbuf's together */ + mp->m_flags &= ~M_PKTHDR; + sc->lmp->m_next = mp; + sc->lmp = sc->lmp->m_next; + sc->fmp->m_pkthdr.len += len; + } + + if (eop) { + sc->fmp->m_pkthdr.rcvif = ifp; +#if NBPFILTER > 0 + /* + * Handle BPF listeners. Let the BPF + * user see the packet. + */ + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, sc->fmp); +#endif + + + eh = mtod(sc->fmp, struct ether_header *); + + /* Remove ethernet header from mbuf */ + m_adj(sc->fmp, sizeof(struct ether_header)); + em_receive_checksum(sc, current_desc, + sc->fmp); +#if 0 + if (current_desc->status & E1000_RXD_STAT_VP) + VLAN_INPUT_TAG(eh, sc->fmp, + letoh16(current_desc->special)); + else +#endif /* 0 */ + ether_input(ifp, eh, sc->fmp); + + sc->fmp = NULL; + sc->lmp = NULL; + } + } else { + sc->dropped_pkts++; + em_get_buf(rx_buffer, sc, mp); + if (sc->fmp != NULL) m_freem(sc->fmp); + sc->fmp = NULL; + sc->lmp = NULL; + } + + /* Zero out the receive descriptors status */ + current_desc->status = 0; + + if (rx_buffer->m_head != NULL) { + current_desc->buffer_addr = + htole64(rx_buffer->buffer_addr); + } + + /* Advance our pointers to the next descriptor + * (checking for wrap). */ + if (current_desc == sc->last_rx_desc) + sc->next_rx_desc_to_check = sc->first_rx_desc; + else + ((sc)->next_rx_desc_to_check)++; + + last_desc_processed = current_desc; + current_desc = sc->next_rx_desc_to_check; + /* + * Put the buffer that we just indicated back at the + * end of our list + */ + SIMPLEQ_REMOVE_HEAD(&sc->rx_buffer_list, rx_buffer, + em_rx_entry); + SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list, + rx_buffer, em_rx_entry); + + /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ + E1000_WRITE_REG(&sc->hw, RDT, + (((u_long) last_desc_processed - + (u_long) sc->first_rx_desc) >> 4)); + } + return; +} + +/********************************************************************* + * + * Verify that the hardware indicated that the checksum is valid. + * Inform the stack about the status of checksum so that stack + * doesn't spend time verifying the checksum. + * + *********************************************************************/ +void +em_receive_checksum(struct em_softc *sc, + struct em_rx_desc *rx_desc, + struct mbuf *mp) +{ +#if 0 + /* 82543 or newer only */ + if ((sc->hw.mac_type < em_82543) || + /* Ignore Checksum bit is set */ + (rx_desc->status & E1000_RXD_STAT_IXSM)) { + mp->m_pkthdr.csum_flags = 0; + return; + } + + if (rx_desc->status & E1000_RXD_STAT_IPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) { + /* IP Checksum Good */ + mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; + mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; + + } else { + mp->m_pkthdr.csum_flags = 0; + } + } + + if (rx_desc->status & E1000_RXD_STAT_TCPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) { + mp->m_pkthdr.csum_flags |= + (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); + mp->m_pkthdr.csum_data = htons(0xffff); + } + } + + return; +#endif /* 0 */ +} + + +void em_enable_vlans(struct em_softc * sc) +{ + uint32_t ctrl; + + E1000_WRITE_REG(&sc->hw, VET, QTAG_TYPE); + + ctrl = E1000_READ_REG(&sc->hw, CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&sc->hw, CTRL, ctrl); + + return; +} + +void +em_enable_intr(struct em_softc* sc) +{ + E1000_WRITE_REG(&sc->hw, IMS, (IMS_ENABLE_MASK)); + return; +} + +void +em_disable_intr(struct em_softc *sc) +{ + E1000_WRITE_REG(&sc->hw, IMC, + (0xffffffff & ~E1000_IMC_RXSEQ)); + return; +} + +void em_write_pci_cfg(struct em_hw *hw, + uint32_t reg, + uint16_t *value) +{ + struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa; + pci_chipset_tag_t pc = pa->pa_pc; + pci_conf_write(pc, pa->pa_tag, reg, *value); +} + +void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, + uint16_t *value) +{ + struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa; + pci_chipset_tag_t pc = pa->pa_pc; + *value = pci_conf_read(pc, pa->pa_tag, reg); + return; +} + +uint32_t em_io_read(struct em_hw *hw, uint32_t port) +{ +#if 0 + return(inl(port)); +#endif + return bus_space_read_4( + ((struct em_osdep *)(hw)->back)->em_iobtag, + ((struct em_osdep *)(hw)->back)->em_iobhandle, + port); +} + +void em_io_write(struct em_hw *hw, uint32_t port, uint32_t value) +{ +#if 0 + outl(port, value); +#endif + bus_space_write_4( + ((struct em_osdep *)(hw)->back)->em_iobtag, + ((struct em_osdep *)(hw)->back)->em_iobhandle, + port, + value); + return; +} + +/********************************************************************** + * + * Update the board statistics counters. + * + **********************************************************************/ +void +em_update_stats_counters(struct em_softc *sc) +{ + struct ifnet *ifp; + + sc->stats.crcerrs += E1000_READ_REG(&sc->hw, CRCERRS); + sc->stats.symerrs += E1000_READ_REG(&sc->hw, SYMERRS); + sc->stats.mpc += E1000_READ_REG(&sc->hw, MPC); + sc->stats.scc += E1000_READ_REG(&sc->hw, SCC); + sc->stats.ecol += E1000_READ_REG(&sc->hw, ECOL); + sc->stats.mcc += E1000_READ_REG(&sc->hw, MCC); + sc->stats.latecol += E1000_READ_REG(&sc->hw, LATECOL); + sc->stats.colc += E1000_READ_REG(&sc->hw, COLC); + sc->stats.dc += E1000_READ_REG(&sc->hw, DC); + sc->stats.sec += E1000_READ_REG(&sc->hw, SEC); + sc->stats.rlec += E1000_READ_REG(&sc->hw, RLEC); + sc->stats.xonrxc += E1000_READ_REG(&sc->hw, XONRXC); + sc->stats.xontxc += E1000_READ_REG(&sc->hw, XONTXC); + sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, XOFFRXC); + sc->stats.xofftxc += E1000_READ_REG(&sc->hw, XOFFTXC); + sc->stats.fcruc += E1000_READ_REG(&sc->hw, FCRUC); + sc->stats.prc64 += E1000_READ_REG(&sc->hw, PRC64); + sc->stats.prc127 += E1000_READ_REG(&sc->hw, PRC127); + sc->stats.prc255 += E1000_READ_REG(&sc->hw, PRC255); + sc->stats.prc511 += E1000_READ_REG(&sc->hw, PRC511); + sc->stats.prc1023 += E1000_READ_REG(&sc->hw, PRC1023); + sc->stats.prc1522 += E1000_READ_REG(&sc->hw, PRC1522); + sc->stats.gprc += E1000_READ_REG(&sc->hw, GPRC); + sc->stats.bprc += E1000_READ_REG(&sc->hw, BPRC); + sc->stats.mprc += E1000_READ_REG(&sc->hw, MPRC); + sc->stats.gptc += E1000_READ_REG(&sc->hw, GPTC); + + /* For the 64-bit byte counters the low dword must be read first. */ + /* Both registers clear on the read of the high dword */ + + sc->stats.gorcl += E1000_READ_REG(&sc->hw, GORCL); + sc->stats.gorch += E1000_READ_REG(&sc->hw, GORCH); + sc->stats.gotcl += E1000_READ_REG(&sc->hw, GOTCL); + sc->stats.gotch += E1000_READ_REG(&sc->hw, GOTCH); + + sc->stats.rnbc += E1000_READ_REG(&sc->hw, RNBC); + sc->stats.ruc += E1000_READ_REG(&sc->hw, RUC); + sc->stats.rfc += E1000_READ_REG(&sc->hw, RFC); + sc->stats.roc += E1000_READ_REG(&sc->hw, ROC); + sc->stats.rjc += E1000_READ_REG(&sc->hw, RJC); + + sc->stats.torl += E1000_READ_REG(&sc->hw, TORL); + sc->stats.torh += E1000_READ_REG(&sc->hw, TORH); + sc->stats.totl += E1000_READ_REG(&sc->hw, TOTL); + sc->stats.toth += E1000_READ_REG(&sc->hw, TOTH); + + sc->stats.tpr += E1000_READ_REG(&sc->hw, TPR); + sc->stats.tpt += E1000_READ_REG(&sc->hw, TPT); + sc->stats.ptc64 += E1000_READ_REG(&sc->hw, PTC64); + sc->stats.ptc127 += E1000_READ_REG(&sc->hw, PTC127); + sc->stats.ptc255 += E1000_READ_REG(&sc->hw, PTC255); + sc->stats.ptc511 += E1000_READ_REG(&sc->hw, PTC511); + sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, PTC1023); + sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, PTC1522); + sc->stats.mptc += E1000_READ_REG(&sc->hw, MPTC); + sc->stats.bptc += E1000_READ_REG(&sc->hw, BPTC); + + if (sc->hw.mac_type >= em_82543) { + sc->stats.algnerrc += + E1000_READ_REG(&sc->hw, ALGNERRC); + sc->stats.rxerrc += + E1000_READ_REG(&sc->hw, RXERRC); + sc->stats.tncrs += + E1000_READ_REG(&sc->hw, TNCRS); + sc->stats.cexterr += + E1000_READ_REG(&sc->hw, CEXTERR); + sc->stats.tsctc += + E1000_READ_REG(&sc->hw, TSCTC); + sc->stats.tsctfc += + E1000_READ_REG(&sc->hw, TSCTFC); + } + ifp = &sc->arpcom.ac_if; + + /* Fill out the OS statistics structure */ + ifp->if_ipackets = sc->stats.gprc; + ifp->if_opackets = sc->stats.gptc; + ifp->if_ibytes = sc->stats.gorcl; + ifp->if_obytes = sc->stats.gotcl; + ifp->if_imcasts = sc->stats.mprc; + ifp->if_collisions = sc->stats.colc; + + /* Rx Errors */ + ifp->if_ierrors = + sc->dropped_pkts + + sc->stats.rxerrc + + sc->stats.crcerrs + + sc->stats.algnerrc + + sc->stats.rlec + sc->stats.rnbc + + sc->stats.mpc + sc->stats.cexterr; + + /* Tx Errors */ + ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol; + +} + + +/********************************************************************** + * + * This routine is called only when em_display_debug_stats is enabled. + * This routine provides a way to take a look at important statistics + * maintained by the driver and hardware. + * + **********************************************************************/ +void +em_print_hw_stats(struct em_softc *sc) +{ +#ifdef DBG_STATS + printf("%s: Packets not Avail = %ld\n", sc->sc_dv.dv_xname, + sc->no_pkts_avail); + printf("%s: CleanTxInterrupts = %ld\n", sc->sc_dv.dv_xname, + sc->clean_tx_interrupts); +#endif + + printf("%s: Tx Descriptors not Avail = %ld\n", sc->sc_dv.dv_xname, + sc->no_tx_desc_avail); + printf("%s: Tx Buffer not avail1 = %ld\n", sc->sc_dv.dv_xname, + sc->no_tx_buffer_avail1); + printf("%s: Tx Buffer not avail2 = %ld\n", sc->sc_dv.dv_xname, + sc->no_tx_buffer_avail2); + printf("%s: Std Mbuf Failed = %ld\n",sc->sc_dv.dv_xname, + sc->mbuf_alloc_failed); + printf("%s: Std Cluster Failed = %ld\n",sc->sc_dv.dv_xname, + sc->mbuf_cluster_failed); + + printf("%s: Symbol errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.symerrs); + printf("%s: Sequence errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.sec); + printf("%s: Defer count = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.dc); + + printf("%s: Missed Packets = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.mpc); + printf("%s: Receive No Buffers = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.rnbc); + printf("%s: Receive length errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.rlec); + printf("%s: Receive errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.rxerrc); + printf("%s: Crc errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.crcerrs); + printf("%s: Alignment errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.algnerrc); + printf("%s: Carrier extension errors = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.cexterr); + printf("%s: Driver dropped packets = %ld\n", sc->sc_dv.dv_xname, + sc->dropped_pkts); + + printf("%s: XON Rcvd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.xonrxc); + printf("%s: XON Xmtd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.xontxc); + printf("%s: XOFF Rcvd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.xoffrxc); + printf("%s: XOFF Xmtd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.xofftxc); + + printf("%s: Good Packets Rcvd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.gprc); + printf("%s: Good Packets Xmtd = %lld\n", sc->sc_dv.dv_xname, + (long long)sc->stats.gptc); +} + + +/********************************************************************** + * + * Examine each tx_buffer in the used queue. If the hardware is done + * processing the packet then free associated resources. The + * tx_buffer is put back on the free queue. + * + **********************************************************************/ +void +em_clean_transmit_interrupts(struct em_softc* sc) +{ + struct em_tx_buffer *tx_buffer; + struct em_tx_desc *tx_desc; + int s; + struct ifnet *ifp; + + s = splimp(); +#ifdef DBG_STATS + sc->clean_tx_interrupts++; +#endif + + for (tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list); + tx_buffer; + tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list)) { + + /* + * Get hold of the next descriptor that the em will + * report status back to (this will be the last + * descriptor of a given tx_buffer). We only want to + * free the tx_buffer (and it resources) if the driver + * is done with ALL of the descriptors. If the driver + * is done with the last one then it is done with all + * of them. + */ + + tx_desc = sc->oldest_used_tx_desc + + (tx_buffer->num_tx_desc_used - 1); + + /* Check for wrap case */ + if (tx_desc > sc->last_tx_desc) + tx_desc -= sc->num_tx_desc; + + + /* + * If the descriptor done bit is set free tx_buffer + * and associated resources + */ + if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) { + + SIMPLEQ_REMOVE_HEAD(&sc->used_tx_buffer_list, + tx_buffer, + em_tx_entry); + + if ((tx_desc == sc->last_tx_desc)) + sc->oldest_used_tx_desc = + sc->first_tx_desc; + else + sc->oldest_used_tx_desc = (tx_desc + 1); + + /* Make available the descriptors that were + * previously used */ + sc->num_tx_desc_avail += + tx_buffer->num_tx_desc_used; + + tx_buffer->num_tx_desc_used = 0; + + if (tx_buffer->m_head) { + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + /* Return this "Software packet" back to the + * "free" list */ + SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list, + tx_buffer, em_tx_entry); + } else { + /* + * Found a tx_buffer that the em is not done + * with then there is no reason to check the + * rest of the queue. + */ + break; + } + } /* end for each tx_buffer */ + + ifp = &sc->arpcom.ac_if; + + /* Tell the stack that it is OK to send packets */ + if (sc->num_tx_desc_avail > TX_CLEANUP_THRESHOLD) { + ifp->if_timer = 0; + ifp->if_flags &= ~IFF_OACTIVE; + } + splx(s); + return; +} + +int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm, + bus_size_t size) +{ + bus_dma_tag_t dma_tag = sc->osdep.em_pa.pa_dmat; + + emm->emm_size = size; + + if (bus_dmamem_alloc(dma_tag, size, PAGE_SIZE, 0, &emm->emm_seg, 1, + &emm->emm_rseg, BUS_DMA_NOWAIT)) { + goto fail0; + } + if (bus_dmamem_map(dma_tag, &emm->emm_seg, emm->emm_rseg, size, + &emm->emm_kva, BUS_DMA_NOWAIT)) { + goto fail1; + } + if (bus_dmamap_create(dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT, + &emm->emm_dmamap)) { + goto fail2; + } + if (bus_dmamap_load(dma_tag, emm->emm_dmamap, emm->emm_kva, size, + NULL, BUS_DMA_NOWAIT)) { + goto fail3; + } + + return 0; + + fail3: + bus_dmamap_destroy(dma_tag, emm->emm_dmamap); + fail2: + bus_dmamem_unmap(dma_tag, emm->emm_kva, size); + fail1: + bus_dmamem_free(dma_tag, &emm->emm_seg, emm->emm_rseg); + fail0: + return (ENOBUFS); +} + +void em_free_dma(struct em_softc *sc, struct em_dmamap *emm) +{ + bus_dmamap_unload(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap); + bus_dmamap_destroy(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap); + bus_dmamem_unmap(sc->osdep.em_pa.pa_dmat, emm->emm_kva, emm->emm_size); + bus_dmamem_free(sc->osdep.em_pa.pa_dmat, &emm->emm_seg, emm->emm_rseg); +} diff --git a/sys/dev/pci/if_em.h b/sys/dev/pci/if_em.h new file mode 100644 index 00000000000..f8167d415a9 --- /dev/null +++ b/sys/dev/pci/if_em.h @@ -0,0 +1,189 @@ +/************************************************************************** + +Copyright (c) 2001-2002 Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms of the Software, with or +without modification, are permitted provided that the following conditions +are met: + + 1. Redistributions of source code of the Software may retain the above + copyright notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form of the Software may reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors shall be used to endorse or promote products derived from + this Software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD$*/ + +#ifndef _EM_H_DEFINED_ +#define _EM_H_DEFINED_ + +#include + +/* Tunables */ +#define MAX_TXD 256 +#define MAX_RXD 256 +#define TX_CLEANUP_THRESHOLD MAX_TXD / 8 +#define TIDV 128 +#define RIDV 28 +#define DO_AUTO_NEG 1 +#define WAIT_FOR_AUTO_NEG_DEFAULT 1 +#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | \ + ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define EM_REPORT_TX_EARLY 2 +#define EM_CHECKSUM_FEATURES (CSUM_TCP | CSUM_UDP) +#define EM_MAX_INTR 3 +#define EM_TX_TIMEOUT 5 /* set to 5 seconds */ + + +#define EM_VENDOR_ID 0x8086 +#define EM_MMBA 0x0010 /* Mem base address */ +#define EM_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1)) +#define EM_JUMBO_PBA 0x00000028 +#define EM_DEFAULT_PBA 0x00000030 + +#define IOCTL_CMD_TYPE u_long +#define MAX_NUM_MULTICAST_ADDRESSES 128 +#define PCI_ANY_ID (~0U) +#define ETHER_ALIGN 2 +#define QTAG_TYPE 0x8100 + +/* Defines for printing debug information */ +#define DEBUG_INIT 0 +#define DEBUG_IOCTL 0 +#define DEBUG_HW 0 + +#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n") +#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A) +#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B) +#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n") +#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A) +#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B) +#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n") +#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A) +#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B) + + +/* Supported RX Buffer Sizes */ +#define EM_RXBUFFER_2048 2048 +#define EM_RXBUFFER_4096 4096 +#define EM_RXBUFFER_8192 8192 +#define EM_RXBUFFER_16384 16384 + +struct em_tx_buffer { + SIMPLEQ_ENTRY(em_tx_buffer) em_tx_entry; + struct mbuf *m_head; + bus_dmamap_t dmamap; + u_int32_t num_tx_desc_used; +}; + + +/* ****************************************************************************** + * This structure stores information about the 2k aligned receive buffer + * into which the E1000 DMA's frames. + * ******************************************************************************/ +struct em_rx_buffer { + SIMPLEQ_ENTRY(em_rx_buffer) em_rx_entry; + struct mbuf *m_head; + bus_dmamap_t dmamap; + u_int64_t buffer_addr; +}; + +typedef enum _XSUM_CONTEXT_T { + OFFLOAD_NONE, + OFFLOAD_TCP_IP, + OFFLOAD_UDP_IP +} XSUM_CONTEXT_T; + +/* Our adapter structure */ +struct em_softc { + struct device sc_dv; + struct arpcom arpcom; /* interface info */ + struct em_hw hw; + + /* FreeBSD operating-system-specific structures */ + struct em_osdep osdep; + + int io_rid; + void *sc_intrhand; + struct ifmedia media; + struct timeout em_timeout; + + /* Info about the board itself */ + u_int32_t part_num; + u_int8_t link_active; + u_int16_t link_speed; + u_int16_t link_duplex; + u_int32_t tx_int_delay; + u_int32_t rx_int_delay; + + XSUM_CONTEXT_T active_checksum_context; + + /* Transmit definitions */ + struct em_tx_desc *first_tx_desc; + struct em_tx_desc *last_tx_desc; + struct em_tx_desc *next_avail_tx_desc; + struct em_tx_desc *oldest_used_tx_desc; + struct em_tx_desc *tx_desc_base; + volatile u_int16_t num_tx_desc_avail; + u_int16_t num_tx_desc; + u_int32_t txd_cmd; + struct em_tx_buffer *tx_buffer_area; + SIMPLEQ_HEAD(__em_tx_buffer_free, em_tx_buffer) free_tx_buffer_list; + SIMPLEQ_HEAD(__em_tx_buffer_used, em_tx_buffer) used_tx_buffer_list; + + /* Receive definitions */ + struct em_rx_desc *first_rx_desc; + struct em_rx_desc *last_rx_desc; + struct em_rx_desc *next_rx_desc_to_check; + struct em_rx_desc *rx_desc_base; + u_int16_t num_rx_desc; + u_int32_t rx_buffer_len; + struct em_rx_buffer *rx_buffer_area; + SIMPLEQ_HEAD(__em_rx_buffer, em_rx_buffer) rx_buffer_list; + + /* Jumbo frame */ + struct mbuf *fmp; + struct mbuf *lmp; + + /* Misc stats maintained by the driver */ + unsigned long dropped_pkts; + unsigned long mbuf_alloc_failed; + unsigned long mbuf_cluster_failed; + unsigned long xmit_pullup; + unsigned long no_tx_desc_avail; + unsigned long no_tx_buffer_avail1; + unsigned long no_tx_buffer_avail2; +#ifdef DBG_STATS + unsigned long no_pkts_avail; + unsigned long clean_tx_interrupts; + +#endif + + struct em_hw_stats stats; +}; + +#endif /* _EM_H_DEFINED_ */ diff --git a/sys/dev/pci/if_em_hw.c b/sys/dev/pci/if_em_hw.c new file mode 100644 index 00000000000..de65f593f64 --- /dev/null +++ b/sys/dev/pci/if_em_hw.c @@ -0,0 +1,3567 @@ +/************************************************************************** + +Copyright (c) 2001-2002 Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms of the Software, with or +without modification, are permitted provided that the following conditions +are met: + + 1. Redistributions of source code of the Software may retain the above + copyright notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form of the Software may reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors shall be used to endorse or promote products derived from + this Software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD$*/ +/* if_em_hw.c + * Shared functions for accessing and configuring the MAC + */ + +#include "bpfilter.h" +#include "vlan.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#ifdef INET +#include +#include +#include +#include +#include +#endif + +#if NVLAN > 0 +#include +#include +#endif + +#if NBPFILTER > 0 +#include +#endif + +#include + +#include +#include +#include + +#include + +static int32_t em_setup_fiber_link(struct em_hw *hw); +static int32_t em_setup_copper_link(struct em_hw *hw); +static int32_t em_phy_force_speed_duplex(struct em_hw *hw); +static int32_t em_config_mac_to_phy(struct em_hw *hw); +static int32_t em_force_mac_fc(struct em_hw *hw); +static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl); +static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl); +static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count); +static uint16_t em_shift_in_mdi_bits(struct em_hw *hw); +static int32_t em_phy_reset_dsp(struct em_hw *hw); +static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd); +static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd); +static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count); +static uint16_t em_shift_in_ee_bits(struct em_hw *hw); +static void em_setup_eeprom(struct em_hw *hw); +static void em_standby_eeprom(struct em_hw *hw); +static int32_t em_id_led_init(struct em_hw * hw); + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_reset_hw(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t ctrl_ext; + uint32_t icr; + uint32_t manc; + uint16_t pci_cmd_word; + + DEBUGFUNC("em_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if(hw->mac_type == em_82542_rev2_0) { + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE; + em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word); + } + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); + + /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ + hw->tbi_compatibility_on = FALSE; + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + DEBUGOUT("Issuing a global reset to MAC\n"); + ctrl = E1000_READ_REG(hw, CTRL); + + if(hw->mac_type > em_82543) + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + else + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + + /* Force a reload from the EEPROM if necessary */ + if(hw->mac_type < em_82540) { + /* Wait for reset to complete */ + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + /* Wait for EEPROM reload */ + msec_delay(2); + } else { + /* Wait for EEPROM reload (it happens automatically) */ + msec_delay(4); + /* Dissable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(hw, MANC, manc); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, ICR); + + /* If MWI was previously enabled, reenable it. */ + if(hw->mac_type == em_82542_rev2_0) { + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word); + } +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + * + * Assumes that the controller has previously been reset and is in a + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + *****************************************************************************/ +int32_t +em_init_hw(struct em_hw *hw) +{ + uint32_t ctrl, status; + uint32_t i; + int32_t ret_val; + uint16_t pci_cmd_word; + uint16_t pcix_cmd_word; + uint16_t pcix_stat_hi_word; + uint16_t cmd_mmrbc; + uint16_t stat_mmrbc; + + DEBUGFUNC("em_init_hw"); + + /* Initialize Identification LED */ + ret_val = em_id_led_init(hw); + if(ret_val < 0) { + DEBUGOUT("Error Initializing Identification LED\n"); + return ret_val; + } + + /* Set the Media Type and exit with error if it is not valid. */ + if(hw->mac_type != em_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = FALSE; + } + + if(hw->mac_type >= em_82543) { + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_TBIMODE) { + hw->media_type = em_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = FALSE; + } else { + hw->media_type = em_media_type_copper; + } + } else { + /* This is an 82542 (fiber only) */ + hw->media_type = em_media_type_fiber; + } + + /* Disabling VLAN filtering. */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + E1000_WRITE_REG(hw, VET, 0); + + em_clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if(hw->mac_type == em_82542_rev2_0) { + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + pci_cmd_word = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE; + em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &pci_cmd_word); + } + E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); + msec_delay(5); + } + + /* Setup the receive address. This involves initializing all of the Receive + * Address Registers (RARs 0 - 15). + */ + em_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if(hw->mac_type == em_82542_rev2_0) { + E1000_WRITE_REG(hw, RCTL, 0); + msec_delay(1); + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->pci_cmd_word); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for(i = 0; i < E1000_MC_TBL_SIZE; i++) + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + + /* Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if(hw->dma_fairness) { + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); + } + + /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + if(hw->bus_type == em_bus_type_pcix) { + em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); + em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if(cmd_mmrbc > stat_mmrbc) { + pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); + } + } + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = em_setup_link(hw); + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + em_clear_hw_cntrs(hw); + + return ret_val; +} + +/****************************************************************************** + * Configures flow control and link settings. + * + * hw - Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + *****************************************************************************/ +int32_t +em_setup_link(struct em_hw *hw) +{ + uint32_t ctrl_ext; + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC("em_setup_link"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if(hw->fc == em_fc_default) { + if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = em_fc_none; + else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = em_fc_tx_pause; + else + hw->fc = em_fc_full; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if(hw->mac_type == em_82542_rev2_0) + hw->fc &= (~em_fc_tx_pause); + + if((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~em_fc_rx_pause); + + hw->original_fc = hw->fc; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before em_setup_pcs_link() + * or em_phy_setup() is called. + */ + if(hw->mac_type == em_82543) { + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + ret_val = (hw->media_type == em_media_type_fiber) ? + em_setup_fiber_link(hw) : + em_setup_copper_link(hw); + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if(!(hw->fc & em_fc_tx_pause)) { + E1000_WRITE_REG(hw, FCRTL, 0); + E1000_WRITE_REG(hw, FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + if(hw->fc_send_xon) { + E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } else { + E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } + } + return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based adapter + * + * hw - Struct containing variables accessed by shared code + * ctrl - Current value of the device control register + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int32_t +em_setup_fiber_link(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t status; + uint32_t txcw = 0; + uint32_t i; + uint32_t signal; + int32_t ret_val; + + DEBUGFUNC("em_setup_fiber_link"); + + /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal + */ + ctrl = E1000_READ_REG(hw, CTRL); + if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1; + else signal = 0; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + em_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case em_fc_none: + /* Flow control is completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case em_fc_rx_pause: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case em_fc_tx_pause: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case em_fc_full: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-neogtiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, TXCW, txcw); + E1000_WRITE_REG(hw, CTRL, ctrl); + + hw->txcw = txcw; + msec_delay(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + */ + if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { + DEBUGOUT("Looking for Link\n"); + for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msec_delay(10); + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_LU) break; + } + if(i == (LINK_UP_TIMEOUT / 10)) { + /* AutoNeg failed to achieve a link, so we'll call + * em_check_for_link. This routine will force the link up if we + * detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + ret_val = em_check_for_link(hw); + if(ret_val < 0) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + } else { + DEBUGOUT("No Signal Detected\n"); + } + return 0; +} + +/****************************************************************************** +* Detects which PHY is present and the speed and duplex +* +* hw - Struct containing variables accessed by shared code +* ctrl - current value of the device control register +******************************************************************************/ +static int32_t +em_setup_copper_link(struct em_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC("em_setup_copper_link"); + + ctrl = E1000_READ_REG(hw, CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if(hw->mac_type > em_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); + E1000_WRITE_REG(hw, CTRL, ctrl); + em_phy_hw_reset(hw); + } + + /* Make sure we have a valid PHY */ + ret_val = em_detect_gig_phy(hw); + if(ret_val < 0) { + DEBUGOUT("Error, did not detect valid phy.\n"); + return ret_val; + } + DEBUGOUT1("Phy ID = %x \n", hw->phy_id); + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if(hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= M88E1000_EPSCR_TX_CLK_25; + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = em_phy_reset(hw); + if(ret_val < 0) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + /* Options: + * autoneg = 1 (default) + * PHY will advertise value(s) parsed from + * autoneg_advertised and fc + * autoneg = 0 + * PHY will be set to 10H, 10F, 100H, or 100F + * depending on value parsed from forced_speed_duplex. + */ + + /* Is autoneg enabled? This is enabled by default or by software override. + * If so, call em_phy_setup_autoneg routine to parse the + * autoneg_advertised and fc options. If autoneg is NOT enabled, then the + * user should have provided a speed/duplex override. If so, then call + * em_phy_force_speed_duplex to parse and set this up. + */ + if(hw->autoneg) { + /* Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if(hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = em_phy_setup_autoneg(hw); + if(ret_val < 0) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if(hw->wait_autoneg_complete) { + ret_val = em_wait_autoneg(hw); + if(ret_val < 0) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + } else { + DEBUGOUT("Forcing speed and duplex\n"); + ret_val = em_phy_force_speed_duplex(hw); + if(ret_val < 0) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for(i = 0; i < 10; i++) { + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(phy_data & MII_SR_LINK_STATUS) { + /* We have link, so we need to finish the config process: + * 1) Set up the MAC to the current PHY speed/duplex + * if we are on 82543. If we + * are on newer silicon, we only need to configure + * collision distance in the Transmit Control Register. + * 2) Set up flow control on the MAC to that established with + * the link partner. + */ + if(hw->mac_type >= em_82544) { + em_config_collision_dist(hw); + } else { + ret_val = em_config_mac_to_phy(hw); + if(ret_val < 0) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = em_config_fc_after_link_up(hw); + if(ret_val < 0) { + DEBUGOUT("Error Configuring Flow Control\n"); + return ret_val; + } + DEBUGOUT("Valid link established!!!\n"); + return 0; + } + usec_delay(10); + } + + DEBUGOUT("Unable to establish link!!!\n"); + return 0; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_phy_setup_autoneg(struct em_hw *hw) +{ + uint16_t mii_autoneg_adv_reg; + uint16_t mii_1000t_ctrl_reg; + + DEBUGFUNC("em_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* Read the MII 1000Base-T Control Register (Address 9). */ + if(em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case em_fc_none: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case em_fc_rx_pause: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in em_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case em_fc_tx_pause: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case em_fc_full: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + if(em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if(em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + return 0; +} + +/****************************************************************************** +* Force PHY speed and duplex settings to hw->forced_speed_duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_phy_force_speed_duplex(struct em_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t mii_ctrl_reg; + uint16_t mii_status_reg; + uint16_t phy_data; + uint16_t i; + + DEBUGFUNC("em_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = em_fc_none; + + DEBUGOUT1("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + if(em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if(hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_10_full) { + /* We want to force full duplex so we SET the full duplex bits in the + * Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + /* We want to force half duplex so we CLEAR the full duplex bits in + * the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if(hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb "); + } + + em_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Write the MII Control Register with the new PHY configuration. */ + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + if(em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + usec_delay(1); + + /* The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here + * only if the user has set wait_autoneg_complete to 1, which is + * the default. + */ + if(hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + DEBUGOUT("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + } + if(i == 0) { /* We didn't get link */ + /* Reset the DSP and wait again for link. */ + + ret_val = em_phy_reset_dsp(hw); + if(ret_val < 0) { + DEBUGOUT("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* This loop will early-out if the link condition has been met. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + if(mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + } + } + + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This value + * defaults back to a 2.5MHz clock when the PHY is reset. + */ + if(em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= M88E1000_EPSCR_TX_CLK_25; + if(em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + + /* In addition, because of the s/w reset above, we need to enable CRS on + * TX. This must be set for both full and half duplex operation. + */ + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + if(em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + return 0; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +void +em_config_collision_dist(struct em_hw *hw) +{ + uint32_t tctl; + + tctl = E1000_READ_REG(hw, TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, TCTL, tctl); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int32_t +em_config_mac_to_phy(struct em_hw *hw) +{ + uint32_t ctrl; + uint16_t phy_data; + + DEBUGFUNC("em_config_mac_to_phy"); + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; + else ctrl &= ~E1000_CTRL_FD; + + em_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + return 0; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + * + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +static int32_t +em_force_mac_fc(struct em_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("em_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case em_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case em_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case em_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case em_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if(hw->mac_type == em_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + E1000_WRITE_REG(hw, CTRL, ctrl); + return 0; +} + +/****************************************************************************** + * Configures flow control settings after link is established + * + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +int32_t +em_config_fc_after_link_up(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t mii_nway_adv_reg; + uint16_t mii_nway_lp_ability_reg; + uint16_t speed; + uint16_t duplex; + + DEBUGFUNC("em_config_fc_after_link_up"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { + ret_val = em_force_mac_fc(hw); + if(ret_val < 0) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if((hw->media_type == em_media_type_copper) && hw->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error \n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { + DEBUGOUT("PHY Read Error \n"); + return -E1000_ERR_PHY; + } + + if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + if(em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | em_fc_none + * 0 | 1 | 0 | DC | em_fc_none + * 0 | 1 | 1 | 0 | em_fc_none + * 0 | 1 | 1 | 1 | em_fc_tx_pause + * 1 | 0 | 0 | DC | em_fc_none + * 1 | DC | 1 | DC | em_fc_full + * 1 | 1 | 0 | 0 | em_fc_none + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | em_fc_full + * + */ + if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if(hw->original_fc == em_fc_full) { + hw->fc = em_fc_full; + DEBUGOUT("Flow Control = FULL.\r\n"); + } else { + hw->fc = em_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | em_fc_tx_pause + * + */ + else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = em_fc_tx_pause; + DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = em_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if(hw->original_fc == em_fc_none || + hw->original_fc == em_fc_tx_pause) { + hw->fc = em_fc_none; + DEBUGOUT("Flow Control = NONE.\r\n"); + } else { + hw->fc = em_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + em_get_speed_and_duplex(hw, &speed, &duplex); + + if(duplex == HALF_DUPLEX) + hw->fc = em_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = em_force_mac_fc(hw); + if(ret_val < 0) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } else { + DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); + } + } + return 0; +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by shared code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +int32_t +em_check_for_link(struct em_hw *hw) +{ + uint32_t rxcw; + uint32_t ctrl; + uint32_t status; + uint32_t rctl; + uint32_t signal; + int32_t ret_val; + uint16_t phy_data; + uint16_t lp_capability; + + DEBUGFUNC("em_check_for_link"); + + /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal + */ + if(hw->mac_type > em_82544) signal = E1000_CTRL_SWDPIN1; + else signal = 0; + + ctrl = E1000_READ_REG(hw, CTRL); + status = E1000_READ_REG(hw, STATUS); + rxcw = E1000_READ_REG(hw, RXCW); + + /* If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if((hw->media_type == em_media_type_copper) && hw->get_link_status) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + * Read the register twice since the link bit is sticky. + */ + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + + if(phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = FALSE; + } else { + /* No link detected */ + return 0; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if(!hw->autoneg) return -E1000_ERR_CONFIG; + + /* We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if(hw->mac_type >= em_82544) + em_config_collision_dist(hw); + else { + ret_val = em_config_mac_to_phy(hw); + if(ret_val < 0) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + /* Configure Flow Control now that Auto-Neg has completed. First, we + * need to restore the desired flow control settings because we may + * have had to re-autoneg with a different link partner. + */ + ret_val = em_config_fc_after_link_up(hw); + if(ret_val < 0) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + + /* At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * parter capability register. We use the link partner capability to + * determine if TBI Compatibility needs to be turned on or off. If + * the link partner advertises any speed in addition to Gigabit, then + * we assume that they are GMII-based, and TBI compatibility is not + * needed. If no other speeds are advertised, we assume the link + * partner is TBI-based, and we turn on TBI Compatibility. + */ + if(hw->tbi_compatibility_en) { + if(em_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(lp_capability & (NWAY_LPAR_10T_HD_CAPS | + NWAY_LPAR_10T_FD_CAPS | + NWAY_LPAR_100TX_HD_CAPS | + NWAY_LPAR_100TX_FD_CAPS | + NWAY_LPAR_100T4_CAPS)) { + /* If our link partner advertises anything in addition to + * gigabit, we do not need to enable TBI compatibility. + */ + if(hw->tbi_compatibility_on) { + /* If we previously were in the mode, turn it off. */ + rctl = E1000_READ_REG(hw, RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + hw->tbi_compatibility_on = FALSE; + } + } else { + /* If TBI compatibility is was previously off, turn it on. For + * compatibility with a TBI link partner, we will store bad + * packets. Some frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if(!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = TRUE; + rctl = E1000_READ_REG(hw, RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + } + } + } + } + /* If we don't have link (auto-negotiation failed or link partner cannot + * auto-negotiate), the cable is plugged in (we have signal), and our + * link partner is not trying to auto-negotiate with us (we are receiving + * idles or data), we need to force link up. We also need to give + * auto-negotiation time to complete, in case the cable was just plugged + * in. The autoneg_failed flag does this. + */ + else if((hw->media_type == em_media_type_fiber) && + (!(status & E1000_STATUS_LU)) && + ((ctrl & E1000_CTRL_SWDPIN1) == signal) && + (!(rxcw & E1000_RXCW_C))) { + if(hw->autoneg_failed == 0) { + hw->autoneg_failed = 1; + return 0; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = em_config_fc_after_link_up(hw); + if(ret_val < 0) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } + /* If we are forcing link and we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable forced link in the + * Device Control register in an attempt to auto-negotiate with our link + * partner. + */ + else if((hw->media_type == em_media_type_fiber) && + (ctrl & E1000_CTRL_SLU) && + (rxcw & E1000_RXCW_C)) { + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); + E1000_WRITE_REG(hw, TXCW, hw->txcw); + E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); + } + return 0; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +void +em_get_speed_and_duplex(struct em_hw *hw, + uint16_t *speed, + uint16_t *duplex) +{ + uint32_t status; + + DEBUGFUNC("em_get_speed_and_duplex"); + + if(hw->mac_type >= em_82543) { + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if(status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if(status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\r\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT(" Half Duplex\r\n"); + } + } else { + DEBUGOUT("1000 Mbs, Full Duplex\r\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_wait_autoneg(struct em_hw *hw) +{ + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC("em_wait_autoneg"); + DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + if(phy_data & MII_SR_AUTONEG_COMPLETE) { + return 0; + } + msec_delay(100); + } + return 0; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +em_raise_mdi_clk(struct em_hw *hw, + uint32_t *ctrl) +{ + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 2 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); + usec_delay(2); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +em_lower_mdi_clk(struct em_hw *hw, + uint32_t *ctrl) +{ + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 2 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); + usec_delay(2); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void +em_shift_out_mdi_bits(struct em_hw *hw, + uint32_t data, + uint16_t count) +{ + uint32_t ctrl; + uint32_t mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while(mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if(data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + + usec_delay(2); + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } + + /* Clear the data bit just before leaving this routine. */ + ctrl &= ~E1000_CTRL_MDIO; +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order. +******************************************************************************/ +static uint16_t +em_shift_in_mdi_bits(struct em_hw *hw) +{ + uint32_t ctrl; + uint16_t data = 0; + uint8_t i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + for(data = 0, i = 0; i < 16; i++) { + data = data << 1; + em_raise_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + /* Check to see if we shifted in a "1". */ + if(ctrl & E1000_CTRL_MDIO) data |= 1; + em_lower_mdi_clk(hw, &ctrl); + } + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + /* Clear the MDIO bit just before leaving this routine. */ + ctrl &= ~E1000_CTRL_MDIO; + + return data; +} + +/***************************************************************************** +* Reads the value from a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +int32_t +em_read_phy_reg(struct em_hw *hw, + uint32_t reg_addr, + uint16_t *phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("em_read_phy_reg"); + + if(reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if(hw->mac_type > em_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for(i = 0; i < 64; i++) { + usec_delay(10); + mdic = E1000_READ_REG(hw, MDIC); + if(mdic & E1000_MDIC_READY) break; + } + if(!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if(mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (uint16_t) mdic; + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * em_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + em_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *phy_data = em_shift_in_mdi_bits(hw); + } + return 0; +} + +/****************************************************************************** +* Writes a value to a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to write +* data - data to write to the PHY +******************************************************************************/ +int32_t +em_write_phy_reg(struct em_hw *hw, + uint32_t reg_addr, + uint16_t phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("em_write_phy_reg"); + + if(reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if(hw->mac_type > em_82543) { + /* Set up Op-code, Phy Address, register address, and data intended + * for the PHY register in the MDI Control register. The MAC will take + * care of interfacing with the PHY to send the desired data. + */ + mdic = (((uint32_t) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for(i = 0; i < 64; i++) { + usec_delay(10); + mdic = E1000_READ_REG(hw, MDIC); + if(mdic & E1000_MDIC_READY) break; + } + if(!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * em_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * . + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (uint32_t) phy_data; + + em_shift_out_mdi_bits(hw, mdic, 32); + } + return 0; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +void +em_phy_hw_reset(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t ctrl_ext; + + DEBUGFUNC("em_phy_hw_reset"); + + DEBUGOUT("Resetting Phy...\n"); + + if(hw->mac_type > em_82543) { + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + */ + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); + msec_delay(10); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + msec_delay(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + usec_delay(150); +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control regiser +******************************************************************************/ +int32_t +em_phy_reset(struct em_hw *hw) +{ + uint16_t phy_data; + + DEBUGFUNC("em_phy_reset"); + + if(em_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + phy_data |= MII_CR_RESET; + if(em_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { + DEBUGOUT("PHY Write Error\n"); + return -E1000_ERR_PHY; + } + usec_delay(1); + return 0; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_detect_gig_phy(struct em_hw *hw) +{ + uint16_t phy_id_high, phy_id_low; + boolean_t match = FALSE; + + DEBUGFUNC("em_detect_gig_phy"); + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + if(em_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + hw->phy_id = (uint32_t) (phy_id_high << 16); + usec_delay(2); + if(em_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { + DEBUGOUT("PHY Read Error\n"); + return -E1000_ERR_PHY; + } + hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + + switch(hw->mac_type) { + case em_82543: + if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + break; + case em_82544: + if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + break; + case em_82540: + case em_82545: + case em_82546: + if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + break; + default: + DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + if(match) { + DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); + return 0; + } + DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; +} + +/****************************************************************************** +* Resets the PHY's DSP +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_phy_reset_dsp(struct em_hw *hw) +{ + int32_t ret_val = -E1000_ERR_PHY; + DEBUGFUNC("em_phy_reset_dsp"); + + do { + if(em_write_phy_reg(hw, 29, 0x001d) < 0) break; + if(em_write_phy_reg(hw, 30, 0x00c1) < 0) break; + if(em_write_phy_reg(hw, 30, 0x0000) < 0) break; + ret_val = 0; + } while(0); + + if(ret_val < 0) DEBUGOUT("PHY Write Error\n"); + return ret_val; +} + +/****************************************************************************** +* Get PHY information from various PHY registers +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +em_phy_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val = -E1000_ERR_PHY; + uint16_t phy_data; + + DEBUGFUNC("em_phy_get_info"); + + phy_info->cable_length = em_cable_length_undefined; + phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined; + phy_info->cable_polarity = em_rev_polarity_undefined; + phy_info->polarity_correction = em_polarity_reversal_undefined; + phy_info->mdix_mode = em_auto_x_mode_undefined; + phy_info->local_rx = em_1000t_rx_status_undefined; + phy_info->remote_rx = em_1000t_rx_status_undefined; + + if(hw->media_type != em_media_type_copper) { + DEBUGOUT("PHY info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + do { + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break; + if(em_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break; + if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + DEBUGOUT("PHY info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) + break; + phy_info->extended_10bt_distance = + (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> + M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; + phy_info->polarity_correction = + (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> + M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; + + if(em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) + break; + phy_info->cable_polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> + M88E1000_PSSR_REV_POLARITY_SHIFT; + phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> + M88E1000_PSSR_MDIX_SHIFT; + if(phy_data & M88E1000_PSSR_1000MBS) { + /* Cable Length Estimation and Local/Remote Receiver Informatoion + * are only valid at 1000 Mbps + */ + phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + if(em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0) + break; + phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT; + phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT; + } + ret_val = 0; + } while(0); + + if(ret_val < 0) DEBUGOUT("PHY Read Error\n"); + return ret_val; +} + +int32_t +em_validate_mdi_setting(struct em_hw *hw) +{ + DEBUGFUNC("em_validate_mdi_settings"); + + if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->mdix = 1; + return -E1000_ERR_CONFIG; + } + return 0; +} + +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +em_raise_ee_clk(struct em_hw *hw, + uint32_t *eecd) +{ + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + usec_delay(50); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +em_lower_ee_clk(struct em_hw *hw, + uint32_t *eecd) +{ + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + usec_delay(50); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void +em_shift_out_ee_bits(struct em_hw *hw, + uint16_t data, + uint16_t count) +{ + uint32_t eecd; + uint32_t mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = E1000_READ_REG(hw, EECD); + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if(data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, EECD, eecd); + + usec_delay(50); + + em_raise_ee_clk(hw, &eecd); + em_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while(mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t +em_shift_in_ee_bits(struct em_hw *hw) +{ + uint32_t eecd; + uint32_t i; + uint16_t data; + + /* In order to read a register from the EEPROM, we need to shift 16 bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the "DO" + * bit. During this "shifting in" process the "DI" bit should always be + * clear.. + */ + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for(i = 0; i < 16; i++) { + data = data << 1; + em_raise_ee_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DI); + if(eecd & E1000_EECD_DO) + data |= 1; + + em_lower_ee_clk(hw, &eecd); + } + + return data; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static void +em_setup_eeprom(struct em_hw *hw) +{ + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); + E1000_WRITE_REG(hw, EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_standby_eeprom(struct em_hw *hw) +{ + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + /* Deselct EEPROM */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); + + /* Clock high */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); +} + +/****************************************************************************** + * Raises then lowers the EEPROM's clock pin + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_clock_eeprom(struct em_hw *hw) +{ + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(50); +} + +/****************************************************************************** + * Terminates a command by lowering the EEPROM's chip select pin + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_cleanup_eeprom(struct em_hw *hw) +{ + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + E1000_WRITE_REG(hw, EECD, eecd); + + em_clock_eeprom(hw); +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + *****************************************************************************/ +int32_t +em_read_eeprom(struct em_hw *hw, + uint16_t offset, + uint16_t *data) +{ + uint32_t eecd; + uint32_t i = 0; + boolean_t large_eeprom = FALSE; + + DEBUGFUNC("em_read_eeprom"); + + /* Request EEPROM Access */ + if(hw->mac_type > em_82544) { + eecd = E1000_READ_REG(hw, EECD); + if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE; + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while((!(eecd & E1000_EECD_GNT)) && (i < 100)) { + i++; + usec_delay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if(!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Prepare the EEPROM for reading */ + em_setup_eeprom(hw); + + /* Send the READ command (opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); + if(large_eeprom) { + /* If we have a 256 word EEPROM, there are 8 address bits */ + em_shift_out_ee_bits(hw, offset, 8); + } else { + /* If we have a 64 word EEPROM, there are 6 address bits */ + em_shift_out_ee_bits(hw, offset, 6); + } + + /* Read the data */ + *data = em_shift_in_ee_bits(hw); + + /* End this read operation */ + em_standby_eeprom(hw); + + /* Stop requesting EEPROM access */ + if(hw->mac_type > em_82544) { + eecd = E1000_READ_REG(hw, EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } + + return 0; +} + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + * + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +int32_t +em_validate_eeprom_checksum(struct em_hw *hw) +{ + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("em_validate_eeprom_checksum"); + + for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if(em_read_eeprom(hw, i, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + + if(checksum == (uint16_t) EEPROM_SUM) { + return 0; + } else { + DEBUGOUT("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } +} + +/****************************************************************************** + * Calculates the EEPROM checksum and writes it to the EEPROM + * + * hw - Struct containing variables accessed by shared code + * + * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. + * Writes the difference to word offset 63 of the EEPROM. + *****************************************************************************/ +int32_t +em_update_eeprom_checksum(struct em_hw *hw) +{ + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("em_update_eeprom_checksum"); + + for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if(em_read_eeprom(hw, i, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (uint16_t) EEPROM_SUM - checksum; + if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum) < 0) { + DEBUGOUT("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } + return 0; +} + +/****************************************************************************** + * Writes a 16 bit word to a given offset in the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * data - 16 bit word to be writen to the EEPROM + * + * If em_update_eeprom_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + *****************************************************************************/ +int32_t +em_write_eeprom(struct em_hw *hw, + uint16_t offset, + uint16_t data) +{ + uint32_t eecd; + uint32_t i = 0; + int32_t status = 0; + boolean_t large_eeprom = FALSE; + + DEBUGFUNC("em_write_eeprom"); + + /* Request EEPROM Access */ + if(hw->mac_type > em_82544) { + eecd = E1000_READ_REG(hw, EECD); + if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE; + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while((!(eecd & E1000_EECD_GNT)) && (i < 100)) { + i++; + usec_delay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if(!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Prepare the EEPROM for writing */ + em_setup_eeprom(hw); + + /* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable) command + * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This puts the EEPROM + * into write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); + if(large_eeprom) + em_shift_out_ee_bits(hw, 0, 6); + else + em_shift_out_ee_bits(hw, 0, 4); + + /* Prepare the EEPROM */ + em_standby_eeprom(hw); + + /* Send the Write command (3-bit opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); + if(large_eeprom) + /* If we have a 256 word EEPROM, there are 8 address bits */ + em_shift_out_ee_bits(hw, offset, 8); + else + /* If we have a 64 word EEPROM, there are 6 address bits */ + em_shift_out_ee_bits(hw, offset, 6); + + /* Send the data */ + em_shift_out_ee_bits(hw, data, 16); + + /* Toggle the CS line. This in effect tells to EEPROM to actually execute + * the command in question. + */ + em_standby_eeprom(hw); + + /* Now read DO repeatedly until is high (equal to '1'). The EEEPROM will + * signal that the command has been completed by raising the DO signal. + * If DO does not go high in 10 milliseconds, then error out. + */ + for(i = 0; i < 200; i++) { + eecd = E1000_READ_REG(hw, EECD); + if(eecd & E1000_EECD_DO) break; + usec_delay(50); + } + if(i == 200) { + DEBUGOUT("EEPROM Write did not complete\n"); + status = -E1000_ERR_EEPROM; + } + + /* Recover from write */ + em_standby_eeprom(hw); + + /* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable) command + * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This takes the EEPROM + * out of write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); + if(large_eeprom) + em_shift_out_ee_bits(hw, 0, 6); + else + em_shift_out_ee_bits(hw, 0, 4); + + /* Done with writing */ + em_cleanup_eeprom(hw); + + /* Stop requesting EEPROM access */ + if(hw->mac_type > em_82544) { + eecd = E1000_READ_REG(hw, EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } + + return status; +} + +/****************************************************************************** + * Reads the adapter's part number from the EEPROM + * + * hw - Struct containing variables accessed by shared code + * part_num - Adapter's part number + *****************************************************************************/ +int32_t +em_read_part_num(struct em_hw *hw, + uint32_t *part_num) +{ + uint16_t offset = EEPROM_PBA_BYTE_1; + uint16_t eeprom_data; + + DEBUGFUNC("em_read_part_num"); + + /* Get word 0 from EEPROM */ + if(em_read_eeprom(hw, offset, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 0 in upper half of part_num */ + *part_num = (uint32_t) (eeprom_data << 16); + + /* Get word 1 from EEPROM */ + if(em_read_eeprom(hw, ++offset, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 1 in lower half of part_num */ + *part_num |= eeprom_data; + + return 0; +} + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_read_mac_addr(struct em_hw * hw) +{ + uint16_t offset; + uint16_t eeprom_data, i; + + DEBUGFUNC("em_read_mac_addr"); + + for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if(em_read_eeprom(hw, offset, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); + } + if((hw->mac_type == em_82546) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + if(hw->perm_mac_addr[5] & 0x01) + hw->perm_mac_addr[5] &= ~(0x01); + else + hw->perm_mac_addr[5] |= 0x01; + } + for(i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return 0; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive addresss registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +void +em_init_rx_addrs(struct em_hw *hw) +{ + uint32_t i; + uint32_t addr_low; + uint32_t addr_high; + + DEBUGFUNC("em_init_rx_addrs"); + + /* Setup the receive address. */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + addr_low = (hw->mac_addr[0] | + (hw->mac_addr[1] << 8) | + (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24)); + + addr_high = (hw->mac_addr[4] | + (hw->mac_addr[5] << 8) | E1000_RAH_AV); + + E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); + E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); + + /* Zero out the other 15 receive addresses. */ + DEBUGOUT("Clearing RAR[1-15]\n"); + for(i = 1; i < E1000_RAR_ENTRIES; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } +} + +/****************************************************************************** + * Updates the MAC's list of multicast addresses. + * + * hw - Struct containing variables accessed by shared code + * mc_addr_list - the list of new multicast addresses + * mc_addr_count - number of addresses + * pad - number of bytes between addresses in the list + * + * The given list replaces any existing list. Clears the last 15 receive + * address registers and the multicast table. Uses receive address registers + * for the first 15 multicast addresses, and hashes the rest into the + * multicast table. + *****************************************************************************/ +void +em_mc_addr_list_update(struct em_hw *hw, + uint8_t *mc_addr_list, + uint32_t mc_addr_count, + uint32_t pad) +{ + uint32_t hash_value; + uint32_t i; + uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */ + + DEBUGFUNC("em_mc_addr_list_update"); + + /* Set the new number of MC addresses that we are being requested to use. */ + hw->num_mc_addrs = mc_addr_count; + + /* Clear RAR[1-15] */ + DEBUGOUT(" Clearing RAR[1-15]\n"); + for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } + + /* Clear the MTA */ + DEBUGOUT(" Clearing MTA\n"); + for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + } + + /* Add the new addresses */ + for(i = 0; i < mc_addr_count; i++) { + DEBUGOUT(" Adding the multicast addresses:\n"); + DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); + + hash_value = em_hash_mc_addr(hw, + mc_addr_list + + (i * (ETH_LENGTH_OF_ADDRESS + pad))); + + DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); + + /* Place this multicast address in the RAR if there is room, * + * else put it in the MTA + */ + if(rar_used_count < E1000_RAR_ENTRIES) { + em_rar_set(hw, + mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), + rar_used_count); + rar_used_count++; + } else { + em_mta_set(hw, hash_value); + } + } + DEBUGOUT("MC Update Complete\n"); +} + +/****************************************************************************** + * Hashes an address to determine its location in the multicast table + * + * hw - Struct containing variables accessed by shared code + * mc_addr - the multicast address to hash + *****************************************************************************/ +uint32_t +em_hash_mc_addr(struct em_hw *hw, + uint8_t *mc_addr) +{ + uint32_t hash_value = 0; + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + */ + case 0: + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + break; + case 1: + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + break; + case 2: + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + break; + case 3: + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + break; + } + + hash_value &= 0xFFF; + return hash_value; +} + +/****************************************************************************** + * Sets the bit in the multicast table corresponding to the hash value. + * + * hw - Struct containing variables accessed by shared code + * hash_value - Multicast address hash value + *****************************************************************************/ +void +em_mta_set(struct em_hw *hw, + uint32_t hash_value) +{ + uint32_t hash_bit, hash_reg; + uint32_t mta; + uint32_t temp; + + /* The MTA is a register array of 128 32-bit registers. + * It is treated like an array of 4096 bits. We want to set + * bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The register is determined by the + * upper 7 bits of the hash value and the bit within that + * register are determined by the lower 5 bits of the value. + */ + hash_reg = (hash_value >> 5) & 0x7F; + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); + + mta |= (1 << hash_bit); + + /* If we are on an 82544 and we are trying to write an odd offset + * in the MTA, save off the previous entry before writing and + * restore the old value after writing. + */ + if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + } else { + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + } +} + +/****************************************************************************** + * Puts an ethernet address into a receive address register. + * + * hw - Struct containing variables accessed by shared code + * addr - Address to put into receive address register + * index - Receive address register to write + *****************************************************************************/ +void +em_rar_set(struct em_hw *hw, + uint8_t *addr, + uint32_t index) +{ + uint32_t rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((uint32_t) addr[0] | + ((uint32_t) addr[1] << 8) | + ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); + + rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); +} + +/****************************************************************************** + * Writes a value to the specified offset in the VLAN filter table. + * + * hw - Struct containing variables accessed by shared code + * offset - Offset in VLAN filer table to write + * value - Value to write into VLAN filter table + *****************************************************************************/ +void +em_write_vfta(struct em_hw *hw, + uint32_t offset, + uint32_t value) +{ + uint32_t temp; + + if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + } else { + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + } +} + +/****************************************************************************** + * Clears the VLAN filer table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_clear_vfta(struct em_hw *hw) +{ + uint32_t offset; + + for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +static int32_t +em_id_led_init(struct em_hw * hw) +{ + uint32_t ledctl; + const uint32_t ledctl_mask = 0x000000FF; + const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + uint16_t eeprom_data, i, temp; + const uint16_t led_mask = 0x0F; + + DEBUGFUNC("em_id_led_init"); + + if(hw->mac_type < em_82540) { + /* Nothing to do */ + return 0; + } + + ledctl = E1000_READ_REG(hw, LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if((eeprom_data== ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; + for(i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch(temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch(temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return 0; +} + +/****************************************************************************** + * Prepares SW controlable LED for use and saves the current state of the LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_setup_led(struct em_hw *hw) +{ + uint32_t ledctl; + + DEBUGFUNC("em_setup_led"); + + switch(hw->device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + /* No setup necessary */ + break; + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + ledctl = E1000_READ_REG(hw, LEDCTL); + /* Save current LEDCTL settings */ + hw->ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, LEDCTL, ledctl); + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82546EB_COPPER: + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + break; + default: + DEBUGOUT("Invalid device ID\n"); + return -E1000_ERR_CONFIG; + } + return 0; +} + +/****************************************************************************** + * Restores the saved state of the SW controlable LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_cleanup_led(struct em_hw *hw) +{ + DEBUGFUNC("em_cleanup_led"); + + switch(hw->device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + /* No cleanup necessary */ + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + /* Restore LEDCTL settings */ + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); + break; + default: + DEBUGOUT("Invalid device ID\n"); + return -E1000_ERR_CONFIG; + } + return 0; +} + +/****************************************************************************** + * Turns on the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_led_on(struct em_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("em_led_on"); + + switch(hw->device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + ctrl = E1000_READ_REG(hw, CTRL); + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, CTRL, ctrl); + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + ctrl = E1000_READ_REG(hw, CTRL); + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, CTRL, ctrl); + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82546EB_COPPER: + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); + break; + default: + DEBUGOUT("Invalid device ID\n"); + return -E1000_ERR_CONFIG; + } + return 0; +} + +/****************************************************************************** + * Turns off the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_led_off(struct em_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("em_led_off"); + + switch(hw->device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + ctrl = E1000_READ_REG(hw, CTRL); + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, CTRL, ctrl); + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + ctrl = E1000_READ_REG(hw, CTRL); + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, CTRL, ctrl); + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82546EB_COPPER: + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + break; + default: + DEBUGOUT("Invalid device ID\n"); + return -E1000_ERR_CONFIG; + } + return 0; +} + +/****************************************************************************** + * Clears all hardware statistics counters. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_clear_hw_cntrs(struct em_hw *hw) +{ + volatile uint32_t temp; + + temp = E1000_READ_REG(hw, CRCERRS); + temp = E1000_READ_REG(hw, SYMERRS); + temp = E1000_READ_REG(hw, MPC); + temp = E1000_READ_REG(hw, SCC); + temp = E1000_READ_REG(hw, ECOL); + temp = E1000_READ_REG(hw, MCC); + temp = E1000_READ_REG(hw, LATECOL); + temp = E1000_READ_REG(hw, COLC); + temp = E1000_READ_REG(hw, DC); + temp = E1000_READ_REG(hw, SEC); + temp = E1000_READ_REG(hw, RLEC); + temp = E1000_READ_REG(hw, XONRXC); + temp = E1000_READ_REG(hw, XONTXC); + temp = E1000_READ_REG(hw, XOFFRXC); + temp = E1000_READ_REG(hw, XOFFTXC); + temp = E1000_READ_REG(hw, FCRUC); + temp = E1000_READ_REG(hw, PRC64); + temp = E1000_READ_REG(hw, PRC127); + temp = E1000_READ_REG(hw, PRC255); + temp = E1000_READ_REG(hw, PRC511); + temp = E1000_READ_REG(hw, PRC1023); + temp = E1000_READ_REG(hw, PRC1522); + temp = E1000_READ_REG(hw, GPRC); + temp = E1000_READ_REG(hw, BPRC); + temp = E1000_READ_REG(hw, MPRC); + temp = E1000_READ_REG(hw, GPTC); + temp = E1000_READ_REG(hw, GORCL); + temp = E1000_READ_REG(hw, GORCH); + temp = E1000_READ_REG(hw, GOTCL); + temp = E1000_READ_REG(hw, GOTCH); + temp = E1000_READ_REG(hw, RNBC); + temp = E1000_READ_REG(hw, RUC); + temp = E1000_READ_REG(hw, RFC); + temp = E1000_READ_REG(hw, ROC); + temp = E1000_READ_REG(hw, RJC); + temp = E1000_READ_REG(hw, TORL); + temp = E1000_READ_REG(hw, TORH); + temp = E1000_READ_REG(hw, TOTL); + temp = E1000_READ_REG(hw, TOTH); + temp = E1000_READ_REG(hw, TPR); + temp = E1000_READ_REG(hw, TPT); + temp = E1000_READ_REG(hw, PTC64); + temp = E1000_READ_REG(hw, PTC127); + temp = E1000_READ_REG(hw, PTC255); + temp = E1000_READ_REG(hw, PTC511); + temp = E1000_READ_REG(hw, PTC1023); + temp = E1000_READ_REG(hw, PTC1522); + temp = E1000_READ_REG(hw, MPTC); + temp = E1000_READ_REG(hw, BPTC); + + if(hw->mac_type < em_82543) return; + + temp = E1000_READ_REG(hw, ALGNERRC); + temp = E1000_READ_REG(hw, RXERRC); + temp = E1000_READ_REG(hw, TNCRS); + temp = E1000_READ_REG(hw, CEXTERR); + temp = E1000_READ_REG(hw, TSCTC); + temp = E1000_READ_REG(hw, TSCTFC); + + if(hw->mac_type <= em_82544) return; + + temp = E1000_READ_REG(hw, MGTPRC); + temp = E1000_READ_REG(hw, MGTPDC); + temp = E1000_READ_REG(hw, MGTPTC); +} + +/****************************************************************************** + * Resets Adaptive IFS to its default state. + * + * hw - Struct containing variables accessed by shared code + * + * Call this after em_init_hw. You may override the IFS defaults by setting + * hw->ifs_params_forced to TRUE. However, you must initialize hw-> + * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio + * before calling this function. + *****************************************************************************/ +void +em_reset_adaptive(struct em_hw *hw) +{ + DEBUGFUNC("em_reset_adaptive"); + + if(hw->adaptive_ifs) { + if(!hw->ifs_params_forced) { + hw->current_ifs_val = 0; + hw->ifs_min_val = IFS_MIN; + hw->ifs_max_val = IFS_MAX; + hw->ifs_step_size = IFS_STEP; + hw->ifs_ratio = IFS_RATIO; + } + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Called during the callback/watchdog routine to update IFS value based on + * the ratio of transmits to collisions. + * + * hw - Struct containing variables accessed by shared code + * tx_packets - Number of transmits since last callback + * total_collisions - Number of collisions since last callback + *****************************************************************************/ +void +em_update_adaptive(struct em_hw *hw) +{ + DEBUGFUNC("em_update_adaptive"); + + if(hw->adaptive_ifs) { + if((hw->collision_delta * hw->ifs_ratio) > + hw->tx_packet_delta) { + if(hw->tx_packet_delta > MIN_NUM_XMITS) { + hw->in_ifs_mode = TRUE; + if(hw->current_ifs_val < hw->ifs_max_val) { + if(hw->current_ifs_val == 0) + hw->current_ifs_val = hw->ifs_min_val; + else + hw->current_ifs_val += hw->ifs_step_size; + E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); + } + } + } else { + if((hw->in_ifs_mode == TRUE) && + (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + hw->current_ifs_val = 0; + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } + } + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + * + * hw - Struct containing variables accessed by shared code + * frame_len - The length of the frame in question + * mac_addr - The Ethernet destination address of the frame in question + *****************************************************************************/ +void +em_tbi_adjust_stats(struct em_hw *hw, + struct em_hw_stats *stats, + uint32_t frame_len, + uint8_t *mac_addr) +{ + uint64_t carry_bit; + + /* First adjust the frame length. */ + frame_len--; + /* We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, + * AND it is zero after, then we lost the carry out, + * need to add one to Gorch (Good Octets Received Count High). + * This could be simplified if all environments supported + * 64-bit integers. + */ + if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if(*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if(frame_len == hw->max_frame_size) { + /* In this case, the hardware has overcounted the number of + * oversize frames. + */ + if(stats->roc > 0) + stats->roc--; + } + + /* Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if(frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if(frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if(frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if(frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if(frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if(frame_len == 1522) { + stats->prc1522++; + } +} + +/****************************************************************************** + * Gets the current PCI bus type, speed, and width of the hardware + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_get_bus_info(struct em_hw *hw) +{ + uint32_t status; + + if(hw->mac_type < em_82543) { + hw->bus_type = em_bus_type_unknown; + hw->bus_speed = em_bus_speed_unknown; + hw->bus_width = em_bus_width_unknown; + return; + } + + status = E1000_READ_REG(hw, STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + em_bus_type_pcix : em_bus_type_pci; + if(hw->bus_type == em_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + em_bus_speed_66 : em_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = em_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = em_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = em_bus_speed_133; + break; + default: + hw->bus_speed = em_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + em_bus_width_64 : em_bus_width_32; +} +/****************************************************************************** + * Reads a value from one of the devices registers using port I/O (as opposed + * memory mapped I/O). Only 82544 and newer devices support port I/O. + * + * hw - Struct containing variables accessed by shared code + * offset - offset to read from + *****************************************************************************/ +uint32_t +em_read_reg_io(struct em_hw *hw, + uint32_t offset) +{ + uint32_t io_addr = hw->io_base; + uint32_t io_data = hw->io_base + 4; + + em_io_write(hw, io_addr, offset); + return em_io_read(hw, io_data); +} + +/****************************************************************************** + * Writes a value to one of the devices registers using port I/O (as opposed to + * memory mapped I/O). Only 82544 and newer devices support port I/O. + * + * hw - Struct containing variables accessed by shared code + * offset - offset to write to + * value - value to write + *****************************************************************************/ +void +em_write_reg_io(struct em_hw *hw, + uint32_t offset, + uint32_t value) +{ + uint32_t io_addr = hw->io_base; + uint32_t io_data = hw->io_base + 4; + + em_io_write(hw, io_addr, offset); + em_io_write(hw, io_data, value); +} + diff --git a/sys/dev/pci/if_em_hw.h b/sys/dev/pci/if_em_hw.h new file mode 100644 index 00000000000..f4b498dc7a8 --- /dev/null +++ b/sys/dev/pci/if_em_hw.h @@ -0,0 +1,1784 @@ +/************************************************************************** + +Copyright (c) 2001-2002 Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms of the Software, with or +without modification, are permitted provided that the following conditions +are met: + + 1. Redistributions of source code of the Software may retain the above + copyright notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form of the Software may reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors shall be used to endorse or promote products derived from + this Software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD$*/ +/* if_em_hw.h + * Structures, enums, and macros for the MAC + */ + +#ifndef _EM_HW_H_ +#define _EM_HW_H_ + +#include + +/* Forward declarations of structures used by the shared code */ +struct em_hw; +struct em_hw_stats; + +/* Enumerated types specific to the e1000 hardware */ +/* Media Access Controlers */ +typedef enum { + em_82542_rev2_0 = 0, + em_82542_rev2_1, + em_82543, + em_82544, + em_82540, + em_82545, + em_82546, + em_num_macs +} em_mac_type; + +/* Media Types */ +typedef enum { + em_media_type_copper = 0, + em_media_type_fiber = 1, + em_num_media_types +} em_media_type; + +typedef enum { + em_10_half = 0, + em_10_full = 1, + em_100_half = 2, + em_100_full = 3 +} em_speed_duplex_type; + +/* Flow Control Settings */ +typedef enum { + em_fc_none = 0, + em_fc_rx_pause = 1, + em_fc_tx_pause = 2, + em_fc_full = 3, + em_fc_default = 0xFF +} em_fc_type; + +/* PCI bus types */ +typedef enum { + em_bus_type_unknown = 0, + em_bus_type_pci, + em_bus_type_pcix +} em_bus_type; + +/* PCI bus speeds */ +typedef enum { + em_bus_speed_unknown = 0, + em_bus_speed_33, + em_bus_speed_66, + em_bus_speed_100, + em_bus_speed_133, + em_bus_speed_reserved +} em_bus_speed; + +/* PCI bus widths */ +typedef enum { + em_bus_width_unknown = 0, + em_bus_width_32, + em_bus_width_64 +} em_bus_width; + +/* PHY status info structure and supporting enums */ +typedef enum { + em_cable_length_50 = 0, + em_cable_length_50_80, + em_cable_length_80_110, + em_cable_length_110_140, + em_cable_length_140, + em_cable_length_undefined = 0xFF +} em_cable_length; + +typedef enum { + em_10bt_ext_dist_enable_normal = 0, + em_10bt_ext_dist_enable_lower, + em_10bt_ext_dist_enable_undefined = 0xFF +} em_10bt_ext_dist_enable; + +typedef enum { + em_rev_polarity_normal = 0, + em_rev_polarity_reversed, + em_rev_polarity_undefined = 0xFF +} em_rev_polarity; + +typedef enum { + em_polarity_reversal_enabled = 0, + em_polarity_reversal_disabled, + em_polarity_reversal_undefined = 0xFF +} em_polarity_reversal; + +typedef enum { + em_auto_x_mode_manual_mdi = 0, + em_auto_x_mode_manual_mdix, + em_auto_x_mode_auto1, + em_auto_x_mode_auto2, + em_auto_x_mode_undefined = 0xFF +} em_auto_x_mode; + +typedef enum { + em_1000t_rx_status_not_ok = 0, + em_1000t_rx_status_ok, + em_1000t_rx_status_undefined = 0xFF +} em_1000t_rx_status; + +struct em_phy_info { + em_cable_length cable_length; + em_10bt_ext_dist_enable extended_10bt_distance; + em_rev_polarity cable_polarity; + em_polarity_reversal polarity_correction; + em_auto_x_mode mdix_mode; + em_1000t_rx_status local_rx; + em_1000t_rx_status remote_rx; +}; + +struct em_phy_stats { + uint32_t idle_errors; + uint32_t receive_errors; +}; + + + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_EEPROM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 + +/* Function prototypes */ +/* Initialization */ +void em_reset_hw(struct em_hw *hw); +int32_t em_init_hw(struct em_hw *hw); + +/* Link Configuration */ +int32_t em_setup_link(struct em_hw *hw); +int32_t em_phy_setup_autoneg(struct em_hw *hw); +void em_config_collision_dist(struct em_hw *hw); +int32_t em_config_fc_after_link_up(struct em_hw *hw); +int32_t em_check_for_link(struct em_hw *hw); +void em_get_speed_and_duplex(struct em_hw *hw, uint16_t * speed, uint16_t * duplex); +int32_t em_wait_autoneg(struct em_hw *hw); + +/* PHY */ +int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data); +int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data); +void em_phy_hw_reset(struct em_hw *hw); +int32_t em_phy_reset(struct em_hw *hw); +int32_t em_detect_gig_phy(struct em_hw *hw); +int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info); +int32_t em_validate_mdi_setting(struct em_hw *hw); + +/* EEPROM Functions */ +int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t *data); +int32_t em_validate_eeprom_checksum(struct em_hw *hw); +int32_t em_update_eeprom_checksum(struct em_hw *hw); +int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t data); +int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num); +int32_t em_read_mac_addr(struct em_hw * hw); + +/* Filters (multicast, vlan, receive) */ +void em_init_rx_addrs(struct em_hw *hw); +void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad); +uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr); +void em_mta_set(struct em_hw *hw, uint32_t hash_value); +void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index); +void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value); +void em_clear_vfta(struct em_hw *hw); + +/* LED functions */ +int32_t em_setup_led(struct em_hw *hw); +int32_t em_cleanup_led(struct em_hw *hw); +int32_t em_led_on(struct em_hw *hw); +int32_t em_led_off(struct em_hw *hw); + +/* Adaptive IFS Functions */ + +/* Everything else */ +void em_clear_hw_cntrs(struct em_hw *hw); +void em_reset_adaptive(struct em_hw *hw); +void em_update_adaptive(struct em_hw *hw); +void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr); +void em_get_bus_info(struct em_hw *hw); +void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value); +void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value); +/* Port I/O is only supported on 82544 and newer */ +uint32_t em_io_read(struct em_hw *hw, uint32_t port); +uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset); +void em_io_write(struct em_hw *hw, uint32_t port, uint32_t value); +void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value); +#define E1000_READ_REG_IO(a, reg) \ + em_read_reg_io((a), E1000_##reg) +#define E1000_WRITE_REG_IO(a, reg, val) \ + em_write_reg_io((a), E1000_##reg, val) + +/* PCI Device IDs */ +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define NUM_DEV_IDS 13 + +#define NODE_ADDRESS_SIZE 6 +#define ETH_LENGTH_OF_ADDRESS 6 + +/* MAC decode size is 128K - This is the size of BAR0 */ +#define MAC_DECODE_SIZE (128 * 1024) + +#define E1000_82542_2_0_REV_ID 2 +#define E1000_82542_2_1_REV_ID 3 + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +/* The sizes (in bytes) of a ethernet packet */ +#define ENET_HEADER_SIZE 14 +#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ +#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ +#define ETHERNET_FCS_SIZE 4 +#define MAXIMUM_ETHERNET_PACKET_SIZE \ + (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define MINIMUM_ETHERNET_PACKET_SIZE \ + (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define CRC_LENGTH ETHERNET_FCS_SIZE +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + + +/* 802.1q VLAN Packet Sizes */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ +#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ +#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ + +/* Packet Header defines */ +#define IP_PROTOCOL_TCP 6 +#define IP_PROTOCOL_UDP 0x11 + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + */ +#define POLL_IMS_ENABLE_MASK ( \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ) + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* The number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. We + * reserve one of these spots for our directed address, allowing us room for + * E1000_RAR_ENTRIES - 1 multicast addresses. + */ +#define E1000_RAR_ENTRIES 16 + +#define MIN_NUMBER_OF_DESCRIPTORS 8 +#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 + +/* Receive Descriptor */ +struct em_rx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + uint16_t length; /* Length of data DMAed into data buffer */ + uint16_t csum; /* Packet checksum */ + uint8_t status; /* Descriptor status */ + uint8_t errors; /* Descriptor Errors */ + uint16_t special; +}; + +/* Receive Decriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Transmit Descriptor */ +struct em_tx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t cso; /* Checksum offset */ + uint8_t cmd; /* Descriptor control */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t css; /* Checksum start */ + uint16_t special; + } fields; + } upper; +}; + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Offload Context Descriptor */ +struct em_context_desc { + union { + uint32_t ip_config; + struct { + uint8_t ipcss; /* IP checksum start */ + uint8_t ipcso; /* IP checksum offset */ + uint16_t ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + uint32_t tcp_config; + struct { + uint8_t tucss; /* TCP checksum start */ + uint8_t tucso; /* TCP checksum offset */ + uint16_t tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + uint32_t cmd_and_length; /* */ + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t hdr_len; /* Header length */ + uint16_t mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct em_data_desc { + uint64_t buffer_addr; /* Address of the descriptor's buffer address */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t typ_len_ext; /* */ + uint8_t cmd; /* */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t popts; /* Packet Options */ + uint16_t special; /* */ + } fields; + } upper; +}; + +/* Filters */ +#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ +#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + + +/* Receive Address Register */ +struct em_rar { + volatile uint32_t low; /* receive address low */ + volatile uint32_t high; /* receive address high */ +}; + +/* The number of entries in the Multicast Table Array (MTA). */ +#define E1000_NUM_MTA_REGISTERS 128 + +/* IPv4 Address Table Entry */ +struct em_ipv4_at_entry { + volatile uint32_t ipv4_addr; /* IP Address (RW) */ + volatile uint32_t reserved; +}; + +/* Four wakeup IP addresses are supported */ +#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 +#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX +#define E1000_IP6AT_SIZE 1 + +/* IPv6 Address Table Entry */ +struct em_ipv6_at_entry { + volatile uint8_t ipv6_addr[16]; +}; + +/* Flexible Filter Length Table Entry */ +struct em_fflt_entry { + volatile uint32_t length; /* Flexible Filter Length (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Mask Table Entry */ +struct em_ffmt_entry { + volatile uint32_t mask; /* Flexible Filter Mask (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Value Table Entry */ +struct em_ffvt_entry { + volatile uint32_t value; /* Flexible Filter Value (RW) */ + volatile uint32_t reserved; +}; + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +/* Register Set. (82543, 82544) + * + * Registers are defined to be 32 bits and should be accessed as 32 bit values. + * These registers are physically located on the NIC, but are mapped into the + * host memory address space. + * + * RW - register is both readable and writable + * RO - register is read only + * WO - register is write only + * R/clr - register is read only and is cleared when read + * A - register array + */ +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_RCTL 0x00100 /* RX Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* TX Control - RW */ +#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ +#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ +#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ +#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ +#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ +#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ +#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ +#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ +#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ +#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +/* Register Set (82542) + * + * Some of the 82542 registers are located at different offsets than they are + * in more current versions of the 8254x. Despite the difference in location, + * the registers function in the same manner. + */ +#define E1000_82542_CTRL E1000_CTRL +#define E1000_82542_STATUS E1000_STATUS +#define E1000_82542_EECD E1000_EECD +#define E1000_82542_EERD E1000_EERD +#define E1000_82542_CTRL_EXT E1000_CTRL_EXT +#define E1000_82542_MDIC E1000_MDIC +#define E1000_82542_FCAL E1000_FCAL +#define E1000_82542_FCAH E1000_FCAH +#define E1000_82542_FCT E1000_FCT +#define E1000_82542_VET E1000_VET +#define E1000_82542_RA 0x00040 +#define E1000_82542_ICR E1000_ICR +#define E1000_82542_ITR E1000_ITR +#define E1000_82542_ICS E1000_ICS +#define E1000_82542_IMS E1000_IMS +#define E1000_82542_IMC E1000_IMC +#define E1000_82542_RCTL E1000_RCTL +#define E1000_82542_RDTR 0x00108 +#define E1000_82542_RDBAL 0x00110 +#define E1000_82542_RDBAH 0x00114 +#define E1000_82542_RDLEN 0x00118 +#define E1000_82542_RDH 0x00120 +#define E1000_82542_RDT 0x00128 +#define E1000_82542_FCRTH 0x00160 +#define E1000_82542_FCRTL 0x00168 +#define E1000_82542_FCTTV E1000_FCTTV +#define E1000_82542_TXCW E1000_TXCW +#define E1000_82542_RXCW E1000_RXCW +#define E1000_82542_MTA 0x00200 +#define E1000_82542_TCTL E1000_TCTL +#define E1000_82542_TIPG E1000_TIPG +#define E1000_82542_TDBAL 0x00420 +#define E1000_82542_TDBAH 0x00424 +#define E1000_82542_TDLEN 0x00428 +#define E1000_82542_TDH 0x00430 +#define E1000_82542_TDT 0x00438 +#define E1000_82542_TIDV 0x00440 +#define E1000_82542_TBT E1000_TBT +#define E1000_82542_AIT E1000_AIT +#define E1000_82542_VFTA 0x00600 +#define E1000_82542_LEDCTL E1000_LEDCTL +#define E1000_82542_PBA E1000_PBA +#define E1000_82542_RXDCTL E1000_RXDCTL +#define E1000_82542_RADV E1000_RADV +#define E1000_82542_RSRPD E1000_RSRPD +#define E1000_82542_TXDMAC E1000_TXDMAC +#define E1000_82542_TXDCTL E1000_TXDCTL +#define E1000_82542_TADV E1000_TADV +#define E1000_82542_TSPMT E1000_TSPMT +#define E1000_82542_CRCERRS E1000_CRCERRS +#define E1000_82542_ALGNERRC E1000_ALGNERRC +#define E1000_82542_SYMERRS E1000_SYMERRS +#define E1000_82542_RXERRC E1000_RXERRC +#define E1000_82542_MPC E1000_MPC +#define E1000_82542_SCC E1000_SCC +#define E1000_82542_ECOL E1000_ECOL +#define E1000_82542_MCC E1000_MCC +#define E1000_82542_LATECOL E1000_LATECOL +#define E1000_82542_COLC E1000_COLC +#define E1000_82542_DC E1000_DC +#define E1000_82542_TNCRS E1000_TNCRS +#define E1000_82542_SEC E1000_SEC +#define E1000_82542_CEXTERR E1000_CEXTERR +#define E1000_82542_RLEC E1000_RLEC +#define E1000_82542_XONRXC E1000_XONRXC +#define E1000_82542_XONTXC E1000_XONTXC +#define E1000_82542_XOFFRXC E1000_XOFFRXC +#define E1000_82542_XOFFTXC E1000_XOFFTXC +#define E1000_82542_FCRUC E1000_FCRUC +#define E1000_82542_PRC64 E1000_PRC64 +#define E1000_82542_PRC127 E1000_PRC127 +#define E1000_82542_PRC255 E1000_PRC255 +#define E1000_82542_PRC511 E1000_PRC511 +#define E1000_82542_PRC1023 E1000_PRC1023 +#define E1000_82542_PRC1522 E1000_PRC1522 +#define E1000_82542_GPRC E1000_GPRC +#define E1000_82542_BPRC E1000_BPRC +#define E1000_82542_MPRC E1000_MPRC +#define E1000_82542_GPTC E1000_GPTC +#define E1000_82542_GORCL E1000_GORCL +#define E1000_82542_GORCH E1000_GORCH +#define E1000_82542_GOTCL E1000_GOTCL +#define E1000_82542_GOTCH E1000_GOTCH +#define E1000_82542_RNBC E1000_RNBC +#define E1000_82542_RUC E1000_RUC +#define E1000_82542_RFC E1000_RFC +#define E1000_82542_ROC E1000_ROC +#define E1000_82542_RJC E1000_RJC +#define E1000_82542_MGTPRC E1000_MGTPRC +#define E1000_82542_MGTPDC E1000_MGTPDC +#define E1000_82542_MGTPTC E1000_MGTPTC +#define E1000_82542_TORL E1000_TORL +#define E1000_82542_TORH E1000_TORH +#define E1000_82542_TOTL E1000_TOTL +#define E1000_82542_TOTH E1000_TOTH +#define E1000_82542_TPR E1000_TPR +#define E1000_82542_TPT E1000_TPT +#define E1000_82542_PTC64 E1000_PTC64 +#define E1000_82542_PTC127 E1000_PTC127 +#define E1000_82542_PTC255 E1000_PTC255 +#define E1000_82542_PTC511 E1000_PTC511 +#define E1000_82542_PTC1023 E1000_PTC1023 +#define E1000_82542_PTC1522 E1000_PTC1522 +#define E1000_82542_MPTC E1000_MPTC +#define E1000_82542_BPTC E1000_BPTC +#define E1000_82542_TSCTC E1000_TSCTC +#define E1000_82542_TSCTFC E1000_TSCTFC +#define E1000_82542_RXCSUM E1000_RXCSUM +#define E1000_82542_WUC E1000_WUC +#define E1000_82542_WUFC E1000_WUFC +#define E1000_82542_WUS E1000_WUS +#define E1000_82542_MANC E1000_MANC +#define E1000_82542_IPAV E1000_IPAV +#define E1000_82542_IP4AT E1000_IP4AT +#define E1000_82542_IP6AT E1000_IP6AT +#define E1000_82542_WUPL E1000_WUPL +#define E1000_82542_WUPM E1000_WUPM +#define E1000_82542_FFLT E1000_FFLT +#define E1000_82542_FFMT E1000_FFMT +#define E1000_82542_FFVT E1000_FFVT + +/* Statistics counters collected by the MAC */ +struct em_hw_stats { + uint64_t crcerrs; + uint64_t algnerrc; + uint64_t symerrs; + uint64_t rxerrc; + uint64_t mpc; + uint64_t scc; + uint64_t ecol; + uint64_t mcc; + uint64_t latecol; + uint64_t colc; + uint64_t dc; + uint64_t tncrs; + uint64_t sec; + uint64_t cexterr; + uint64_t rlec; + uint64_t xonrxc; + uint64_t xontxc; + uint64_t xoffrxc; + uint64_t xofftxc; + uint64_t fcruc; + uint64_t prc64; + uint64_t prc127; + uint64_t prc255; + uint64_t prc511; + uint64_t prc1023; + uint64_t prc1522; + uint64_t gprc; + uint64_t bprc; + uint64_t mprc; + uint64_t gptc; + uint64_t gorcl; + uint64_t gorch; + uint64_t gotcl; + uint64_t gotch; + uint64_t rnbc; + uint64_t ruc; + uint64_t rfc; + uint64_t roc; + uint64_t rjc; + uint64_t mgprc; + uint64_t mgpdc; + uint64_t mgptc; + uint64_t torl; + uint64_t torh; + uint64_t totl; + uint64_t toth; + uint64_t tpr; + uint64_t tpt; + uint64_t ptc64; + uint64_t ptc127; + uint64_t ptc255; + uint64_t ptc511; + uint64_t ptc1023; + uint64_t ptc1522; + uint64_t mptc; + uint64_t bptc; + uint64_t tsctc; + uint64_t tsctfc; +}; + +/* Structure containing variables used by the shared code (em_hw.c) */ +struct em_hw { + uint8_t *hw_addr; + em_mac_type mac_type; + em_media_type media_type; + void *back; + em_fc_type fc; + em_bus_speed bus_speed; + em_bus_width bus_width; + em_bus_type bus_type; + uint32_t io_base; + uint32_t phy_id; + uint32_t phy_addr; + uint32_t original_fc; + uint32_t txcw; + uint32_t autoneg_failed; + uint32_t max_frame_size; + uint32_t min_frame_size; + uint32_t mc_filter_type; + uint32_t num_mc_addrs; + uint32_t collision_delta; + uint32_t tx_packet_delta; + uint32_t ledctl_default; + uint32_t ledctl_mode1; + uint32_t ledctl_mode2; + uint16_t autoneg_advertised; + uint16_t pci_cmd_word; + uint16_t fc_high_water; + uint16_t fc_low_water; + uint16_t fc_pause_time; + uint16_t current_ifs_val; + uint16_t ifs_min_val; + uint16_t ifs_max_val; + uint16_t ifs_step_size; + uint16_t ifs_ratio; + uint16_t device_id; + uint16_t vendor_id; + uint16_t subsystem_id; + uint16_t subsystem_vendor_id; + uint8_t revision_id; + uint8_t autoneg; + uint8_t mdix; + uint8_t forced_speed_duplex; + uint8_t wait_autoneg_complete; + uint8_t dma_fairness; + uint8_t mac_addr[NODE_ADDRESS_SIZE]; + uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; + boolean_t disable_polarity_correction; + boolean_t get_link_status; + boolean_t tbi_compatibility_en; + boolean_t tbi_compatibility_on; + boolean_t fc_send_xon; + boolean_t report_tx_early; + boolean_t adaptive_ifs; + boolean_t ifs_params_forced; + boolean_t in_ifs_mode; +}; + + +#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ + +/* Register Bit Masks */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ + +/* Constants used to intrepret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ + +/* EEPROM/Flash Control */ +#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ +#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ +#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ + +/* EEPROM Read */ +#define E1000_EERD_START 0x00000001 /* Start Read */ +#define E1000_EERD_DONE 0x00000010 /* Read Done */ +#define E1000_EERD_ADDR_SHIFT 8 +#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ +#define E1000_EERD_DATA_SHIFT 16 +#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Receive Address */ +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Clear */ +#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMC_SRPD E1000_ICR_SRPD + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ + +/* Receive Descriptor */ +#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ +#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ +#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Receive Descriptor Control */ +#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ +#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ +#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ +#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ +#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ +#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery + * Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +#define E1000_MDALIGN 4096 + +/* EEPROM Commands */ +#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */ +#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */ +#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */ +#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */ +#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */ + +/* EEPROM Word Offsets */ +#define EEPROM_COMPAT 0x0003 +#define EEPROM_ID_LED_SETTINGS 0x0004 +#define EEPROM_INIT_CONTROL1_REG 0x000A +#define EEPROM_INIT_CONTROL2_REG 0x000F +#define EEPROM_FLASH_VERSION 0x0032 +#define EEPROM_CHECKSUM_REG 0x003F + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define EEPROM_COMPAT_SERVER 0x0400 +#define EEPROM_COMPAT_CLIENT 0x0200 + +/* Mask bits for fields in Word 0x0a of the EEPROM */ +#define EEPROM_WORD0A_ILOS 0x0010 +#define EEPROM_WORD0A_SWDPIO 0x01E0 +#define EEPROM_WORD0A_LRST 0x0200 +#define EEPROM_WORD0A_FD 0x0400 +#define EEPROM_WORD0A_66MHZ 0x0800 + +/* Mask bits for fields in Word 0x0f of the EEPROM */ +#define EEPROM_WORD0F_PAUSE_MASK 0x3000 +#define EEPROM_WORD0F_PAUSE 0x1000 +#define EEPROM_WORD0F_ASM_DIR 0x2000 +#define EEPROM_WORD0F_ANE 0x0800 +#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 + +/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ +#define EEPROM_SUM 0xBABA + +/* EEPROM Map defines (WORD OFFSETS)*/ +#define EEPROM_NODE_ADDRESS_BYTE_0 0 +#define EEPROM_PBA_BYTE_1 8 + +/* EEPROM Map Sizes (Byte Counts) */ +#define PBA_SIZE 4 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 16 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 64 +#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_GB_HDX_COLLISION_DISTANCE 512 +#define E1000_COLD_SHIFT 12 + +/* The number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define E1000_TIPG_IPGR2_SHIFT 20 + +#define E1000_TXDMAC_DPP 0x00000001 + +/* Adaptive IFS defines */ +#define TX_THRESHOLD_START 8 +#define TX_THRESHOLD_INCREMENT 10 +#define TX_THRESHOLD_DECREMENT 1 +#define TX_THRESHOLD_STOP 190 +#define TX_THRESHOLD_DISABLE 0 +#define TX_THRESHOLD_TIMER_MS 10000 +#define MIN_NUM_XMITS 1000 +#define IFS_MAX 80 +#define IFS_STEP 10 +#define IFS_MIN 40 +#define IFS_RATIO 4 + +/* PBA constants */ +#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* The historical defaults for the flow control values are given below. */ +#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ +#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ +#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ + +/* PCIX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 + + +/* The number of bits that we need to shift right to move the "pause" + * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field + * in the TXCW register + */ +#define PAUSE_SHIFT 5 + +/* The number of bits that we need to shift left to move the "SWDPIO" + * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field + * in the CTRL register + */ +#define SWDPIO_SHIFT 17 + +/* The number of bits that we need to shift left to move the "SWDPIO_EXT" + * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The + * Extended CTRL register. + * in the CTRL register + */ +#define SWDPIO__EXT_SHIFT 4 + +/* The number of bits that we need to shift left to move the "ILOS" + * bit from the EEPROM (bit 4) to the "ILOS" (bit 7) field + * in the CTRL register + */ +#define ILOS_SHIFT 3 + + +#define RECEIVE_BUFFER_ALIGN_SIZE (256) + +/* The number of milliseconds we wait for auto-negotiation to complete */ +#define LINK_UP_TIMEOUT 500 + +#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +/* TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct em_hw + * status = the 8 bit status field of the RX descriptor with EOP set + * error = the 8 bit error field of the RX descriptor with EOP set + * length = the sum of all the length fields of the RX descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = TRUE; + * em_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = FALSE; + * } + * ... + */ + +#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ + ((adapter)->tbi_compatibility_on && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= ((adapter)->max_frame_size + 1))) : \ + (((length) > (adapter)->min_frame_size) && \ + ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) + + +/* Structures, enums, and macros for the PHY */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CTRL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Regiser */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */ + +/* Next Page TX Register */ +#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* Link Partner Next Page Register */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 +#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 + +/* Extended Status Register */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ + +#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ + +#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ + /* (0=enable, 1=disable) */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, + * 0=CLK125 toggling + */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, + * 100BASE-TX/10BASE-T: + * MDI Mode + */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled + * all speeds. + */ +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 + /* 1=Enable Extended 10BASE-T distance + * (Lower 10BASE-T RX Threshold) + * 0=Normal 10BASE-T RX Threshold */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 + /* 1=5-Bit interface in 100BASE-TX + * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 +#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; + * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 +#define M88E1000_PSSR_MDIX_SHIFT 6 +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* Bit definitions for valid PHY IDs. */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID +#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID + +/* Miscellaneous PHY bit definitions. */ +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_SOF 0x01 +#define PHY_OP_READ 0x02 +#define PHY_OP_WRITE 0x01 +#define PHY_TURNAROUND 0x02 +#define PHY_PREAMBLE_SIZE 32 +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 +#define E1000_PHY_ADDRESS 0x01 +#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ +#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ +#define REG4_SPEED_MASK 0x01E0 +#define REG9_SPEED_MASK 0x0300 +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 +#define ADVERTISE_1000_FULL 0x0020 +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ + +#endif /* _EM_HW_H_ */ diff --git a/sys/dev/pci/if_em_osdep.h b/sys/dev/pci/if_em_osdep.h new file mode 100644 index 00000000000..e6e4c793a0f --- /dev/null +++ b/sys/dev/pci/if_em_osdep.h @@ -0,0 +1,131 @@ +/************************************************************************** + +Copyright (c) 2001-2002 Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms of the Software, with or +without modification, are permitted provided that the following conditions +are met: + + 1. Redistributions of source code of the Software may retain the above + copyright notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form of the Software may reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors shall be used to endorse or promote products derived from + this Software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD$*/ + +#ifndef _OPENBSD_OS_H_ +#define _OPENBSD_OS_H_ + +#define ASSERT(x) if(!(x)) panic("EM: x") + +/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */ +#define usec_delay(x) DELAY(x) +#define msec_delay(x) DELAY(1000*(x)) + +#define MSGOUT(S, A, B) printf(S "\n", A, B) +#define DEBUGFUNC(F) DEBUGOUT(F); +#if DBG + #define DEBUGOUT(S) printf(S "\n") + #define DEBUGOUT1(S,A) printf(S "\n",A) + #define DEBUGOUT2(S,A,B) printf(S "\n",A,B) + #define DEBUGOUT3(S,A,B,C) printf(S "\n",A,B,C) + #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S "\n",A,B,C,D,E,F,G) +#else + #define DEBUGOUT(S) + #define DEBUGOUT1(S,A) + #define DEBUGOUT2(S,A,B) + #define DEBUGOUT3(S,A,B,C) + #define DEBUGOUT7(S,A,B,C,D,E,F,G) +#endif + +#define FALSE 0 +#define TRUE 1 +#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ +#define PCI_COMMAND_REGISTER PCI_COMMAND_STATUS_REG + +struct em_dmamap +{ + bus_size_t emm_size; + caddr_t emm_ptr, emm_kva; + bus_dma_segment_t emm_seg; + bus_dmamap_t emm_dmamap; + int emm_rseg; +}; + +struct em_osdep +{ + struct device *dev; + + struct em_dmamap em_rx; + struct em_dmamap em_tx; + + struct pci_attach_args em_pa; + + bus_space_handle_t em_bhandle; + bus_space_tag_t em_btag; + bus_size_t em_memsize; + bus_addr_t em_membase; + + bus_space_handle_t em_iobhandle; + bus_space_tag_t em_iobtag; + bus_size_t em_iosize; + bus_addr_t em_iobase; + +}; + +#define E1000_READ_REG(hw, reg) \ + bus_space_read_4( \ + ((struct em_osdep *)(hw)->back)->em_btag, \ + ((struct em_osdep *)(hw)->back)->em_bhandle, \ + ((hw)->mac_type >= em_82543) ? \ + E1000_##reg : E1000_82542_##reg) + +#define E1000_WRITE_REG(hw, reg, value) \ + bus_space_write_4( \ + ((struct em_osdep *)(hw)->back)->em_btag, \ + ((struct em_osdep *)(hw)->back)->em_bhandle, \ + ((hw)->mac_type >= em_82543) ? \ + E1000_##reg : E1000_82542_##reg, \ + value) + +#define E1000_READ_REG_ARRAY(sc, reg, offset) \ + bus_space_read_4( \ + ((struct em_osdep *)(hw)->back)->em_btag, \ + ((struct em_osdep *)(hw)->back)->em_bhandle, \ + ((hw)->mac_type >= em_82543) ? \ + (E1000_##reg + ((offset) << 2)) : \ + (E1000_82542_##reg + ((offset) << 2)) ) + +#define E1000_WRITE_REG_ARRAY(sc, reg, offset, value) \ + bus_space_write_4( \ + ((struct em_osdep *)(hw)->back)->em_btag, \ + ((struct em_osdep *)(hw)->back)->em_bhandle, \ + ((hw)->mac_type >= em_82543) ? \ + (E1000_##reg + ((offset) << 2)) : \ + (E1000_82542_##reg + ((offset) << 2)), \ + value) + +#endif /* _OPENBSD_OS_H_ */ + -- cgit v1.2.3