From c482518380683ee38d14024c1e362a0d681cf967 Mon Sep 17 00:00:00 2001 From: Niklas Hallqvist Date: Wed, 20 Dec 1995 01:06:22 +0000 Subject: FSF GCC version 2.7.2 --- gnu/usr.bin/gcc/calls.c | 3203 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3203 insertions(+) create mode 100644 gnu/usr.bin/gcc/calls.c (limited to 'gnu/usr.bin/gcc/calls.c') diff --git a/gnu/usr.bin/gcc/calls.c b/gnu/usr.bin/gcc/calls.c new file mode 100644 index 00000000000..ad05be4f7c0 --- /dev/null +++ b/gnu/usr.bin/gcc/calls.c @@ -0,0 +1,3203 @@ +/* Convert function calls to rtl insns, for GNU C compiler. + Copyright (C) 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include "rtl.h" +#include "tree.h" +#include "flags.h" +#include "expr.h" +#ifdef __STDC__ +#include +#else +#include +#endif +#include "insn-flags.h" + +/* Decide whether a function's arguments should be processed + from first to last or from last to first. + + They should if the stack and args grow in opposite directions, but + only if we have push insns. */ + +#ifdef PUSH_ROUNDING + +#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD) +#define PUSH_ARGS_REVERSED /* If it's last to first */ +#endif + +#endif + +/* Like STACK_BOUNDARY but in units of bytes, not bits. */ +#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) + +/* Data structure and subroutines used within expand_call. */ + +struct arg_data +{ + /* Tree node for this argument. */ + tree tree_value; + /* Mode for value; TYPE_MODE unless promoted. */ + enum machine_mode mode; + /* Current RTL value for argument, or 0 if it isn't precomputed. */ + rtx value; + /* Initially-compute RTL value for argument; only for const functions. */ + rtx initial_value; + /* Register to pass this argument in, 0 if passed on stack, or an + EXPR_LIST if the arg is to be copied into multiple different + registers. */ + rtx reg; + /* If REG was promoted from the actual mode of the argument expression, + indicates whether the promotion is sign- or zero-extended. */ + int unsignedp; + /* Number of registers to use. 0 means put the whole arg in registers. + Also 0 if not passed in registers. */ + int partial; + /* Non-zero if argument must be passed on stack. + Note that some arguments may be passed on the stack + even though pass_on_stack is zero, just because FUNCTION_ARG says so. + pass_on_stack identifies arguments that *cannot* go in registers. */ + int pass_on_stack; + /* Offset of this argument from beginning of stack-args. */ + struct args_size offset; + /* Similar, but offset to the start of the stack slot. Different from + OFFSET if this arg pads downward. */ + struct args_size slot_offset; + /* Size of this argument on the stack, rounded up for any padding it gets, + parts of the argument passed in registers do not count. + If REG_PARM_STACK_SPACE is defined, then register parms + are counted here as well. */ + struct args_size size; + /* Location on the stack at which parameter should be stored. The store + has already been done if STACK == VALUE. */ + rtx stack; + /* Location on the stack of the start of this argument slot. This can + differ from STACK if this arg pads downward. This location is known + to be aligned to FUNCTION_ARG_BOUNDARY. */ + rtx stack_slot; +#ifdef ACCUMULATE_OUTGOING_ARGS + /* Place that this stack area has been saved, if needed. */ + rtx save_area; +#endif +#ifdef STRICT_ALIGNMENT + /* If an argument's alignment does not permit direct copying into registers, + copy in smaller-sized pieces into pseudos. These are stored in a + block pointed to by this field. The next field says how many + word-sized pseudos we made. */ + rtx *aligned_regs; + int n_aligned_regs; +#endif +}; + +#ifdef ACCUMULATE_OUTGOING_ARGS +/* A vector of one char per byte of stack space. A byte if non-zero if + the corresponding stack location has been used. + This vector is used to prevent a function call within an argument from + clobbering any stack already set up. */ +static char *stack_usage_map; + +/* Size of STACK_USAGE_MAP. */ +static int highest_outgoing_arg_in_use; + +/* stack_arg_under_construction is nonzero when an argument may be + initialized with a constructor call (including a C function that + returns a BLKmode struct) and expand_call must take special action + to make sure the object being constructed does not overlap the + argument list for the constructor call. */ +int stack_arg_under_construction; +#endif + +static int calls_function PROTO((tree, int)); +static int calls_function_1 PROTO((tree, int)); +static void emit_call_1 PROTO((rtx, tree, tree, int, int, rtx, rtx, + int, rtx, int)); +static void store_one_arg PROTO ((struct arg_data *, rtx, int, int, + tree, int)); + +/* If WHICH is 1, return 1 if EXP contains a call to the built-in function + `alloca'. + + If WHICH is 0, return 1 if EXP contains a call to any function. + Actually, we only need return 1 if evaluating EXP would require pushing + arguments on the stack, but that is too difficult to compute, so we just + assume any function call might require the stack. */ + +static tree calls_function_save_exprs; + +static int +calls_function (exp, which) + tree exp; + int which; +{ + int val; + calls_function_save_exprs = 0; + val = calls_function_1 (exp, which); + calls_function_save_exprs = 0; + return val; +} + +static int +calls_function_1 (exp, which) + tree exp; + int which; +{ + register int i; + enum tree_code code = TREE_CODE (exp); + int type = TREE_CODE_CLASS (code); + int length = tree_code_length[(int) code]; + + /* If this code is language-specific, we don't know what it will do. */ + if ((int) code >= NUM_TREE_CODES) + return 1; + + /* Only expressions and references can contain calls. */ + if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r' + && type != 'b') + return 0; + + switch (code) + { + case CALL_EXPR: + if (which == 0) + return 1; + else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR + && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) + == FUNCTION_DECL)) + { + tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); + + if ((DECL_BUILT_IN (fndecl) + && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA) + || (DECL_SAVED_INSNS (fndecl) + && (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl)) + & FUNCTION_FLAGS_CALLS_ALLOCA))) + return 1; + } + + /* Third operand is RTL. */ + length = 2; + break; + + case SAVE_EXPR: + if (SAVE_EXPR_RTL (exp) != 0) + return 0; + if (value_member (exp, calls_function_save_exprs)) + return 0; + calls_function_save_exprs = tree_cons (NULL_TREE, exp, + calls_function_save_exprs); + return (TREE_OPERAND (exp, 0) != 0 + && calls_function_1 (TREE_OPERAND (exp, 0), which)); + + case BLOCK: + { + register tree local; + + for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local)) + if (DECL_INITIAL (local) != 0 + && calls_function_1 (DECL_INITIAL (local), which)) + return 1; + } + { + register tree subblock; + + for (subblock = BLOCK_SUBBLOCKS (exp); + subblock; + subblock = TREE_CHAIN (subblock)) + if (calls_function_1 (subblock, which)) + return 1; + } + return 0; + + case METHOD_CALL_EXPR: + length = 3; + break; + + case WITH_CLEANUP_EXPR: + length = 1; + break; + + case RTL_EXPR: + return 0; + } + + for (i = 0; i < length; i++) + if (TREE_OPERAND (exp, i) != 0 + && calls_function_1 (TREE_OPERAND (exp, i), which)) + return 1; + + return 0; +} + +/* Force FUNEXP into a form suitable for the address of a CALL, + and return that as an rtx. Also load the static chain register + if FNDECL is a nested function. + + CALL_FUSAGE points to a variable holding the prospective + CALL_INSN_FUNCTION_USAGE information. */ + +rtx +prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen) + rtx funexp; + tree fndecl; + rtx *call_fusage; + int reg_parm_seen; +{ + rtx static_chain_value = 0; + + funexp = protect_from_queue (funexp, 0); + + if (fndecl != 0) + /* Get possible static chain value for nested function in C. */ + static_chain_value = lookup_static_chain (fndecl); + + /* Make a valid memory address and copy constants thru pseudo-regs, + but not for a constant address if -fno-function-cse. */ + if (GET_CODE (funexp) != SYMBOL_REF) + funexp = +#ifdef SMALL_REGISTER_CLASSES + /* If we are using registers for parameters, force the + function address into a register now. */ + reg_parm_seen ? force_not_mem (memory_address (FUNCTION_MODE, funexp)) + : +#endif + memory_address (FUNCTION_MODE, funexp); + else + { +#ifndef NO_FUNCTION_CSE + if (optimize && ! flag_no_function_cse) +#ifdef NO_RECURSIVE_FUNCTION_CSE + if (fndecl != current_function_decl) +#endif + funexp = force_reg (Pmode, funexp); +#endif + } + + if (static_chain_value != 0) + { + emit_move_insn (static_chain_rtx, static_chain_value); + + if (GET_CODE (static_chain_rtx) == REG) + use_reg (call_fusage, static_chain_rtx); + } + + return funexp; +} + +/* Generate instructions to call function FUNEXP, + and optionally pop the results. + The CALL_INSN is the first insn generated. + + FNDECL is the declaration node of the function. This is given ot the + macro RETURN_POPS_ARGS to determine whether this function pops its own args. + + FUNTYPE is the data type of the function, or, for a library call, + the identifier for the name of the call. This is given to the + macro RETURN_POPS_ARGS to determine whether this function pops its own args. + + STACK_SIZE is the number of bytes of arguments on the stack, + rounded up to STACK_BOUNDARY; zero if the size is variable. + This is both to put into the call insn and + to generate explicit popping code if necessary. + + STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value. + It is zero if this call doesn't want a structure value. + + NEXT_ARG_REG is the rtx that results from executing + FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1) + just after all the args have had their registers assigned. + This could be whatever you like, but normally it is the first + arg-register beyond those used for args in this call, + or 0 if all the arg-registers are used in this call. + It is passed on to `gen_call' so you can put this info in the call insn. + + VALREG is a hard register in which a value is returned, + or 0 if the call does not return a value. + + OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before + the args to this call were processed. + We restore `inhibit_defer_pop' to that value. + + CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that + denote registers used by the called function. + + IS_CONST is true if this is a `const' call. */ + +static void +emit_call_1 (funexp, fndecl, funtype, stack_size, struct_value_size, + next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage, + is_const) + rtx funexp; + tree fndecl; + tree funtype; + int stack_size; + int struct_value_size; + rtx next_arg_reg; + rtx valreg; + int old_inhibit_defer_pop; + rtx call_fusage; + int is_const; +{ + rtx stack_size_rtx = GEN_INT (stack_size); + rtx struct_value_size_rtx = GEN_INT (struct_value_size); + rtx call_insn; + int already_popped = 0; + + /* Ensure address is valid. SYMBOL_REF is already valid, so no need, + and we don't want to load it into a register as an optimization, + because prepare_call_address already did it if it should be done. */ + if (GET_CODE (funexp) != SYMBOL_REF) + funexp = memory_address (FUNCTION_MODE, funexp); + +#ifndef ACCUMULATE_OUTGOING_ARGS +#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop) + if (HAVE_call_pop && HAVE_call_value_pop + && (RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0 + || stack_size == 0)) + { + rtx n_pop = GEN_INT (RETURN_POPS_ARGS (fndecl, funtype, stack_size)); + rtx pat; + + /* If this subroutine pops its own args, record that in the call insn + if possible, for the sake of frame pointer elimination. */ + + if (valreg) + pat = gen_call_value_pop (valreg, + gen_rtx (MEM, FUNCTION_MODE, funexp), + stack_size_rtx, next_arg_reg, n_pop); + else + pat = gen_call_pop (gen_rtx (MEM, FUNCTION_MODE, funexp), + stack_size_rtx, next_arg_reg, n_pop); + + emit_call_insn (pat); + already_popped = 1; + } + else +#endif +#endif + +#if defined (HAVE_call) && defined (HAVE_call_value) + if (HAVE_call && HAVE_call_value) + { + if (valreg) + emit_call_insn (gen_call_value (valreg, + gen_rtx (MEM, FUNCTION_MODE, funexp), + stack_size_rtx, next_arg_reg, + NULL_RTX)); + else + emit_call_insn (gen_call (gen_rtx (MEM, FUNCTION_MODE, funexp), + stack_size_rtx, next_arg_reg, + struct_value_size_rtx)); + } + else +#endif + abort (); + + /* Find the CALL insn we just emitted. */ + for (call_insn = get_last_insn (); + call_insn && GET_CODE (call_insn) != CALL_INSN; + call_insn = PREV_INSN (call_insn)) + ; + + if (! call_insn) + abort (); + + /* Put the register usage information on the CALL. If there is already + some usage information, put ours at the end. */ + if (CALL_INSN_FUNCTION_USAGE (call_insn)) + { + rtx link; + + for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; + link = XEXP (link, 1)) + ; + + XEXP (link, 1) = call_fusage; + } + else + CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; + + /* If this is a const call, then set the insn's unchanging bit. */ + if (is_const) + CONST_CALL_P (call_insn) = 1; + + /* Restore this now, so that we do defer pops for this call's args + if the context of the call as a whole permits. */ + inhibit_defer_pop = old_inhibit_defer_pop; + +#ifndef ACCUMULATE_OUTGOING_ARGS + /* If returning from the subroutine does not automatically pop the args, + we need an instruction to pop them sooner or later. + Perhaps do it now; perhaps just record how much space to pop later. + + If returning from the subroutine does pop the args, indicate that the + stack pointer will be changed. */ + + if (stack_size != 0 && RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0) + { + if (!already_popped) + CALL_INSN_FUNCTION_USAGE (call_insn) = + gen_rtx (EXPR_LIST, VOIDmode, + gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx), + CALL_INSN_FUNCTION_USAGE (call_insn)); + stack_size -= RETURN_POPS_ARGS (fndecl, funtype, stack_size); + stack_size_rtx = GEN_INT (stack_size); + } + + if (stack_size != 0) + { + if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const) + pending_stack_adjust += stack_size; + else + adjust_stack (stack_size_rtx); + } +#endif +} + +/* Generate all the code for a function call + and return an rtx for its value. + Store the value in TARGET (specified as an rtx) if convenient. + If the value is stored in TARGET then TARGET is returned. + If IGNORE is nonzero, then we ignore the value of the function call. */ + +rtx +expand_call (exp, target, ignore) + tree exp; + rtx target; + int ignore; +{ + /* List of actual parameters. */ + tree actparms = TREE_OPERAND (exp, 1); + /* RTX for the function to be called. */ + rtx funexp; + /* Tree node for the function to be called (not the address!). */ + tree funtree; + /* Data type of the function. */ + tree funtype; + /* Declaration of the function being called, + or 0 if the function is computed (not known by name). */ + tree fndecl = 0; + char *name = 0; + + /* Register in which non-BLKmode value will be returned, + or 0 if no value or if value is BLKmode. */ + rtx valreg; + /* Address where we should return a BLKmode value; + 0 if value not BLKmode. */ + rtx structure_value_addr = 0; + /* Nonzero if that address is being passed by treating it as + an extra, implicit first parameter. Otherwise, + it is passed by being copied directly into struct_value_rtx. */ + int structure_value_addr_parm = 0; + /* Size of aggregate value wanted, or zero if none wanted + or if we are using the non-reentrant PCC calling convention + or expecting the value in registers. */ + int struct_value_size = 0; + /* Nonzero if called function returns an aggregate in memory PCC style, + by returning the address of where to find it. */ + int pcc_struct_value = 0; + + /* Number of actual parameters in this call, including struct value addr. */ + int num_actuals; + /* Number of named args. Args after this are anonymous ones + and they must all go on the stack. */ + int n_named_args; + /* Count arg position in order args appear. */ + int argpos; + + /* Vector of information about each argument. + Arguments are numbered in the order they will be pushed, + not the order they are written. */ + struct arg_data *args; + + /* Total size in bytes of all the stack-parms scanned so far. */ + struct args_size args_size; + /* Size of arguments before any adjustments (such as rounding). */ + struct args_size original_args_size; + /* Data on reg parms scanned so far. */ + CUMULATIVE_ARGS args_so_far; + /* Nonzero if a reg parm has been scanned. */ + int reg_parm_seen; + /* Nonzero if this is an indirect function call. */ + int current_call_is_indirect = 0; + + /* Nonzero if we must avoid push-insns in the args for this call. + If stack space is allocated for register parameters, but not by the + caller, then it is preallocated in the fixed part of the stack frame. + So the entire argument block must then be preallocated (i.e., we + ignore PUSH_ROUNDING in that case). */ + +#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) + int must_preallocate = 1; +#else +#ifdef PUSH_ROUNDING + int must_preallocate = 0; +#else + int must_preallocate = 1; +#endif +#endif + + /* Size of the stack reserved for parameter registers. */ + int reg_parm_stack_space = 0; + + /* 1 if scanning parms front to back, -1 if scanning back to front. */ + int inc; + /* Address of space preallocated for stack parms + (on machines that lack push insns), or 0 if space not preallocated. */ + rtx argblock = 0; + + /* Nonzero if it is plausible that this is a call to alloca. */ + int may_be_alloca; + /* Nonzero if this is a call to setjmp or a related function. */ + int returns_twice; + /* Nonzero if this is a call to `longjmp'. */ + int is_longjmp; + /* Nonzero if this is a call to an inline function. */ + int is_integrable = 0; + /* Nonzero if this is a call to a `const' function. + Note that only explicitly named functions are handled as `const' here. */ + int is_const = 0; + /* Nonzero if this is a call to a `volatile' function. */ + int is_volatile = 0; +#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) + /* Define the boundary of the register parm stack space that needs to be + save, if any. */ + int low_to_save = -1, high_to_save; + rtx save_area = 0; /* Place that it is saved */ +#endif + +#ifdef ACCUMULATE_OUTGOING_ARGS + int initial_highest_arg_in_use = highest_outgoing_arg_in_use; + char *initial_stack_usage_map = stack_usage_map; +#endif + + rtx old_stack_level = 0; + int old_pending_adj = 0; + int old_stack_arg_under_construction; + int old_inhibit_defer_pop = inhibit_defer_pop; + tree old_cleanups = cleanups_this_call; + rtx call_fusage = 0; + register tree p; + register int i, j; + + /* See if we can find a DECL-node for the actual function. + As a result, decide whether this is a call to an integrable function. */ + + p = TREE_OPERAND (exp, 0); + if (TREE_CODE (p) == ADDR_EXPR) + { + fndecl = TREE_OPERAND (p, 0); + if (TREE_CODE (fndecl) != FUNCTION_DECL) + fndecl = 0; + else + { + if (!flag_no_inline + && fndecl != current_function_decl + && DECL_INLINE (fndecl) + && DECL_SAVED_INSNS (fndecl)) + is_integrable = 1; + else if (! TREE_ADDRESSABLE (fndecl)) + { + /* In case this function later becomes inlinable, + record that there was already a non-inline call to it. + + Use abstraction instead of setting TREE_ADDRESSABLE + directly. */ + if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline) + { + warning_with_decl (fndecl, "can't inline call to `%s'"); + warning ("called from here"); + } + mark_addressable (fndecl); + } + + if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl) + && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode) + is_const = 1; + + if (TREE_THIS_VOLATILE (fndecl)) + is_volatile = 1; + } + } + + /* If we don't have specific function to call, see if we have a + constant or `noreturn' function from the type. */ + if (fndecl == 0) + { + is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p))); + is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p))); + } + +#ifdef REG_PARM_STACK_SPACE +#ifdef MAYBE_REG_PARM_STACK_SPACE + reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; +#else + reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); +#endif +#endif + + /* Warn if this value is an aggregate type, + regardless of which calling convention we are using for it. */ + if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp))) + warning ("function call has aggregate value"); + + /* Set up a place to return a structure. */ + + /* Cater to broken compilers. */ + if (aggregate_value_p (exp)) + { + /* This call returns a big structure. */ + is_const = 0; + +#ifdef PCC_STATIC_STRUCT_RETURN + { + pcc_struct_value = 1; + /* Easier than making that case work right. */ + if (is_integrable) + { + /* In case this is a static function, note that it has been + used. */ + if (! TREE_ADDRESSABLE (fndecl)) + mark_addressable (fndecl); + is_integrable = 0; + } + } +#else /* not PCC_STATIC_STRUCT_RETURN */ + { + struct_value_size = int_size_in_bytes (TREE_TYPE (exp)); + + if (target && GET_CODE (target) == MEM) + structure_value_addr = XEXP (target, 0); + else + { + /* Assign a temporary on the stack to hold the value. */ + + /* For variable-sized objects, we must be called with a target + specified. If we were to allocate space on the stack here, + we would have no way of knowing when to free it. */ + + if (struct_value_size < 0) + abort (); + + structure_value_addr + = XEXP (assign_stack_temp (BLKmode, struct_value_size, 1), 0); + MEM_IN_STRUCT_P (structure_value_addr) + = AGGREGATE_TYPE_P (TREE_TYPE (exp)); + target = 0; + } + } +#endif /* not PCC_STATIC_STRUCT_RETURN */ + } + + /* If called function is inline, try to integrate it. */ + + if (is_integrable) + { + rtx temp; + rtx before_call = get_last_insn (); + + temp = expand_inline_function (fndecl, actparms, target, + ignore, TREE_TYPE (exp), + structure_value_addr); + + /* If inlining succeeded, return. */ + if ((HOST_WIDE_INT) temp != -1) + { + if (flag_short_temps) + { + /* Perform all cleanups needed for the arguments of this + call (i.e. destructors in C++). It is ok if these + destructors clobber RETURN_VALUE_REG, because the + only time we care about this is when TARGET is that + register. But in C++, we take care to never return + that register directly. */ + expand_cleanups_to (old_cleanups); + } + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* If the outgoing argument list must be preserved, push + the stack before executing the inlined function if it + makes any calls. */ + + for (i = reg_parm_stack_space - 1; i >= 0; i--) + if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0) + break; + + if (stack_arg_under_construction || i >= 0) + { + rtx insn = NEXT_INSN (before_call), seq; + + /* Look for a call in the inline function code. + If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is + nonzero then there is a call and it is not necessary + to scan the insns. */ + + if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0) + for (; insn; insn = NEXT_INSN (insn)) + if (GET_CODE (insn) == CALL_INSN) + break; + + if (insn) + { + /* Reserve enough stack space so that the largest + argument list of any function call in the inline + function does not overlap the argument list being + evaluated. This is usually an overestimate because + allocate_dynamic_stack_space reserves space for an + outgoing argument list in addition to the requested + space, but there is no way to ask for stack space such + that an argument list of a certain length can be + safely constructed. */ + + int adjust = OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)); +#ifdef REG_PARM_STACK_SPACE + /* Add the stack space reserved for register arguments + in the inline function. What is really needed is the + largest value of reg_parm_stack_space in the inline + function, but that is not available. Using the current + value of reg_parm_stack_space is wrong, but gives + correct results on all supported machines. */ + adjust += reg_parm_stack_space; +#endif + start_sequence (); + emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); + allocate_dynamic_stack_space (GEN_INT (adjust), + NULL_RTX, BITS_PER_UNIT); + seq = get_insns (); + end_sequence (); + emit_insns_before (seq, NEXT_INSN (before_call)); + emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); + } + } +#endif + + /* If the result is equivalent to TARGET, return TARGET to simplify + checks in store_expr. They can be equivalent but not equal in the + case of a function that returns BLKmode. */ + if (temp != target && rtx_equal_p (temp, target)) + return target; + return temp; + } + + /* If inlining failed, mark FNDECL as needing to be compiled + separately after all. If function was declared inline, + give a warning. */ + if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline + && ! TREE_ADDRESSABLE (fndecl)) + { + warning_with_decl (fndecl, "inlining failed in call to `%s'"); + warning ("called from here"); + } + mark_addressable (fndecl); + } + + /* When calling a const function, we must pop the stack args right away, + so that the pop is deleted or moved with the call. */ + if (is_const) + NO_DEFER_POP; + + function_call_count++; + + if (fndecl && DECL_NAME (fndecl)) + name = IDENTIFIER_POINTER (DECL_NAME (fndecl)); + + /* On some machines (such as the PA) indirect calls have a different + calling convention than normal calls. FUNCTION_ARG in the target + description can look at current_call_is_indirect to determine which + calling convention to use. */ + current_call_is_indirect = (fndecl == 0); +#if 0 + = TREE_CODE (TREE_OPERAND (exp, 0)) == NON_LVALUE_EXPR ? 1 : 0; +#endif + +#if 0 + /* Unless it's a call to a specific function that isn't alloca, + if it has one argument, we must assume it might be alloca. */ + + may_be_alloca = + (!(fndecl != 0 && strcmp (name, "alloca")) + && actparms != 0 + && TREE_CHAIN (actparms) == 0); +#else + /* We assume that alloca will always be called by name. It + makes no sense to pass it as a pointer-to-function to + anything that does not understand its behavior. */ + may_be_alloca = + (name && ((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 + && name[0] == 'a' + && ! strcmp (name, "alloca")) + || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16 + && name[0] == '_' + && ! strcmp (name, "__builtin_alloca")))); +#endif + + /* See if this is a call to a function that can return more than once + or a call to longjmp. */ + + returns_twice = 0; + is_longjmp = 0; + + if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15) + { + char *tname = name; + + /* Disregard prefix _, __ or __x. */ + if (name[0] == '_') + { + if (name[1] == '_' && name[2] == 'x') + tname += 3; + else if (name[1] == '_') + tname += 2; + else + tname += 1; + } + + if (tname[0] == 's') + { + returns_twice + = ((tname[1] == 'e' + && (! strcmp (tname, "setjmp") + || ! strcmp (tname, "setjmp_syscall"))) + || (tname[1] == 'i' + && ! strcmp (tname, "sigsetjmp")) + || (tname[1] == 'a' + && ! strcmp (tname, "savectx"))); + if (tname[1] == 'i' + && ! strcmp (tname, "siglongjmp")) + is_longjmp = 1; + } + else if ((tname[0] == 'q' && tname[1] == 's' + && ! strcmp (tname, "qsetjmp")) + || (tname[0] == 'v' && tname[1] == 'f' + && ! strcmp (tname, "vfork"))) + returns_twice = 1; + + else if (tname[0] == 'l' && tname[1] == 'o' + && ! strcmp (tname, "longjmp")) + is_longjmp = 1; + } + + if (may_be_alloca) + current_function_calls_alloca = 1; + + /* Don't let pending stack adjusts add up to too much. + Also, do all pending adjustments now + if there is any chance this might be a call to alloca. */ + + if (pending_stack_adjust >= 32 + || (pending_stack_adjust > 0 && may_be_alloca)) + do_pending_stack_adjust (); + + /* Operand 0 is a pointer-to-function; get the type of the function. */ + funtype = TREE_TYPE (TREE_OPERAND (exp, 0)); + if (TREE_CODE (funtype) != POINTER_TYPE) + abort (); + funtype = TREE_TYPE (funtype); + + /* Push the temporary stack slot level so that we can free any temporaries + we make. */ + push_temp_slots (); + + /* Start updating where the next arg would go. */ + INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX); + + /* If struct_value_rtx is 0, it means pass the address + as if it were an extra parameter. */ + if (structure_value_addr && struct_value_rtx == 0) + { + /* If structure_value_addr is a REG other than + virtual_outgoing_args_rtx, we can use always use it. If it + is not a REG, we must always copy it into a register. + If it is virtual_outgoing_args_rtx, we must copy it to another + register in some cases. */ + rtx temp = (GET_CODE (structure_value_addr) != REG +#ifdef ACCUMULATE_OUTGOING_ARGS + || (stack_arg_under_construction + && structure_value_addr == virtual_outgoing_args_rtx) +#endif + ? copy_addr_to_reg (structure_value_addr) + : structure_value_addr); + + actparms + = tree_cons (error_mark_node, + make_tree (build_pointer_type (TREE_TYPE (funtype)), + temp), + actparms); + structure_value_addr_parm = 1; + } + + /* Count the arguments and set NUM_ACTUALS. */ + for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++; + num_actuals = i; + + /* Compute number of named args. + Normally, don't include the last named arg if anonymous args follow. + We do include the last named arg if STRICT_ARGUMENT_NAMING is defined. + (If no anonymous args follow, the result of list_length is actually + one too large. This is harmless.) + + If SETUP_INCOMING_VARARGS is defined and STRICT_ARGUMENT_NAMING is not, + this machine will be able to place unnamed args that were passed in + registers into the stack. So treat all args as named. This allows the + insns emitting for a specific argument list to be independent of the + function declaration. + + If SETUP_INCOMING_VARARGS is not defined, we do not have any reliable + way to pass unnamed args in registers, so we must force them into + memory. */ +#if !defined(SETUP_INCOMING_VARARGS) || defined(STRICT_ARGUMENT_NAMING) + if (TYPE_ARG_TYPES (funtype) != 0) + n_named_args + = (list_length (TYPE_ARG_TYPES (funtype)) +#ifndef STRICT_ARGUMENT_NAMING + /* Don't include the last named arg. */ + - 1 +#endif + /* Count the struct value address, if it is passed as a parm. */ + + structure_value_addr_parm); + else +#endif + /* If we know nothing, treat all args as named. */ + n_named_args = num_actuals; + + /* Make a vector to hold all the information about each arg. */ + args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data)); + bzero ((char *) args, num_actuals * sizeof (struct arg_data)); + + args_size.constant = 0; + args_size.var = 0; + + /* In this loop, we consider args in the order they are written. + We fill up ARGS from the front or from the back if necessary + so that in any case the first arg to be pushed ends up at the front. */ + +#ifdef PUSH_ARGS_REVERSED + i = num_actuals - 1, inc = -1; + /* In this case, must reverse order of args + so that we compute and push the last arg first. */ +#else + i = 0, inc = 1; +#endif + + /* I counts args in order (to be) pushed; ARGPOS counts in order written. */ + for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++) + { + tree type = TREE_TYPE (TREE_VALUE (p)); + int unsignedp; + enum machine_mode mode; + + args[i].tree_value = TREE_VALUE (p); + + /* Replace erroneous argument with constant zero. */ + if (type == error_mark_node || TYPE_SIZE (type) == 0) + args[i].tree_value = integer_zero_node, type = integer_type_node; + + /* If TYPE is a transparent union, pass things the way we would + pass the first field of the union. We have already verified that + the modes are the same. */ + if (TYPE_TRANSPARENT_UNION (type)) + type = TREE_TYPE (TYPE_FIELDS (type)); + + /* Decide where to pass this arg. + + args[i].reg is nonzero if all or part is passed in registers. + + args[i].partial is nonzero if part but not all is passed in registers, + and the exact value says how many words are passed in registers. + + args[i].pass_on_stack is nonzero if the argument must at least be + computed on the stack. It may then be loaded back into registers + if args[i].reg is nonzero. + + These decisions are driven by the FUNCTION_... macros and must agree + with those made by function.c. */ + + /* See if this argument should be passed by invisible reference. */ + if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST + && contains_placeholder_p (TYPE_SIZE (type))) + || TREE_ADDRESSABLE (type) +#ifdef FUNCTION_ARG_PASS_BY_REFERENCE + || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, TYPE_MODE (type), + type, argpos < n_named_args) +#endif + ) + { +#ifdef FUNCTION_ARG_CALLEE_COPIES + if (FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (type), type, + argpos < n_named_args) + /* If it's in a register, we must make a copy of it too. */ + /* ??? Is this a sufficient test? Is there a better one? */ + && !(TREE_CODE (args[i].tree_value) == VAR_DECL + && REG_P (DECL_RTL (args[i].tree_value))) + && ! TREE_ADDRESSABLE (type)) + { + args[i].tree_value = build1 (ADDR_EXPR, + build_pointer_type (type), + args[i].tree_value); + type = build_pointer_type (type); + } + else +#endif + { + /* We make a copy of the object and pass the address to the + function being called. */ + rtx copy; + + if (TYPE_SIZE (type) == 0 + || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) + { + /* This is a variable-sized object. Make space on the stack + for it. */ + rtx size_rtx = expr_size (TREE_VALUE (p)); + + if (old_stack_level == 0) + { + emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); + old_pending_adj = pending_stack_adjust; + pending_stack_adjust = 0; + } + + copy = gen_rtx (MEM, BLKmode, + allocate_dynamic_stack_space (size_rtx, + NULL_RTX, + TYPE_ALIGN (type))); + } + else + { + int size = int_size_in_bytes (type); + copy = assign_stack_temp (TYPE_MODE (type), size, 0); + } + + MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type); + + store_expr (args[i].tree_value, copy, 0); + + args[i].tree_value = build1 (ADDR_EXPR, + build_pointer_type (type), + make_tree (type, copy)); + type = build_pointer_type (type); + } + } + + mode = TYPE_MODE (type); + unsignedp = TREE_UNSIGNED (type); + +#ifdef PROMOTE_FUNCTION_ARGS + mode = promote_mode (type, mode, &unsignedp, 1); +#endif + + args[i].unsignedp = unsignedp; + args[i].mode = mode; + args[i].reg = FUNCTION_ARG (args_so_far, mode, type, + argpos < n_named_args); +#ifdef FUNCTION_ARG_PARTIAL_NREGS + if (args[i].reg) + args[i].partial + = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, type, + argpos < n_named_args); +#endif + + args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type); + + /* If FUNCTION_ARG returned an (expr_list (nil) FOO), it means that + we are to pass this arg in the register(s) designated by FOO, but + also to pass it in the stack. */ + if (args[i].reg && GET_CODE (args[i].reg) == EXPR_LIST + && XEXP (args[i].reg, 0) == 0) + args[i].pass_on_stack = 1, args[i].reg = XEXP (args[i].reg, 1); + + /* If this is an addressable type, we must preallocate the stack + since we must evaluate the object into its final location. + + If this is to be passed in both registers and the stack, it is simpler + to preallocate. */ + if (TREE_ADDRESSABLE (type) + || (args[i].pass_on_stack && args[i].reg != 0)) + must_preallocate = 1; + + /* If this is an addressable type, we cannot pre-evaluate it. Thus, + we cannot consider this function call constant. */ + if (TREE_ADDRESSABLE (type)) + is_const = 0; + + /* Compute the stack-size of this argument. */ + if (args[i].reg == 0 || args[i].partial != 0 +#ifdef REG_PARM_STACK_SPACE + || reg_parm_stack_space > 0 +#endif + || args[i].pass_on_stack) + locate_and_pad_parm (mode, type, +#ifdef STACK_PARMS_IN_REG_PARM_AREA + 1, +#else + args[i].reg != 0, +#endif + fndecl, &args_size, &args[i].offset, + &args[i].size); + +#ifndef ARGS_GROW_DOWNWARD + args[i].slot_offset = args_size; +#endif + +#ifndef REG_PARM_STACK_SPACE + /* If a part of the arg was put into registers, + don't include that part in the amount pushed. */ + if (! args[i].pass_on_stack) + args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD) + / (PARM_BOUNDARY / BITS_PER_UNIT) + * (PARM_BOUNDARY / BITS_PER_UNIT)); +#endif + + /* Update ARGS_SIZE, the total stack space for args so far. */ + + args_size.constant += args[i].size.constant; + if (args[i].size.var) + { + ADD_PARM_SIZE (args_size, args[i].size.var); + } + + /* Since the slot offset points to the bottom of the slot, + we must record it after incrementing if the args grow down. */ +#ifdef ARGS_GROW_DOWNWARD + args[i].slot_offset = args_size; + + args[i].slot_offset.constant = -args_size.constant; + if (args_size.var) + { + SUB_PARM_SIZE (args[i].slot_offset, args_size.var); + } +#endif + + /* Increment ARGS_SO_FAR, which has info about which arg-registers + have been used, etc. */ + + FUNCTION_ARG_ADVANCE (args_so_far, TYPE_MODE (type), type, + argpos < n_named_args); + } + +#ifdef FINAL_REG_PARM_STACK_SPACE + reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, + args_size.var); +#endif + + /* Compute the actual size of the argument block required. The variable + and constant sizes must be combined, the size may have to be rounded, + and there may be a minimum required size. */ + + original_args_size = args_size; + if (args_size.var) + { + /* If this function requires a variable-sized argument list, don't try to + make a cse'able block for this call. We may be able to do this + eventually, but it is too complicated to keep track of what insns go + in the cse'able block and which don't. */ + + is_const = 0; + must_preallocate = 1; + + args_size.var = ARGS_SIZE_TREE (args_size); + args_size.constant = 0; + +#ifdef STACK_BOUNDARY + if (STACK_BOUNDARY != BITS_PER_UNIT) + args_size.var = round_up (args_size.var, STACK_BYTES); +#endif + +#ifdef REG_PARM_STACK_SPACE + if (reg_parm_stack_space > 0) + { + args_size.var + = size_binop (MAX_EXPR, args_size.var, + size_int (REG_PARM_STACK_SPACE (fndecl))); + +#ifndef OUTGOING_REG_PARM_STACK_SPACE + /* The area corresponding to register parameters is not to count in + the size of the block we need. So make the adjustment. */ + args_size.var + = size_binop (MINUS_EXPR, args_size.var, + size_int (reg_parm_stack_space)); +#endif + } +#endif + } + else + { +#ifdef STACK_BOUNDARY + args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) + / STACK_BYTES) * STACK_BYTES); +#endif + +#ifdef REG_PARM_STACK_SPACE + args_size.constant = MAX (args_size.constant, + reg_parm_stack_space); +#ifdef MAYBE_REG_PARM_STACK_SPACE + if (reg_parm_stack_space == 0) + args_size.constant = 0; +#endif +#ifndef OUTGOING_REG_PARM_STACK_SPACE + args_size.constant -= reg_parm_stack_space; +#endif +#endif + } + + /* See if we have or want to preallocate stack space. + + If we would have to push a partially-in-regs parm + before other stack parms, preallocate stack space instead. + + If the size of some parm is not a multiple of the required stack + alignment, we must preallocate. + + If the total size of arguments that would otherwise create a copy in + a temporary (such as a CALL) is more than half the total argument list + size, preallocation is faster. + + Another reason to preallocate is if we have a machine (like the m88k) + where stack alignment is required to be maintained between every + pair of insns, not just when the call is made. However, we assume here + that such machines either do not have push insns (and hence preallocation + would occur anyway) or the problem is taken care of with + PUSH_ROUNDING. */ + + if (! must_preallocate) + { + int partial_seen = 0; + int copy_to_evaluate_size = 0; + + for (i = 0; i < num_actuals && ! must_preallocate; i++) + { + if (args[i].partial > 0 && ! args[i].pass_on_stack) + partial_seen = 1; + else if (partial_seen && args[i].reg == 0) + must_preallocate = 1; + + if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode + && (TREE_CODE (args[i].tree_value) == CALL_EXPR + || TREE_CODE (args[i].tree_value) == TARGET_EXPR + || TREE_CODE (args[i].tree_value) == COND_EXPR + || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))) + copy_to_evaluate_size + += int_size_in_bytes (TREE_TYPE (args[i].tree_value)); + } + + if (copy_to_evaluate_size * 2 >= args_size.constant + && args_size.constant > 0) + must_preallocate = 1; + } + + /* If the structure value address will reference the stack pointer, we must + stabilize it. We don't need to do this if we know that we are not going + to adjust the stack pointer in processing this call. */ + + if (structure_value_addr + && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr) + || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr)) + && (args_size.var +#ifndef ACCUMULATE_OUTGOING_ARGS + || args_size.constant +#endif + )) + structure_value_addr = copy_to_reg (structure_value_addr); + + /* If this function call is cse'able, precompute all the parameters. + Note that if the parameter is constructed into a temporary, this will + cause an additional copy because the parameter will be constructed + into a temporary location and then copied into the outgoing arguments. + If a parameter contains a call to alloca and this function uses the + stack, precompute the parameter. */ + + /* If we preallocated the stack space, and some arguments must be passed + on the stack, then we must precompute any parameter which contains a + function call which will store arguments on the stack. + Otherwise, evaluating the parameter may clobber previous parameters + which have already been stored into the stack. */ + + for (i = 0; i < num_actuals; i++) + if (is_const + || ((args_size.var != 0 || args_size.constant != 0) + && calls_function (args[i].tree_value, 1)) + || (must_preallocate && (args_size.var != 0 || args_size.constant != 0) + && calls_function (args[i].tree_value, 0))) + { + /* If this is an addressable type, we cannot pre-evaluate it. */ + if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))) + abort (); + + push_temp_slots (); + + args[i].initial_value = args[i].value + = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0); + + preserve_temp_slots (args[i].value); + pop_temp_slots (); + + /* ANSI doesn't require a sequence point here, + but PCC has one, so this will avoid some problems. */ + emit_queue (); + + args[i].initial_value = args[i].value + = protect_from_queue (args[i].initial_value, 0); + + if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode) + args[i].value + = convert_modes (args[i].mode, + TYPE_MODE (TREE_TYPE (args[i].tree_value)), + args[i].value, args[i].unsignedp); + } + + /* Now we are about to start emitting insns that can be deleted + if a libcall is deleted. */ + if (is_const) + start_sequence (); + + /* If we have no actual push instructions, or shouldn't use them, + make space for all args right now. */ + + if (args_size.var != 0) + { + if (old_stack_level == 0) + { + emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); + old_pending_adj = pending_stack_adjust; + pending_stack_adjust = 0; +#ifdef ACCUMULATE_OUTGOING_ARGS + /* stack_arg_under_construction says whether a stack arg is + being constructed at the old stack level. Pushing the stack + gets a clean outgoing argument block. */ + old_stack_arg_under_construction = stack_arg_under_construction; + stack_arg_under_construction = 0; +#endif + } + argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0); + } + else + { + /* Note that we must go through the motions of allocating an argument + block even if the size is zero because we may be storing args + in the area reserved for register arguments, which may be part of + the stack frame. */ + + int needed = args_size.constant; + + /* Store the maximum argument space used. It will be pushed by the + prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow checking). */ + + if (needed > current_function_outgoing_args_size) + current_function_outgoing_args_size = needed; + + if (must_preallocate) + { +#ifdef ACCUMULATE_OUTGOING_ARGS + /* Since the stack pointer will never be pushed, it is possible for + the evaluation of a parm to clobber something we have already + written to the stack. Since most function calls on RISC machines + do not use the stack, this is uncommon, but must work correctly. + + Therefore, we save any area of the stack that was already written + and that we are using. Here we set up to do this by making a new + stack usage map from the old one. The actual save will be done + by store_one_arg. + + Another approach might be to try to reorder the argument + evaluations to avoid this conflicting stack usage. */ + +#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) + /* Since we will be writing into the entire argument area, the + map must be allocated for its entire size, not just the part that + is the responsibility of the caller. */ + needed += reg_parm_stack_space; +#endif + +#ifdef ARGS_GROW_DOWNWARD + highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, + needed + 1); +#else + highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, + needed); +#endif + stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); + + if (initial_highest_arg_in_use) + bcopy (initial_stack_usage_map, stack_usage_map, + initial_highest_arg_in_use); + + if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) + bzero (&stack_usage_map[initial_highest_arg_in_use], + highest_outgoing_arg_in_use - initial_highest_arg_in_use); + needed = 0; + + /* The address of the outgoing argument list must not be copied to a + register here, because argblock would be left pointing to the + wrong place after the call to allocate_dynamic_stack_space below. + */ + + argblock = virtual_outgoing_args_rtx; + +#else /* not ACCUMULATE_OUTGOING_ARGS */ + if (inhibit_defer_pop == 0) + { + /* Try to reuse some or all of the pending_stack_adjust + to get this space. Maybe we can avoid any pushing. */ + if (needed > pending_stack_adjust) + { + needed -= pending_stack_adjust; + pending_stack_adjust = 0; + } + else + { + pending_stack_adjust -= needed; + needed = 0; + } + } + /* Special case this because overhead of `push_block' in this + case is non-trivial. */ + if (needed == 0) + argblock = virtual_outgoing_args_rtx; + else + argblock = push_block (GEN_INT (needed), 0, 0); + + /* We only really need to call `copy_to_reg' in the case where push + insns are going to be used to pass ARGBLOCK to a function + call in ARGS. In that case, the stack pointer changes value + from the allocation point to the call point, and hence + the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well. + But might as well always do it. */ + argblock = copy_to_reg (argblock); +#endif /* not ACCUMULATE_OUTGOING_ARGS */ + } + } + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* The save/restore code in store_one_arg handles all cases except one: + a constructor call (including a C function returning a BLKmode struct) + to initialize an argument. */ + if (stack_arg_under_construction) + { +#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) + rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant); +#else + rtx push_size = GEN_INT (args_size.constant); +#endif + if (old_stack_level == 0) + { + emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); + old_pending_adj = pending_stack_adjust; + pending_stack_adjust = 0; + /* stack_arg_under_construction says whether a stack arg is + being constructed at the old stack level. Pushing the stack + gets a clean outgoing argument block. */ + old_stack_arg_under_construction = stack_arg_under_construction; + stack_arg_under_construction = 0; + /* Make a new map for the new argument list. */ + stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use); + bzero (stack_usage_map, highest_outgoing_arg_in_use); + highest_outgoing_arg_in_use = 0; + } + allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT); + } + /* If argument evaluation might modify the stack pointer, copy the + address of the argument list to a register. */ + for (i = 0; i < num_actuals; i++) + if (args[i].pass_on_stack) + { + argblock = copy_addr_to_reg (argblock); + break; + } +#endif + + + /* If we preallocated stack space, compute the address of each argument. + We need not ensure it is a valid memory address here; it will be + validized when it is used. */ + if (argblock) + { + rtx arg_reg = argblock; + int arg_offset = 0; + + if (GET_CODE (argblock) == PLUS) + arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1)); + + for (i = 0; i < num_actuals; i++) + { + rtx offset = ARGS_SIZE_RTX (args[i].offset); + rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset); + rtx addr; + + /* Skip this parm if it will not be passed on the stack. */ + if (! args[i].pass_on_stack && args[i].reg != 0) + continue; + + if (GET_CODE (offset) == CONST_INT) + addr = plus_constant (arg_reg, INTVAL (offset)); + else + addr = gen_rtx (PLUS, Pmode, arg_reg, offset); + + addr = plus_constant (addr, arg_offset); + args[i].stack = gen_rtx (MEM, args[i].mode, addr); + MEM_IN_STRUCT_P (args[i].stack) + = AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value)); + + if (GET_CODE (slot_offset) == CONST_INT) + addr = plus_constant (arg_reg, INTVAL (slot_offset)); + else + addr = gen_rtx (PLUS, Pmode, arg_reg, slot_offset); + + addr = plus_constant (addr, arg_offset); + args[i].stack_slot = gen_rtx (MEM, args[i].mode, addr); + } + } + +#ifdef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we push args individually in reverse order, perform stack alignment + before the first push (the last arg). */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + + /* Don't try to defer pops if preallocating, not even from the first arg, + since ARGBLOCK probably refers to the SP. */ + if (argblock) + NO_DEFER_POP; + + /* Get the function to call, in the form of RTL. */ + if (fndecl) + { + /* If this is the first use of the function, see if we need to + make an external definition for it. */ + if (! TREE_USED (fndecl)) + { + assemble_external (fndecl); + TREE_USED (fndecl) = 1; + } + + /* Get a SYMBOL_REF rtx for the function address. */ + funexp = XEXP (DECL_RTL (fndecl), 0); + } + else + /* Generate an rtx (probably a pseudo-register) for the address. */ + { + push_temp_slots (); + funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0); + pop_temp_slots (); /* FUNEXP can't be BLKmode */ + emit_queue (); + } + + /* Figure out the register where the value, if any, will come back. */ + valreg = 0; + if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode + && ! structure_value_addr) + { + if (pcc_struct_value) + valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)), + fndecl); + else + valreg = hard_function_value (TREE_TYPE (exp), fndecl); + } + + /* Precompute all register parameters. It isn't safe to compute anything + once we have started filling any specific hard regs. */ + reg_parm_seen = 0; + for (i = 0; i < num_actuals; i++) + if (args[i].reg != 0 && ! args[i].pass_on_stack) + { + reg_parm_seen = 1; + + if (args[i].value == 0) + { + push_temp_slots (); + args[i].value = expand_expr (args[i].tree_value, NULL_RTX, + VOIDmode, 0); + preserve_temp_slots (args[i].value); + pop_temp_slots (); + + /* ANSI doesn't require a sequence point here, + but PCC has one, so this will avoid some problems. */ + emit_queue (); + } + + /* If we are to promote the function arg to a wider mode, + do it now. */ + + if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value))) + args[i].value + = convert_modes (args[i].mode, + TYPE_MODE (TREE_TYPE (args[i].tree_value)), + args[i].value, args[i].unsignedp); + + /* If the value is expensive, and we are inside an appropriately + short loop, put the value into a pseudo and then put the pseudo + into the hard reg. + + For small register classes, also do this if this call uses + register parameters. This is to avoid reload conflicts while + loading the parameters registers. */ + + if ((! (GET_CODE (args[i].value) == REG + || (GET_CODE (args[i].value) == SUBREG + && GET_CODE (SUBREG_REG (args[i].value)) == REG))) + && args[i].mode != BLKmode + && rtx_cost (args[i].value, SET) > 2 +#ifdef SMALL_REGISTER_CLASSES + && (reg_parm_seen || preserve_subexpressions_p ()) +#else + && preserve_subexpressions_p () +#endif + ) + args[i].value = copy_to_mode_reg (args[i].mode, args[i].value); + } + +#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) + /* The argument list is the property of the called routine and it + may clobber it. If the fixed area has been used for previous + parameters, we must save and restore it. + + Here we compute the boundary of the that needs to be saved, if any. */ + +#ifdef ARGS_GROW_DOWNWARD + for (i = 0; i < reg_parm_stack_space + 1; i++) +#else + for (i = 0; i < reg_parm_stack_space; i++) +#endif + { + if (i >= highest_outgoing_arg_in_use + || stack_usage_map[i] == 0) + continue; + + if (low_to_save == -1) + low_to_save = i; + + high_to_save = i; + } + + if (low_to_save >= 0) + { + int num_to_save = high_to_save - low_to_save + 1; + enum machine_mode save_mode + = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); + rtx stack_area; + + /* If we don't have the required alignment, must do this in BLKmode. */ + if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode), + BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) + save_mode = BLKmode; + + stack_area = gen_rtx (MEM, save_mode, + memory_address (save_mode, + +#ifdef ARGS_GROW_DOWNWARD + plus_constant (argblock, + - high_to_save) +#else + plus_constant (argblock, + low_to_save) +#endif + )); + if (save_mode == BLKmode) + { + save_area = assign_stack_temp (BLKmode, num_to_save, 0); + MEM_IN_STRUCT_P (save_area) = 0; + emit_block_move (validize_mem (save_area), stack_area, + GEN_INT (num_to_save), + PARM_BOUNDARY / BITS_PER_UNIT); + } + else + { + save_area = gen_reg_rtx (save_mode); + emit_move_insn (save_area, stack_area); + } + } +#endif + + + /* Now store (and compute if necessary) all non-register parms. + These come before register parms, since they can require block-moves, + which could clobber the registers used for register parms. + Parms which have partial registers are not stored here, + but we do preallocate space here if they want that. */ + + for (i = 0; i < num_actuals; i++) + if (args[i].reg == 0 || args[i].pass_on_stack) + store_one_arg (&args[i], argblock, may_be_alloca, + args_size.var != 0, fndecl, reg_parm_stack_space); + +#ifdef STRICT_ALIGNMENT + /* If we have a parm that is passed in registers but not in memory + and whose alignment does not permit a direct copy into registers, + make a group of pseudos that correspond to each register that we + will later fill. */ + + for (i = 0; i < num_actuals; i++) + if (args[i].reg != 0 && ! args[i].pass_on_stack + && args[i].mode == BLKmode + && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value)) + < MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD))) + { + int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value)); + int big_endian_correction = 0; + + args[i].n_aligned_regs + = args[i].partial ? args[i].partial + : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; + + args[i].aligned_regs = (rtx *) alloca (sizeof (rtx) + * args[i].n_aligned_regs); + + /* Structures smaller than a word are aligned to the least significant + byte (to the right). On a BYTES_BIG_ENDIAN machine, this means we + must skip the empty high order bytes when calculating the bit + offset. */ + if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD) + big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT)); + + for (j = 0; j < args[i].n_aligned_regs; j++) + { + rtx reg = gen_reg_rtx (word_mode); + rtx word = operand_subword_force (args[i].value, j, BLKmode); + int bitsize = TYPE_ALIGN (TREE_TYPE (args[i].tree_value)); + int bitpos; + + args[i].aligned_regs[j] = reg; + + /* Clobber REG and move each partword into it. Ensure we don't + go past the end of the structure. Note that the loop below + works because we've already verified that padding + and endianness are compatible. */ + + emit_insn (gen_rtx (CLOBBER, VOIDmode, reg)); + + for (bitpos = 0; + bitpos < BITS_PER_WORD && bytes > 0; + bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT) + { + int xbitpos = bitpos + big_endian_correction; + + store_bit_field (reg, bitsize, xbitpos, word_mode, + extract_bit_field (word, bitsize, bitpos, 1, + NULL_RTX, word_mode, + word_mode, + bitsize / BITS_PER_UNIT, + BITS_PER_WORD), + bitsize / BITS_PER_UNIT, BITS_PER_WORD); + } + } + } +#endif + + /* Now store any partially-in-registers parm. + This is the last place a block-move can happen. */ + if (reg_parm_seen) + for (i = 0; i < num_actuals; i++) + if (args[i].partial != 0 && ! args[i].pass_on_stack) + store_one_arg (&args[i], argblock, may_be_alloca, + args_size.var != 0, fndecl, reg_parm_stack_space); + +#ifndef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we pushed args in forward order, perform stack alignment + after pushing the last arg. */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + + /* If register arguments require space on the stack and stack space + was not preallocated, allocate stack space here for arguments + passed in registers. */ +#if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE) + if (must_preallocate == 0 && reg_parm_stack_space > 0) + anti_adjust_stack (GEN_INT (reg_parm_stack_space)); +#endif + + /* Pass the function the address in which to return a structure value. */ + if (structure_value_addr && ! structure_value_addr_parm) + { + emit_move_insn (struct_value_rtx, + force_reg (Pmode, + force_operand (structure_value_addr, + NULL_RTX))); + if (GET_CODE (struct_value_rtx) == REG) + use_reg (&call_fusage, struct_value_rtx); + } + + funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen); + + /* Now do the register loads required for any wholly-register parms or any + parms which are passed both on the stack and in a register. Their + expressions were already evaluated. + + Mark all register-parms as living through the call, putting these USE + insns in the CALL_INSN_FUNCTION_USAGE field. */ + + for (i = 0; i < num_actuals; i++) + { + rtx list = args[i].reg; + int partial = args[i].partial; + + while (list) + { + rtx reg; + int nregs; + + /* Process each register that needs to get this arg. */ + if (GET_CODE (list) == EXPR_LIST) + reg = XEXP (list, 0), list = XEXP (list, 1); + else + reg = list, list = 0; + + /* Set to non-negative if must move a word at a time, even if just + one word (e.g, partial == 1 && mode == DFmode). Set to -1 if + we just use a normal move insn. This value can be zero if the + argument is a zero size structure with no fields. */ + nregs = (partial ? partial + : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode + ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value)) + + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) + : -1)); + + /* If simple case, just do move. If normal partial, store_one_arg + has already loaded the register for us. In all other cases, + load the register(s) from memory. */ + + if (nregs == -1) + emit_move_insn (reg, args[i].value); + +#ifdef STRICT_ALIGNMENT + /* If we have pre-computed the values to put in the registers in + the case of non-aligned structures, copy them in now. */ + + else if (args[i].n_aligned_regs != 0) + for (j = 0; j < args[i].n_aligned_regs; j++) + emit_move_insn (gen_rtx (REG, word_mode, REGNO (reg) + j), + args[i].aligned_regs[j]); +#endif + + else if (args[i].partial == 0 || args[i].pass_on_stack) + move_block_to_reg (REGNO (reg), + validize_mem (args[i].value), nregs, + args[i].mode); + + if (nregs == -1) + use_reg (&call_fusage, reg); + else + use_regs (&call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs); + + /* PARTIAL referred only to the first register, so clear it for the + next time. */ + partial = 0; + } + } + + /* Perform postincrements before actually calling the function. */ + emit_queue (); + + /* All arguments and registers used for the call must be set up by now! */ + + /* Generate the actual call instruction. */ + emit_call_1 (funexp, fndecl, funtype, args_size.constant, struct_value_size, + FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), + valreg, old_inhibit_defer_pop, call_fusage, is_const); + + /* If call is cse'able, make appropriate pair of reg-notes around it. + Test valreg so we don't crash; may safely ignore `const' + if return type is void. */ + if (is_const && valreg != 0) + { + rtx note = 0; + rtx temp = gen_reg_rtx (GET_MODE (valreg)); + rtx insns; + + /* Construct an "equal form" for the value which mentions all the + arguments in order as well as the function name. */ +#ifdef PUSH_ARGS_REVERSED + for (i = 0; i < num_actuals; i++) + note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note); +#else + for (i = num_actuals - 1; i >= 0; i--) + note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note); +#endif + note = gen_rtx (EXPR_LIST, VOIDmode, funexp, note); + + insns = get_insns (); + end_sequence (); + + emit_libcall_block (insns, temp, valreg, note); + + valreg = temp; + } + else if (is_const) + { + /* Otherwise, just write out the sequence without a note. */ + rtx insns = get_insns (); + + end_sequence (); + emit_insns (insns); + } + + /* For calls to `setjmp', etc., inform flow.c it should complain + if nonvolatile values are live. */ + + if (returns_twice) + { + emit_note (name, NOTE_INSN_SETJMP); + current_function_calls_setjmp = 1; + } + + if (is_longjmp) + current_function_calls_longjmp = 1; + + /* Notice functions that cannot return. + If optimizing, insns emitted below will be dead. + If not optimizing, they will exist, which is useful + if the user uses the `return' command in the debugger. */ + + if (is_volatile || is_longjmp) + emit_barrier (); + + /* If value type not void, return an rtx for the value. */ + + /* If there are cleanups to be called, don't use a hard reg as target. */ + if (cleanups_this_call != old_cleanups + && target && REG_P (target) + && REGNO (target) < FIRST_PSEUDO_REGISTER) + target = 0; + + if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode + || ignore) + { + target = const0_rtx; + } + else if (structure_value_addr) + { + if (target == 0 || GET_CODE (target) != MEM) + { + target = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)), + memory_address (TYPE_MODE (TREE_TYPE (exp)), + structure_value_addr)); + MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); + } + } + else if (pcc_struct_value) + { + if (target == 0) + { + /* We used leave the value in the location that it is + returned in, but that causes problems if it is used more + than once in one expression. Rather than trying to track + when a copy is required, we always copy when TARGET is + not specified. This calling sequence is only used on + a few machines and TARGET is usually nonzero. */ + if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) + { + target = assign_stack_temp (BLKmode, + int_size_in_bytes (TREE_TYPE (exp)), + 0); + + MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); + + /* Save this temp slot around the pop below. */ + preserve_temp_slots (target); + } + else + target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp))); + } + + if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) + emit_move_insn (target, gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)), + copy_to_reg (valreg))); + else + emit_block_move (target, gen_rtx (MEM, BLKmode, copy_to_reg (valreg)), + expr_size (exp), + TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT); + } + else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp)) + && GET_MODE (target) == GET_MODE (valreg)) + /* TARGET and VALREG cannot be equal at this point because the latter + would not have REG_FUNCTION_VALUE_P true, while the former would if + it were referring to the same register. + + If they refer to the same register, this move will be a no-op, except + when function inlining is being done. */ + emit_move_insn (target, valreg); + else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) + { + /* Some machines (the PA for example) want to return all small + structures in registers regardless of the structure's alignment. + + Deal with them explicitly by copying from the return registers + into the target MEM locations. */ + int bytes = int_size_in_bytes (TREE_TYPE (exp)); + int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + int i; + enum machine_mode tmpmode; + rtx src, dst; + int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (exp)), BITS_PER_WORD); + int bitpos, xbitpos, big_endian_correction = 0; + + if (target == 0) + { + target = assign_stack_temp (BLKmode, bytes, 0); + MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); + preserve_temp_slots (target); + } + + /* This code assumes valreg is at least a full word. If it isn't, + copy it into a new pseudo which is a full word. */ + if (GET_MODE (valreg) != BLKmode + && GET_MODE_SIZE (GET_MODE (valreg)) < UNITS_PER_WORD) + valreg = convert_to_mode (SImode, valreg, + TREE_UNSIGNED (TREE_TYPE (exp))); + + /* Structures whose size is not a multiple of a word are aligned + to the least significant byte (to the right). On a BYTES_BIG_ENDIAN + machine, this means we must skip the empty high order bytes when + calculating the bit offset. */ + if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD) + big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) + * BITS_PER_UNIT)); + + /* Copy the structure BITSIZE bites at a time. + + We could probably emit more efficient code for machines + which do not use strict alignment, but it doesn't seem + worth the effort at the current time. */ + for (bitpos = 0, xbitpos = big_endian_correction; + bitpos < bytes * BITS_PER_UNIT; + bitpos += bitsize, xbitpos += bitsize) + { + + /* We need a new source operand each time xbitpos is on a + word boundary and when xbitpos == big_endian_correction + (the first time through). */ + if (xbitpos % BITS_PER_WORD == 0 + || xbitpos == big_endian_correction) + src = operand_subword_force (valreg, + xbitpos / BITS_PER_WORD, + BLKmode); + + /* We need a new destination operand each time bitpos is on + a word boundary. */ + if (bitpos % BITS_PER_WORD == 0) + dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, BLKmode); + + /* Use xbitpos for the source extraction (right justified) and + xbitpos for the destination store (left justified). */ + store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode, + extract_bit_field (src, bitsize, + xbitpos % BITS_PER_WORD, 1, + NULL_RTX, word_mode, + word_mode, + bitsize / BITS_PER_UNIT, + BITS_PER_WORD), + bitsize / BITS_PER_UNIT, BITS_PER_WORD); + } + } + else + target = copy_to_reg (valreg); + +#ifdef PROMOTE_FUNCTION_RETURN + /* If we promoted this return value, make the proper SUBREG. TARGET + might be const0_rtx here, so be careful. */ + if (GET_CODE (target) == REG + && TYPE_MODE (TREE_TYPE (exp)) != BLKmode + && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) + { + tree type = TREE_TYPE (exp); + int unsignedp = TREE_UNSIGNED (type); + + /* If we don't promote as expected, something is wrong. */ + if (GET_MODE (target) + != promote_mode (type, TYPE_MODE (type), &unsignedp, 1)) + abort (); + + target = gen_rtx (SUBREG, TYPE_MODE (type), target, 0); + SUBREG_PROMOTED_VAR_P (target) = 1; + SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp; + } +#endif + + if (flag_short_temps) + { + /* Perform all cleanups needed for the arguments of this call + (i.e. destructors in C++). */ + expand_cleanups_to (old_cleanups); + } + + /* If size of args is variable or this was a constructor call for a stack + argument, restore saved stack-pointer value. */ + + if (old_stack_level) + { + emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); + pending_stack_adjust = old_pending_adj; +#ifdef ACCUMULATE_OUTGOING_ARGS + stack_arg_under_construction = old_stack_arg_under_construction; + highest_outgoing_arg_in_use = initial_highest_arg_in_use; + stack_usage_map = initial_stack_usage_map; +#endif + } +#ifdef ACCUMULATE_OUTGOING_ARGS + else + { +#ifdef REG_PARM_STACK_SPACE + if (save_area) + { + enum machine_mode save_mode = GET_MODE (save_area); + rtx stack_area + = gen_rtx (MEM, save_mode, + memory_address (save_mode, +#ifdef ARGS_GROW_DOWNWARD + plus_constant (argblock, - high_to_save) +#else + plus_constant (argblock, low_to_save) +#endif + )); + + if (save_mode != BLKmode) + emit_move_insn (stack_area, save_area); + else + emit_block_move (stack_area, validize_mem (save_area), + GEN_INT (high_to_save - low_to_save + 1), + PARM_BOUNDARY / BITS_PER_UNIT); + } +#endif + + /* If we saved any argument areas, restore them. */ + for (i = 0; i < num_actuals; i++) + if (args[i].save_area) + { + enum machine_mode save_mode = GET_MODE (args[i].save_area); + rtx stack_area + = gen_rtx (MEM, save_mode, + memory_address (save_mode, + XEXP (args[i].stack_slot, 0))); + + if (save_mode != BLKmode) + emit_move_insn (stack_area, args[i].save_area); + else + emit_block_move (stack_area, validize_mem (args[i].save_area), + GEN_INT (args[i].size.constant), + PARM_BOUNDARY / BITS_PER_UNIT); + } + + highest_outgoing_arg_in_use = initial_highest_arg_in_use; + stack_usage_map = initial_stack_usage_map; + } +#endif + + /* If this was alloca, record the new stack level for nonlocal gotos. + Check for the handler slots since we might not have a save area + for non-local gotos. */ + + if (may_be_alloca && nonlocal_goto_handler_slot != 0) + emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX); + + pop_temp_slots (); + + return target; +} + +/* Output a library call to function FUN (a SYMBOL_REF rtx) + (emitting the queue unless NO_QUEUE is nonzero), + for a value of mode OUTMODE, + with NARGS different arguments, passed as alternating rtx values + and machine_modes to convert them to. + The rtx values should have been passed through protect_from_queue already. + + NO_QUEUE will be true if and only if the library call is a `const' call + which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent + to the variable is_const in expand_call. + + NO_QUEUE must be true for const calls, because if it isn't, then + any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes, + and will be lost if the libcall sequence is optimized away. + + NO_QUEUE must be false for non-const calls, because if it isn't, the + call insn will have its CONST_CALL_P bit set, and it will be incorrectly + optimized. For instance, the instruction scheduler may incorrectly + move memory references across the non-const call. */ + +void +emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode, + int nargs, ...)) +{ +#ifndef __STDC__ + rtx orgfun; + int no_queue; + enum machine_mode outmode; + int nargs; +#endif + va_list p; + /* Total size in bytes of all the stack-parms scanned so far. */ + struct args_size args_size; + /* Size of arguments before any adjustments (such as rounding). */ + struct args_size original_args_size; + register int argnum; + rtx fun; + int inc; + int count; + rtx argblock = 0; + CUMULATIVE_ARGS args_so_far; + struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; + struct args_size offset; struct args_size size; }; + struct arg *argvec; + int old_inhibit_defer_pop = inhibit_defer_pop; + rtx call_fusage = 0; + /* library calls are never indirect calls. */ + int current_call_is_indirect = 0; + + VA_START (p, nargs); + +#ifndef __STDC__ + orgfun = va_arg (p, rtx); + no_queue = va_arg (p, int); + outmode = va_arg (p, enum machine_mode); + nargs = va_arg (p, int); +#endif + + fun = orgfun; + + /* Copy all the libcall-arguments out of the varargs data + and into a vector ARGVEC. + + Compute how to pass each argument. We only support a very small subset + of the full argument passing conventions to limit complexity here since + library functions shouldn't have many args. */ + + argvec = (struct arg *) alloca (nargs * sizeof (struct arg)); + + INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun); + + args_size.constant = 0; + args_size.var = 0; + + push_temp_slots (); + + for (count = 0; count < nargs; count++) + { + rtx val = va_arg (p, rtx); + enum machine_mode mode = va_arg (p, enum machine_mode); + + /* We cannot convert the arg value to the mode the library wants here; + must do it earlier where we know the signedness of the arg. */ + if (mode == BLKmode + || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) + abort (); + + /* On some machines, there's no way to pass a float to a library fcn. + Pass it as a double instead. */ +#ifdef LIBGCC_NEEDS_DOUBLE + if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) + val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; +#endif + + /* There's no need to call protect_from_queue, because + either emit_move_insn or emit_push_insn will do that. */ + + /* Make sure it is a reasonable operand for a move or push insn. */ + if (GET_CODE (val) != REG && GET_CODE (val) != MEM + && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) + val = force_operand (val, NULL_RTX); + +#ifdef FUNCTION_ARG_PASS_BY_REFERENCE + if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) + { + /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can + be viewed as just an efficiency improvement. */ + rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); + emit_move_insn (slot, val); + val = force_operand (XEXP (slot, 0), NULL_RTX); + mode = Pmode; + } +#endif + + argvec[count].value = val; + argvec[count].mode = mode; + + argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); + if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST) + abort (); +#ifdef FUNCTION_ARG_PARTIAL_NREGS + argvec[count].partial + = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); +#else + argvec[count].partial = 0; +#endif + + locate_and_pad_parm (mode, NULL_TREE, + argvec[count].reg && argvec[count].partial == 0, + NULL_TREE, &args_size, &argvec[count].offset, + &argvec[count].size); + + if (argvec[count].size.var) + abort (); + +#ifndef REG_PARM_STACK_SPACE + if (argvec[count].partial) + argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; +#endif + + if (argvec[count].reg == 0 || argvec[count].partial != 0 +#ifdef REG_PARM_STACK_SPACE + || 1 +#endif + ) + args_size.constant += argvec[count].size.constant; + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* If this arg is actually passed on the stack, it might be + clobbering something we already put there (this library call might + be inside the evaluation of an argument to a function whose call + requires the stack). This will only occur when the library call + has sufficient args to run out of argument registers. Abort in + this case; if this ever occurs, code must be added to save and + restore the arg slot. */ + + if (argvec[count].reg == 0 || argvec[count].partial != 0) + abort (); +#endif + + FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1); + } + va_end (p); + + /* If this machine requires an external definition for library + functions, write one out. */ + assemble_external_libcall (fun); + + original_args_size = args_size; +#ifdef STACK_BOUNDARY + args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) + / STACK_BYTES) * STACK_BYTES); +#endif + +#ifdef REG_PARM_STACK_SPACE + args_size.constant = MAX (args_size.constant, + REG_PARM_STACK_SPACE (NULL_TREE)); +#ifndef OUTGOING_REG_PARM_STACK_SPACE + args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE); +#endif +#endif + + if (args_size.constant > current_function_outgoing_args_size) + current_function_outgoing_args_size = args_size.constant; + +#ifdef ACCUMULATE_OUTGOING_ARGS + args_size.constant = 0; +#endif + +#ifndef PUSH_ROUNDING + argblock = push_block (GEN_INT (args_size.constant), 0, 0); +#endif + +#ifdef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we push args individually in reverse order, perform stack alignment + before the first push (the last arg). */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + +#ifdef PUSH_ARGS_REVERSED + inc = -1; + argnum = nargs - 1; +#else + inc = 1; + argnum = 0; +#endif + + /* Push the args that need to be pushed. */ + + for (count = 0; count < nargs; count++, argnum += inc) + { + register enum machine_mode mode = argvec[argnum].mode; + register rtx val = argvec[argnum].value; + rtx reg = argvec[argnum].reg; + int partial = argvec[argnum].partial; + + if (! (reg != 0 && partial == 0)) + emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, + argblock, GEN_INT (argvec[count].offset.constant)); + NO_DEFER_POP; + } + +#ifndef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we pushed args in forward order, perform stack alignment + after pushing the last arg. */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + +#ifdef PUSH_ARGS_REVERSED + argnum = nargs - 1; +#else + argnum = 0; +#endif + + fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); + + /* Now load any reg parms into their regs. */ + + for (count = 0; count < nargs; count++, argnum += inc) + { + register enum machine_mode mode = argvec[argnum].mode; + register rtx val = argvec[argnum].value; + rtx reg = argvec[argnum].reg; + int partial = argvec[argnum].partial; + + if (reg != 0 && partial == 0) + emit_move_insn (reg, val); + NO_DEFER_POP; + } + + /* For version 1.37, try deleting this entirely. */ + if (! no_queue) + emit_queue (); + + /* Any regs containing parms remain in use through the call. */ + for (count = 0; count < nargs; count++) + if (argvec[count].reg != 0) + use_reg (&call_fusage, argvec[count].reg); + + /* Don't allow popping to be deferred, since then + cse'ing of library calls could delete a call and leave the pop. */ + NO_DEFER_POP; + + /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which + will set inhibit_defer_pop to that value. */ + + emit_call_1 (fun, + get_identifier (XSTR (orgfun, 0)), + get_identifier (XSTR (orgfun, 0)), args_size.constant, 0, + FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), + outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX, + old_inhibit_defer_pop + 1, call_fusage, no_queue); + + pop_temp_slots (); + + /* Now restore inhibit_defer_pop to its actual original value. */ + OK_DEFER_POP; +} + +/* Like emit_library_call except that an extra argument, VALUE, + comes second and says where to store the result. + (If VALUE is zero, this function chooses a convenient way + to return the value. + + This function returns an rtx for where the value is to be found. + If VALUE is nonzero, VALUE is returned. */ + +rtx +emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue, + enum machine_mode outmode, int nargs, ...)) +{ +#ifndef __STDC__ + rtx orgfun; + rtx value; + int no_queue; + enum machine_mode outmode; + int nargs; +#endif + va_list p; + /* Total size in bytes of all the stack-parms scanned so far. */ + struct args_size args_size; + /* Size of arguments before any adjustments (such as rounding). */ + struct args_size original_args_size; + register int argnum; + rtx fun; + int inc; + int count; + rtx argblock = 0; + CUMULATIVE_ARGS args_so_far; + struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; + struct args_size offset; struct args_size size; }; + struct arg *argvec; + int old_inhibit_defer_pop = inhibit_defer_pop; + rtx call_fusage = 0; + rtx mem_value = 0; + int pcc_struct_value = 0; + int struct_value_size = 0; + /* library calls are never indirect calls. */ + int current_call_is_indirect = 0; + int is_const; + + VA_START (p, nargs); + +#ifndef __STDC__ + orgfun = va_arg (p, rtx); + value = va_arg (p, rtx); + no_queue = va_arg (p, int); + outmode = va_arg (p, enum machine_mode); + nargs = va_arg (p, int); +#endif + + is_const = no_queue; + fun = orgfun; + + /* If this kind of value comes back in memory, + decide where in memory it should come back. */ + if (aggregate_value_p (type_for_mode (outmode, 0))) + { +#ifdef PCC_STATIC_STRUCT_RETURN + rtx pointer_reg + = hard_function_value (build_pointer_type (type_for_mode (outmode, 0)), + 0); + mem_value = gen_rtx (MEM, outmode, pointer_reg); + pcc_struct_value = 1; + if (value == 0) + value = gen_reg_rtx (outmode); +#else /* not PCC_STATIC_STRUCT_RETURN */ + struct_value_size = GET_MODE_SIZE (outmode); + if (value != 0 && GET_CODE (value) == MEM) + mem_value = value; + else + mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0); +#endif + + /* This call returns a big structure. */ + is_const = 0; + } + + /* ??? Unfinished: must pass the memory address as an argument. */ + + /* Copy all the libcall-arguments out of the varargs data + and into a vector ARGVEC. + + Compute how to pass each argument. We only support a very small subset + of the full argument passing conventions to limit complexity here since + library functions shouldn't have many args. */ + + argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg)); + + INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun); + + args_size.constant = 0; + args_size.var = 0; + + count = 0; + + push_temp_slots (); + + /* If there's a structure value address to be passed, + either pass it in the special place, or pass it as an extra argument. */ + if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value) + { + rtx addr = XEXP (mem_value, 0); + nargs++; + + /* Make sure it is a reasonable operand for a move or push insn. */ + if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM + && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr))) + addr = force_operand (addr, NULL_RTX); + + argvec[count].value = addr; + argvec[count].mode = Pmode; + argvec[count].partial = 0; + + argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1); +#ifdef FUNCTION_ARG_PARTIAL_NREGS + if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1)) + abort (); +#endif + + locate_and_pad_parm (Pmode, NULL_TREE, + argvec[count].reg && argvec[count].partial == 0, + NULL_TREE, &args_size, &argvec[count].offset, + &argvec[count].size); + + + if (argvec[count].reg == 0 || argvec[count].partial != 0 +#ifdef REG_PARM_STACK_SPACE + || 1 +#endif + ) + args_size.constant += argvec[count].size.constant; + + FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree)0, 1); + + count++; + } + + for (; count < nargs; count++) + { + rtx val = va_arg (p, rtx); + enum machine_mode mode = va_arg (p, enum machine_mode); + + /* We cannot convert the arg value to the mode the library wants here; + must do it earlier where we know the signedness of the arg. */ + if (mode == BLKmode + || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) + abort (); + + /* On some machines, there's no way to pass a float to a library fcn. + Pass it as a double instead. */ +#ifdef LIBGCC_NEEDS_DOUBLE + if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) + val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; +#endif + + /* There's no need to call protect_from_queue, because + either emit_move_insn or emit_push_insn will do that. */ + + /* Make sure it is a reasonable operand for a move or push insn. */ + if (GET_CODE (val) != REG && GET_CODE (val) != MEM + && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) + val = force_operand (val, NULL_RTX); + +#ifdef FUNCTION_ARG_PASS_BY_REFERENCE + if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) + { + /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can + be viewed as just an efficiency improvement. */ + rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); + emit_move_insn (slot, val); + val = XEXP (slot, 0); + mode = Pmode; + } +#endif + + argvec[count].value = val; + argvec[count].mode = mode; + + argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); + if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST) + abort (); +#ifdef FUNCTION_ARG_PARTIAL_NREGS + argvec[count].partial + = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); +#else + argvec[count].partial = 0; +#endif + + locate_and_pad_parm (mode, NULL_TREE, + argvec[count].reg && argvec[count].partial == 0, + NULL_TREE, &args_size, &argvec[count].offset, + &argvec[count].size); + + if (argvec[count].size.var) + abort (); + +#ifndef REG_PARM_STACK_SPACE + if (argvec[count].partial) + argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; +#endif + + if (argvec[count].reg == 0 || argvec[count].partial != 0 +#ifdef REG_PARM_STACK_SPACE + || 1 +#endif + ) + args_size.constant += argvec[count].size.constant; + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* If this arg is actually passed on the stack, it might be + clobbering something we already put there (this library call might + be inside the evaluation of an argument to a function whose call + requires the stack). This will only occur when the library call + has sufficient args to run out of argument registers. Abort in + this case; if this ever occurs, code must be added to save and + restore the arg slot. */ + + if (argvec[count].reg == 0 || argvec[count].partial != 0) + abort (); +#endif + + FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1); + } + va_end (p); + + /* If this machine requires an external definition for library + functions, write one out. */ + assemble_external_libcall (fun); + + original_args_size = args_size; +#ifdef STACK_BOUNDARY + args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) + / STACK_BYTES) * STACK_BYTES); +#endif + +#ifdef REG_PARM_STACK_SPACE + args_size.constant = MAX (args_size.constant, + REG_PARM_STACK_SPACE (NULL_TREE)); +#ifndef OUTGOING_REG_PARM_STACK_SPACE + args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE); +#endif +#endif + + if (args_size.constant > current_function_outgoing_args_size) + current_function_outgoing_args_size = args_size.constant; + +#ifdef ACCUMULATE_OUTGOING_ARGS + args_size.constant = 0; +#endif + +#ifndef PUSH_ROUNDING + argblock = push_block (GEN_INT (args_size.constant), 0, 0); +#endif + +#ifdef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we push args individually in reverse order, perform stack alignment + before the first push (the last arg). */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + +#ifdef PUSH_ARGS_REVERSED + inc = -1; + argnum = nargs - 1; +#else + inc = 1; + argnum = 0; +#endif + + /* Push the args that need to be pushed. */ + + for (count = 0; count < nargs; count++, argnum += inc) + { + register enum machine_mode mode = argvec[argnum].mode; + register rtx val = argvec[argnum].value; + rtx reg = argvec[argnum].reg; + int partial = argvec[argnum].partial; + + if (! (reg != 0 && partial == 0)) + emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, + argblock, GEN_INT (argvec[count].offset.constant)); + NO_DEFER_POP; + } + +#ifndef PUSH_ARGS_REVERSED +#ifdef STACK_BOUNDARY + /* If we pushed args in forward order, perform stack alignment + after pushing the last arg. */ + if (argblock == 0) + anti_adjust_stack (GEN_INT (args_size.constant + - original_args_size.constant)); +#endif +#endif + +#ifdef PUSH_ARGS_REVERSED + argnum = nargs - 1; +#else + argnum = 0; +#endif + + fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); + + /* Now load any reg parms into their regs. */ + + for (count = 0; count < nargs; count++, argnum += inc) + { + register enum machine_mode mode = argvec[argnum].mode; + register rtx val = argvec[argnum].value; + rtx reg = argvec[argnum].reg; + int partial = argvec[argnum].partial; + + if (reg != 0 && partial == 0) + emit_move_insn (reg, val); + NO_DEFER_POP; + } + +#if 0 + /* For version 1.37, try deleting this entirely. */ + if (! no_queue) + emit_queue (); +#endif + + /* Any regs containing parms remain in use through the call. */ + for (count = 0; count < nargs; count++) + if (argvec[count].reg != 0) + use_reg (&call_fusage, argvec[count].reg); + + /* Pass the function the address in which to return a structure value. */ + if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value) + { + emit_move_insn (struct_value_rtx, + force_reg (Pmode, + force_operand (XEXP (mem_value, 0), + NULL_RTX))); + if (GET_CODE (struct_value_rtx) == REG) + use_reg (&call_fusage, struct_value_rtx); + } + + /* Don't allow popping to be deferred, since then + cse'ing of library calls could delete a call and leave the pop. */ + NO_DEFER_POP; + + /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which + will set inhibit_defer_pop to that value. */ + + emit_call_1 (fun, + get_identifier (XSTR (orgfun, 0)), + get_identifier (XSTR (orgfun, 0)), args_size.constant, + struct_value_size, + FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), + (outmode != VOIDmode && mem_value == 0 + ? hard_libcall_value (outmode) : NULL_RTX), + old_inhibit_defer_pop + 1, call_fusage, is_const); + + /* Now restore inhibit_defer_pop to its actual original value. */ + OK_DEFER_POP; + + pop_temp_slots (); + + /* Copy the value to the right place. */ + if (outmode != VOIDmode) + { + if (mem_value) + { + if (value == 0) + value = mem_value; + if (value != mem_value) + emit_move_insn (value, mem_value); + } + else if (value != 0) + emit_move_insn (value, hard_libcall_value (outmode)); + else + value = hard_libcall_value (outmode); + } + + return value; +} + +#if 0 +/* Return an rtx which represents a suitable home on the stack + given TYPE, the type of the argument looking for a home. + This is called only for BLKmode arguments. + + SIZE is the size needed for this target. + ARGS_ADDR is the address of the bottom of the argument block for this call. + OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless + if this machine uses push insns. */ + +static rtx +target_for_arg (type, size, args_addr, offset) + tree type; + rtx size; + rtx args_addr; + struct args_size offset; +{ + rtx target; + rtx offset_rtx = ARGS_SIZE_RTX (offset); + + /* We do not call memory_address if possible, + because we want to address as close to the stack + as possible. For non-variable sized arguments, + this will be stack-pointer relative addressing. */ + if (GET_CODE (offset_rtx) == CONST_INT) + target = plus_constant (args_addr, INTVAL (offset_rtx)); + else + { + /* I have no idea how to guarantee that this + will work in the presence of register parameters. */ + target = gen_rtx (PLUS, Pmode, args_addr, offset_rtx); + target = memory_address (QImode, target); + } + + return gen_rtx (MEM, BLKmode, target); +} +#endif + +/* Store a single argument for a function call + into the register or memory area where it must be passed. + *ARG describes the argument value and where to pass it. + + ARGBLOCK is the address of the stack-block for all the arguments, + or 0 on a machine where arguments are pushed individually. + + MAY_BE_ALLOCA nonzero says this could be a call to `alloca' + so must be careful about how the stack is used. + + VARIABLE_SIZE nonzero says that this was a variable-sized outgoing + argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate + that we need not worry about saving and restoring the stack. + + FNDECL is the declaration of the function we are calling. */ + +static void +store_one_arg (arg, argblock, may_be_alloca, variable_size, fndecl, + reg_parm_stack_space) + struct arg_data *arg; + rtx argblock; + int may_be_alloca; + int variable_size; + tree fndecl; + int reg_parm_stack_space; +{ + register tree pval = arg->tree_value; + rtx reg = 0; + int partial = 0; + int used = 0; + int i, lower_bound, upper_bound; + + if (TREE_CODE (pval) == ERROR_MARK) + return; + + /* Push a new temporary level for any temporaries we make for + this argument. */ + push_temp_slots (); + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* If this is being stored into a pre-allocated, fixed-size, stack area, + save any previous data at that location. */ + if (argblock && ! variable_size && arg->stack) + { +#ifdef ARGS_GROW_DOWNWARD + /* stack_slot is negative, but we want to index stack_usage_map */ + /* with positive values. */ + if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) + upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1; + else + abort (); + + lower_bound = upper_bound - arg->size.constant; +#else + if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) + lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)); + else + lower_bound = 0; + + upper_bound = lower_bound + arg->size.constant; +#endif + + for (i = lower_bound; i < upper_bound; i++) + if (stack_usage_map[i] +#ifdef REG_PARM_STACK_SPACE + /* Don't store things in the fixed argument area at this point; + it has already been saved. */ + && i > reg_parm_stack_space +#endif + ) + break; + + if (i != upper_bound) + { + /* We need to make a save area. See what mode we can make it. */ + enum machine_mode save_mode + = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1); + rtx stack_area + = gen_rtx (MEM, save_mode, + memory_address (save_mode, XEXP (arg->stack_slot, 0))); + + if (save_mode == BLKmode) + { + arg->save_area = assign_stack_temp (BLKmode, + arg->size.constant, 0); + MEM_IN_STRUCT_P (arg->save_area) + = AGGREGATE_TYPE_P (TREE_TYPE (arg->tree_value)); + preserve_temp_slots (arg->save_area); + emit_block_move (validize_mem (arg->save_area), stack_area, + GEN_INT (arg->size.constant), + PARM_BOUNDARY / BITS_PER_UNIT); + } + else + { + arg->save_area = gen_reg_rtx (save_mode); + emit_move_insn (arg->save_area, stack_area); + } + } + } +#endif + + /* If this isn't going to be placed on both the stack and in registers, + set up the register and number of words. */ + if (! arg->pass_on_stack) + reg = arg->reg, partial = arg->partial; + + if (reg != 0 && partial == 0) + /* Being passed entirely in a register. We shouldn't be called in + this case. */ + abort (); + +#ifdef STRICT_ALIGNMENT + /* If this arg needs special alignment, don't load the registers + here. */ + if (arg->n_aligned_regs != 0) + reg = 0; +#endif + + /* If this is being partially passed in a register, but multiple locations + are specified, we assume that the one partially used is the one that is + listed first. */ + if (reg && GET_CODE (reg) == EXPR_LIST) + reg = XEXP (reg, 0); + + /* If this is being passed partially in a register, we can't evaluate + it directly into its stack slot. Otherwise, we can. */ + if (arg->value == 0) + { +#ifdef ACCUMULATE_OUTGOING_ARGS + /* stack_arg_under_construction is nonzero if a function argument is + being evaluated directly into the outgoing argument list and + expand_call must take special action to preserve the argument list + if it is called recursively. + + For scalar function arguments stack_usage_map is sufficient to + determine which stack slots must be saved and restored. Scalar + arguments in general have pass_on_stack == 0. + + If this argument is initialized by a function which takes the + address of the argument (a C++ constructor or a C function + returning a BLKmode structure), then stack_usage_map is + insufficient and expand_call must push the stack around the + function call. Such arguments have pass_on_stack == 1. + + Note that it is always safe to set stack_arg_under_construction, + but this generates suboptimal code if set when not needed. */ + + if (arg->pass_on_stack) + stack_arg_under_construction++; +#endif + arg->value = expand_expr (pval, + (partial + || TYPE_MODE (TREE_TYPE (pval)) != arg->mode) + ? NULL_RTX : arg->stack, + VOIDmode, 0); + + /* If we are promoting object (or for any other reason) the mode + doesn't agree, convert the mode. */ + + if (arg->mode != TYPE_MODE (TREE_TYPE (pval))) + arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)), + arg->value, arg->unsignedp); + +#ifdef ACCUMULATE_OUTGOING_ARGS + if (arg->pass_on_stack) + stack_arg_under_construction--; +#endif + } + + /* Don't allow anything left on stack from computation + of argument to alloca. */ + if (may_be_alloca) + do_pending_stack_adjust (); + + if (arg->value == arg->stack) + /* If the value is already in the stack slot, we are done. */ + ; + else if (arg->mode != BLKmode) + { + register int size; + + /* Argument is a scalar, not entirely passed in registers. + (If part is passed in registers, arg->partial says how much + and emit_push_insn will take care of putting it there.) + + Push it, and if its size is less than the + amount of space allocated to it, + also bump stack pointer by the additional space. + Note that in C the default argument promotions + will prevent such mismatches. */ + + size = GET_MODE_SIZE (arg->mode); + /* Compute how much space the push instruction will push. + On many machines, pushing a byte will advance the stack + pointer by a halfword. */ +#ifdef PUSH_ROUNDING + size = PUSH_ROUNDING (size); +#endif + used = size; + + /* Compute how much space the argument should get: + round up to a multiple of the alignment for arguments. */ + if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval))) + used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1) + / (PARM_BOUNDARY / BITS_PER_UNIT)) + * (PARM_BOUNDARY / BITS_PER_UNIT)); + + /* This isn't already where we want it on the stack, so put it there. + This can either be done with push or copy insns. */ + emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, + 0, partial, reg, used - size, + argblock, ARGS_SIZE_RTX (arg->offset)); + } + else + { + /* BLKmode, at least partly to be pushed. */ + + register int excess; + rtx size_rtx; + + /* Pushing a nonscalar. + If part is passed in registers, PARTIAL says how much + and emit_push_insn will take care of putting it there. */ + + /* Round its size up to a multiple + of the allocation unit for arguments. */ + + if (arg->size.var != 0) + { + excess = 0; + size_rtx = ARGS_SIZE_RTX (arg->size); + } + else + { + /* PUSH_ROUNDING has no effect on us, because + emit_push_insn for BLKmode is careful to avoid it. */ + excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval)) + + partial * UNITS_PER_WORD); + size_rtx = expr_size (pval); + } + + emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx, + TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial, + reg, excess, argblock, ARGS_SIZE_RTX (arg->offset)); + } + + + /* Unless this is a partially-in-register argument, the argument is now + in the stack. + + ??? Note that this can change arg->value from arg->stack to + arg->stack_slot and it matters when they are not the same. + It isn't totally clear that this is correct in all cases. */ + if (partial == 0) + arg->value = arg->stack_slot; + + /* Once we have pushed something, pops can't safely + be deferred during the rest of the arguments. */ + NO_DEFER_POP; + + /* ANSI doesn't require a sequence point here, + but PCC has one, so this will avoid some problems. */ + emit_queue (); + + /* Free any temporary slots made in processing this argument. Show + that we might have taken the address of something and pushed that + as an operand. */ + preserve_temp_slots (NULL_RTX); + free_temp_slots (); + pop_temp_slots (); + +#ifdef ACCUMULATE_OUTGOING_ARGS + /* Now mark the segment we just used. */ + if (argblock && ! variable_size && arg->stack) + for (i = lower_bound; i < upper_bound; i++) + stack_usage_map[i] = 1; +#endif +} -- cgit v1.2.3