From 552adc01bec1b81861f6a2c3e76e27867ace71e8 Mon Sep 17 00:00:00 2001 From: Martynas Venckus Date: Wed, 6 Jul 2011 00:02:43 +0000 Subject: Finalize work on the math library. It's time to do this monster commit, and deal with problems (if any) in tree. Note that this adds the following functions. Ports with hacks might need adjustments. nexttoward(3), fma(3), nexttowardf(3), fmaf(3), acoshl(3), asinhl(3), atanhl(3), coshl(3), sinhl(3), tanhl(3), expl(3), expm1l(3), logl(3), log10l(3), log1pl(3), log2l(3), modfl(3), cbrtl(3), hypotl(3), powl(3), erfl(3), erfcl(3), lgammal(3), tgammal(3), ceill(3), floorl(3), lrintl(3), llrintl(3), roundl(3), lroundl(3), llroundl(3), truncl(3), fmodl(3), remainderl(3), remquol(3), nextafterl(3), nexttowardl(3), fmal(3). With this commit, our library implements all functionality required by C99. Documentation bits will follow. --- lib/libm/Makefile | 27 +- lib/libm/shlib_version | 2 +- lib/libm/src/b_tgamma.c | 18 +- lib/libm/src/e_acosh.c | 16 +- lib/libm/src/e_atanh.c | 16 +- lib/libm/src/e_cosh.c | 16 +- lib/libm/src/e_exp.c | 16 +- lib/libm/src/e_fmod.c | 16 +- lib/libm/src/e_hypot.c | 16 +- lib/libm/src/e_log.c | 16 +- lib/libm/src/e_log10.c | 16 +- lib/libm/src/e_log2.c | 16 +- lib/libm/src/e_pow.c | 16 +- lib/libm/src/e_remainder.c | 16 +- lib/libm/src/e_remainderl.c | 27 + lib/libm/src/e_sinh.c | 16 +- lib/libm/src/ld128/e_acoshl.c | 58 ++ lib/libm/src/ld128/e_atanhl.c | 65 +++ lib/libm/src/ld128/e_coshl.c | 105 ++++ lib/libm/src/ld128/e_expl.c | 145 +++++ lib/libm/src/ld128/e_fmodl.c | 129 +++++ lib/libm/src/ld128/e_hypotl.c | 122 +++++ lib/libm/src/ld128/e_lgammal.c | 1037 ++++++++++++++++++++++++++++++++++++ lib/libm/src/ld128/e_log10l.c | 255 +++++++++ lib/libm/src/ld128/e_log2l.c | 248 +++++++++ lib/libm/src/ld128/e_logl.c | 283 ++++++++++ lib/libm/src/ld128/e_powl.c | 439 +++++++++++++++ lib/libm/src/ld128/e_sinhl.c | 104 ++++ lib/libm/src/ld128/e_tgammal.c | 45 ++ lib/libm/src/ld128/s_asinhl.c | 69 +++ lib/libm/src/ld128/s_cbrtl.c | 131 +++++ lib/libm/src/ld128/s_ceill.c | 69 +++ lib/libm/src/ld128/s_erfl.c | 926 ++++++++++++++++++++++++++++++++ lib/libm/src/ld128/s_expm1l.c | 162 ++++++ lib/libm/src/ld128/s_floorl.c | 70 +++ lib/libm/src/ld128/s_log1pl.c | 247 +++++++++ lib/libm/src/ld128/s_modfl.c | 73 +++ lib/libm/src/ld128/s_nextafterl.c | 73 +++ lib/libm/src/ld128/s_nexttoward.c | 85 +++ lib/libm/src/ld128/s_nexttowardf.c | 65 +++ lib/libm/src/ld128/s_remquol.c | 173 ++++++ lib/libm/src/ld128/s_tanhl.c | 104 ++++ lib/libm/src/ld128/s_truncl.c | 77 +++ lib/libm/src/ld80/e_acoshl.c | 57 ++ lib/libm/src/ld80/e_atanhl.c | 60 +++ lib/libm/src/ld80/e_coshl.c | 82 +++ lib/libm/src/ld80/e_expl.c | 131 +++++ lib/libm/src/ld80/e_fmodl.c | 147 +++++ lib/libm/src/ld80/e_hypotl.c | 122 +++++ lib/libm/src/ld80/e_lgammal.c | 425 +++++++++++++++ lib/libm/src/ld80/e_log10l.c | 206 +++++++ lib/libm/src/ld80/e_log2l.c | 199 +++++++ lib/libm/src/ld80/e_logl.c | 191 +++++++ lib/libm/src/ld80/e_powl.c | 615 +++++++++++++++++++++ lib/libm/src/ld80/e_sinhl.c | 76 +++ lib/libm/src/ld80/e_tgammal.c | 316 +++++++++++ lib/libm/src/ld80/s_asinhl.c | 54 ++ lib/libm/src/ld80/s_cbrtl.c | 128 +++++ lib/libm/src/ld80/s_ceill.c | 78 +++ lib/libm/src/ld80/s_erfl.c | 430 +++++++++++++++ lib/libm/src/ld80/s_expm1l.c | 138 +++++ lib/libm/src/ld80/s_floorl.c | 79 +++ lib/libm/src/ld80/s_log1pl.c | 191 +++++++ lib/libm/src/ld80/s_modfl.c | 69 +++ lib/libm/src/ld80/s_nextafterl.c | 88 +++ lib/libm/src/ld80/s_nexttoward.c | 82 +++ lib/libm/src/ld80/s_nexttowardf.c | 67 +++ lib/libm/src/ld80/s_remquol.c | 171 ++++++ lib/libm/src/ld80/s_tanhl.c | 79 +++ lib/libm/src/ld80/s_truncl.c | 77 +++ lib/libm/src/math_private.h | 18 +- lib/libm/src/polevll.c | 102 ++++ lib/libm/src/s_asinh.c | 16 +- lib/libm/src/s_cbrt.c | 16 +- lib/libm/src/s_ceil.c | 16 +- lib/libm/src/s_erf.c | 17 +- lib/libm/src/s_expm1.c | 16 +- lib/libm/src/s_floor.c | 16 +- lib/libm/src/s_fma.c | 218 ++++++++ lib/libm/src/s_fmaf.c | 52 ++ lib/libm/src/s_fmal.c | 191 +++++++ lib/libm/src/s_llrint.c | 13 +- lib/libm/src/s_llrintl.c | 12 + lib/libm/src/s_llround.c | 13 +- lib/libm/src/s_llroundl.c | 14 + lib/libm/src/s_log1p.c | 16 +- lib/libm/src/s_lrint.c | 15 +- lib/libm/src/s_lrintl.c | 62 +++ lib/libm/src/s_lround.c | 14 +- lib/libm/src/s_lroundl.c | 70 +++ lib/libm/src/s_modf.c | 16 +- lib/libm/src/s_nextafter.c | 26 +- lib/libm/src/s_nexttowardf.c | 74 +++ lib/libm/src/s_remquo.c | 14 +- lib/libm/src/s_round.c | 18 +- lib/libm/src/s_roundl.c | 55 ++ lib/libm/src/s_tanh.c | 16 +- lib/libm/src/s_trunc.c | 16 +- lib/libm/src/w_lgamma.c | 16 +- 99 files changed, 11084 insertions(+), 57 deletions(-) create mode 100644 lib/libm/src/e_remainderl.c create mode 100644 lib/libm/src/ld128/e_acoshl.c create mode 100644 lib/libm/src/ld128/e_atanhl.c create mode 100644 lib/libm/src/ld128/e_coshl.c create mode 100644 lib/libm/src/ld128/e_expl.c create mode 100644 lib/libm/src/ld128/e_fmodl.c create mode 100644 lib/libm/src/ld128/e_hypotl.c create mode 100644 lib/libm/src/ld128/e_lgammal.c create mode 100644 lib/libm/src/ld128/e_log10l.c create mode 100644 lib/libm/src/ld128/e_log2l.c create mode 100644 lib/libm/src/ld128/e_logl.c create mode 100644 lib/libm/src/ld128/e_powl.c create mode 100644 lib/libm/src/ld128/e_sinhl.c create mode 100644 lib/libm/src/ld128/e_tgammal.c create mode 100644 lib/libm/src/ld128/s_asinhl.c create mode 100644 lib/libm/src/ld128/s_cbrtl.c create mode 100644 lib/libm/src/ld128/s_ceill.c create mode 100644 lib/libm/src/ld128/s_erfl.c create mode 100644 lib/libm/src/ld128/s_expm1l.c create mode 100644 lib/libm/src/ld128/s_floorl.c create mode 100644 lib/libm/src/ld128/s_log1pl.c create mode 100644 lib/libm/src/ld128/s_modfl.c create mode 100644 lib/libm/src/ld128/s_nextafterl.c create mode 100644 lib/libm/src/ld128/s_nexttoward.c create mode 100644 lib/libm/src/ld128/s_nexttowardf.c create mode 100644 lib/libm/src/ld128/s_remquol.c create mode 100644 lib/libm/src/ld128/s_tanhl.c create mode 100644 lib/libm/src/ld128/s_truncl.c create mode 100644 lib/libm/src/ld80/e_acoshl.c create mode 100644 lib/libm/src/ld80/e_atanhl.c create mode 100644 lib/libm/src/ld80/e_coshl.c create mode 100644 lib/libm/src/ld80/e_expl.c create mode 100644 lib/libm/src/ld80/e_fmodl.c create mode 100644 lib/libm/src/ld80/e_hypotl.c create mode 100644 lib/libm/src/ld80/e_lgammal.c create mode 100644 lib/libm/src/ld80/e_log10l.c create mode 100644 lib/libm/src/ld80/e_log2l.c create mode 100644 lib/libm/src/ld80/e_logl.c create mode 100644 lib/libm/src/ld80/e_powl.c create mode 100644 lib/libm/src/ld80/e_sinhl.c create mode 100644 lib/libm/src/ld80/e_tgammal.c create mode 100644 lib/libm/src/ld80/s_asinhl.c create mode 100644 lib/libm/src/ld80/s_cbrtl.c create mode 100644 lib/libm/src/ld80/s_ceill.c create mode 100644 lib/libm/src/ld80/s_erfl.c create mode 100644 lib/libm/src/ld80/s_expm1l.c create mode 100644 lib/libm/src/ld80/s_floorl.c create mode 100644 lib/libm/src/ld80/s_log1pl.c create mode 100644 lib/libm/src/ld80/s_modfl.c create mode 100644 lib/libm/src/ld80/s_nextafterl.c create mode 100644 lib/libm/src/ld80/s_nexttoward.c create mode 100644 lib/libm/src/ld80/s_nexttowardf.c create mode 100644 lib/libm/src/ld80/s_remquol.c create mode 100644 lib/libm/src/ld80/s_tanhl.c create mode 100644 lib/libm/src/ld80/s_truncl.c create mode 100644 lib/libm/src/polevll.c create mode 100644 lib/libm/src/s_fma.c create mode 100644 lib/libm/src/s_fmaf.c create mode 100644 lib/libm/src/s_fmal.c create mode 100644 lib/libm/src/s_llrintl.c create mode 100644 lib/libm/src/s_llroundl.c create mode 100644 lib/libm/src/s_lrintl.c create mode 100644 lib/libm/src/s_lroundl.c create mode 100644 lib/libm/src/s_nexttowardf.c create mode 100644 lib/libm/src/s_roundl.c (limited to 'lib/libm') diff --git a/lib/libm/Makefile b/lib/libm/Makefile index 486a71a384a..46e6cf9c12a 100644 --- a/lib/libm/Makefile +++ b/lib/libm/Makefile @@ -1,4 +1,4 @@ -# $OpenBSD: Makefile,v 1.82 2011/05/28 22:13:52 martynas Exp $ +# $OpenBSD: Makefile,v 1.83 2011/07/06 00:02:42 martynas Exp $ # $NetBSD: Makefile,v 1.28 1995/11/20 22:06:19 jtc Exp $ # # @(#)Makefile 5.1beta 93/09/24 @@ -118,12 +118,12 @@ COMMON_SRCS = b_exp__D.c b_log__D.c b_tgamma.c \ s_cproj.c s_cprojf.c s_creal.c s_crealf.c s_csin.c s_csinf.c s_csinh.c \ s_csinhf.c s_csqrt.c s_csqrtf.c s_ctan.c s_ctanf.c s_ctanh.c \ s_ctanhf.c s_erf.c s_erff.c s_exp2.c s_exp2f.c s_expm1.c s_expm1f.c \ - s_fabsf.c s_fdim.c s_fmax.c s_fmaxf.c s_fmin.c s_fminf.c \ - s_floor.c s_floorf.c s_frexpf.c s_ilogb.c s_ilogbf.c \ + s_fabsf.c s_fdim.c s_fma.c s_fmaf.c s_fmax.c s_fmaxf.c s_fmin.c \ + s_fminf.c s_floor.c s_floorf.c s_frexpf.c s_ilogb.c s_ilogbf.c \ s_log1p.c \ s_log1pf.c s_logb.c s_logbf.c s_llrint.c s_llrintf.c s_lrint.c \ - s_lrintf.c s_modff.c s_nan.c s_nearbyint.c \ - s_nextafter.c s_nextafterf.c s_remquo.c s_remquof.c s_rint.c \ + s_lrintf.c s_modff.c s_nan.c s_nearbyint.c s_nextafter.c \ + s_nextafterf.c s_nexttowardf.c s_remquo.c s_remquof.c s_rint.c \ s_rintf.c s_round.c s_roundf.c \ s_scalbln.c s_scalbn.c s_scalbnf.c s_signgam.c s_significand.c \ s_significandf.c \ @@ -131,12 +131,17 @@ COMMON_SRCS = b_exp__D.c b_log__D.c b_tgamma.c \ s_truncf.c w_drem.c w_dremf.c w_gamma.c w_gamma_r.c w_gammaf.c \ w_gammaf_r.c w_lgamma.c w_lgammaf.c -LONG_SRCS = e_acosl.c e_asinl.c e_atan2l.c e_sqrtl.c \ - invtrig.c \ - k_cosl.c k_sinl.c k_tanl.c \ - s_atanl.c s_copysignl.c s_cosl.c s_exp2l.c s_fabsl.c s_fmaxl.c \ - s_fminl.c s_frexpl.c s_ilogbl.c s_logbl.c s_nanl.c s_rintl.c \ - s_scalbnl.c s_sinl.c s_tanl.c +LONG_SRCS = e_acoshl.c e_acosl.c e_asinl.c e_atan2l.c e_atanhl.c \ + e_coshl.c e_expl.c e_fmodl.c e_hypotl.c e_lgammal.c e_log10l.c \ + e_log2l.c e_logl.c e_powl.c e_remainderl.c e_sinhl.c e_sqrtl.c \ + e_tgammal.c invtrig.c k_cosl.c k_sinl.c k_tanl.c polevll.c \ + s_asinhl.c s_atanl.c s_cbrtl.c s_ceill.c s_copysignl.c \ + s_cosl.c s_erfl.c s_exp2l.c s_expm1l.c s_fabsl.c s_floorl.c \ + s_fmal.c s_fmaxl.c s_fminl.c s_frexpl.c s_ilogbl.c s_llrintl.c \ + s_llroundl.c s_log1pl.c s_logbl.c s_lrintl.c s_lroundl.c \ + s_modfl.c s_nanl.c s_nextafterl.c s_nexttoward.c s_remquol.c \ + s_rintl.c s_roundl.c s_scalbnl.c s_sinl.c s_tanhl.c s_tanl.c \ + s_truncl.c # math routines for non-IEEE architectures. NOIEEE_SRCS = n_acosh.c n_argred.c n_asincos.c n_asinh.c n_atan.c \ diff --git a/lib/libm/shlib_version b/lib/libm/shlib_version index 3d02023227e..11ab6a71a24 100644 --- a/lib/libm/shlib_version +++ b/lib/libm/shlib_version @@ -1,2 +1,2 @@ major=5 -minor=3 +minor=4 diff --git a/lib/libm/src/b_tgamma.c b/lib/libm/src/b_tgamma.c index b6bacffd311..14a1e8f54ee 100644 --- a/lib/libm/src/b_tgamma.c +++ b/lib/libm/src/b_tgamma.c @@ -1,4 +1,4 @@ -/* $OpenBSD: b_tgamma.c,v 1.3 2009/10/27 23:59:29 deraadt Exp $ */ +/* $OpenBSD: b_tgamma.c,v 1.4 2011/07/06 00:02:42 martynas Exp $ */ /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. @@ -28,6 +28,8 @@ * SUCH DAMAGE. */ +/* LINTLIBRARY */ + /* * This code by P. McIlroy, Oct 1992; * @@ -35,7 +37,10 @@ * acknowledged. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" /* METHOD: @@ -330,3 +335,12 @@ neg_gam(double x) if (sgn < 0) y = -y; return (M_PI / (y*z)); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double tgammal(long double); +#else /* lint */ +__weak_alias(tgammal, tgamma); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_acosh.c b/lib/libm/src/e_acosh.c index c9d8b366dda..290e6bef9ec 100644 --- a/lib/libm/src/e_acosh.c +++ b/lib/libm/src/e_acosh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* acosh(x) * Method : * Based on @@ -24,7 +26,10 @@ * acosh(NaN) is NaN without signal. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -55,3 +60,12 @@ acosh(double x) return log1p(t+sqrt(2.0*t+t*t)); } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double acoshl(long double); +#else /* lint */ +__weak_alias(acoshl, acosh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_atanh.c b/lib/libm/src/e_atanh.c index 734aece6f79..a8d114291f2 100644 --- a/lib/libm/src/e_atanh.c +++ b/lib/libm/src/e_atanh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* atanh(x) * Method : * 1.Reduced x to positive by atanh(-x) = -atanh(x) @@ -28,7 +30,10 @@ * */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one = 1.0, huge = 1e300; @@ -55,3 +60,12 @@ atanh(double x) t = 0.5*log1p((x+x)/(one-x)); if(hx>=0) return t; else return -t; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double atanhl(long double); +#else /* lint */ +__weak_alias(atanhl, atanh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_cosh.c b/lib/libm/src/e_cosh.c index 795f15b392b..030b6b4d9a1 100644 --- a/lib/libm/src/e_cosh.c +++ b/lib/libm/src/e_cosh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* cosh(x) * Method : * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 @@ -31,7 +33,10 @@ * only cosh(0)=1 is exact for finite x. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one = 1.0, half=0.5, huge = 1.0e300; @@ -79,3 +84,12 @@ cosh(double x) /* |x| > overflowthresold, cosh(x) overflow */ return huge*huge; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double coshl(long double); +#else /* lint */ +__weak_alias(coshl, cosh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_exp.c b/lib/libm/src/e_exp.c index 23c1d2888b5..a9a4fcb40b8 100644 --- a/lib/libm/src/e_exp.c +++ b/lib/libm/src/e_exp.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* exp(x) * Returns the exponential of x. * @@ -73,7 +75,10 @@ * to produce the hexadecimal values shown. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -153,3 +158,12 @@ exp(double x) /* default IEEE double exp */ return y*twom1000; } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double expl(long double); +#else /* lint */ +__weak_alias(expl, exp); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_fmod.c b/lib/libm/src/e_fmod.c index e2b2f0a0b53..36cc8e81cd8 100644 --- a/lib/libm/src/e_fmod.c +++ b/lib/libm/src/e_fmod.c @@ -10,13 +10,18 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* * fmod(x,y) * Return x mod y in exact arithmetic * Method: shift and subtract */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one = 1.0, Zero[] = {0.0, -0.0,}; @@ -126,3 +131,12 @@ fmod(double x, double y) } return x; /* exact output */ } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double fmodl(long double, long double); +#else /* lint */ +__weak_alias(fmodl, fmod); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_hypot.c b/lib/libm/src/e_hypot.c index d5d86fb53a2..011cd47aa57 100644 --- a/lib/libm/src/e_hypot.c +++ b/lib/libm/src/e_hypot.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* hypot(x,y) * * Method : @@ -42,7 +44,10 @@ * than 1 ulps (units in the last place) */ -#include "math.h" +#include +#include +#include + #include "math_private.h" double @@ -118,3 +123,12 @@ hypot(double x, double y) return t1*w; } else return w; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double hypotl(long double, long double); +#else /* lint */ +__weak_alias(hypotl, hypot); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_log.c b/lib/libm/src/e_log.c index 3c3c63d8098..7d4dcdd5e87 100644 --- a/lib/libm/src/e_log.c +++ b/lib/libm/src/e_log.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* log(x) * Return the logrithm of x * @@ -61,7 +63,10 @@ * to produce the hexadecimal values shown. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -128,3 +133,12 @@ log(double x) return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double logl(long double); +#else /* lint */ +__weak_alias(logl, log); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_log10.c b/lib/libm/src/e_log10.c index e6b826c229b..a4178648a1d 100644 --- a/lib/libm/src/e_log10.c +++ b/lib/libm/src/e_log10.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* log10(x) * Return the base 10 logarithm of x * @@ -43,7 +45,10 @@ * shown. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -80,3 +85,12 @@ log10(double x) z = y*log10_2lo + ivln10*log(x); return z+y*log10_2hi; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double log10l(long double); +#else /* lint */ +__weak_alias(log10l, log10); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_log2.c b/lib/libm/src/e_log2.c index aed716670dc..89ed4a774ea 100644 --- a/lib/libm/src/e_log2.c +++ b/lib/libm/src/e_log2.c @@ -10,7 +10,12 @@ * ==================================================== */ -#include "math.h" +/* LINTLIBRARY */ + +#include +#include +#include + #include "math_private.h" static const double @@ -72,3 +77,12 @@ log2(double x) } else return (dk-((s*(f-R))-f)/ln2); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double log2l(long double); +#else /* lint */ +__weak_alias(log2l, log2); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_pow.c b/lib/libm/src/e_pow.c index 938b37cc798..e342119e9a4 100644 --- a/lib/libm/src/e_pow.c +++ b/lib/libm/src/e_pow.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* pow(x,y) return x**y * * n @@ -55,7 +57,10 @@ * to produce the hexadecimal values shown. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -295,3 +300,12 @@ pow(double x, double y) else SET_HIGH_WORD(z,j); return s*z; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double powl(long double, long double); +#else /* lint */ +__weak_alias(powl, pow); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_remainder.c b/lib/libm/src/e_remainder.c index 3d7839700e7..2a9fbc8eb8a 100644 --- a/lib/libm/src/e_remainder.c +++ b/lib/libm/src/e_remainder.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* remainder(x,p) * Return : * returns x REM p = x - [x/p]*p as if in infinite @@ -19,7 +21,10 @@ * Based on fmod() return x-[x/p]chopped*p exactlp. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double zero = 0.0; @@ -66,3 +71,12 @@ remainder(double x, double p) SET_HIGH_WORD(x,hx^sx); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double remainderl(long double, long double); +#else /* lint */ +__weak_alias(remainderl, remainder); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/e_remainderl.c b/lib/libm/src/e_remainderl.c new file mode 100644 index 00000000000..732b62f4963 --- /dev/null +++ b/lib/libm/src/e_remainderl.c @@ -0,0 +1,27 @@ +/* $OpenBSD: e_remainderl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2011 Martynas Venckus + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +#include + +long double +remainderl(long double x, long double y) +{ + int quo; + + return (remquol(x, y, &quo)); +} diff --git a/lib/libm/src/e_sinh.c b/lib/libm/src/e_sinh.c index a2dbe01acec..3c7d1da237e 100644 --- a/lib/libm/src/e_sinh.c +++ b/lib/libm/src/e_sinh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* sinh(x) * Method : * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 @@ -28,7 +30,10 @@ * only sinh(0)=0 is exact for finite x. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one = 1.0, shuge = 1.0e307; @@ -72,3 +77,12 @@ sinh(double x) /* |x| > overflowthresold, sinh(x) overflow */ return x*shuge; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double sinhl(long double); +#else /* lint */ +__weak_alias(sinhl, sinh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/ld128/e_acoshl.c b/lib/libm/src/ld128/e_acoshl.c new file mode 100644 index 00000000000..dd8197f259f --- /dev/null +++ b/lib/libm/src/ld128/e_acoshl.c @@ -0,0 +1,58 @@ +/* @(#)e_acosh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* acoshl(x) + * Method : + * Based on + * acoshl(x) = logl [ x + sqrtl(x*x-1) ] + * we have + * acoshl(x) := logl(x)+ln2, if x is large; else + * acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else + * acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1. + * + * Special cases: + * acoshl(x) is NaN with signal if x<1. + * acoshl(NaN) is NaN without signal. + */ + +#include + +#include "math_private.h" + +static const long double +one = 1.0, +ln2 = 0.6931471805599453094172321214581766L; + +long double +acoshl(long double x) +{ + long double t; + u_int64_t lx; + int64_t hx; + GET_LDOUBLE_WORDS64(hx,lx,x); + if(hx<0x3fff000000000000LL) { /* x < 1 */ + return (x-x)/(x-x); + } else if(hx >=0x4035000000000000LL) { /* x > 2**54 */ + if(hx >=0x7fff000000000000LL) { /* x is inf of NaN */ + return x+x; + } else + return logl(x)+ln2; /* acoshl(huge)=logl(2x) */ + } else if(((hx-0x3fff000000000000LL)|lx)==0) { + return 0.0L; /* acosh(1) = 0 */ + } else if (hx > 0x4000000000000000LL) { /* 2**28 > x > 2 */ + t=x*x; + return logl(2.0L*x-one/(x+sqrtl(t-one))); + } else { /* 1=0.5 + * 1 2x x + * atanhl(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) + * 2 1 - x 1 - x + * + * For x<0.5 + * atanhl(x) = 0.5*log1pl(2x+2x*x/(1-x)) + * + * Special cases: + * atanhl(x) is NaN if |x| > 1 with signal; + * atanhl(NaN) is that NaN with no signal; + * atanhl(+-1) is +-INF with signal. + * + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0L, huge = 1e4900L; + +static const long double zero = 0.0L; + +long double +atanhl(long double x) +{ + long double t; + u_int32_t jx, ix; + ieee_quad_shape_type u; + + u.value = x; + jx = u.parts32.mswhi; + ix = jx & 0x7fffffff; + u.parts32.mswhi = ix; + if (ix >= 0x3fff0000) /* |x| >= 1.0 or infinity or NaN */ + { + if (u.value == one) + return x/zero; + else + return (x-x)/(x-x); + } + if(ix<0x3fc60000 && (huge+x)>zero) return x; /* x < 2^-57 */ + + if(ix<0x3ffe0000) { /* x < 0.5 */ + t = u.value+u.value; + t = 0.5*log1pl(t+t*u.value/(one-u.value)); + } else + t = 0.5*log1pl((u.value+u.value)/(one-u.value)); + if(jx & 0x80000000) return -t; else return t; +} diff --git a/lib/libm/src/ld128/e_coshl.c b/lib/libm/src/ld128/e_coshl.c new file mode 100644 index 00000000000..3098c7b625d --- /dev/null +++ b/lib/libm/src/ld128/e_coshl.c @@ -0,0 +1,105 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* coshl(x) + * Method : + * mathematically coshl(x) if defined to be (exp(x)+exp(-x))/2 + * 1. Replace x by |x| (coshl(x) = coshl(-x)). + * 2. + * [ exp(x) - 1 ]^2 + * 0 <= x <= ln2/2 : coshl(x) := 1 + ------------------- + * 2*exp(x) + * + * exp(x) + 1/exp(x) + * ln2/2 <= x <= 22 : coshl(x) := ------------------- + * 2 + * 22 <= x <= lnovft : coshl(x) := expl(x)/2 + * lnovft <= x <= ln2ovft: coshl(x) := expl(x/2)/2 * expl(x/2) + * ln2ovft < x : coshl(x) := huge*huge (overflow) + * + * Special cases: + * coshl(x) is |x| if x is +INF, -INF, or NaN. + * only coshl(0)=1 is exact for finite x. + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0, half = 0.5, huge = 1.0e4900L, +ovf_thresh = 1.1357216553474703894801348310092223067821E4L; + +long double +coshl(long double x) +{ + long double t, w; + int32_t ex; + ieee_quad_shape_type u; + + u.value = x; + ex = u.parts32.mswhi & 0x7fffffff; + + /* Absolute value of x. */ + u.parts32.mswhi = ex; + + /* x is INF or NaN */ + if (ex >= 0x7fff0000) + return x * x; + + /* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expl(|x|)) */ + if (ex < 0x3ffd62e4) /* 0.3465728759765625 */ + { + t = expm1l (u.value); + w = one + t; + if (ex < 0x3fb80000) /* |x| < 2^-116 */ + return w; /* cosh(tiny) = 1 */ + + return one + (t * t) / (w + w); + } + + /* |x| in [0.5*ln2,40], return (exp(|x|)+1/exp(|x|)/2; */ + if (ex < 0x40044000) + { + t = expl (u.value); + return half * t + half / t; + } + + /* |x| in [22, ln(maxdouble)] return half*exp(|x|) */ + if (ex <= 0x400c62e3) /* 11356.375 */ + return half * expl (u.value); + + /* |x| in [log(maxdouble), overflowthresold] */ + if (u.value <= ovf_thresh) + { + w = expl (half * u.value); + t = half * w; + return t * w; + } + + /* |x| > overflowthresold, cosh(x) overflow */ + return huge * huge; +} diff --git a/lib/libm/src/ld128/e_expl.c b/lib/libm/src/ld128/e_expl.c new file mode 100644 index 00000000000..6ef65e83a04 --- /dev/null +++ b/lib/libm/src/ld128/e_expl.c @@ -0,0 +1,145 @@ +/* $OpenBSD: e_expl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* expl.c + * + * Exponential function, 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, expl(); + * + * y = expl( x ); + * + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + * x k f + * e = 2 e. + * + * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 + * in the basic range [-0.5 ln 2, 0.5 ln 2]. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35 + * + * + * Error amplification in the exponential function can be + * a serious matter. The error propagation involves + * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), + * which shows that a 1 lsb error in representing X produces + * a relative error of X times 1 lsb in the function. + * While the routine gives an accurate result for arguments + * that are exactly represented by a long double precision + * computer number, the result contains amplified roundoff + * error for large arguments not exactly represented. + * + * + * ERROR MESSAGES: + * + * message condition value returned + * exp underflow x < MINLOG 0.0 + * exp overflow x > MAXLOG MAXNUM + * + */ + +/* Exponential function */ + +#include +#include + +/* Pade' coefficients for exp(x) - 1 + Theoretical peak relative error = 2.2e-37, + relative peak error spread = 9.2e-38 + */ +static long double P[5] = { + 3.279723985560247033712687707263393506266E-10L, + 6.141506007208645008909088812338454698548E-7L, + 2.708775201978218837374512615596512792224E-4L, + 3.508710990737834361215404761139478627390E-2L, + 9.999999999999999999999999999999999998502E-1L +}; +static long double Q[6] = { + 2.980756652081995192255342779918052538681E-12L, + 1.771372078166251484503904874657985291164E-8L, + 1.504792651814944826817779302637284053660E-5L, + 3.611828913847589925056132680618007270344E-3L, + 2.368408864814233538909747618894558968880E-1L, + 2.000000000000000000000000000000000000150E0L +}; +/* C1 + C2 = ln 2 */ +static long double C1 = -6.93145751953125E-1L; +static long double C2 = -1.428606820309417232121458176568075500134E-6L; + +static long double LOG2EL = 1.442695040888963407359924681001892137426646L; +static long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L; +static long double MINLOGL = -1.143276959615573793352782661133116431383730e4L; +static const long double huge = 0x1p10000L; +#if 0 /* XXX Prevent gcc from erroneously constant folding this. */ +static const long double twom10000 = 0x1p-10000L; +#else +static volatile long double twom10000 = 0x1p-10000L; +#endif + +extern long double __polevll(long double, void *, int); + +long double +expl(long double x) +{ +long double px, xx; +int n; + +if( x > MAXLOGL) + return (huge*huge); /* overflow */ + +if( x < MINLOGL ) + return (twom10000*twom10000); /* underflow */ + +/* Express e**x = e**g 2**n + * = e**g e**( n loge(2) ) + * = e**( g + n loge(2) ) + */ +px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */ +n = px; +x += px * C1; +x += px * C2; +/* rational approximation for exponential + * of the fractional part: + * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) + */ +xx = x * x; +px = x * __polevll( xx, P, 4 ); +xx = __polevll( xx, Q, 5 ); +x = px/( xx - px ); +x = 1.0L + x + x; + +x = ldexpl( x, n ); +return(x); +} diff --git a/lib/libm/src/ld128/e_fmodl.c b/lib/libm/src/ld128/e_fmodl.c new file mode 100644 index 00000000000..cb629ddd7be --- /dev/null +++ b/lib/libm/src/ld128/e_fmodl.c @@ -0,0 +1,129 @@ +/* @(#)e_fmod.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fmodl(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0, Zero[] = {0.0, -0.0,}; + +long double +fmodl(long double x, long double y) +{ + int64_t n,hx,hy,hz,ix,iy,sx,i; + u_int64_t lx,ly,lz; + + GET_LDOUBLE_WORDS64(hx,lx,x); + GET_LDOUBLE_WORDS64(hy,ly,y); + sx = hx&0x8000000000000000ULL; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffffffffffffLL; /* |y| */ + + /* purge off exception values */ + if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */ + ((hy|((ly|-ly)>>63))>0x7fff000000000000LL)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<=hy) { + if((hx>63]; /* |x|=|y| return x*0*/ + } + + /* determine ix = ilogb(x) */ + if(hx<0x0001000000000000LL) { /* subnormal x */ + if(hx==0) { + for (ix = -16431, i=lx; i>0; i<<=1) ix -=1; + } else { + for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1; + } + } else ix = (hx>>48)-0x3fff; + + /* determine iy = ilogb(y) */ + if(hy<0x0001000000000000LL) { /* subnormal y */ + if(hy==0) { + for (iy = -16431, i=ly; i>0; i<<=1) iy -=1; + } else { + for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1; + } + } else iy = (hy>>48)-0x3fff; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -16382) + hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx); + else { /* subnormal x, shift x to normal */ + n = -16382-ix; + if(n<=63) { + hx = (hx<>(64-n)); + lx <<= n; + } else { + hx = lx<<(n-64); + lx = 0; + } + } + if(iy >= -16382) + hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy); + else { /* subnormal y, shift y to normal */ + n = -16382-iy; + if(n<=63) { + hy = (hy<>(64-n)); + ly <<= n; + } else { + hy = ly<<(n-64); + ly = 0; + } + } + + /* fix point fmod */ + n = ix - iy; + while(n--) { + hz=hx-hy;lz=lx-ly; if(lx>63); lx = lx+lx;} + else { + if((hz|lz)==0) /* return sign(x)*0 */ + return Zero[(u_int64_t)sx>>63]; + hx = hz+hz+(lz>>63); lx = lz+lz; + } + } + hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) /* return sign(x)*0 */ + return Zero[(u_int64_t)sx>>63]; + while(hx<0x0001000000000000LL) { /* normalize x */ + hx = hx+hx+(lx>>63); lx = lx+lx; + iy -= 1; + } + if(iy>= -16382) { /* normalize output */ + hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48)); + SET_LDOUBLE_WORDS64(x,hx|sx,lx); + } else { /* subnormal output */ + n = -16382 - iy; + if(n<=48) { + lx = (lx>>n)|((u_int64_t)hx<<(64-n)); + hx >>= n; + } else if (n<=63) { + lx = (hx<<(64-n))|(lx>>n); hx = sx; + } else { + lx = hx>>(n-64); hx = sx; + } + SET_LDOUBLE_WORDS64(x,hx|sx,lx); + x *= one; /* create necessary signal */ + } + return x; /* exact output */ +} diff --git a/lib/libm/src/ld128/e_hypotl.c b/lib/libm/src/ld128/e_hypotl.c new file mode 100644 index 00000000000..ff642d9ce91 --- /dev/null +++ b/lib/libm/src/ld128/e_hypotl.c @@ -0,0 +1,122 @@ +/* @(#)e_hypot.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* hypotl(x,y) + * + * Method : + * If (assume round-to-nearest) z=x*x+y*y + * has error less than sqrtl(2)/2 ulp, than + * sqrtl(z) has error less than 1 ulp (exercise). + * + * So, compute sqrtl(x*x+y*y) with some care as + * follows to get the error below 1 ulp: + * + * Assume x>y>0; + * (if possible, set rounding to round-to-nearest) + * 1. if x > 2y use + * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y + * where x1 = x with lower 64 bits cleared, x2 = x-x1; else + * 2. if x <= 2y use + * t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y)) + * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, + * yy1= y with lower 64 bits chopped, y2 = y-yy1. + * + * NOTE: scaling may be necessary if some argument is too + * large or too tiny + * + * Special cases: + * hypotl(x,y) is INF if x or y is +INF or -INF; else + * hypotl(x,y) is NAN if x or y is NAN. + * + * Accuracy: + * hypotl(x,y) returns sqrtl(x^2+y^2) with error less + * than 1 ulps (units in the last place) + */ + +#include + +#include "math_private.h" + +long double +hypotl(long double x, long double y) +{ + long double a,b,t1,t2,yy1,y2,w; + int64_t j,k,ha,hb; + + GET_LDOUBLE_MSW64(ha,x); + ha &= 0x7fffffffffffffffLL; + GET_LDOUBLE_MSW64(hb,y); + hb &= 0x7fffffffffffffffLL; + if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} + SET_LDOUBLE_MSW64(a,ha); /* a <- |a| */ + SET_LDOUBLE_MSW64(b,hb); /* b <- |b| */ + if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */ + k=0; + if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */ + if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */ + u_int64_t low; + w = a+b; /* for sNaN */ + GET_LDOUBLE_LSW64(low,a); + if(((ha&0xffffffffffffLL)|low)==0) w = a; + GET_LDOUBLE_LSW64(low,b); + if(((hb^0x7fff000000000000LL)|low)==0) w = b; + return w; + } + /* scale a and b by 2**-9600 */ + ha -= 0x2580000000000000LL; + hb -= 0x2580000000000000LL; k += 9600; + SET_LDOUBLE_MSW64(a,ha); + SET_LDOUBLE_MSW64(b,hb); + } + if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */ + if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */ + u_int64_t low; + GET_LDOUBLE_LSW64(low,b); + if((hb|low)==0) return a; + t1=0; + SET_LDOUBLE_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */ + b *= t1; + a *= t1; + k -= 16382; + } else { /* scale a and b by 2^9600 */ + ha += 0x2580000000000000LL; /* a *= 2^9600 */ + hb += 0x2580000000000000LL; /* b *= 2^9600 */ + k -= 9600; + SET_LDOUBLE_MSW64(a,ha); + SET_LDOUBLE_MSW64(b,hb); + } + } + /* medium size a and b */ + w = a-b; + if (w>b) { + t1 = 0; + SET_LDOUBLE_MSW64(t1,ha); + t2 = a-t1; + w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + a = a+a; + yy1 = 0; + SET_LDOUBLE_MSW64(yy1,hb); + y2 = b - yy1; + t1 = 0; + SET_LDOUBLE_MSW64(t1,ha+0x0001000000000000LL); + t2 = a - t1; + w = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + u_int64_t high; + t1 = 1.0L; + GET_LDOUBLE_MSW64(high,t1); + SET_LDOUBLE_MSW64(t1,high+(k<<48)); + return t1*w; + } else return w; +} diff --git a/lib/libm/src/ld128/e_lgammal.c b/lib/libm/src/ld128/e_lgammal.c new file mode 100644 index 00000000000..3464271c776 --- /dev/null +++ b/lib/libm/src/ld128/e_lgammal.c @@ -0,0 +1,1037 @@ +/* $OpenBSD: e_lgammal.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* lgammal + * + * Natural logarithm of gamma function + * + * + * + * SYNOPSIS: + * + * long double x, y, lgammal(); + * extern int signgam; + * + * y = lgammal(x); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of the absolute + * value of the gamma function of the argument. + * The sign (+1 or -1) of the gamma function is returned in a + * global (extern) variable named signgam. + * + * The positive domain is partitioned into numerous segments for approximation. + * For x > 10, + * log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2) + * Near the minimum at x = x0 = 1.46... the approximation is + * log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z) + * for small z. + * Elsewhere between 0 and 10, + * log gamma(n + z) = log gamma(n) + z P(z)/Q(z) + * for various selected n and small z. + * + * The cosecant reflection formula is employed for negative arguments. + * + * + * + * ACCURACY: + * + * + * arithmetic domain # trials peak rms + * Relative error: + * IEEE 10, 30 100000 3.9e-34 9.8e-35 + * IEEE 0, 10 100000 3.8e-34 5.3e-35 + * Absolute error: + * IEEE -10, 0 100000 8.0e-34 8.0e-35 + * IEEE -30, -10 100000 4.4e-34 1.0e-34 + * IEEE -100, 100 100000 1.0e-34 + * + * The absolute error criterion is the same as relative error + * when the function magnitude is greater than one but it is absolute + * when the magnitude is less than one. + * + */ + +#include + +#include "math_private.h" + +static const long double PIL = 3.1415926535897932384626433832795028841972E0L; +static const long double MAXLGM = 1.0485738685148938358098967157129705071571E4928L; +static const long double one = 1.0L; +static const long double huge = 1.0e4000L; + +/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2) + 1/x <= 0.0741 (x >= 13.495...) + Peak relative error 1.5e-36 */ +static const long double ls2pi = 9.1893853320467274178032973640561763986140E-1L; +#define NRASY 12 +static const long double RASY[NRASY + 1] = +{ + 8.333333333333333333333333333310437112111E-2L, + -2.777777777777777777777774789556228296902E-3L, + 7.936507936507936507795933938448586499183E-4L, + -5.952380952380952041799269756378148574045E-4L, + 8.417508417507928904209891117498524452523E-4L, + -1.917526917481263997778542329739806086290E-3L, + 6.410256381217852504446848671499409919280E-3L, + -2.955064066900961649768101034477363301626E-2L, + 1.796402955865634243663453415388336954675E-1L, + -1.391522089007758553455753477688592767741E0L, + 1.326130089598399157988112385013829305510E1L, + -1.420412699593782497803472576479997819149E2L, + 1.218058922427762808938869872528846787020E3L +}; + + +/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 12.5 <= x+13 <= 13.5 + Peak relative error 1.1e-36 */ +static const long double lgam13a = 1.9987213134765625E1L; +static const long double lgam13b = 1.3608962611495173623870550785125024484248E-6L; +#define NRN13 7 +static const long double RN13[NRN13 + 1] = +{ + 8.591478354823578150238226576156275285700E11L, + 2.347931159756482741018258864137297157668E11L, + 2.555408396679352028680662433943000804616E10L, + 1.408581709264464345480765758902967123937E9L, + 4.126759849752613822953004114044451046321E7L, + 6.133298899622688505854211579222889943778E5L, + 3.929248056293651597987893340755876578072E3L, + 6.850783280018706668924952057996075215223E0L +}; +#define NRD13 6 +static const long double RD13[NRD13 + 1] = +{ + 3.401225382297342302296607039352935541669E11L, + 8.756765276918037910363513243563234551784E10L, + 8.873913342866613213078554180987647243903E9L, + 4.483797255342763263361893016049310017973E8L, + 1.178186288833066430952276702931512870676E7L, + 1.519928623743264797939103740132278337476E5L, + 7.989298844938119228411117593338850892311E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 11.5 <= x+12 <= 12.5 + Peak relative error 4.1e-36 */ +static const long double lgam12a = 1.75023040771484375E1L; +static const long double lgam12b = 3.7687254483392876529072161996717039575982E-6L; +#define NRN12 7 +static const long double RN12[NRN12 + 1] = +{ + 4.709859662695606986110997348630997559137E11L, + 1.398713878079497115037857470168777995230E11L, + 1.654654931821564315970930093932954900867E10L, + 9.916279414876676861193649489207282144036E8L, + 3.159604070526036074112008954113411389879E7L, + 5.109099197547205212294747623977502492861E5L, + 3.563054878276102790183396740969279826988E3L, + 6.769610657004672719224614163196946862747E0L +}; +#define NRD12 6 +static const long double RD12[NRD12 + 1] = +{ + 1.928167007860968063912467318985802726613E11L, + 5.383198282277806237247492369072266389233E10L, + 5.915693215338294477444809323037871058363E9L, + 3.241438287570196713148310560147925781342E8L, + 9.236680081763754597872713592701048455890E6L, + 1.292246897881650919242713651166596478850E5L, + 7.366532445427159272584194816076600211171E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 10.5 <= x+11 <= 11.5 + Peak relative error 1.8e-35 */ +static const long double lgam11a = 1.5104400634765625E1L; +static const long double lgam11b = 1.1938309890295225709329251070371882250744E-5L; +#define NRN11 7 +static const long double RN11[NRN11 + 1] = +{ + 2.446960438029415837384622675816736622795E11L, + 7.955444974446413315803799763901729640350E10L, + 1.030555327949159293591618473447420338444E10L, + 6.765022131195302709153994345470493334946E8L, + 2.361892792609204855279723576041468347494E7L, + 4.186623629779479136428005806072176490125E5L, + 3.202506022088912768601325534149383594049E3L, + 6.681356101133728289358838690666225691363E0L +}; +#define NRD11 6 +static const long double RD11[NRD11 + 1] = +{ + 1.040483786179428590683912396379079477432E11L, + 3.172251138489229497223696648369823779729E10L, + 3.806961885984850433709295832245848084614E9L, + 2.278070344022934913730015420611609620171E8L, + 7.089478198662651683977290023829391596481E6L, + 1.083246385105903533237139380509590158658E5L, + 6.744420991491385145885727942219463243597E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 9.5 <= x+10 <= 10.5 + Peak relative error 5.4e-37 */ +static const long double lgam10a = 1.280181884765625E1L; +static const long double lgam10b = 8.6324252196112077178745667061642811492557E-6L; +#define NRN10 7 +static const long double RN10[NRN10 + 1] = +{ + -1.239059737177249934158597996648808363783E14L, + -4.725899566371458992365624673357356908719E13L, + -7.283906268647083312042059082837754850808E12L, + -5.802855515464011422171165179767478794637E11L, + -2.532349691157548788382820303182745897298E10L, + -5.884260178023777312587193693477072061820E8L, + -6.437774864512125749845840472131829114906E6L, + -2.350975266781548931856017239843273049384E4L +}; +#define NRD10 7 +static const long double RD10[NRD10 + 1] = +{ + -5.502645997581822567468347817182347679552E13L, + -1.970266640239849804162284805400136473801E13L, + -2.819677689615038489384974042561531409392E12L, + -2.056105863694742752589691183194061265094E11L, + -8.053670086493258693186307810815819662078E9L, + -1.632090155573373286153427982504851867131E8L, + -1.483575879240631280658077826889223634921E6L, + -4.002806669713232271615885826373550502510E3L + /* 1.0E0L */ +}; + + +/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 8.5 <= x+9 <= 9.5 + Peak relative error 3.6e-36 */ +static const long double lgam9a = 1.06045989990234375E1L; +static const long double lgam9b = 3.9037218127284172274007216547549861681400E-6L; +#define NRN9 7 +static const long double RN9[NRN9 + 1] = +{ + -4.936332264202687973364500998984608306189E13L, + -2.101372682623700967335206138517766274855E13L, + -3.615893404644823888655732817505129444195E12L, + -3.217104993800878891194322691860075472926E11L, + -1.568465330337375725685439173603032921399E10L, + -4.073317518162025744377629219101510217761E8L, + -4.983232096406156139324846656819246974500E6L, + -2.036280038903695980912289722995505277253E4L +}; +#define NRD9 7 +static const long double RD9[NRD9 + 1] = +{ + -2.306006080437656357167128541231915480393E13L, + -9.183606842453274924895648863832233799950E12L, + -1.461857965935942962087907301194381010380E12L, + -1.185728254682789754150068652663124298303E11L, + -5.166285094703468567389566085480783070037E9L, + -1.164573656694603024184768200787835094317E8L, + -1.177343939483908678474886454113163527909E6L, + -3.529391059783109732159524500029157638736E3L + /* 1.0E0L */ +}; + + +/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 7.5 <= x+8 <= 8.5 + Peak relative error 2.4e-37 */ +static const long double lgam8a = 8.525146484375E0L; +static const long double lgam8b = 1.4876690414300165531036347125050759667737E-5L; +#define NRN8 8 +static const long double RN8[NRN8 + 1] = +{ + 6.600775438203423546565361176829139703289E11L, + 3.406361267593790705240802723914281025800E11L, + 7.222460928505293914746983300555538432830E10L, + 8.102984106025088123058747466840656458342E9L, + 5.157620015986282905232150979772409345927E8L, + 1.851445288272645829028129389609068641517E7L, + 3.489261702223124354745894067468953756656E5L, + 2.892095396706665774434217489775617756014E3L, + 6.596977510622195827183948478627058738034E0L +}; +#define NRD8 7 +static const long double RD8[NRD8 + 1] = +{ + 3.274776546520735414638114828622673016920E11L, + 1.581811207929065544043963828487733970107E11L, + 3.108725655667825188135393076860104546416E10L, + 3.193055010502912617128480163681842165730E9L, + 1.830871482669835106357529710116211541839E8L, + 5.790862854275238129848491555068073485086E6L, + 9.305213264307921522842678835618803553589E4L, + 6.216974105861848386918949336819572333622E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 6.5 <= x+7 <= 7.5 + Peak relative error 3.2e-36 */ +static const long double lgam7a = 6.5792388916015625E0L; +static const long double lgam7b = 1.2320408538495060178292903945321122583007E-5L; +#define NRN7 8 +static const long double RN7[NRN7 + 1] = +{ + 2.065019306969459407636744543358209942213E11L, + 1.226919919023736909889724951708796532847E11L, + 2.996157990374348596472241776917953749106E10L, + 3.873001919306801037344727168434909521030E9L, + 2.841575255593761593270885753992732145094E8L, + 1.176342515359431913664715324652399565551E7L, + 2.558097039684188723597519300356028511547E5L, + 2.448525238332609439023786244782810774702E3L, + 6.460280377802030953041566617300902020435E0L +}; +#define NRD7 7 +static const long double RD7[NRD7 + 1] = +{ + 1.102646614598516998880874785339049304483E11L, + 6.099297512712715445879759589407189290040E10L, + 1.372898136289611312713283201112060238351E10L, + 1.615306270420293159907951633566635172343E9L, + 1.061114435798489135996614242842561967459E8L, + 3.845638971184305248268608902030718674691E6L, + 7.081730675423444975703917836972720495507E4L, + 5.423122582741398226693137276201344096370E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 5.5 <= x+6 <= 6.5 + Peak relative error 6.2e-37 */ +static const long double lgam6a = 4.7874908447265625E0L; +static const long double lgam6b = 8.9805548349424770093452324304839959231517E-7L; +#define NRN6 8 +static const long double RN6[NRN6 + 1] = +{ + -3.538412754670746879119162116819571823643E13L, + -2.613432593406849155765698121483394257148E13L, + -8.020670732770461579558867891923784753062E12L, + -1.322227822931250045347591780332435433420E12L, + -1.262809382777272476572558806855377129513E11L, + -7.015006277027660872284922325741197022467E9L, + -2.149320689089020841076532186783055727299E8L, + -3.167210585700002703820077565539658995316E6L, + -1.576834867378554185210279285358586385266E4L +}; +#define NRD6 8 +static const long double RD6[NRD6 + 1] = +{ + -2.073955870771283609792355579558899389085E13L, + -1.421592856111673959642750863283919318175E13L, + -4.012134994918353924219048850264207074949E12L, + -6.013361045800992316498238470888523722431E11L, + -5.145382510136622274784240527039643430628E10L, + -2.510575820013409711678540476918249524123E9L, + -6.564058379709759600836745035871373240904E7L, + -7.861511116647120540275354855221373571536E5L, + -2.821943442729620524365661338459579270561E3L + /* 1.0E0L */ +}; + + +/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 4.5 <= x+5 <= 5.5 + Peak relative error 3.4e-37 */ +static const long double lgam5a = 3.17803955078125E0L; +static const long double lgam5b = 1.4279566695619646941601297055408873990961E-5L; +#define NRN5 9 +static const long double RN5[NRN5 + 1] = +{ + 2.010952885441805899580403215533972172098E11L, + 1.916132681242540921354921906708215338584E11L, + 7.679102403710581712903937970163206882492E10L, + 1.680514903671382470108010973615268125169E10L, + 2.181011222911537259440775283277711588410E9L, + 1.705361119398837808244780667539728356096E8L, + 7.792391565652481864976147945997033946360E6L, + 1.910741381027985291688667214472560023819E5L, + 2.088138241893612679762260077783794329559E3L, + 6.330318119566998299106803922739066556550E0L +}; +#define NRD5 8 +static const long double RD5[NRD5 + 1] = +{ + 1.335189758138651840605141370223112376176E11L, + 1.174130445739492885895466097516530211283E11L, + 4.308006619274572338118732154886328519910E10L, + 8.547402888692578655814445003283720677468E9L, + 9.934628078575618309542580800421370730906E8L, + 6.847107420092173812998096295422311820672E7L, + 2.698552646016599923609773122139463150403E6L, + 5.526516251532464176412113632726150253215E4L, + 4.772343321713697385780533022595450486932E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x) + -0.5 <= x <= 0.5 + 3.5 <= x+4 <= 4.5 + Peak relative error 6.7e-37 */ +static const long double lgam4a = 1.791748046875E0L; +static const long double lgam4b = 1.1422353055000812477358380702272722990692E-5L; +#define NRN4 9 +static const long double RN4[NRN4 + 1] = +{ + -1.026583408246155508572442242188887829208E13L, + -1.306476685384622809290193031208776258809E13L, + -7.051088602207062164232806511992978915508E12L, + -2.100849457735620004967624442027793656108E12L, + -3.767473790774546963588549871673843260569E11L, + -4.156387497364909963498394522336575984206E10L, + -2.764021460668011732047778992419118757746E9L, + -1.036617204107109779944986471142938641399E8L, + -1.895730886640349026257780896972598305443E6L, + -1.180509051468390914200720003907727988201E4L +}; +#define NRD4 9 +static const long double RD4[NRD4 + 1] = +{ + -8.172669122056002077809119378047536240889E12L, + -9.477592426087986751343695251801814226960E12L, + -4.629448850139318158743900253637212801682E12L, + -1.237965465892012573255370078308035272942E12L, + -1.971624313506929845158062177061297598956E11L, + -1.905434843346570533229942397763361493610E10L, + -1.089409357680461419743730978512856675984E9L, + -3.416703082301143192939774401370222822430E7L, + -4.981791914177103793218433195857635265295E5L, + -2.192507743896742751483055798411231453733E3L + /* 1.0E0L */ +}; + + +/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x) + -0.25 <= x <= 0.5 + 2.75 <= x+3 <= 3.5 + Peak relative error 6.0e-37 */ +static const long double lgam3a = 6.93145751953125E-1L; +static const long double lgam3b = 1.4286068203094172321214581765680755001344E-6L; + +#define NRN3 9 +static const long double RN3[NRN3 + 1] = +{ + -4.813901815114776281494823863935820876670E11L, + -8.425592975288250400493910291066881992620E11L, + -6.228685507402467503655405482985516909157E11L, + -2.531972054436786351403749276956707260499E11L, + -6.170200796658926701311867484296426831687E10L, + -9.211477458528156048231908798456365081135E9L, + -8.251806236175037114064561038908691305583E8L, + -4.147886355917831049939930101151160447495E7L, + -1.010851868928346082547075956946476932162E6L, + -8.333374463411801009783402800801201603736E3L +}; +#define NRD3 9 +static const long double RD3[NRD3 + 1] = +{ + -5.216713843111675050627304523368029262450E11L, + -8.014292925418308759369583419234079164391E11L, + -5.180106858220030014546267824392678611990E11L, + -1.830406975497439003897734969120997840011E11L, + -3.845274631904879621945745960119924118925E10L, + -4.891033385370523863288908070309417710903E9L, + -3.670172254411328640353855768698287474282E8L, + -1.505316381525727713026364396635522516989E7L, + -2.856327162923716881454613540575964890347E5L, + -1.622140448015769906847567212766206894547E3L + /* 1.0E0L */ +}; + + +/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x) + -0.125 <= x <= 0.25 + 2.375 <= x+2.5 <= 2.75 */ +static const long double lgam2r5a = 2.8466796875E-1L; +static const long double lgam2r5b = 1.4901722919159632494669682701924320137696E-5L; +#define NRN2r5 8 +static const long double RN2r5[NRN2r5 + 1] = +{ + -4.676454313888335499356699817678862233205E9L, + -9.361888347911187924389905984624216340639E9L, + -7.695353600835685037920815799526540237703E9L, + -3.364370100981509060441853085968900734521E9L, + -8.449902011848163568670361316804900559863E8L, + -1.225249050950801905108001246436783022179E8L, + -9.732972931077110161639900388121650470926E6L, + -3.695711763932153505623248207576425983573E5L, + -4.717341584067827676530426007495274711306E3L +}; +#define NRD2r5 8 +static const long double RD2r5[NRD2r5 + 1] = +{ + -6.650657966618993679456019224416926875619E9L, + -1.099511409330635807899718829033488771623E10L, + -7.482546968307837168164311101447116903148E9L, + -2.702967190056506495988922973755870557217E9L, + -5.570008176482922704972943389590409280950E8L, + -6.536934032192792470926310043166993233231E7L, + -4.101991193844953082400035444146067511725E6L, + -1.174082735875715802334430481065526664020E5L, + -9.932840389994157592102947657277692978511E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+2) = x P(x)/Q(x) + -0.125 <= x <= +0.375 + 1.875 <= x+2 <= 2.375 + Peak relative error 4.6e-36 */ +#define NRN2 9 +static const long double RN2[NRN2 + 1] = +{ + -3.716661929737318153526921358113793421524E9L, + -1.138816715030710406922819131397532331321E10L, + -1.421017419363526524544402598734013569950E10L, + -9.510432842542519665483662502132010331451E9L, + -3.747528562099410197957514973274474767329E9L, + -8.923565763363912474488712255317033616626E8L, + -1.261396653700237624185350402781338231697E8L, + -9.918402520255661797735331317081425749014E6L, + -3.753996255897143855113273724233104768831E5L, + -4.778761333044147141559311805999540765612E3L +}; +#define NRD2 9 +static const long double RD2[NRD2 + 1] = +{ + -8.790916836764308497770359421351673950111E9L, + -2.023108608053212516399197678553737477486E10L, + -1.958067901852022239294231785363504458367E10L, + -1.035515043621003101254252481625188704529E10L, + -3.253884432621336737640841276619272224476E9L, + -6.186383531162456814954947669274235815544E8L, + -6.932557847749518463038934953605969951466E7L, + -4.240731768287359608773351626528479703758E6L, + -1.197343995089189188078944689846348116630E5L, + -1.004622911670588064824904487064114090920E3L +/* 1.0E0 */ +}; + + +/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x) + -0.125 <= x <= +0.125 + 1.625 <= x+1.75 <= 1.875 + Peak relative error 9.2e-37 */ +static const long double lgam1r75a = -8.441162109375E-2L; +static const long double lgam1r75b = 1.0500073264444042213965868602268256157604E-5L; +#define NRN1r75 8 +static const long double RN1r75[NRN1r75 + 1] = +{ + -5.221061693929833937710891646275798251513E7L, + -2.052466337474314812817883030472496436993E8L, + -2.952718275974940270675670705084125640069E8L, + -2.132294039648116684922965964126389017840E8L, + -8.554103077186505960591321962207519908489E7L, + -1.940250901348870867323943119132071960050E7L, + -2.379394147112756860769336400290402208435E6L, + -1.384060879999526222029386539622255797389E5L, + -2.698453601378319296159355612094598695530E3L +}; +#define NRD1r75 8 +static const long double RD1r75[NRD1r75 + 1] = +{ + -2.109754689501705828789976311354395393605E8L, + -5.036651829232895725959911504899241062286E8L, + -4.954234699418689764943486770327295098084E8L, + -2.589558042412676610775157783898195339410E8L, + -7.731476117252958268044969614034776883031E7L, + -1.316721702252481296030801191240867486965E7L, + -1.201296501404876774861190604303728810836E6L, + -5.007966406976106636109459072523610273928E4L, + -6.155817990560743422008969155276229018209E2L + /* 1.0E0L */ +}; + + +/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x) + -0.0867 <= x <= +0.1634 + 1.374932... <= x+x0 <= 1.625032... + Peak relative error 4.0e-36 */ +static const long double x0a = 1.4616241455078125L; +static const long double x0b = 7.9994605498412626595423257213002588621246E-6L; +static const long double y0a = -1.21490478515625E-1L; +static const long double y0b = 4.1879797753919044854428223084178486438269E-6L; +#define NRN1r5 8 +static const long double RN1r5[NRN1r5 + 1] = +{ + 6.827103657233705798067415468881313128066E5L, + 1.910041815932269464714909706705242148108E6L, + 2.194344176925978377083808566251427771951E6L, + 1.332921400100891472195055269688876427962E6L, + 4.589080973377307211815655093824787123508E5L, + 8.900334161263456942727083580232613796141E4L, + 9.053840838306019753209127312097612455236E3L, + 4.053367147553353374151852319743594873771E2L, + 5.040631576303952022968949605613514584950E0L +}; +#define NRD1r5 8 +static const long double RD1r5[NRD1r5 + 1] = +{ + 1.411036368843183477558773688484699813355E6L, + 4.378121767236251950226362443134306184849E6L, + 5.682322855631723455425929877581697918168E6L, + 3.999065731556977782435009349967042222375E6L, + 1.653651390456781293163585493620758410333E6L, + 4.067774359067489605179546964969435858311E5L, + 5.741463295366557346748361781768833633256E4L, + 4.226404539738182992856094681115746692030E3L, + 1.316980975410327975566999780608618774469E2L, + /* 1.0E0L */ +}; + + +/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x) + -.125 <= x <= +.125 + 1.125 <= x+1.25 <= 1.375 + Peak relative error = 4.9e-36 */ +static const long double lgam1r25a = -9.82818603515625E-2L; +static const long double lgam1r25b = 1.0023929749338536146197303364159774377296E-5L; +#define NRN1r25 9 +static const long double RN1r25[NRN1r25 + 1] = +{ + -9.054787275312026472896002240379580536760E4L, + -8.685076892989927640126560802094680794471E4L, + 2.797898965448019916967849727279076547109E5L, + 6.175520827134342734546868356396008898299E5L, + 5.179626599589134831538516906517372619641E5L, + 2.253076616239043944538380039205558242161E5L, + 5.312653119599957228630544772499197307195E4L, + 6.434329437514083776052669599834938898255E3L, + 3.385414416983114598582554037612347549220E2L, + 4.907821957946273805080625052510832015792E0L +}; +#define NRD1r25 8 +static const long double RD1r25[NRD1r25 + 1] = +{ + 3.980939377333448005389084785896660309000E5L, + 1.429634893085231519692365775184490465542E6L, + 2.145438946455476062850151428438668234336E6L, + 1.743786661358280837020848127465970357893E6L, + 8.316364251289743923178092656080441655273E5L, + 2.355732939106812496699621491135458324294E5L, + 3.822267399625696880571810137601310855419E4L, + 3.228463206479133236028576845538387620856E3L, + 1.152133170470059555646301189220117965514E2L + /* 1.0E0L */ +}; + + +/* log gamma(x + 1) = x P(x)/Q(x) + 0.0 <= x <= +0.125 + 1.0 <= x+1 <= 1.125 + Peak relative error 1.1e-35 */ +#define NRN1 8 +static const long double RN1[NRN1 + 1] = +{ + -9.987560186094800756471055681088744738818E3L, + -2.506039379419574361949680225279376329742E4L, + -1.386770737662176516403363873617457652991E4L, + 1.439445846078103202928677244188837130744E4L, + 2.159612048879650471489449668295139990693E4L, + 1.047439813638144485276023138173676047079E4L, + 2.250316398054332592560412486630769139961E3L, + 1.958510425467720733041971651126443864041E2L, + 4.516830313569454663374271993200291219855E0L +}; +#define NRD1 7 +static const long double RD1[NRD1 + 1] = +{ + 1.730299573175751778863269333703788214547E4L, + 6.807080914851328611903744668028014678148E4L, + 1.090071629101496938655806063184092302439E5L, + 9.124354356415154289343303999616003884080E4L, + 4.262071638655772404431164427024003253954E4L, + 1.096981664067373953673982635805821283581E4L, + 1.431229503796575892151252708527595787588E3L, + 7.734110684303689320830401788262295992921E1L + /* 1.0E0 */ +}; + + +/* log gamma(x + 1) = x P(x)/Q(x) + -0.125 <= x <= 0 + 0.875 <= x+1 <= 1.0 + Peak relative error 7.0e-37 */ +#define NRNr9 8 +static const long double RNr9[NRNr9 + 1] = +{ + 4.441379198241760069548832023257571176884E5L, + 1.273072988367176540909122090089580368732E6L, + 9.732422305818501557502584486510048387724E5L, + -5.040539994443998275271644292272870348684E5L, + -1.208719055525609446357448132109723786736E6L, + -7.434275365370936547146540554419058907156E5L, + -2.075642969983377738209203358199008185741E5L, + -2.565534860781128618589288075109372218042E4L, + -1.032901669542994124131223797515913955938E3L, +}; +#define NRDr9 8 +static const long double RDr9[NRDr9 + 1] = +{ + -7.694488331323118759486182246005193998007E5L, + -3.301918855321234414232308938454112213751E6L, + -5.856830900232338906742924836032279404702E6L, + -5.540672519616151584486240871424021377540E6L, + -3.006530901041386626148342989181721176919E6L, + -9.350378280513062139466966374330795935163E5L, + -1.566179100031063346901755685375732739511E5L, + -1.205016539620260779274902967231510804992E4L, + -2.724583156305709733221564484006088794284E2L +/* 1.0E0 */ +}; + + +/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +neval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + +/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +deval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = x + *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + +long double +lgammal(long double x) +{ + long double p, q, w, z, nx; + int i, nn; + + signgam = 1; + + if (! finite (x)) + return x * x; + + if (x == 0.0L) + { + if (signbitl (x)) + signgam = -1; + } + + if (x < 0.0L) + { + q = -x; + p = floorl (q); + if (p == q) + return (one / (p - p)); + i = p; + if ((i & 1) == 0) + signgam = -1; + else + signgam = 1; + z = q - p; + if (z > 0.5L) + { + p += 1.0L; + z = p - q; + } + z = q * sinl (PIL * z); + if (z == 0.0L) + return (signgam * huge * huge); + w = lgammal (q); + z = logl (PIL / z) - w; + return (z); + } + + if (x < 13.5L) + { + p = 0.0L; + nx = floorl (x + 0.5L); + nn = nx; + switch (nn) + { + case 0: + /* log gamma (x + 1) = log(x) + log gamma(x) */ + if (x <= 0.125) + { + p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1); + } + else if (x <= 0.375) + { + z = x - 0.25L; + p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); + p += lgam1r25b; + p += lgam1r25a; + } + else if (x <= 0.625) + { + z = x + (1.0L - x0a); + z = z - x0b; + p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); + p = p * z * z; + p = p + y0b; + p = p + y0a; + } + else if (x <= 0.875) + { + z = x - 0.75L; + p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); + p += lgam1r75b; + p += lgam1r75a; + } + else + { + z = x - 1.0L; + p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); + } + p = p - logl (x); + break; + + case 1: + if (x < 0.875L) + { + if (x <= 0.625) + { + z = x + (1.0L - x0a); + z = z - x0b; + p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); + p = p * z * z; + p = p + y0b; + p = p + y0a; + } + else if (x <= 0.875) + { + z = x - 0.75L; + p = z * neval (z, RN1r75, NRN1r75) + / deval (z, RD1r75, NRD1r75); + p += lgam1r75b; + p += lgam1r75a; + } + else + { + z = x - 1.0L; + p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); + } + p = p - logl (x); + } + else if (x < 1.0L) + { + z = x - 1.0L; + p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9); + } + else if (x == 1.0L) + p = 0.0L; + else if (x <= 1.125L) + { + z = x - 1.0L; + p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1); + } + else if (x <= 1.375) + { + z = x - 1.25L; + p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); + p += lgam1r25b; + p += lgam1r25a; + } + else + { + /* 1.375 <= x+x0 <= 1.625 */ + z = x - x0a; + z = z - x0b; + p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); + p = p * z * z; + p = p + y0b; + p = p + y0a; + } + break; + + case 2: + if (x < 1.625L) + { + z = x - x0a; + z = z - x0b; + p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); + p = p * z * z; + p = p + y0b; + p = p + y0a; + } + else if (x < 1.875L) + { + z = x - 1.75L; + p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); + p += lgam1r75b; + p += lgam1r75a; + } + else if (x == 2.0L) + p = 0.0L; + else if (x < 2.375L) + { + z = x - 2.0L; + p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); + } + else + { + z = x - 2.5L; + p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); + p += lgam2r5b; + p += lgam2r5a; + } + break; + + case 3: + if (x < 2.75) + { + z = x - 2.5L; + p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); + p += lgam2r5b; + p += lgam2r5a; + } + else + { + z = x - 3.0L; + p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3); + p += lgam3b; + p += lgam3a; + } + break; + + case 4: + z = x - 4.0L; + p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4); + p += lgam4b; + p += lgam4a; + break; + + case 5: + z = x - 5.0L; + p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5); + p += lgam5b; + p += lgam5a; + break; + + case 6: + z = x - 6.0L; + p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6); + p += lgam6b; + p += lgam6a; + break; + + case 7: + z = x - 7.0L; + p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7); + p += lgam7b; + p += lgam7a; + break; + + case 8: + z = x - 8.0L; + p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8); + p += lgam8b; + p += lgam8a; + break; + + case 9: + z = x - 9.0L; + p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9); + p += lgam9b; + p += lgam9a; + break; + + case 10: + z = x - 10.0L; + p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10); + p += lgam10b; + p += lgam10a; + break; + + case 11: + z = x - 11.0L; + p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11); + p += lgam11b; + p += lgam11a; + break; + + case 12: + z = x - 12.0L; + p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12); + p += lgam12b; + p += lgam12a; + break; + + case 13: + z = x - 13.0L; + p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13); + p += lgam13b; + p += lgam13a; + break; + } + return p; + } + + if (x > MAXLGM) + return (signgam * huge * huge); + + q = ls2pi - x; + q = (x - 0.5L) * logl (x) + q; + if (x > 1.0e18L) + return (q); + + p = 1.0L / (x * x); + q += neval (p, RASY, NRASY) / x; + return (q); +} diff --git a/lib/libm/src/ld128/e_log10l.c b/lib/libm/src/ld128/e_log10l.c new file mode 100644 index 00000000000..99802034466 --- /dev/null +++ b/lib/libm/src/ld128/e_log10l.c @@ -0,0 +1,255 @@ +/* $OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log10l.c + * + * Common logarithm, 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log10l(); + * + * y = log10l( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base 10 logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z^3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35 + * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + * + */ + +#include + +#include "math_private.h" + +/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 5.3e-37, + * relative peak error spread = 2.3e-14 + */ +static const long double P[13] = +{ + 1.313572404063446165910279910527789794488E4L, + 7.771154681358524243729929227226708890930E4L, + 2.014652742082537582487669938141683759923E5L, + 3.007007295140399532324943111654767187848E5L, + 2.854829159639697837788887080758954924001E5L, + 1.797628303815655343403735250238293741397E5L, + 7.594356839258970405033155585486712125861E4L, + 2.128857716871515081352991964243375186031E4L, + 3.824952356185897735160588078446136783779E3L, + 4.114517881637811823002128927449878962058E2L, + 2.321125933898420063925789532045674660756E1L, + 4.998469661968096229986658302195402690910E-1L, + 1.538612243596254322971797716843006400388E-6L +}; +static const long double Q[12] = +{ + 3.940717212190338497730839731583397586124E4L, + 2.626900195321832660448791748036714883242E5L, + 7.777690340007566932935753241556479363645E5L, + 1.347518538384329112529391120390701166528E6L, + 1.514882452993549494932585972882995548426E6L, + 1.158019977462989115839826904108208787040E6L, + 6.132189329546557743179177159925690841200E5L, + 2.248234257620569139969141618556349415120E5L, + 5.605842085972455027590989944010492125825E4L, + 9.147150349299596453976674231612674085381E3L, + 9.104928120962988414618126155557301584078E2L, + 4.839208193348159620282142911143429644326E1L +/* 1.000000000000000000000000000000000000000E0L, */ +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 1.1e-35, + * relative peak error spread 1.1e-9 + */ +static const long double R[6] = +{ + 1.418134209872192732479751274970992665513E5L, + -8.977257995689735303686582344659576526998E4L, + 2.048819892795278657810231591630928516206E4L, + -2.024301798136027039250415126250455056397E3L, + 8.057002716646055371965756206836056074715E1L, + -8.828896441624934385266096344596648080902E-1L +}; +static const long double S[6] = +{ + 1.701761051846631278975701529965589676574E6L, + -1.332535117259762928288745111081235577029E6L, + 4.001557694070773974936904547424676279307E5L, + -5.748542087379434595104154610899551484314E4L, + 3.998526750980007367835804959888064681098E3L, + -1.186359407982897997337150403816839480438E2L +/* 1.000000000000000000000000000000000000000E0L, */ +}; + +static const long double +/* log10(2) */ +L102A = 0.3125L, +L102B = -1.14700043360188047862611052755069732318101185E-2L, +/* log10(e) */ +L10EA = 0.5L, +L10EB = -6.570551809674817234887108108339491770560299E-2L, +/* sqrt(2)/2 */ +SQRTH = 7.071067811865475244008443621048490392848359E-1L; + + + +/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +neval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + +/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +deval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = x + *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + + +long double +log10l(long double x) +{ + long double z; + long double y; + int e; + int64_t hx, lx; + +/* Test for domain */ + GET_LDOUBLE_WORDS64 (hx, lx, x); + if (((hx & 0x7fffffffffffffffLL) | lx) == 0) + return (-1.0L / (x - x)); + if (hx < 0) + return (x - x) / (x - x); + if (hx >= 0x7fff000000000000LL) + return (x + x); + +/* separate mantissa from exponent */ + +/* Note, frexp is used so that denormal numbers + * will be handled properly. + */ + x = frexpl (x, &e); + + +/* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/x+1) + */ + if ((e > 2) || (e < -2)) + { + if (x < SQRTH) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } + else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } + x = z / y; + z = x * x; + y = x * (z * neval (z, R, 5) / deval (z, S, 5)); + goto done; + } + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + + if (x < SQRTH) + { + e -= 1; + x = 2.0 * x - 1.0L; /* 2x - 1 */ + } + else + { + x = x - 1.0L; + } + z = x * x; + y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); + y = y - 0.5 * z; + +done: + + /* Multiply log of fraction by log10(e) + * and base 2 exponent by log10(2). + */ + z = y * L10EB; + z += x * L10EB; + z += e * L102B; + z += y * L10EA; + z += x * L10EA; + z += e * L102A; + return (z); +} diff --git a/lib/libm/src/ld128/e_log2l.c b/lib/libm/src/ld128/e_log2l.c new file mode 100644 index 00000000000..fe15b824586 --- /dev/null +++ b/lib/libm/src/ld128/e_log2l.c @@ -0,0 +1,248 @@ +/* $OpenBSD: e_log2l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log2l.c + * Base 2 logarithm, 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log2l(); + * + * y = log2l( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base 2 logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the (natural) + * logarithm of the fraction is approximated by + * + * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z^3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35 + * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + * + */ + +#include + +#include "math_private.h" + +/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 5.3e-37, + * relative peak error spread = 2.3e-14 + */ +static const long double P[13] = +{ + 1.313572404063446165910279910527789794488E4L, + 7.771154681358524243729929227226708890930E4L, + 2.014652742082537582487669938141683759923E5L, + 3.007007295140399532324943111654767187848E5L, + 2.854829159639697837788887080758954924001E5L, + 1.797628303815655343403735250238293741397E5L, + 7.594356839258970405033155585486712125861E4L, + 2.128857716871515081352991964243375186031E4L, + 3.824952356185897735160588078446136783779E3L, + 4.114517881637811823002128927449878962058E2L, + 2.321125933898420063925789532045674660756E1L, + 4.998469661968096229986658302195402690910E-1L, + 1.538612243596254322971797716843006400388E-6L +}; +static const long double Q[12] = +{ + 3.940717212190338497730839731583397586124E4L, + 2.626900195321832660448791748036714883242E5L, + 7.777690340007566932935753241556479363645E5L, + 1.347518538384329112529391120390701166528E6L, + 1.514882452993549494932585972882995548426E6L, + 1.158019977462989115839826904108208787040E6L, + 6.132189329546557743179177159925690841200E5L, + 2.248234257620569139969141618556349415120E5L, + 5.605842085972455027590989944010492125825E4L, + 9.147150349299596453976674231612674085381E3L, + 9.104928120962988414618126155557301584078E2L, + 4.839208193348159620282142911143429644326E1L +/* 1.000000000000000000000000000000000000000E0L, */ +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 1.1e-35, + * relative peak error spread 1.1e-9 + */ +static const long double R[6] = +{ + 1.418134209872192732479751274970992665513E5L, + -8.977257995689735303686582344659576526998E4L, + 2.048819892795278657810231591630928516206E4L, + -2.024301798136027039250415126250455056397E3L, + 8.057002716646055371965756206836056074715E1L, + -8.828896441624934385266096344596648080902E-1L +}; +static const long double S[6] = +{ + 1.701761051846631278975701529965589676574E6L, + -1.332535117259762928288745111081235577029E6L, + 4.001557694070773974936904547424676279307E5L, + -5.748542087379434595104154610899551484314E4L, + 3.998526750980007367835804959888064681098E3L, + -1.186359407982897997337150403816839480438E2L +/* 1.000000000000000000000000000000000000000E0L, */ +}; + +static const long double +/* log2(e) - 1 */ +LOG2EA = 4.4269504088896340735992468100189213742664595E-1L, +/* sqrt(2)/2 */ +SQRTH = 7.071067811865475244008443621048490392848359E-1L; + + +/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +neval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + +/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +deval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = x + *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + + +long double +log2l(long double x) +{ + long double z; + long double y; + int e; + int64_t hx, lx; + +/* Test for domain */ + GET_LDOUBLE_WORDS64 (hx, lx, x); + if (((hx & 0x7fffffffffffffffLL) | lx) == 0) + return (-1.0L / (x - x)); + if (hx < 0) + return (x - x) / (x - x); + if (hx >= 0x7fff000000000000LL) + return (x + x); + +/* separate mantissa from exponent */ + +/* Note, frexp is used so that denormal numbers + * will be handled properly. + */ + x = frexpl (x, &e); + + +/* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/x+1) + */ + if ((e > 2) || (e < -2)) + { + if (x < SQRTH) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } + else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } + x = z / y; + z = x * x; + y = x * (z * neval (z, R, 5) / deval (z, S, 5)); + goto done; + } + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + + if (x < SQRTH) + { + e -= 1; + x = 2.0 * x - 1.0L; /* 2x - 1 */ + } + else + { + x = x - 1.0L; + } + z = x * x; + y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); + y = y - 0.5 * z; + +done: + +/* Multiply log of fraction by log2(e) + * and base 2 exponent by 1 + */ + z = y * LOG2EA; + z += x * LOG2EA; + z += y; + z += x; + z += e; + return (z); +} diff --git a/lib/libm/src/ld128/e_logl.c b/lib/libm/src/ld128/e_logl.c new file mode 100644 index 00000000000..8f2b7e6e709 --- /dev/null +++ b/lib/libm/src/ld128/e_logl.c @@ -0,0 +1,283 @@ +/* $OpenBSD: e_logl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* logl.c + * + * Natural logarithm for 128-bit long double precision. + * + * + * + * SYNOPSIS: + * + * long double x, y, logl(); + * + * y = logl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. Use of a lookup table increases the speed of the routine. + * The program uses logarithms tabulated at intervals of 1/128 to + * cover the domain from approximately 0.7 to 1.4. + * + * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by + * log(1+x) = x - 0.5 x^2 + x^3 P(x) . + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35 + * IEEE 0.125, 8 100000 1.2e-34 4.1e-35 + * + * + * WARNING: + * + * This program uses integer operations on bit fields of floating-point + * numbers. It does not work with data structures other than the + * structure assumed. + * + */ + +#include + +#include "math_private.h" + +/* log(1+x) = x - .5 x^2 + x^3 l(x) + -.0078125 <= x <= +.0078125 + peak relative error 1.2e-37 */ +static const long double +l3 = 3.333333333333333333333333333333336096926E-1L, +l4 = -2.499999999999999999999999999486853077002E-1L, +l5 = 1.999999999999999999999999998515277861905E-1L, +l6 = -1.666666666666666666666798448356171665678E-1L, +l7 = 1.428571428571428571428808945895490721564E-1L, +l8 = -1.249999999999999987884655626377588149000E-1L, +l9 = 1.111111111111111093947834982832456459186E-1L, +l10 = -1.000000000000532974938900317952530453248E-1L, +l11 = 9.090909090915566247008015301349979892689E-2L, +l12 = -8.333333211818065121250921925397567745734E-2L, +l13 = 7.692307559897661630807048686258659316091E-2L, +l14 = -7.144242754190814657241902218399056829264E-2L, +l15 = 6.668057591071739754844678883223432347481E-2L; + +/* Lookup table of ln(t) - (t-1) + t = 0.5 + (k+26)/128) + k = 0, ..., 91 */ +static const long double logtbl[92] = { +-5.5345593589352099112142921677820359632418E-2L, +-5.2108257402767124761784665198737642086148E-2L, +-4.8991686870576856279407775480686721935120E-2L, +-4.5993270766361228596215288742353061431071E-2L, +-4.3110481649613269682442058976885699556950E-2L, +-4.0340872319076331310838085093194799765520E-2L, +-3.7682072451780927439219005993827431503510E-2L, +-3.5131785416234343803903228503274262719586E-2L, +-3.2687785249045246292687241862699949178831E-2L, +-3.0347913785027239068190798397055267411813E-2L, +-2.8110077931525797884641940838507561326298E-2L, +-2.5972247078357715036426583294246819637618E-2L, +-2.3932450635346084858612873953407168217307E-2L, +-2.1988775689981395152022535153795155900240E-2L, +-2.0139364778244501615441044267387667496733E-2L, +-1.8382413762093794819267536615342902718324E-2L, +-1.6716169807550022358923589720001638093023E-2L, +-1.5138929457710992616226033183958974965355E-2L, +-1.3649036795397472900424896523305726435029E-2L, +-1.2244881690473465543308397998034325468152E-2L, +-1.0924898127200937840689817557742469105693E-2L, +-9.6875626072830301572839422532631079809328E-3L, +-8.5313926245226231463436209313499745894157E-3L, +-7.4549452072765973384933565912143044991706E-3L, +-6.4568155251217050991200599386801665681310E-3L, +-5.5356355563671005131126851708522185605193E-3L, +-4.6900728132525199028885749289712348829878E-3L, +-3.9188291218610470766469347968659624282519E-3L, +-3.2206394539524058873423550293617843896540E-3L, +-2.5942708080877805657374888909297113032132E-3L, +-2.0385211375711716729239156839929281289086E-3L, +-1.5522183228760777967376942769773768850872E-3L, +-1.1342191863606077520036253234446621373191E-3L, +-7.8340854719967065861624024730268350459991E-4L, +-4.9869831458030115699628274852562992756174E-4L, +-2.7902661731604211834685052867305795169688E-4L, +-1.2335696813916860754951146082826952093496E-4L, +-3.0677461025892873184042490943581654591817E-5L, +#define ZERO logtbl[38] + 0.0000000000000000000000000000000000000000E0L, +-3.0359557945051052537099938863236321874198E-5L, +-1.2081346403474584914595395755316412213151E-4L, +-2.7044071846562177120083903771008342059094E-4L, +-4.7834133324631162897179240322783590830326E-4L, +-7.4363569786340080624467487620270965403695E-4L, +-1.0654639687057968333207323853366578860679E-3L, +-1.4429854811877171341298062134712230604279E-3L, +-1.8753781835651574193938679595797367137975E-3L, +-2.3618380914922506054347222273705859653658E-3L, +-2.9015787624124743013946600163375853631299E-3L, +-3.4938307889254087318399313316921940859043E-3L, +-4.1378413103128673800485306215154712148146E-3L, +-4.8328735414488877044289435125365629849599E-3L, +-5.5782063183564351739381962360253116934243E-3L, +-6.3731336597098858051938306767880719015261E-3L, +-7.2169643436165454612058905294782949315193E-3L, +-8.1090214990427641365934846191367315083867E-3L, +-9.0486422112807274112838713105168375482480E-3L, +-1.0035177140880864314674126398350812606841E-2L, +-1.1067990155502102718064936259435676477423E-2L, +-1.2146457974158024928196575103115488672416E-2L, +-1.3269969823361415906628825374158424754308E-2L, +-1.4437927104692837124388550722759686270765E-2L, +-1.5649743073340777659901053944852735064621E-2L, +-1.6904842527181702880599758489058031645317E-2L, +-1.8202661505988007336096407340750378994209E-2L, +-1.9542647000370545390701192438691126552961E-2L, +-2.0924256670080119637427928803038530924742E-2L, +-2.2346958571309108496179613803760727786257E-2L, +-2.3810230892650362330447187267648486279460E-2L, +-2.5313561699385640380910474255652501521033E-2L, +-2.6856448685790244233704909690165496625399E-2L, +-2.8438398935154170008519274953860128449036E-2L, +-3.0058928687233090922411781058956589863039E-2L, +-3.1717563112854831855692484086486099896614E-2L, +-3.3413836095418743219397234253475252001090E-2L, +-3.5147290019036555862676702093393332533702E-2L, +-3.6917475563073933027920505457688955423688E-2L, +-3.8723951502862058660874073462456610731178E-2L, +-4.0566284516358241168330505467000838017425E-2L, +-4.2444048996543693813649967076598766917965E-2L, +-4.4356826869355401653098777649745233339196E-2L, +-4.6304207416957323121106944474331029996141E-2L, +-4.8285787106164123613318093945035804818364E-2L, +-5.0301169421838218987124461766244507342648E-2L, +-5.2349964705088137924875459464622098310997E-2L, +-5.4431789996103111613753440311680967840214E-2L, +-5.6546268881465384189752786409400404404794E-2L, +-5.8693031345788023909329239565012647817664E-2L, +-6.0871713627532018185577188079210189048340E-2L, +-6.3081958078862169742820420185833800925568E-2L, +-6.5323413029406789694910800219643791556918E-2L, +-6.7595732653791419081537811574227049288168E-2L +}; + +/* ln(2) = ln2a + ln2b with extended precision. */ +static const long double + ln2a = 6.93145751953125e-1L, + ln2b = 1.4286068203094172321214581765680755001344E-6L; + +long double +logl(long double x) +{ + long double z, y, w; + ieee_quad_shape_type u, t; + unsigned int m; + int k, e; + + u.value = x; + m = u.parts32.mswhi; + + /* Check for IEEE special cases. */ + k = m & 0x7fffffff; + /* log(0) = -infinity. */ + if ((k | u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0) + { + return -0.5L / ZERO; + } + /* log ( x < 0 ) = NaN */ + if (m & 0x80000000) + { + return (x - x) / ZERO; + } + /* log (infinity or NaN) */ + if (k >= 0x7fff0000) + { + return x + x; + } + + /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */ + e = (int) (m >> 16) - (int) 0x3ffe; + m &= 0xffff; + u.parts32.mswhi = m | 0x3ffe0000; + m |= 0x10000; + /* Find lookup table index k from high order bits of the significand. */ + if (m < 0x16800) + { + k = (m - 0xff00) >> 9; + /* t is the argument 0.5 + (k+26)/128 + of the nearest item to u in the lookup table. */ + t.parts32.mswhi = 0x3fff0000 + (k << 9); + t.parts32.mswlo = 0; + t.parts32.lswhi = 0; + t.parts32.lswlo = 0; + u.parts32.mswhi += 0x10000; + e -= 1; + k += 64; + } + else + { + k = (m - 0xfe00) >> 10; + t.parts32.mswhi = 0x3ffe0000 + (k << 10); + t.parts32.mswlo = 0; + t.parts32.lswhi = 0; + t.parts32.lswlo = 0; + } + /* On this interval the table is not used due to cancellation error. */ + if ((x <= 1.0078125L) && (x >= 0.9921875L)) + { + z = x - 1.0L; + k = 64; + t.value = 1.0L; + e = 0; + } + else + { + /* log(u) = log( t u/t ) = log(t) + log(u/t) + log(t) is tabulated in the lookup table. + Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t. + cf. Cody & Waite. */ + z = (u.value - t.value) / t.value; + } + /* Series expansion of log(1+z). */ + w = z * z; + y = ((((((((((((l15 * z + + l14) * z + + l13) * z + + l12) * z + + l11) * z + + l10) * z + + l9) * z + + l8) * z + + l7) * z + + l6) * z + + l5) * z + + l4) * z + + l3) * z * w; + y -= 0.5 * w; + y += e * ln2b; /* Base 2 exponent offset times ln(2). */ + y += z; + y += logtbl[k-26]; /* log(t) - (t-1) */ + y += (t.value - 1.0L); + y += e * ln2a; + return y; +} diff --git a/lib/libm/src/ld128/e_powl.c b/lib/libm/src/ld128/e_powl.c new file mode 100644 index 00000000000..1c73633e4f5 --- /dev/null +++ b/lib/libm/src/ld128/e_powl.c @@ -0,0 +1,439 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* powl(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 113-53 = 60 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + */ + +#include + +#include "math_private.h" + +static const long double bp[] = { + 1.0L, + 1.5L, +}; + +/* log_2(1.5) */ +static const long double dp_h[] = { + 0.0, + 5.8496250072115607565592654282227158546448E-1L +}; + +/* Low part of log_2(1.5) */ +static const long double dp_l[] = { + 0.0, + 1.0579781240112554492329533686862998106046E-16L +}; + +static const long double zero = 0.0L, + one = 1.0L, + two = 2.0L, + two113 = 1.0384593717069655257060992658440192E34L, + huge = 1.0e3000L, + tiny = 1.0e-3000L; + +/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) + z = (x-1)/(x+1) + 1 <= x <= 1.25 + Peak relative error 2.3e-37 */ +static const long double LN[] = +{ + -3.0779177200290054398792536829702930623200E1L, + 6.5135778082209159921251824580292116201640E1L, + -4.6312921812152436921591152809994014413540E1L, + 1.2510208195629420304615674658258363295208E1L, + -9.9266909031921425609179910128531667336670E-1L +}; +static const long double LD[] = +{ + -5.129862866715009066465422805058933131960E1L, + 1.452015077564081884387441590064272782044E2L, + -1.524043275549860505277434040464085593165E2L, + 7.236063513651544224319663428634139768808E1L, + -1.494198912340228235853027849917095580053E1L + /* 1.0E0 */ +}; + +/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) + 0 <= x <= 0.5 + Peak relative error 5.7e-38 */ +static const long double PN[] = +{ + 5.081801691915377692446852383385968225675E8L, + 9.360895299872484512023336636427675327355E6L, + 4.213701282274196030811629773097579432957E4L, + 5.201006511142748908655720086041570288182E1L, + 9.088368420359444263703202925095675982530E-3L, +}; +static const long double PD[] = +{ + 3.049081015149226615468111430031590411682E9L, + 1.069833887183886839966085436512368982758E8L, + 8.259257717868875207333991924545445705394E5L, + 1.872583833284143212651746812884298360922E3L, + /* 1.0E0 */ +}; + +static const long double + /* ln 2 */ + lg2 = 6.9314718055994530941723212145817656807550E-1L, + lg2_h = 6.9314718055994528622676398299518041312695E-1L, + lg2_l = 2.3190468138462996154948554638754786504121E-17L, + ovt = 8.0085662595372944372e-0017L, + /* 2/(3*log(2)) */ + cp = 9.6179669392597560490661645400126142495110E-1L, + cp_h = 9.6179669392597555432899980587535537779331E-1L, + cp_l = 5.0577616648125906047157785230014751039424E-17L; + +long double +powl(long double x, long double y) +{ + long double z, ax, z_h, z_l, p_h, p_l; + long double yy1, t1, t2, r, s, t, u, v, w; + long double s2, s_h, s_l, t_h, t_l; + int32_t i, j, k, yisint, n; + u_int32_t ix, iy; + int32_t hx, hy; + ieee_quad_shape_type o, p, q; + + p.value = x; + hx = p.parts32.mswhi; + ix = hx & 0x7fffffff; + + q.value = y; + hy = q.parts32.mswhi; + iy = hy & 0x7fffffff; + + + /* y==zero: x**0 = 1 */ + if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + return one; + + /* 1.0**y = 1; -1.0**+-Inf = 1 */ + if (x == one) + return one; + if (x == -1.0L && iy == 0x7fff0000 + && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + return one; + + /* +-NaN return x+y */ + if ((ix > 0x7fff0000) + || ((ix == 0x7fff0000) + && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0)) + || (iy > 0x7fff0000) + || ((iy == 0x7fff0000) + && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0))) + return x + y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if (hx < 0) + { + if (iy >= 0x40700000) /* 2^113 */ + yisint = 2; /* even integer y */ + else if (iy >= 0x3fff0000) /* 1.0 */ + { + if (floorl (y) == y) + { + z = 0.5 * y; + if (floorl (z) == z) + yisint = 2; + else + yisint = 1; + } + } + } + + /* special value of y */ + if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + { + if (iy == 0x7fff0000) /* y is +-inf */ + { + if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi | + p.parts32.lswlo) == 0) + return y - y; /* +-1**inf is NaN */ + else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ + return (hy >= 0) ? y : zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy < 0) ? -y : zero; + } + if (iy == 0x3fff0000) + { /* y is +-1 */ + if (hy < 0) + return one / x; + else + return x; + } + if (hy == 0x40000000) + return x * x; /* y is 2 */ + if (hy == 0x3ffe0000) + { /* y is 0.5 */ + if (hx >= 0) /* x >= +0 */ + return sqrtl (x); + } + } + + ax = fabsl (x); + /* special value of x */ + if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0) + { + if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) + { + z = ax; /*x is +-0,+-inf,+-1 */ + if (hy < 0) + z = one / z; /* z = (1/|x|) */ + if (hx < 0) + { + if (((ix - 0x3fff0000) | yisint) == 0) + { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } + else if (yisint == 1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* (x<0)**(non-int) is NaN */ + if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) + return (x - x) / (x - x); + + /* |y| is huge. + 2^-16495 = 1/2 of smallest representable value. + If (1 - 1/131072)^y underflows, y > 1.4986e9 */ + if (iy > 0x401d654b) + { + /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ + if (iy > 0x407d654b) + { + if (ix <= 0x3ffeffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix >= 0x3fff0000) + return (hy > 0) ? huge * huge : tiny * tiny; + } + /* over/underflow if x is not close to one */ + if (ix < 0x3ffeffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix > 0x3fff0000) + return (hy > 0) ? huge * huge : tiny * tiny; + } + + n = 0; + /* take care subnormal number */ + if (ix < 0x00010000) + { + ax *= two113; + n -= 113; + o.value = ax; + ix = o.parts32.mswhi; + } + n += ((ix) >> 16) - 0x3fff; + j = ix & 0x0000ffff; + /* determine interval */ + ix = j | 0x3fff0000; /* normalize ix */ + if (j <= 0x3988) + k = 0; /* |x|> 31) - 1) | (yisint - 1)) == 0) + s = -one; /* (-ve)**(odd int) */ + + /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ + yy1 = y; + o.value = yy1; + o.parts32.lswlo = 0; + o.parts32.lswhi &= 0xf8000000; + yy1 = o.value; + p_l = (y - yy1) * t1 + y * t2; + p_h = yy1 * t1; + z = p_l + p_h; + o.value = z; + j = o.parts32.mswhi; + if (j >= 0x400d0000) /* z >= 16384 */ + { + /* if z > 16384 */ + if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi | + o.parts32.lswlo) != 0) + return s * huge * huge; /* overflow */ + else + { + if (p_l + ovt > z - p_h) + return s * huge * huge; /* overflow */ + } + } + else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ + { + /* z < -16495 */ + if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi | + o.parts32.lswlo) + != 0) + return s * tiny * tiny; /* underflow */ + else + { + if (p_l <= z - p_h) + return s * tiny * tiny; /* underflow */ + } + } + /* compute 2**(p_h+p_l) */ + i = j & 0x7fffffff; + k = (i >> 16) - 0x3fff; + n = 0; + if (i > 0x3ffe0000) + { /* if |z| > 0.5, set n = [z+0.5] */ + n = floorl (z + 0.5L); + t = n; + p_h -= t; + } + t = p_l + p_h; + o.value = t; + o.parts32.lswlo = 0; + o.parts32.lswhi &= 0xf8000000; + t = o.value; + u = t * lg2_h; + v = (p_l - (t - p_h)) * lg2 + t * lg2_l; + z = u + v; + w = v - (z - u); + /* exp(z) */ + t = z * z; + u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); + v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); + t1 = z - t * u / v; + r = (z * t1) / (t1 - two) - (w + z * w); + z = one - (r - z); + o.value = z; + j = o.parts32.mswhi; + j += (n << 16); + if ((j >> 16) <= 0) + z = scalbnl (z, n); /* subnormal output */ + else + { + o.parts32.mswhi = j; + z = o.value; + } + return s * z; +} diff --git a/lib/libm/src/ld128/e_sinhl.c b/lib/libm/src/ld128/e_sinhl.c new file mode 100644 index 00000000000..a158d5a7b10 --- /dev/null +++ b/lib/libm/src/ld128/e_sinhl.c @@ -0,0 +1,104 @@ +/* @(#)e_sinh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* sinhl(x) + * Method : + * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 + * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). + * 2. + * E + E/(E+1) + * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) + * 2 + * + * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 + * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) + * ln2ovft < x : sinhl(x) := x*shuge (overflow) + * + * Special cases: + * sinhl(x) is |x| if x is +INF, -INF, or NaN. + * only sinhl(0)=0 is exact for finite x. + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0, shuge = 1.0e4931L, +ovf_thresh = 1.1357216553474703894801348310092223067821E4L; + +long double +sinhl(long double x) +{ + long double t, w, h; + u_int32_t jx, ix; + ieee_quad_shape_type u; + + /* Words of |x|. */ + u.value = x; + jx = u.parts32.mswhi; + ix = jx & 0x7fffffff; + + /* x is INF or NaN */ + if (ix >= 0x7fff0000) + return x + x; + + h = 0.5; + if (jx & 0x80000000) + h = -h; + + /* Absolute value of x. */ + u.parts32.mswhi = ix; + + /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ + if (ix <= 0x40044000) + { + if (ix < 0x3fc60000) /* |x| < 2^-57 */ + if (shuge + x > one) + return x; /* sinh(tiny) = tiny with inexact */ + t = expm1l (u.value); + if (ix < 0x3fff0000) + return h * (2.0 * t - t * t / (t + one)); + return h * (t + t / (t + one)); + } + + /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ + if (ix <= 0x400c62e3) /* 11356.375 */ + return h * expl (u.value); + + /* |x| in [log(maxdouble), overflowthreshold] + Overflow threshold is log(2 * maxdouble). */ + if (u.value <= ovf_thresh) + { + w = expl (0.5 * u.value); + t = h * w; + return t * w; + } + + /* |x| > overflowthreshold, sinhl(x) overflow */ + return x * shuge; +} diff --git a/lib/libm/src/ld128/e_tgammal.c b/lib/libm/src/ld128/e_tgammal.c new file mode 100644 index 00000000000..2fa800240d6 --- /dev/null +++ b/lib/libm/src/ld128/e_tgammal.c @@ -0,0 +1,45 @@ +/* $OpenBSD: e_tgammal.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2011 Martynas Venckus + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +#include + +#include "math_private.h" + +long double +tgammal(long double x) +{ + int64_t i0,i1; + + GET_LDOUBLE_WORDS64(i0,i1,x); + if (((i0&0x7fffffffffffffffLL)|i1) == 0) { + signgam = 0; + return (1.0/x); + } + + if (i0<0 && (u_int64_t)i0<0xffff000000000000ULL && rintl(x)==x) { + signgam = 0; + return (x-x)/(x-x); + } + + if (i0==0xffff000000000000ULL && i1==0) { + signgam = 0; + return (x-x); + } + + return expl(lgammal(x)); +} diff --git a/lib/libm/src/ld128/s_asinhl.c b/lib/libm/src/ld128/s_asinhl.c new file mode 100644 index 00000000000..12df814061c --- /dev/null +++ b/lib/libm/src/ld128/s_asinhl.c @@ -0,0 +1,69 @@ +/* @(#)s_asinh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* asinhl(x) + * Method : + * Based on + * asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ] + * we have + * asinhl(x) := x if 1+x*x=1, + * := signl(x)*(logl(x)+ln2)) for large |x|, else + * := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else + * := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2))) + */ + +#include + +#include "math_private.h" + +static const long double + one = 1.0L, + ln2 = 6.931471805599453094172321214581765681e-1L, + huge = 1.0e+4900L; + +long double +asinhl(long double x) +{ + long double t, w; + int32_t ix, sign; + ieee_quad_shape_type u; + + u.value = x; + sign = u.parts32.mswhi; + ix = sign & 0x7fffffff; + if (ix == 0x7fff0000) + return x + x; /* x is inf or NaN */ + if (ix < 0x3fc70000) + { /* |x| < 2^ -56 */ + if (huge + x > one) + return x; /* return x inexact except 0 */ + } + u.parts32.mswhi = ix; + if (ix > 0x40350000) + { /* |x| > 2 ^ 54 */ + w = logl (u.value) + ln2; + } + else if (ix >0x40000000) + { /* 2^ 54 > |x| > 2.0 */ + t = u.value; + w = logl (2.0 * t + one / (sqrtl (x * x + one) + t)); + } + else + { /* 2.0 > |x| > 2 ^ -56 */ + t = x * x; + w = log1pl (u.value + t / (one + sqrtl (one + t))); + } + if (sign & 0x80000000) + return -w; + else + return w; +} diff --git a/lib/libm/src/ld128/s_cbrtl.c b/lib/libm/src/ld128/s_cbrtl.c new file mode 100644 index 00000000000..faa5d4c59f1 --- /dev/null +++ b/lib/libm/src/ld128/s_cbrtl.c @@ -0,0 +1,131 @@ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + * The argument reduction and testing for exceptional cases was + * written by Steven G. Kargl with input from Bruce D. Evans + * and David A. Schultz. + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrtl.c,v 1.1 2011/03/12 19:37:35 kargl Exp $"); +#endif + +#include +#include +#include + +#include "math_private.h" + +#define BIAS (LDBL_MAX_EXP - 1) + +static const unsigned + B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ + +long double +cbrtl(long double x) +{ + long double v, r, s, t, w; + double dr, dt, dx; + float ft, fx; + uint64_t hx, lx; + uint16_t expsign; + int k; + + GET_LDOUBLE_MSW64(hx,x); + k = (hx>>48)&0x7fff; + + /* + * If x = +-Inf, then cbrt(x) = +-Inf. + * If x = NaN, then cbrt(x) = NaN. + */ + if (k == BIAS + LDBL_MAX_EXP) + return (x + x); + + if (k == 0) { + /* If x = +-0, then cbrt(x) = +-0. */ + GET_LDOUBLE_WORDS64(hx,lx,x); + if (((hx&0x7fffffffffffffffLL)|lx) == 0) { + return (x); + } + /* Adjust subnormal numbers. */ + x *= 0x1.0p514; + GET_LDOUBLE_MSW64(hx,x); + k = (hx>>48)&0x7fff; + k -= BIAS + 514; + } else + k -= BIAS; + GET_LDOUBLE_MSW64(hx,x); + hx = (hx&0x8000ffffffffffffLL)|((uint64_t)BIAS<<48); + SET_LDOUBLE_MSW64(x,hx); + v = 1; + + switch (k % 3) { + case 1: + case -2: + x = 2*x; + k--; + break; + case 2: + case -1: + x = 4*x; + k -= 2; + break; + } + GET_LDOUBLE_MSW64(hx,x); + expsign = (expsign & 0x8000) | (BIAS + k / 3); + hx = (hx&0x8000ffffffffffffLL)|((uint64_t)expsign<<48); + SET_LDOUBLE_MSW64(x,hx); + + /* + * The following is the guts of s_cbrtf, with the handling of + * special values removed and extra care for accuracy not taken, + * but with most of the extra accuracy not discarded. + */ + + /* ~5-bit estimate: */ + fx = x; + GET_FLOAT_WORD(hx, fx); + SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1)); + + /* ~16-bit estimate: */ + dx = x; + dt = ft; + dr = dt * dt * dt; + dt = dt * (dx + dx + dr) / (dx + dr + dr); + + /* ~47-bit estimate: */ + dr = dt * dt * dt; + dt = dt * (dx + dx + dr) / (dx + dr + dr); + + /* + * Round dt away from zero to 47 bits. Since we don't trust the 47, + * add 2 47-bit ulps instead of 1 to round up. Rounding is slow and + * might be avoidable in this case, since on most machines dt will + * have been evaluated in 53-bit precision and the technical reasons + * for rounding up might not apply to either case in cbrtl() since + * dt is much more accurate than needed. + */ + t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60; + + /* + * Final step Newton iteration to 64 or 113 bits with + * error < 0.667 ulps + */ + s=t*t; /* t*t is exact */ + r=x/s; /* error <= 0.5 ulps; |r| < |t| */ + w=t+t; /* t+t is exact */ + r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ + t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ + + t *= v; + return (t); +} diff --git a/lib/libm/src/ld128/s_ceill.c b/lib/libm/src/ld128/s_ceill.c new file mode 100644 index 00000000000..9ee833c2301 --- /dev/null +++ b/lib/libm/src/ld128/s_ceill.c @@ -0,0 +1,69 @@ +/* @(#)s_ceil.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * ceill(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to ceil(x). + */ + +#include + +#include "math_private.h" + +static const long double huge = 1.0e4930L; + +long double +ceill(long double x) +{ + int64_t i0,i1,jj0; + u_int64_t i,j; + GET_LDOUBLE_WORDS64(i0,i1,x); + jj0 = ((i0>>48)&0x7fff)-0x3fff; + if(jj0<48) { + if(jj0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0<0) {i0=0x8000000000000000ULL;i1=0;} + else if((i0|i1)!=0) { i0=0x3fff000000000000ULL;i1=0;} + } + } else { + i = (0x0000ffffffffffffULL)>>jj0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) i0 += (0x0001000000000000LL)>>jj0; + i0 &= (~i); i1=0; + } + } + } else if (jj0>111) { + if(jj0==0x4000) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = -1ULL>>(jj0-48); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) { + if(jj0==48) i0+=1; + else { + j = i1+(1LL<<(112-jj0)); + if(j + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* double erf(double x) + * double erfc(double x) + * x + * 2 |\ + * erf(x) = --------- | exp(-t*t)dt + * sqrt(pi) \| + * 0 + * + * erfc(x) = 1-erf(x) + * Note that + * erf(-x) = -erf(x) + * erfc(-x) = 2 - erfc(x) + * + * Method: + * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8] + * Remark. The formula is derived by noting + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) + * and that + * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 + * is close to one. + * + * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0 + * erfc(x) = 1 - erf(x) if |x| < 1/4 + * + * 2. For |x| in [7/8, 1], let s = |x| - 1, and + * c = 0.84506291151 rounded to single (24 bits) + * erf(s + c) = sign(x) * (c + P1(s)/Q1(s)) + * Remark: here we use the taylor series expansion at x=1. + * erf(1+s) = erf(1) + s*Poly(s) + * = 0.845.. + P1(s)/Q1(s) + * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] + * + * 3. For x in [1/4, 5/4], + * erfc(s + const) = erfc(const) + s P1(s)/Q1(s) + * for const = 1/4, 3/8, ..., 9/8 + * and 0 <= s <= 1/8 . + * + * 4. For x in [5/4, 107], + * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z)) + * z=1/x^2 + * The interval is partitioned into several segments + * of width 1/8 in 1/x. + * + * Note1: + * To compute exp(-x*x-0.5625+R/S), let s be a single + * precision number and s := x; then + * -x*x = -s*s + (s-x)*(s+x) + * exp(-x*x-0.5626+R/S) = + * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); + * Note2: + * Here 4 and 5 make use of the asymptotic series + * exp(-x*x) + * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) + * x*sqrt(pi) + * + * 5. For inf > x >= 107 + * erf(x) = sign(x) *(1 - tiny) (raise inexact) + * erfc(x) = tiny*tiny (raise underflow) if x > 0 + * = 2 - tiny if x<0 + * + * 7. Special case: + * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, + * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, + * erfc/erf(NaN) is NaN + */ + +#include + +#include "math_private.h" + +/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +neval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + +/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ + +static long double +deval (long double x, const long double *p, int n) +{ + long double y; + + p += n; + y = x + *p--; + do + { + y = y * x + *p--; + } + while (--n > 0); + return y; +} + + + +static const long double +tiny = 1e-4931L, + one = 1.0L, + two = 2.0L, + /* 2/sqrt(pi) - 1 */ + efx = 1.2837916709551257389615890312154517168810E-1L, + /* 8 * (2/sqrt(pi) - 1) */ + efx8 = 1.0270333367641005911692712249723613735048E0L; + + +/* erf(x) = x + x R(x^2) + 0 <= x <= 7/8 + Peak relative error 1.8e-35 */ +#define NTN1 8 +static const long double TN1[NTN1 + 1] = +{ + -3.858252324254637124543172907442106422373E10L, + 9.580319248590464682316366876952214879858E10L, + 1.302170519734879977595901236693040544854E10L, + 2.922956950426397417800321486727032845006E9L, + 1.764317520783319397868923218385468729799E8L, + 1.573436014601118630105796794840834145120E7L, + 4.028077380105721388745632295157816229289E5L, + 1.644056806467289066852135096352853491530E4L, + 3.390868480059991640235675479463287886081E1L +}; +#define NTD1 8 +static const long double TD1[NTD1 + 1] = +{ + -3.005357030696532927149885530689529032152E11L, + -1.342602283126282827411658673839982164042E11L, + -2.777153893355340961288511024443668743399E10L, + -3.483826391033531996955620074072768276974E9L, + -2.906321047071299585682722511260895227921E8L, + -1.653347985722154162439387878512427542691E7L, + -6.245520581562848778466500301865173123136E5L, + -1.402124304177498828590239373389110545142E4L, + -1.209368072473510674493129989468348633579E2L +/* 1.0E0 */ +}; + + +/* erf(z+1) = erf_const + P(z)/Q(z) + -.125 <= z <= 0 + Peak relative error 7.3e-36 */ +static const long double erf_const = 0.845062911510467529296875L; +#define NTN2 8 +static const long double TN2[NTN2 + 1] = +{ + -4.088889697077485301010486931817357000235E1L, + 7.157046430681808553842307502826960051036E3L, + -2.191561912574409865550015485451373731780E3L, + 2.180174916555316874988981177654057337219E3L, + 2.848578658049670668231333682379720943455E2L, + 1.630362490952512836762810462174798925274E2L, + 6.317712353961866974143739396865293596895E0L, + 2.450441034183492434655586496522857578066E1L, + 5.127662277706787664956025545897050896203E-1L +}; +#define NTD2 8 +static const long double TD2[NTD2 + 1] = +{ + 1.731026445926834008273768924015161048885E4L, + 1.209682239007990370796112604286048173750E4L, + 1.160950290217993641320602282462976163857E4L, + 5.394294645127126577825507169061355698157E3L, + 2.791239340533632669442158497532521776093E3L, + 8.989365571337319032943005387378993827684E2L, + 2.974016493766349409725385710897298069677E2L, + 6.148192754590376378740261072533527271947E1L, + 1.178502892490738445655468927408440847480E1L + /* 1.0E0 */ +}; + + +/* erfc(x + 0.25) = erfc(0.25) + x R(x) + 0 <= x < 0.125 + Peak relative error 1.4e-35 */ +#define NRNr13 8 +static const long double RNr13[NRNr13 + 1] = +{ + -2.353707097641280550282633036456457014829E3L, + 3.871159656228743599994116143079870279866E2L, + -3.888105134258266192210485617504098426679E2L, + -2.129998539120061668038806696199343094971E1L, + -8.125462263594034672468446317145384108734E1L, + 8.151549093983505810118308635926270319660E0L, + -5.033362032729207310462422357772568553670E0L, + -4.253956621135136090295893547735851168471E-2L, + -8.098602878463854789780108161581050357814E-2L +}; +#define NRDr13 7 +static const long double RDr13[NRDr13 + 1] = +{ + 2.220448796306693503549505450626652881752E3L, + 1.899133258779578688791041599040951431383E2L, + 1.061906712284961110196427571557149268454E3L, + 7.497086072306967965180978101974566760042E1L, + 2.146796115662672795876463568170441327274E2L, + 1.120156008362573736664338015952284925592E1L, + 2.211014952075052616409845051695042741074E1L, + 6.469655675326150785692908453094054988938E-1L + /* 1.0E0 */ +}; +/* erfc(0.25) = C13a + C13b to extra precision. */ +static const long double C13a = 0.723663330078125L; +static const long double C13b = 1.0279753638067014931732235184287934646022E-5L; + + +/* erfc(x + 0.375) = erfc(0.375) + x R(x) + 0 <= x < 0.125 + Peak relative error 1.2e-35 */ +#define NRNr14 8 +static const long double RNr14[NRNr14 + 1] = +{ + -2.446164016404426277577283038988918202456E3L, + 6.718753324496563913392217011618096698140E2L, + -4.581631138049836157425391886957389240794E2L, + -2.382844088987092233033215402335026078208E1L, + -7.119237852400600507927038680970936336458E1L, + 1.313609646108420136332418282286454287146E1L, + -6.188608702082264389155862490056401365834E0L, + -2.787116601106678287277373011101132659279E-2L, + -2.230395570574153963203348263549700967918E-2L +}; +#define NRDr14 7 +static const long double RDr14[NRDr14 + 1] = +{ + 2.495187439241869732696223349840963702875E3L, + 2.503549449872925580011284635695738412162E2L, + 1.159033560988895481698051531263861842461E3L, + 9.493751466542304491261487998684383688622E1L, + 2.276214929562354328261422263078480321204E2L, + 1.367697521219069280358984081407807931847E1L, + 2.276988395995528495055594829206582732682E1L, + 7.647745753648996559837591812375456641163E-1L + /* 1.0E0 */ +}; +/* erfc(0.375) = C14a + C14b to extra precision. */ +static const long double C14a = 0.5958709716796875L; +static const long double C14b = 1.2118885490201676174914080878232469565953E-5L; + +/* erfc(x + 0.5) = erfc(0.5) + x R(x) + 0 <= x < 0.125 + Peak relative error 4.7e-36 */ +#define NRNr15 8 +static const long double RNr15[NRNr15 + 1] = +{ + -2.624212418011181487924855581955853461925E3L, + 8.473828904647825181073831556439301342756E2L, + -5.286207458628380765099405359607331669027E2L, + -3.895781234155315729088407259045269652318E1L, + -6.200857908065163618041240848728398496256E1L, + 1.469324610346924001393137895116129204737E1L, + -6.961356525370658572800674953305625578903E0L, + 5.145724386641163809595512876629030548495E-3L, + 1.990253655948179713415957791776180406812E-2L +}; +#define NRDr15 7 +static const long double RDr15[NRDr15 + 1] = +{ + 2.986190760847974943034021764693341524962E3L, + 5.288262758961073066335410218650047725985E2L, + 1.363649178071006978355113026427856008978E3L, + 1.921707975649915894241864988942255320833E2L, + 2.588651100651029023069013885900085533226E2L, + 2.628752920321455606558942309396855629459E1L, + 2.455649035885114308978333741080991380610E1L, + 1.378826653595128464383127836412100939126E0L + /* 1.0E0 */ +}; +/* erfc(0.5) = C15a + C15b to extra precision. */ +static const long double C15a = 0.4794921875L; +static const long double C15b = 7.9346869534623172533461080354712635484242E-6L; + +/* erfc(x + 0.625) = erfc(0.625) + x R(x) + 0 <= x < 0.125 + Peak relative error 5.1e-36 */ +#define NRNr16 8 +static const long double RNr16[NRNr16 + 1] = +{ + -2.347887943200680563784690094002722906820E3L, + 8.008590660692105004780722726421020136482E2L, + -5.257363310384119728760181252132311447963E2L, + -4.471737717857801230450290232600243795637E1L, + -4.849540386452573306708795324759300320304E1L, + 1.140885264677134679275986782978655952843E1L, + -6.731591085460269447926746876983786152300E0L, + 1.370831653033047440345050025876085121231E-1L, + 2.022958279982138755020825717073966576670E-2L, +}; +#define NRDr16 7 +static const long double RDr16[NRDr16 + 1] = +{ + 3.075166170024837215399323264868308087281E3L, + 8.730468942160798031608053127270430036627E2L, + 1.458472799166340479742581949088453244767E3L, + 3.230423687568019709453130785873540386217E2L, + 2.804009872719893612081109617983169474655E2L, + 4.465334221323222943418085830026979293091E1L, + 2.612723259683205928103787842214809134746E1L, + 2.341526751185244109722204018543276124997E0L, + /* 1.0E0 */ +}; +/* erfc(0.625) = C16a + C16b to extra precision. */ +static const long double C16a = 0.3767547607421875L; +static const long double C16b = 4.3570693945275513594941232097252997287766E-6L; + +/* erfc(x + 0.75) = erfc(0.75) + x R(x) + 0 <= x < 0.125 + Peak relative error 1.7e-35 */ +#define NRNr17 8 +static const long double RNr17[NRNr17 + 1] = +{ + -1.767068734220277728233364375724380366826E3L, + 6.693746645665242832426891888805363898707E2L, + -4.746224241837275958126060307406616817753E2L, + -2.274160637728782675145666064841883803196E1L, + -3.541232266140939050094370552538987982637E1L, + 6.988950514747052676394491563585179503865E0L, + -5.807687216836540830881352383529281215100E0L, + 3.631915988567346438830283503729569443642E-1L, + -1.488945487149634820537348176770282391202E-2L +}; +#define NRDr17 7 +static const long double RDr17[NRDr17 + 1] = +{ + 2.748457523498150741964464942246913394647E3L, + 1.020213390713477686776037331757871252652E3L, + 1.388857635935432621972601695296561952738E3L, + 3.903363681143817750895999579637315491087E2L, + 2.784568344378139499217928969529219886578E2L, + 5.555800830216764702779238020065345401144E1L, + 2.646215470959050279430447295801291168941E1L, + 2.984905282103517497081766758550112011265E0L, + /* 1.0E0 */ +}; +/* erfc(0.75) = C17a + C17b to extra precision. */ +static const long double C17a = 0.2888336181640625L; +static const long double C17b = 1.0748182422368401062165408589222625794046E-5L; + + +/* erfc(x + 0.875) = erfc(0.875) + x R(x) + 0 <= x < 0.125 + Peak relative error 2.2e-35 */ +#define NRNr18 8 +static const long double RNr18[NRNr18 + 1] = +{ + -1.342044899087593397419622771847219619588E3L, + 6.127221294229172997509252330961641850598E2L, + -4.519821356522291185621206350470820610727E2L, + 1.223275177825128732497510264197915160235E1L, + -2.730789571382971355625020710543532867692E1L, + 4.045181204921538886880171727755445395862E0L, + -4.925146477876592723401384464691452700539E0L, + 5.933878036611279244654299924101068088582E-1L, + -5.557645435858916025452563379795159124753E-2L +}; +#define NRDr18 7 +static const long double RDr18[NRDr18 + 1] = +{ + 2.557518000661700588758505116291983092951E3L, + 1.070171433382888994954602511991940418588E3L, + 1.344842834423493081054489613250688918709E3L, + 4.161144478449381901208660598266288188426E2L, + 2.763670252219855198052378138756906980422E2L, + 5.998153487868943708236273854747564557632E1L, + 2.657695108438628847733050476209037025318E1L, + 3.252140524394421868923289114410336976512E0L, + /* 1.0E0 */ +}; +/* erfc(0.875) = C18a + C18b to extra precision. */ +static const long double C18a = 0.215911865234375L; +static const long double C18b = 1.3073705765341685464282101150637224028267E-5L; + +/* erfc(x + 1.0) = erfc(1.0) + x R(x) + 0 <= x < 0.125 + Peak relative error 1.6e-35 */ +#define NRNr19 8 +static const long double RNr19[NRNr19 + 1] = +{ + -1.139180936454157193495882956565663294826E3L, + 6.134903129086899737514712477207945973616E2L, + -4.628909024715329562325555164720732868263E2L, + 4.165702387210732352564932347500364010833E1L, + -2.286979913515229747204101330405771801610E1L, + 1.870695256449872743066783202326943667722E0L, + -4.177486601273105752879868187237000032364E0L, + 7.533980372789646140112424811291782526263E-1L, + -8.629945436917752003058064731308767664446E-2L +}; +#define NRDr19 7 +static const long double RDr19[NRDr19 + 1] = +{ + 2.744303447981132701432716278363418643778E3L, + 1.266396359526187065222528050591302171471E3L, + 1.466739461422073351497972255511919814273E3L, + 4.868710570759693955597496520298058147162E2L, + 2.993694301559756046478189634131722579643E2L, + 6.868976819510254139741559102693828237440E1L, + 2.801505816247677193480190483913753613630E1L, + 3.604439909194350263552750347742663954481E0L, + /* 1.0E0 */ +}; +/* erfc(1.0) = C19a + C19b to extra precision. */ +static const long double C19a = 0.15728759765625L; +static const long double C19b = 1.1609394035130658779364917390740703933002E-5L; + +/* erfc(x + 1.125) = erfc(1.125) + x R(x) + 0 <= x < 0.125 + Peak relative error 3.6e-36 */ +#define NRNr20 8 +static const long double RNr20[NRNr20 + 1] = +{ + -9.652706916457973956366721379612508047640E2L, + 5.577066396050932776683469951773643880634E2L, + -4.406335508848496713572223098693575485978E2L, + 5.202893466490242733570232680736966655434E1L, + -1.931311847665757913322495948705563937159E1L, + -9.364318268748287664267341457164918090611E-2L, + -3.306390351286352764891355375882586201069E0L, + 7.573806045289044647727613003096916516475E-1L, + -9.611744011489092894027478899545635991213E-2L +}; +#define NRDr20 7 +static const long double RDr20[NRDr20 + 1] = +{ + 3.032829629520142564106649167182428189014E3L, + 1.659648470721967719961167083684972196891E3L, + 1.703545128657284619402511356932569292535E3L, + 6.393465677731598872500200253155257708763E2L, + 3.489131397281030947405287112726059221934E2L, + 8.848641738570783406484348434387611713070E1L, + 3.132269062552392974833215844236160958502E1L, + 4.430131663290563523933419966185230513168E0L + /* 1.0E0 */ +}; +/* erfc(1.125) = C20a + C20b to extra precision. */ +static const long double C20a = 0.111602783203125L; +static const long double C20b = 8.9850951672359304215530728365232161564636E-6L; + +/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) + 7/8 <= 1/x < 1 + Peak relative error 1.4e-35 */ +#define NRNr8 9 +static const long double RNr8[NRNr8 + 1] = +{ + 3.587451489255356250759834295199296936784E1L, + 5.406249749087340431871378009874875889602E2L, + 2.931301290625250886238822286506381194157E3L, + 7.359254185241795584113047248898753470923E3L, + 9.201031849810636104112101947312492532314E3L, + 5.749697096193191467751650366613289284777E3L, + 1.710415234419860825710780802678697889231E3L, + 2.150753982543378580859546706243022719599E2L, + 8.740953582272147335100537849981160931197E0L, + 4.876422978828717219629814794707963640913E-2L +}; +#define NRDr8 8 +static const long double RDr8[NRDr8 + 1] = +{ + 6.358593134096908350929496535931630140282E1L, + 9.900253816552450073757174323424051765523E2L, + 5.642928777856801020545245437089490805186E3L, + 1.524195375199570868195152698617273739609E4L, + 2.113829644500006749947332935305800887345E4L, + 1.526438562626465706267943737310282977138E4L, + 5.561370922149241457131421914140039411782E3L, + 9.394035530179705051609070428036834496942E2L, + 6.147019596150394577984175188032707343615E1L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) + 0.75 <= 1/x <= 0.875 + Peak relative error 2.0e-36 */ +#define NRNr7 9 +static const long double RNr7[NRNr7 + 1] = +{ + 1.686222193385987690785945787708644476545E1L, + 1.178224543567604215602418571310612066594E3L, + 1.764550584290149466653899886088166091093E4L, + 1.073758321890334822002849369898232811561E5L, + 3.132840749205943137619839114451290324371E5L, + 4.607864939974100224615527007793867585915E5L, + 3.389781820105852303125270837910972384510E5L, + 1.174042187110565202875011358512564753399E5L, + 1.660013606011167144046604892622504338313E4L, + 6.700393957480661937695573729183733234400E2L +}; +#define NRDr7 9 +static const long double RDr7[NRDr7 + 1] = +{ +-1.709305024718358874701575813642933561169E3L, +-3.280033887481333199580464617020514788369E4L, +-2.345284228022521885093072363418750835214E5L, +-8.086758123097763971926711729242327554917E5L, +-1.456900414510108718402423999575992450138E6L, +-1.391654264881255068392389037292702041855E6L, +-6.842360801869939983674527468509852583855E5L, +-1.597430214446573566179675395199807533371E5L, +-1.488876130609876681421645314851760773480E4L, +-3.511762950935060301403599443436465645703E2L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 5/8 <= 1/x < 3/4 + Peak relative error 1.9e-35 */ +#define NRNr6 9 +static const long double RNr6[NRNr6 + 1] = +{ + 1.642076876176834390623842732352935761108E0L, + 1.207150003611117689000664385596211076662E2L, + 2.119260779316389904742873816462800103939E3L, + 1.562942227734663441801452930916044224174E4L, + 5.656779189549710079988084081145693580479E4L, + 1.052166241021481691922831746350942786299E5L, + 9.949798524786000595621602790068349165758E4L, + 4.491790734080265043407035220188849562856E4L, + 8.377074098301530326270432059434791287601E3L, + 4.506934806567986810091824791963991057083E2L +}; +#define NRDr6 9 +static const long double RDr6[NRDr6 + 1] = +{ +-1.664557643928263091879301304019826629067E2L, +-3.800035902507656624590531122291160668452E3L, +-3.277028191591734928360050685359277076056E4L, +-1.381359471502885446400589109566587443987E5L, +-3.082204287382581873532528989283748656546E5L, +-3.691071488256738343008271448234631037095E5L, +-2.300482443038349815750714219117566715043E5L, +-6.873955300927636236692803579555752171530E4L, +-8.262158817978334142081581542749986845399E3L, +-2.517122254384430859629423488157361983661E2L + /* 1.00 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 1/2 <= 1/x < 5/8 + Peak relative error 4.6e-36 */ +#define NRNr5 10 +static const long double RNr5[NRNr5 + 1] = +{ +-3.332258927455285458355550878136506961608E-3L, +-2.697100758900280402659586595884478660721E-1L, +-6.083328551139621521416618424949137195536E0L, +-6.119863528983308012970821226810162441263E1L, +-3.176535282475593173248810678636522589861E2L, +-8.933395175080560925809992467187963260693E2L, +-1.360019508488475978060917477620199499560E3L, +-1.075075579828188621541398761300910213280E3L, +-4.017346561586014822824459436695197089916E2L, +-5.857581368145266249509589726077645791341E1L, +-2.077715925587834606379119585995758954399E0L +}; +#define NRDr5 9 +static const long double RDr5[NRDr5 + 1] = +{ + 3.377879570417399341550710467744693125385E-1L, + 1.021963322742390735430008860602594456187E1L, + 1.200847646592942095192766255154827011939E2L, + 7.118915528142927104078182863387116942836E2L, + 2.318159380062066469386544552429625026238E3L, + 4.238729853534009221025582008928765281620E3L, + 4.279114907284825886266493994833515580782E3L, + 2.257277186663261531053293222591851737504E3L, + 5.570475501285054293371908382916063822957E2L, + 5.142189243856288981145786492585432443560E1L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 3/8 <= 1/x < 1/2 + Peak relative error 2.0e-36 */ +#define NRNr4 10 +static const long double RNr4[NRNr4 + 1] = +{ + 3.258530712024527835089319075288494524465E-3L, + 2.987056016877277929720231688689431056567E-1L, + 8.738729089340199750734409156830371528862E0L, + 1.207211160148647782396337792426311125923E2L, + 8.997558632489032902250523945248208224445E2L, + 3.798025197699757225978410230530640879762E3L, + 9.113203668683080975637043118209210146846E3L, + 1.203285891339933238608683715194034900149E4L, + 8.100647057919140328536743641735339740855E3L, + 2.383888249907144945837976899822927411769E3L, + 2.127493573166454249221983582495245662319E2L +}; +#define NRDr4 10 +static const long double RDr4[NRDr4 + 1] = +{ +-3.303141981514540274165450687270180479586E-1L, +-1.353768629363605300707949368917687066724E1L, +-2.206127630303621521950193783894598987033E2L, +-1.861800338758066696514480386180875607204E3L, +-8.889048775872605708249140016201753255599E3L, +-2.465888106627948210478692168261494857089E4L, +-3.934642211710774494879042116768390014289E4L, +-3.455077258242252974937480623730228841003E4L, +-1.524083977439690284820586063729912653196E4L, +-2.810541887397984804237552337349093953857E3L, +-1.343929553541159933824901621702567066156E2L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 1/4 <= 1/x < 3/8 + Peak relative error 8.4e-37 */ +#define NRNr3 11 +static const long double RNr3[NRNr3 + 1] = +{ +-1.952401126551202208698629992497306292987E-6L, +-2.130881743066372952515162564941682716125E-4L, +-8.376493958090190943737529486107282224387E-3L, +-1.650592646560987700661598877522831234791E-1L, +-1.839290818933317338111364667708678163199E0L, +-1.216278715570882422410442318517814388470E1L, +-4.818759344462360427612133632533779091386E1L, +-1.120994661297476876804405329172164436784E2L, +-1.452850765662319264191141091859300126931E2L, +-9.485207851128957108648038238656777241333E1L, +-2.563663855025796641216191848818620020073E1L, +-1.787995944187565676837847610706317833247E0L +}; +#define NRDr3 10 +static const long double RDr3[NRDr3 + 1] = +{ + 1.979130686770349481460559711878399476903E-4L, + 1.156941716128488266238105813374635099057E-2L, + 2.752657634309886336431266395637285974292E-1L, + 3.482245457248318787349778336603569327521E0L, + 2.569347069372696358578399521203959253162E1L, + 1.142279000180457419740314694631879921561E2L, + 3.056503977190564294341422623108332700840E2L, + 4.780844020923794821656358157128719184422E2L, + 4.105972727212554277496256802312730410518E2L, + 1.724072188063746970865027817017067646246E2L, + 2.815939183464818198705278118326590370435E1L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 1/8 <= 1/x < 1/4 + Peak relative error 1.5e-36 */ +#define NRNr2 11 +static const long double RNr2[NRNr2 + 1] = +{ +-2.638914383420287212401687401284326363787E-8L, +-3.479198370260633977258201271399116766619E-6L, +-1.783985295335697686382487087502222519983E-4L, +-4.777876933122576014266349277217559356276E-3L, +-7.450634738987325004070761301045014986520E-2L, +-7.068318854874733315971973707247467326619E-1L, +-4.113919921935944795764071670806867038732E0L, +-1.440447573226906222417767283691888875082E1L, +-2.883484031530718428417168042141288943905E1L, +-2.990886974328476387277797361464279931446E1L, +-1.325283914915104866248279787536128997331E1L, +-1.572436106228070195510230310658206154374E0L +}; +#define NRDr2 10 +static const long double RDr2[NRDr2 + 1] = +{ + 2.675042728136731923554119302571867799673E-6L, + 2.170997868451812708585443282998329996268E-4L, + 7.249969752687540289422684951196241427445E-3L, + 1.302040375859768674620410563307838448508E-1L, + 1.380202483082910888897654537144485285549E0L, + 8.926594113174165352623847870299170069350E0L, + 3.521089584782616472372909095331572607185E1L, + 8.233547427533181375185259050330809105570E1L, + 1.072971579885803033079469639073292840135E2L, + 6.943803113337964469736022094105143158033E1L, + 1.775695341031607738233608307835017282662E1L + /* 1.0E0 */ +}; + +/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) + 1/128 <= 1/x < 1/8 + Peak relative error 2.2e-36 */ +#define NRNr1 9 +static const long double RNr1[NRNr1 + 1] = +{ +-4.250780883202361946697751475473042685782E-8L, +-5.375777053288612282487696975623206383019E-6L, +-2.573645949220896816208565944117382460452E-4L, +-6.199032928113542080263152610799113086319E-3L, +-8.262721198693404060380104048479916247786E-2L, +-6.242615227257324746371284637695778043982E-1L, +-2.609874739199595400225113299437099626386E0L, +-5.581967563336676737146358534602770006970E0L, +-5.124398923356022609707490956634280573882E0L, +-1.290865243944292370661544030414667556649E0L +}; +#define NRDr1 8 +static const long double RDr1[NRDr1 + 1] = +{ + 4.308976661749509034845251315983612976224E-6L, + 3.265390126432780184125233455960049294580E-4L, + 9.811328839187040701901866531796570418691E-3L, + 1.511222515036021033410078631914783519649E-1L, + 1.289264341917429958858379585970225092274E0L, + 6.147640356182230769548007536914983522270E0L, + 1.573966871337739784518246317003956180750E1L, + 1.955534123435095067199574045529218238263E1L, + 9.472613121363135472247929109615785855865E0L + /* 1.0E0 */ +}; + + +long double +erfl(long double x) +{ + long double a, y, z; + int32_t i, ix, sign; + ieee_quad_shape_type u; + + u.value = x; + sign = u.parts32.mswhi; + ix = sign & 0x7fffffff; + + if (ix >= 0x7fff0000) + { /* erf(nan)=nan */ + i = ((sign & 0xffff0000) >> 31) << 1; + return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */ + } + + if (ix >= 0x3fff0000) /* |x| >= 1.0 */ + { + y = erfcl (x); + return (one - y); + /* return (one - erfcl (x)); */ + } + u.parts32.mswhi = ix; + a = u.value; + z = x * x; + if (ix < 0x3ffec000) /* a < 0.875 */ + { + if (ix < 0x3fc60000) /* |x|<2**-57 */ + { + if (ix < 0x00080000) + return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */ + return x + efx * x; + } + y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1); + } + else + { + a = a - one; + y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2); + } + + if (sign & 0x80000000) /* x < 0 */ + y = -y; + return( y ); +} + +long double +erfcl(long double x) +{ + long double y, z, p, r; + int32_t i, ix, sign; + ieee_quad_shape_type u; + + u.value = x; + sign = u.parts32.mswhi; + ix = sign & 0x7fffffff; + u.parts32.mswhi = ix; + + if (ix >= 0x7fff0000) + { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (long double) (((u_int32_t) sign >> 31) << 1) + one / x; + } + + if (ix < 0x3ffd0000) /* |x| <1/4 */ + { + if (ix < 0x3f8d0000) /* |x|<2**-114 */ + return one - x; + return one - erfl (x); + } + if (ix < 0x3fff4000) /* 1.25 */ + { + x = u.value; + i = 8.0 * x; + switch (i) + { + case 2: + z = x - 0.25L; + y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13); + y += C13a; + break; + case 3: + z = x - 0.375L; + y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14); + y += C14a; + break; + case 4: + z = x - 0.5L; + y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15); + y += C15a; + break; + case 5: + z = x - 0.625L; + y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16); + y += C16a; + break; + case 6: + z = x - 0.75L; + y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17); + y += C17a; + break; + case 7: + z = x - 0.875L; + y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18); + y += C18a; + break; + case 8: + z = x - 1.0L; + y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19); + y += C19a; + break; + case 9: + z = x - 1.125L; + y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20); + y += C20a; + break; + } + if (sign & 0x80000000) + y = 2.0L - y; + return y; + } + /* 1.25 < |x| < 107 */ + if (ix < 0x4005ac00) + { + /* x < -9 */ + if ((ix >= 0x40022000) && (sign & 0x80000000)) + return two - tiny; + + x = fabsl (x); + z = one / (x * x); + i = 8.0 / x; + switch (i) + { + default: + case 0: + p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1); + break; + case 1: + p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2); + break; + case 2: + p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3); + break; + case 3: + p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4); + break; + case 4: + p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5); + break; + case 5: + p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6); + break; + case 6: + p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7); + break; + case 7: + p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8); + break; + } + u.value = x; + u.parts32.lswlo = 0; + u.parts32.lswhi &= 0xfe000000; + z = u.value; + r = expl (-z * z - 0.5625) * + expl ((z - x) * (z + x) + p); + if ((sign & 0x80000000) == 0) + return r / x; + else + return two - r / x; + } + else + { + if ((sign & 0x80000000) == 0) + return tiny * tiny; + else + return two - tiny; + } +} diff --git a/lib/libm/src/ld128/s_expm1l.c b/lib/libm/src/ld128/s_expm1l.c new file mode 100644 index 00000000000..eb58b3ee209 --- /dev/null +++ b/lib/libm/src/ld128/s_expm1l.c @@ -0,0 +1,162 @@ +/* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* expm1l.c + * + * Exponential function, minus 1 + * 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, expm1l(); + * + * y = expm1l( x ); + * + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power, minus one. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + * x k f + * e = 2 e. + * + * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 + * in the basic range [-0.5 ln 2, 0.5 ln 2]. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35 + * + */ + +#include +#include + +#include "math_private.h" + +/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) + -.5 ln 2 < x < .5 ln 2 + Theoretical peak relative error = 8.1e-36 */ + +static const long double + P0 = 2.943520915569954073888921213330863757240E8L, + P1 = -5.722847283900608941516165725053359168840E7L, + P2 = 8.944630806357575461578107295909719817253E6L, + P3 = -7.212432713558031519943281748462837065308E5L, + P4 = 4.578962475841642634225390068461943438441E4L, + P5 = -1.716772506388927649032068540558788106762E3L, + P6 = 4.401308817383362136048032038528753151144E1L, + P7 = -4.888737542888633647784737721812546636240E-1L, + Q0 = 1.766112549341972444333352727998584753865E9L, + Q1 = -7.848989743695296475743081255027098295771E8L, + Q2 = 1.615869009634292424463780387327037251069E8L, + Q3 = -2.019684072836541751428967854947019415698E7L, + Q4 = 1.682912729190313538934190635536631941751E6L, + Q5 = -9.615511549171441430850103489315371768998E4L, + Q6 = 3.697714952261803935521187272204485251835E3L, + Q7 = -8.802340681794263968892934703309274564037E1L, + /* Q8 = 1.000000000000000000000000000000000000000E0 */ +/* C1 + C2 = ln 2 */ + + C1 = 6.93145751953125E-1L, + C2 = 1.428606820309417232121458176568075500134E-6L, +/* ln (2^16384 * (1 - 2^-113)) */ + maxlog = 1.1356523406294143949491931077970764891253E4L, +/* ln 2^-114 */ + minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L; + + +long double +expm1l(long double x) +{ + long double px, qx, xx; + int32_t ix, sign; + ieee_quad_shape_type u; + int k; + + /* Detect infinity and NaN. */ + u.value = x; + ix = u.parts32.mswhi; + sign = ix & 0x80000000; + ix &= 0x7fffffff; + if (ix >= 0x7fff0000) + { + /* Infinity. */ + if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi | + u.parts32.lswlo) == 0) + { + if (sign) + return -1.0L; + else + return x; + } + /* NaN. No invalid exception. */ + return x; + } + + /* expm1(+- 0) = +- 0. */ + if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0) + return x; + + /* Overflow. */ + if (x > maxlog) + return (big * big); + + /* Minimum value. */ + if (x < minarg) + return (4.0/big - 1.0L); + + /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ + xx = C1 + C2; /* ln 2. */ + px = floorl (0.5 + x / xx); + k = px; + /* remainder times ln 2 */ + x -= px * C1; + x -= px * C2; + + /* Approximate exp(remainder ln 2). */ + px = (((((((P7 * x + + P6) * x + + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; + + qx = (((((((x + + Q7) * x + + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; + + xx = x * x; + qx = x + (0.5 * xx + xx * px / qx); + + /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). + + We have qx = exp(remainder ln 2) - 1, so + exp(x) - 1 = 2^k (qx + 1) - 1 + = 2^k qx + 2^k - 1. */ + + px = ldexpl (1.0L, k); + x = px * qx + (px - 1.0); + return x; +} diff --git a/lib/libm/src/ld128/s_floorl.c b/lib/libm/src/ld128/s_floorl.c new file mode 100644 index 00000000000..e3c05d1c914 --- /dev/null +++ b/lib/libm/src/ld128/s_floorl.c @@ -0,0 +1,70 @@ +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * floorl(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floor(x). + */ + +#include + +#include "math_private.h" + +static const long double huge = 1.0e4930L; + +long double +floorl(long double x) +{ + int64_t i0,i1,jj0; + u_int64_t i,j; + GET_LDOUBLE_WORDS64(i0,i1,x); + jj0 = ((i0>>48)&0x7fff)-0x3fff; + if(jj0<48) { + if(jj0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0>=0) {i0=i1=0;} + else if(((i0&0x7fffffffffffffffLL)|i1)!=0) + { i0=0xbfff000000000000ULL;i1=0;} + } + } else { + i = (0x0000ffffffffffffULL)>>jj0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) i0 += (0x0001000000000000LL)>>jj0; + i0 &= (~i); i1=0; + } + } + } else if (jj0>111) { + if(jj0==0x4000) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = -1ULL>>(jj0-48); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) { + if(jj0==48) i0+=1; + else { + j = i1+(1LL<<(112-jj0)); + if(j + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log1pl.c + * + * Relative error logarithm + * Natural logarithm of 1+x, 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log1pl(); + * + * y = log1pl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of 1+x. + * + * The argument 1+x is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). + * + * Otherwise, setting z = 2(w-1)/(w+1), + * + * log(w) = z + z^3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -1, 8 100000 1.9e-34 4.3e-35 + */ + +#include + +#include "math_private.h" + +/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) + * 1/sqrt(2) <= 1+x < sqrt(2) + * Theoretical peak relative error = 5.3e-37, + * relative peak error spread = 2.3e-14 + */ +static const long double + P12 = 1.538612243596254322971797716843006400388E-6L, + P11 = 4.998469661968096229986658302195402690910E-1L, + P10 = 2.321125933898420063925789532045674660756E1L, + P9 = 4.114517881637811823002128927449878962058E2L, + P8 = 3.824952356185897735160588078446136783779E3L, + P7 = 2.128857716871515081352991964243375186031E4L, + P6 = 7.594356839258970405033155585486712125861E4L, + P5 = 1.797628303815655343403735250238293741397E5L, + P4 = 2.854829159639697837788887080758954924001E5L, + P3 = 3.007007295140399532324943111654767187848E5L, + P2 = 2.014652742082537582487669938141683759923E5L, + P1 = 7.771154681358524243729929227226708890930E4L, + P0 = 1.313572404063446165910279910527789794488E4L, + /* Q12 = 1.000000000000000000000000000000000000000E0L, */ + Q11 = 4.839208193348159620282142911143429644326E1L, + Q10 = 9.104928120962988414618126155557301584078E2L, + Q9 = 9.147150349299596453976674231612674085381E3L, + Q8 = 5.605842085972455027590989944010492125825E4L, + Q7 = 2.248234257620569139969141618556349415120E5L, + Q6 = 6.132189329546557743179177159925690841200E5L, + Q5 = 1.158019977462989115839826904108208787040E6L, + Q4 = 1.514882452993549494932585972882995548426E6L, + Q3 = 1.347518538384329112529391120390701166528E6L, + Q2 = 7.777690340007566932935753241556479363645E5L, + Q1 = 2.626900195321832660448791748036714883242E5L, + Q0 = 3.940717212190338497730839731583397586124E4L; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 1.1e-35, + * relative peak error spread 1.1e-9 + */ +static const long double + R5 = -8.828896441624934385266096344596648080902E-1L, + R4 = 8.057002716646055371965756206836056074715E1L, + R3 = -2.024301798136027039250415126250455056397E3L, + R2 = 2.048819892795278657810231591630928516206E4L, + R1 = -8.977257995689735303686582344659576526998E4L, + R0 = 1.418134209872192732479751274970992665513E5L, + /* S6 = 1.000000000000000000000000000000000000000E0L, */ + S5 = -1.186359407982897997337150403816839480438E2L, + S4 = 3.998526750980007367835804959888064681098E3L, + S3 = -5.748542087379434595104154610899551484314E4L, + S2 = 4.001557694070773974936904547424676279307E5L, + S1 = -1.332535117259762928288745111081235577029E6L, + S0 = 1.701761051846631278975701529965589676574E6L; + +/* C1 + C2 = ln 2 */ +static const long double C1 = 6.93145751953125E-1L; +static const long double C2 = 1.428606820309417232121458176568075500134E-6L; + +static const long double sqrth = 0.7071067811865475244008443621048490392848L; +/* ln (2^16384 * (1 - 2^-113)) */ +static const long double zero = 0.0L; + +long double +log1pl(long double xm1) +{ + long double x, y, z, r, s; + ieee_quad_shape_type u; + int32_t hx; + int e; + + /* Test for NaN or infinity input. */ + u.value = xm1; + hx = u.parts32.mswhi; + if (hx >= 0x7fff0000) + return xm1; + + /* log1p(+- 0) = +- 0. */ + if (((hx & 0x7fffffff) == 0) + && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0) + return xm1; + + x = xm1 + 1.0L; + + /* log1p(-1) = -inf */ + if (x <= 0.0L) + { + if (x == 0.0L) + return (-1.0L / (x - x)); + else + return (zero / (x - x)); + } + + /* Separate mantissa from exponent. */ + + /* Use frexp used so that denormal numbers will be handled properly. */ + x = frexpl (x, &e); + + /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), + where z = 2(x-1)/x+1). */ + if ((e > 2) || (e < -2)) + { + if (x < sqrth) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } + else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } + x = z / y; + z = x * x; + r = ((((R5 * z + + R4) * z + + R3) * z + + R2) * z + + R1) * z + + R0; + s = (((((z + + S5) * z + + S4) * z + + S3) * z + + S2) * z + + S1) * z + + S0; + z = x * (z * r / s); + z = z + e * C2; + z = z + x; + z = z + e * C1; + return (z); + } + + + /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ + + if (x < sqrth) + { + e -= 1; + if (e != 0) + x = 2.0L * x - 1.0L; /* 2x - 1 */ + else + x = xm1; + } + else + { + if (e != 0) + x = x - 1.0L; + else + x = xm1; + } + z = x * x; + r = (((((((((((P12 * x + + P11) * x + + P10) * x + + P9) * x + + P8) * x + + P7) * x + + P6) * x + + P5) * x + + P4) * x + + P3) * x + + P2) * x + + P1) * x + + P0; + s = (((((((((((x + + Q11) * x + + Q10) * x + + Q9) * x + + Q8) * x + + Q7) * x + + Q6) * x + + Q5) * x + + Q4) * x + + Q3) * x + + Q2) * x + + Q1) * x + + Q0; + y = x * (z * r / s); + y = y + e * C2; + z = y - 0.5L * z; + z = z + x; + z = z + e * C1; + return (z); +} diff --git a/lib/libm/src/ld128/s_modfl.c b/lib/libm/src/ld128/s_modfl.c new file mode 100644 index 00000000000..0ca4a354631 --- /dev/null +++ b/lib/libm/src/ld128/s_modfl.c @@ -0,0 +1,73 @@ +/* @(#)s_modf.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * modfl(long double x, long double *iptr) + * return fraction part of x, and return x's integral part in *iptr. + * Method: + * Bit twiddling. + * + * Exception: + * No exception. + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0; + +long double +modfl(long double x, long double *iptr) +{ + int64_t i0,i1,jj0; + u_int64_t i; + GET_LDOUBLE_WORDS64(i0,i1,x); + jj0 = ((i0>>48)&0x7fff)-0x3fff; /* exponent of x */ + if(jj0<48) { /* integer part in high x */ + if(jj0<0) { /* |x|<1 */ + /* *iptr = +-0 */ + SET_LDOUBLE_WORDS64(*iptr,i0&0x8000000000000000ULL,0); + return x; + } else { + i = (0x0000ffffffffffffLL)>>jj0; + if(((i0&i)|i1)==0) { /* x is integral */ + *iptr = x; + /* return +-0 */ + SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); + return x; + } else { + SET_LDOUBLE_WORDS64(*iptr,i0&(~i),0); + return x - *iptr; + } + } + } else if (jj0>111) { /* no fraction part */ + *iptr = x*one; + /* We must handle NaNs separately. */ + if (jj0 == 0x4000 && ((i0 & 0x0000ffffffffffffLL) | i1)) + return x*one; + /* return +-0 */ + SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); + return x; + } else { /* fraction part in low x */ + i = -1ULL>>(jj0-48); + if((i1&i)==0) { /* x is integral */ + *iptr = x; + /* return +-0 */ + SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); + return x; + } else { + SET_LDOUBLE_WORDS64(*iptr,i0,i1&(~i)); + return x - *iptr; + } + } +} diff --git a/lib/libm/src/ld128/s_nextafterl.c b/lib/libm/src/ld128/s_nextafterl.c new file mode 100644 index 00000000000..2ef84bcc9c0 --- /dev/null +++ b/lib/libm/src/ld128/s_nextafterl.c @@ -0,0 +1,73 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nextafterl(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * Special cases: + */ + +#include +#include + +#include "math_private.h" + +long double +nextafterl(long double x, long double y) +{ + int64_t hx,hy,ix,iy; + u_int64_t lx,ly; + + GET_LDOUBLE_WORDS64(hx,lx,x); + GET_LDOUBLE_WORDS64(hy,ly,y); + ix = hx&0x7fffffffffffffffLL; /* |x| */ + iy = hy&0x7fffffffffffffffLL; /* |y| */ + + if(((ix>=0x7fff000000000000LL)&&((ix-0x7fff000000000000LL)|lx)!=0) || /* x is nan */ + ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) /* y is nan */ + return x+y; + if(x==y) return y; /* x=y, return y */ + if((ix|lx)==0) { /* x == 0 */ + volatile long double u; + SET_LDOUBLE_WORDS64(x,hy&0x8000000000000000ULL,1);/* return +-minsubnormal */ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */ + if(lx==0) hx--; + lx--; + } else { /* x < y, x += ulp */ + lx++; + if(lx==0) hx++; + } + } else { /* x < 0 */ + if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */ + if(lx==0) hx--; + lx--; + } else { /* x > y, x += ulp */ + lx++; + if(lx==0) hx++; + } + } + hy = hx&0x7fff000000000000LL; + if(hy==0x7fff000000000000LL) return x+x;/* overflow */ + if(hy==0) { + volatile long double u = x*x; /* underflow */ + } + SET_LDOUBLE_WORDS64(x,hx,lx); + return x; +} + +__weak_alias(nexttowardl, nextafterl); diff --git a/lib/libm/src/ld128/s_nexttoward.c b/lib/libm/src/ld128/s_nexttoward.c new file mode 100644 index 00000000000..adbbb22ce00 --- /dev/null +++ b/lib/libm/src/ld128/s_nexttoward.c @@ -0,0 +1,85 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nexttoward(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * Special cases: + */ + +#include +#include + +#include "math_private.h" + +double +nexttoward(double x, long double y) +{ + int32_t hx,ix; + int64_t hy,iy; + u_int32_t lx; + u_int64_t ly; + + EXTRACT_WORDS(hx,lx,x); + GET_LDOUBLE_WORDS64(hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = hy&0x7fffffffffffffffLL; /* |y| */ + + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ + ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) + /* y is nan */ + return x+y; + if((long double) x==y) return y; /* x=y, return y */ + if((ix|lx)==0) { /* x == 0 */ + volatile double u; + INSERT_WORDS(x,(u_int32_t)((hy>>32)&0x80000000),1);/* return +-minsub */ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if (hy<0||(ix>>20)>(iy>>48)-0x3c00 + || ((ix>>20)==(iy>>48)-0x3c00 + && (((((int64_t)hx)<<28)|(lx>>4))>(hy&0x0000ffffffffffffLL) + || (((((int64_t)hx)<<28)|(lx>>4))==(hy&0x0000ffffffffffffLL) + && (lx&0xf)>(ly>>60))))) { /* x > y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x < y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } else { /* x < 0 */ + if (hy>=0||(ix>>20)>(iy>>48)-0x3c00 + || ((ix>>20)==(iy>>48)-0x3c00 + && (((((int64_t)hx)<<28)|(lx>>4))>(hy&0x0000ffffffffffffLL) + || (((((int64_t)hx)<<28)|(lx>>4))==(hy&0x0000ffffffffffffLL) + && (lx&0xf)>(ly>>60))))) { /* x < y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x > y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } + hy = hx&0x7ff00000; + if(hy>=0x7ff00000) { + x = x+x; /* overflow */ + return x; + } + if(hy<0x00100000) { + volatile double u = x*x; /* underflow */ + } + INSERT_WORDS(x,hx,lx); + return x; +} diff --git a/lib/libm/src/ld128/s_nexttowardf.c b/lib/libm/src/ld128/s_nexttowardf.c new file mode 100644 index 00000000000..e63a165a5b6 --- /dev/null +++ b/lib/libm/src/ld128/s_nexttowardf.c @@ -0,0 +1,65 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include + +#include "math_private.h" + +float +nexttowardf(float x, long double y) +{ + int32_t hx,ix; + int64_t hy,iy; + u_int64_t ly; + + GET_FLOAT_WORD(hx,x); + GET_LDOUBLE_WORDS64(hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = hy&0x7fffffffffffffffLL; /* |y| */ + + if((ix>0x7f800000) || /* x is nan */ + ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) + /* y is nan */ + return x+y; + if((long double) x==y) return y; /* x=y, return y */ + if(ix==0) { /* x == 0 */ + volatile float u; + SET_FLOAT_WORD(x,(u_int32_t)((hy>>32)&0x80000000)|1);/* return +-minsub*/ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if(hy<0||(ix>>23)>(iy>>48)-0x3f80 + || ((ix>>23)==(iy>>48)-0x3f80 + && (ix&0x7fffff)>((hy>>25)&0x7fffff))) {/* x > y, x -= ulp */ + hx -= 1; + } else { /* x < y, x += ulp */ + hx += 1; + } + } else { /* x < 0 */ + if(hy>=0||(ix>>23)>(iy>>48)-0x3f80 + || ((ix>>23)==(iy>>48)-0x3f80 + && (ix&0x7fffff)>((hy>>25)&0x7fffff))) {/* x < y, x -= ulp */ + hx -= 1; + } else { /* x > y, x += ulp */ + hx += 1; + } + } + hy = hx&0x7f800000; + if(hy>=0x7f800000) return x+x; /* overflow */ + if(hy<0x00800000) { + volatile float u = x*x; /* underflow */ + } + SET_FLOAT_WORD(x,hx); + return x; +} diff --git a/lib/libm/src/ld128/s_remquol.c b/lib/libm/src/ld128/s_remquol.c new file mode 100644 index 00000000000..3a5087b46b2 --- /dev/null +++ b/lib/libm/src/ld128/s_remquol.c @@ -0,0 +1,173 @@ +/* @(#)e_fmod.c 1.3 95/01/18 */ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_remquol.c,v 1.2 2008/07/31 20:09:47 das Exp $"); +#endif + +#include +#include + +#include +#include +#include + +#include "math_private.h" + +#define BIAS (LDBL_MAX_EXP - 1) + +/* + * These macros add and remove an explicit integer bit in front of the + * fractional mantissa, if the architecture doesn't have such a bit by + * default already. + */ +#ifdef LDBL_IMPLICIT_NBIT +#define LDBL_NBIT 0 +#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) +#define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS) +#else +#define LDBL_NBIT 0x80000000 +#define SET_NBIT(hx) (hx) +#define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS - 1) +#endif + +#define MANL_SHIFT (EXT_FRACLMBITS + EXT_FRACLBITS - 1) + +static const long double Zero[] = {0.0L, -0.0L}; + +/* + * Return the IEEE remainder and set *quo to the last n bits of the + * quotient, rounded to the nearest integer. We choose n=31 because + * we wind up computing all the integer bits of the quotient anyway as + * a side-effect of computing the remainder by the shift and subtract + * method. In practice, this is far more bits than are needed to use + * remquo in reduction algorithms. + * + * Assumptions: + * - The low part of the mantissa fits in a manl_t exactly. + * - The high part of the mantissa fits in an int64_t with enough room + * for an explicit integer bit in front of the fractional bits. + */ +long double +remquol(long double x, long double y, int *quo) +{ + int64_t hx,hz,hy,_hx; + uint64_t lx,ly,lz; + uint64_t sx,sxy; + int ix,iy,n,q; + + GET_LDOUBLE_WORDS64(hx,lx,x); + GET_LDOUBLE_WORDS64(hy,ly,y); + sx = (hx>>48)&0x8000; + sxy = sx ^ ((hy>>48)&0x8000); + hx &= 0x7fffffffffffffffLL; /* |x| */ + hy &= 0x7fffffffffffffffLL; /* |y| */ + SET_LDOUBLE_WORDS64(x,hx,lx); + SET_LDOUBLE_WORDS64(y,hy,ly); + + /* purge off exception values */ + if((hy|ly)==0 || /* y=0 */ + ((hx>>48) == BIAS + LDBL_MAX_EXP) || /* or x not finite */ + ((hy>>48) == BIAS + LDBL_MAX_EXP && + (((hy&0x0000ffffffffffffLL)&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */ + return (x*y)/(x*y); + if((hx>>48)<=(hy>>48)) { + if(((hx>>48)<(hy>>48)) || + ((hx&0x0000ffffffffffffLL)<=(hy&0x0000ffffffffffffLL) && + ((hx&0x0000ffffffffffffLL)<(hy&0x0000ffffffffffffLL) || + lx>48) == 0) { /* subnormal x */ + x *= 0x1.0p512; + GET_LDOUBLE_WORDS64(hx,lx,x); + ix = (hx>>48) - (BIAS + 512); + } else { + ix = (hx>>48) - BIAS; + } + + /* determine iy = ilogb(y) */ + if((hy>>48) == 0) { /* subnormal y */ + y *= 0x1.0p512; + GET_LDOUBLE_WORDS64(hy,ly,y); + iy = (hy>>48) - (BIAS + 512); + } else { + iy = (hy>>48) - BIAS; + } + + /* set up {hx,lx}, {hy,ly} and align y to x */ + _hx = SET_NBIT(hx) & 0x0000ffffffffffffLL; + hy = SET_NBIT(hy); + + /* fix point fmod */ + n = ix - iy; + q = 0; + + while(n--) { + hz=_hx-hy;lz=lx-ly; if(lx>MANL_SHIFT); lx = lx+lx;} + else {_hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;} + q <<= 1; + } + hz=_hx-hy;lz=lx-ly; if(lx=0) {_hx=hz;lx=lz;q++;} + + /* convert back to floating value and restore the sign */ + if((_hx|lx)==0) { /* return sign(x)*0 */ + *quo = (sxy ? -q : q); + return Zero[sx!=0]; + } + while(_hx<(1ULL<>MANL_SHIFT); lx = lx+lx; + iy -= 1; + } + hx = (hx&0xffff000000000000LL) | (_hx&0x0000ffffffffffffLL); + if (iy < LDBL_MIN_EXP) { + hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS + 512)<<48; + SET_LDOUBLE_WORDS64(x,hx,lx); + x *= 0x1p-512; + GET_LDOUBLE_WORDS64(hx,lx,x); + } else { + hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS)<<48; + } + hx &= 0x7fffffffffffffffLL; + SET_LDOUBLE_WORDS64(x,hx,lx); +fixup: + y = fabsl(y); + if (y < LDBL_MIN * 2) { + if (x+x>y || (x+x==y && (q & 1))) { + q++; + x-=y; + } + } else if (x>0.5*y || (x==0.5*y && (q & 1))) { + q++; + x-=y; + } + + GET_LDOUBLE_MSW64(hx,x); + hx ^= sx; + SET_LDOUBLE_MSW64(x,hx); + + q &= 0x7fffffff; + *quo = (sxy ? -q : q); + return x; +} diff --git a/lib/libm/src/ld128/s_tanhl.c b/lib/libm/src/ld128/s_tanhl.c new file mode 100644 index 00000000000..78707a0ac21 --- /dev/null +++ b/lib/libm/src/ld128/s_tanhl.c @@ -0,0 +1,104 @@ +/* @(#)s_tanh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* tanhl(x) + * Return the Hyperbolic Tangent of x + * + * Method : + * x -x + * e - e + * 0. tanhl(x) is defined to be ----------- + * x -x + * e + e + * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). + * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x) + * -t + * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) + * t + 2 + * 2 + * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) + * t + 2 + * 40.0 < x <= INF : tanhl(x) := 1. + * + * Special cases: + * tanhl(NaN) is NaN; + * only tanhl(0)=0 is exact for finite argument. + */ + +#include "math.h" +#include "math_private.h" + +static const long double one = 1.0, two = 2.0, tiny = 1.0e-4900L; + +long double +tanhl(long double x) +{ + long double t, z; + u_int32_t jx, ix; + ieee_quad_shape_type u; + + /* Words of |x|. */ + u.value = x; + jx = u.parts32.mswhi; + ix = jx & 0x7fffffff; + /* x is INF or NaN */ + if (ix >= 0x7fff0000) + { + /* for NaN it's not important which branch: tanhl(NaN) = NaN */ + if (jx & 0x80000000) + return one / x - one; /* tanhl(-inf)= -1; */ + else + return one / x + one; /* tanhl(+inf)=+1 */ + } + + /* |x| < 40 */ + if (ix < 0x40044000) + { + if (u.value == 0) + return x; /* x == +- 0 */ + if (ix < 0x3fc60000) /* |x| < 2^-57 */ + return x * (one + tiny); /* tanh(small) = small */ + u.parts32.mswhi = ix; /* Absolute value of x. */ + if (ix >= 0x3fff0000) + { /* |x| >= 1 */ + t = expm1l (two * u.value); + z = one - two / (t + two); + } + else + { + t = expm1l (-two * u.value); + z = -t / (t + two); + } + /* |x| > 40, return +-1 */ + } + else + { + z = one - tiny; /* raised inexact flag */ + } + return (jx & 0x80000000) ? -z : z; +} diff --git a/lib/libm/src/ld128/s_truncl.c b/lib/libm/src/ld128/s_truncl.c new file mode 100644 index 00000000000..435d527a480 --- /dev/null +++ b/lib/libm/src/ld128/s_truncl.c @@ -0,0 +1,77 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + * From: @(#)s_floor.c 5.1 93/09/24 + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_truncl.c,v 1.9 2008/02/14 15:10:34 bde Exp $"); +#endif + +/* + * truncl(x) + * Return x rounded toward 0 to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to truncl(x). + */ + +#include +#include + +#include +#include +#include + +#include "math_private.h" + +#ifdef LDBL_IMPLICIT_NBIT +#define MANH_SIZE (EXT_FRACHBITS + EXT_FRACHMBITS + 1) +#else +#define MANH_SIZE (EXT_FRACHBITS + EXT_FRACHMBITS) +#endif + +static const long double huge = 1.0e300; +static const float zero[] = { 0.0, -0.0 }; + +long double +truncl(long double x) +{ + int e; + int64_t ix0, ix1; + + GET_LDOUBLE_WORDS64(ix0,ix1,x); + e = ((ix0>>48)&0x7fff) - LDBL_MAX_EXP + 1; + + if (e < MANH_SIZE - 1) { + if (e < 0) { /* raise inexact if x != 0 */ + if (huge + x > 0.0) + return (zero[((ix0>>48)&0x8000)!=0]); + } else { + uint64_t m = ((1llu << MANH_SIZE) - 1) >> (e + 1); + if (((ix0 & m) | ix1) == 0) + return (x); /* x is integral */ + if (huge + x > 0.0) { /* raise inexact flag */ + ix0 &= ~m; + ix1 = 0; + } + } + } else if (e < LDBL_MANT_DIG - 1) { + uint64_t m = (uint64_t)-1 >> (64 - LDBL_MANT_DIG + e + 1); + if ((ix1 & m) == 0) + return (x); /* x is integral */ + if (huge + x > 0.0) /* raise inexact flag */ + ix1 &= ~m; + } + SET_LDOUBLE_WORDS64(x,ix0,ix1); + return (x); +} diff --git a/lib/libm/src/ld80/e_acoshl.c b/lib/libm/src/ld80/e_acoshl.c new file mode 100644 index 00000000000..0756fad68af --- /dev/null +++ b/lib/libm/src/ld80/e_acoshl.c @@ -0,0 +1,57 @@ +/* @(#)e_acosh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* acoshl(x) + * Method : + * Based on + * acoshl(x) = logl [ x + sqrtl(x*x-1) ] + * we have + * acoshl(x) := logl(x)+ln2, if x is large; else + * acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else + * acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1. + * + * Special cases: + * acoshl(x) is NaN with signal if x<1. + * acoshl(NaN) is NaN without signal. + */ + +#include + +#include "math_private.h" + +static const long double +one = 1.0, +ln2 = 6.931471805599453094287e-01L; /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */ + +long double +acoshl(long double x) +{ + long double t; + u_int32_t se,i0,i1; + GET_LDOUBLE_WORDS(se,i0,i1,x); + if(se<0x3fff || se & 0x8000) { /* x < 1 */ + return (x-x)/(x-x); + } else if(se >=0x401d) { /* x > 2**30 */ + if(se >=0x7fff) { /* x is inf of NaN */ + return x+x; + } else + return logl(x)+ln2; /* acoshl(huge)=logl(2x) */ + } else if(((se-0x3fff)|i0|i1)==0) { + return 0.0; /* acosh(1) = 0 */ + } else if (se > 0x4000) { /* 2**28 > x > 2 */ + t=x*x; + return logl(2.0*x-one/(x+sqrtl(t-one))); + } else { /* 1=0.5 + * 1 2x x + * atanhl(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) + * 2 1 - x 1 - x + * + * For x<0.5 + * atanhl(x) = 0.5*log1pl(2x+2x*x/(1-x)) + * + * Special cases: + * atanhl(x) is NaN if |x| > 1 with signal; + * atanhl(NaN) is that NaN with no signal; + * atanhl(+-1) is +-INF with signal. + * + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0, huge = 1e4900L; + +static const long double zero = 0.0; + +long double +atanhl(long double x) +{ + long double t; + int32_t ix; + u_int32_t se,i0,i1; + GET_LDOUBLE_WORDS(se,i0,i1,x); + ix = se&0x7fff; + if ((ix+((((i0&0x7fffffff)|i1)|(-((i0&0x7fffffff)|i1)))>>31))>0x3fff) + /* |x|>1 */ + return (x-x)/(x-x); + if(ix==0x3fff) + return x/zero; + if(ix<0x3fe3&&(huge+x)>zero) return x; /* x<2**-28 */ + SET_LDOUBLE_EXP(x,ix); + if(ix<0x3ffe) { /* x < 0.5 */ + t = x+x; + t = 0.5*log1pl(t+t*x/(one-x)); + } else + t = 0.5*log1pl((x+x)/(one-x)); + if(se<=0x7fff) return t; else return -t; +} diff --git a/lib/libm/src/ld80/e_coshl.c b/lib/libm/src/ld80/e_coshl.c new file mode 100644 index 00000000000..25349dbb39a --- /dev/null +++ b/lib/libm/src/ld80/e_coshl.c @@ -0,0 +1,82 @@ +/* @(#)e_cosh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* coshl(x) + * Method : + * mathematically coshl(x) if defined to be (exp(x)+exp(-x))/2 + * 1. Replace x by |x| (coshl(x) = coshl(-x)). + * 2. + * [ exp(x) - 1 ]^2 + * 0 <= x <= ln2/2 : coshl(x) := 1 + ------------------- + * 2*exp(x) + * + * exp(x) + 1/exp(x) + * ln2/2 <= x <= 22 : coshl(x) := ------------------- + * 2 + * 22 <= x <= lnovft : coshl(x) := expl(x)/2 + * lnovft <= x <= ln2ovft: coshl(x) := expl(x/2)/2 * expl(x/2) + * ln2ovft < x : coshl(x) := huge*huge (overflow) + * + * Special cases: + * coshl(x) is |x| if x is +INF, -INF, or NaN. + * only coshl(0)=1 is exact for finite x. + */ + +#include "math.h" +#include "math_private.h" + +static const long double one = 1.0, half=0.5, huge = 1.0e4900L; + +long double +coshl(long double x) +{ + long double t,w; + int32_t ex; + u_int32_t mx,lx; + + /* High word of |x|. */ + GET_LDOUBLE_WORDS(ex,mx,lx,x); + ex &= 0x7fff; + + /* x is INF or NaN */ + if(ex==0x7fff) return x*x; + + /* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expl(|x|)) */ + if(ex < 0x3ffd || (ex == 0x3ffd && mx < 0xb17217f7u)) { + t = expm1l(fabsl(x)); + w = one+t; + if (ex<0x3fbc) return w; /* cosh(tiny) = 1 */ + return one+(t*t)/(w+w); + } + + /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ + if (ex < 0x4003 || (ex == 0x4003 && mx < 0xb0000000u)) { + t = expl(fabsl(x)); + return half*t+half/t; + } + + /* |x| in [22, ln(maxdouble)] return half*exp(|x|) */ + if (ex < 0x400c || (ex == 0x400c && mx < 0xb1700000u)) + return half*expl(fabsl(x)); + + /* |x| in [log(maxdouble), log(2*maxdouble)) */ + if (ex == 0x400c && (mx < 0xb174ddc0u + || (mx == 0xb174ddc0u && lx < 0x31aec0ebu))) + { + w = expl(half*fabsl(x)); + t = half*w; + return t*w; + } + + /* |x| >= log(2*maxdouble), cosh(x) overflow */ + return huge*huge; +} diff --git a/lib/libm/src/ld80/e_expl.c b/lib/libm/src/ld80/e_expl.c new file mode 100644 index 00000000000..119971f2df4 --- /dev/null +++ b/lib/libm/src/ld80/e_expl.c @@ -0,0 +1,131 @@ +/* $OpenBSD: e_expl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* expl.c + * + * Exponential function, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, expl(); + * + * y = expl( x ); + * + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + * x k f + * e = 2 e. + * + * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 + * in the basic range [-0.5 ln 2, 0.5 ln 2]. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE +-10000 50000 1.12e-19 2.81e-20 + * + * + * Error amplification in the exponential function can be + * a serious matter. The error propagation involves + * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), + * which shows that a 1 lsb error in representing X produces + * a relative error of X times 1 lsb in the function. + * While the routine gives an accurate result for arguments + * that are exactly represented by a long double precision + * computer number, the result contains amplified roundoff + * error for large arguments not exactly represented. + * + * + * ERROR MESSAGES: + * + * message condition value returned + * exp underflow x < MINLOG 0.0 + * exp overflow x > MAXLOG MAXNUM + * + */ + +/* Exponential function */ + +#include + +static long double P[3] = { + 1.2617719307481059087798E-4L, + 3.0299440770744196129956E-2L, + 9.9999999999999999991025E-1L, +}; +static long double Q[4] = { + 3.0019850513866445504159E-6L, + 2.5244834034968410419224E-3L, + 2.2726554820815502876593E-1L, + 2.0000000000000000000897E0L, +}; +static long double C1 = 6.9314575195312500000000E-1L; +static long double C2 = 1.4286068203094172321215E-6L; +static long double MAXLOGL = 1.1356523406294143949492E4L; +static long double MINLOGL = -1.13994985314888605586758E4L; +static long double LOG2EL = 1.4426950408889634073599E0L; + +extern long double __polevll(long double, void *, int); + +long double +expl(long double x) +{ +long double px, xx; +int n; + +if( isnan(x) ) + return(x); +if( x > MAXLOGL) + return( INFINITY ); + +if( x < MINLOGL ) + return(0.0L); + +/* Express e**x = e**g 2**n + * = e**g e**( n loge(2) ) + * = e**( g + n loge(2) ) + */ +px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */ +n = px; +x -= px * C1; +x -= px * C2; + + +/* rational approximation for exponential + * of the fractional part: + * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) + */ +xx = x * x; +px = x * __polevll( xx, P, 2 ); +x = px/( __polevll( xx, Q, 3 ) - px ); +x = 1.0L + ldexpl( x, 1 ); + +x = ldexpl( x, n ); +return(x); +} diff --git a/lib/libm/src/ld80/e_fmodl.c b/lib/libm/src/ld80/e_fmodl.c new file mode 100644 index 00000000000..68034cb771e --- /dev/null +++ b/lib/libm/src/ld80/e_fmodl.c @@ -0,0 +1,147 @@ +/* @(#)e_fmod.c 1.3 95/01/18 */ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/e_fmodl.c,v 1.2 2008/07/31 20:09:47 das Exp $"); +#endif + +#include +#include + +#include +#include +#include + +#include "math_private.h" + +#define BIAS (LDBL_MAX_EXP - 1) + +/* + * These macros add and remove an explicit integer bit in front of the + * fractional mantissa, if the architecture doesn't have such a bit by + * default already. + */ +#ifdef LDBL_IMPLICIT_NBIT +#define LDBL_NBIT 0 +#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) +#define HFRAC_BITS EXT_FRACHBITS +#else +#define LDBL_NBIT 0x80000000 +#define SET_NBIT(hx) (hx) +#define HFRAC_BITS (EXT_FRACHBITS - 1) +#endif + +#define MANL_SHIFT (EXT_FRACLBITS - 1) + +static const long double one = 1.0, Zero[] = {0.0, -0.0,}; + +/* + * fmodl(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + * + * Assumptions: + * - The low part of the mantissa fits in a manl_t exactly. + * - The high part of the mantissa fits in an int64_t with enough room + * for an explicit integer bit in front of the fractional bits. + */ +long double +fmodl(long double x, long double y) +{ + union { + long double e; + struct ieee_ext bits; + } ux, uy; + int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */ + uint32_t hy; + uint32_t lx,ly,lz; + int ix,iy,n,sx; + + ux.e = x; + uy.e = y; + sx = ux.bits.ext_sign; + + /* purge off exception values */ + if((uy.bits.ext_exp|uy.bits.ext_frach|uy.bits.ext_fracl)==0 || /* y=0 */ + (ux.bits.ext_exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */ + (uy.bits.ext_exp == BIAS + LDBL_MAX_EXP && + ((uy.bits.ext_frach&~LDBL_NBIT)|uy.bits.ext_fracl)!=0)) /* or y is NaN */ + return (x*y)/(x*y); + if(ux.bits.ext_exp<=uy.bits.ext_exp) { + if((ux.bits.ext_exp>MANL_SHIFT); lx = lx+lx;} + else { + if ((hz|lz)==0) /* return sign(x)*0 */ + return Zero[sx]; + hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; + } + } + hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) /* return sign(x)*0 */ + return Zero[sx]; + while(hx<(1ULL<>MANL_SHIFT); lx = lx+lx; + iy -= 1; + } + ux.bits.ext_frach = hx; /* The mantissa is truncated here if needed. */ + ux.bits.ext_fracl = lx; + if (iy < LDBL_MIN_EXP) { + ux.bits.ext_exp = iy + (BIAS + 512); + ux.e *= 0x1p-512; + } else { + ux.bits.ext_exp = iy + BIAS; + } + x = ux.e * one; /* create necessary signal */ + return x; /* exact output */ +} diff --git a/lib/libm/src/ld80/e_hypotl.c b/lib/libm/src/ld80/e_hypotl.c new file mode 100644 index 00000000000..e70d2b1d104 --- /dev/null +++ b/lib/libm/src/ld80/e_hypotl.c @@ -0,0 +1,122 @@ +/* @(#)e_hypot.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* hypotl(x,y) + * + * Method : + * If (assume round-to-nearest) z=x*x+y*y + * has error less than sqrt(2)/2 ulp, than + * sqrt(z) has error less than 1 ulp (exercise). + * + * So, compute sqrt(x*x+y*y) with some care as + * follows to get the error below 1 ulp: + * + * Assume x>y>0; + * (if possible, set rounding to round-to-nearest) + * 1. if x > 2y use + * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y + * where x1 = x with lower 32 bits cleared, x2 = x-x1; else + * 2. if x <= 2y use + * t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y)) + * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, + * yy1= y with lower 32 bits chopped, y2 = y-yy1. + * + * NOTE: scaling may be necessary if some argument is too + * large or too tiny + * + * Special cases: + * hypot(x,y) is INF if x or y is +INF or -INF; else + * hypot(x,y) is NAN if x or y is NAN. + * + * Accuracy: + * hypot(x,y) returns sqrt(x^2+y^2) with error less + * than 1 ulps (units in the last place) + */ + +#include + +#include "math_private.h" + +long double +hypotl(long double x, long double y) +{ + long double a,b,t1,t2,yy1,y2,w; + u_int32_t j,k,ea,eb; + + GET_LDOUBLE_EXP(ea,x); + ea &= 0x7fff; + GET_LDOUBLE_EXP(eb,y); + eb &= 0x7fff; + if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;} + SET_LDOUBLE_EXP(a,ea); /* a <- |a| */ + SET_LDOUBLE_EXP(b,eb); /* b <- |b| */ + if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */ + k=0; + if(ea > 0x5f3f) { /* a>2**8000 */ + if(ea == 0x7fff) { /* Inf or NaN */ + u_int32_t es,high,low; + w = a+b; /* for sNaN */ + GET_LDOUBLE_WORDS(es,high,low,a); + if(((high&0x7fffffff)|low)==0) w = a; + GET_LDOUBLE_WORDS(es,high,low,b); + if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b; + return w; + } + /* scale a and b by 2**-9600 */ + ea -= 0x2580; eb -= 0x2580; k += 9600; + SET_LDOUBLE_EXP(a,ea); + SET_LDOUBLE_EXP(b,eb); + } + if(eb < 0x20bf) { /* b < 2**-8000 */ + if(eb == 0) { /* subnormal b or 0 */ + u_int32_t es,high,low; + GET_LDOUBLE_WORDS(es,high,low,b); + if((high|low)==0) return a; + SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0); /* t1=2^16382 */ + b *= t1; + a *= t1; + k -= 16382; + } else { /* scale a and b by 2^9600 */ + ea += 0x2580; /* a *= 2^9600 */ + eb += 0x2580; /* b *= 2^9600 */ + k -= 9600; + SET_LDOUBLE_EXP(a,ea); + SET_LDOUBLE_EXP(b,eb); + } + } + /* medium size a and b */ + w = a-b; + if (w>b) { + u_int32_t high; + GET_LDOUBLE_MSW(high,a); + SET_LDOUBLE_WORDS(t1,ea,high,0); + t2 = a-t1; + w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + u_int32_t high; + GET_LDOUBLE_MSW(high,b); + a = a+a; + SET_LDOUBLE_WORDS(yy1,eb,high,0); + y2 = b - yy1; + GET_LDOUBLE_MSW(high,a); + SET_LDOUBLE_WORDS(t1,ea+1,high,0); + t2 = a - t1; + w = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + u_int32_t es; + t1 = 1.0; + GET_LDOUBLE_EXP(es,t1); + SET_LDOUBLE_EXP(t1,es+k); + return t1*w; + } else return w; +} diff --git a/lib/libm/src/ld80/e_lgammal.c b/lib/libm/src/ld80/e_lgammal.c new file mode 100644 index 00000000000..04c0aef84c5 --- /dev/null +++ b/lib/libm/src/ld80/e_lgammal.c @@ -0,0 +1,425 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* lgammal(x) + * Reentrant version of the logarithm of the Gamma function + * with user provide pointer for the sign of Gamma(x). + * + * Method: + * 1. Argument Reduction for 0 < x <= 8 + * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may + * reduce x to a number in [1.5,2.5] by + * lgamma(1+s) = log(s) + lgamma(s) + * for example, + * lgamma(7.3) = log(6.3) + lgamma(6.3) + * = log(6.3*5.3) + lgamma(5.3) + * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) + * 2. Polynomial approximation of lgamma around its + * minimun ymin=1.461632144968362245 to maintain monotonicity. + * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use + * Let z = x-ymin; + * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) + * 2. Rational approximation in the primary interval [2,3] + * We use the following approximation: + * s = x-2.0; + * lgamma(x) = 0.5*s + s*P(s)/Q(s) + * Our algorithms are based on the following observation + * + * zeta(2)-1 2 zeta(3)-1 3 + * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... + * 2 3 + * + * where Euler = 0.5771... is the Euler constant, which is very + * close to 0.5. + * + * 3. For x>=8, we have + * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... + * (better formula: + * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) + * Let z = 1/x, then we approximation + * f(z) = lgamma(x) - (x-0.5)(log(x)-1) + * by + * 3 5 11 + * w = w0 + w1*z + w2*z + w3*z + ... + w6*z + * + * 4. For negative x, since (G is gamma function) + * -x*G(-x)*G(x) = pi/sin(pi*x), + * we have + * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) + * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 + * Hence, for x<0, signgam = sign(sin(pi*x)) and + * lgamma(x) = log(|Gamma(x)|) + * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); + * Note: one should avoid compute pi*(-x) directly in the + * computation of sin(pi*(-x)). + * + * 5. Special Cases + * lgamma(2+s) ~ s*(1-Euler) for tiny s + * lgamma(1)=lgamma(2)=0 + * lgamma(x) ~ -log(x) for tiny x + * lgamma(0) = lgamma(inf) = inf + * lgamma(-integer) = +-inf + * + */ + +#include + +#include "math_private.h" + +static const long double + half = 0.5L, + one = 1.0L, + pi = 3.14159265358979323846264L, + two63 = 9.223372036854775808e18L, + + /* lgam(1+x) = 0.5 x + x a(x)/b(x) + -0.268402099609375 <= x <= 0 + peak relative error 6.6e-22 */ + a0 = -6.343246574721079391729402781192128239938E2L, + a1 = 1.856560238672465796768677717168371401378E3L, + a2 = 2.404733102163746263689288466865843408429E3L, + a3 = 8.804188795790383497379532868917517596322E2L, + a4 = 1.135361354097447729740103745999661157426E2L, + a5 = 3.766956539107615557608581581190400021285E0L, + + b0 = 8.214973713960928795704317259806842490498E3L, + b1 = 1.026343508841367384879065363925870888012E4L, + b2 = 4.553337477045763320522762343132210919277E3L, + b3 = 8.506975785032585797446253359230031874803E2L, + b4 = 6.042447899703295436820744186992189445813E1L, + /* b5 = 1.000000000000000000000000000000000000000E0 */ + + + tc = 1.4616321449683623412626595423257213284682E0L, + tf = -1.2148629053584961146050602565082954242826E-1,/* double precision */ +/* tt = (tail of tf), i.e. tf + tt has extended precision. */ + tt = 3.3649914684731379602768989080467587736363E-18L, + /* lgam ( 1.4616321449683623412626595423257213284682E0 ) = +-1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */ + + /* lgam (x + tc) = tf + tt + x g(x)/h(x) + - 0.230003726999612341262659542325721328468 <= x + <= 0.2699962730003876587373404576742786715318 + peak relative error 2.1e-21 */ + g0 = 3.645529916721223331888305293534095553827E-18L, + g1 = 5.126654642791082497002594216163574795690E3L, + g2 = 8.828603575854624811911631336122070070327E3L, + g3 = 5.464186426932117031234820886525701595203E3L, + g4 = 1.455427403530884193180776558102868592293E3L, + g5 = 1.541735456969245924860307497029155838446E2L, + g6 = 4.335498275274822298341872707453445815118E0L, + + h0 = 1.059584930106085509696730443974495979641E4L, + h1 = 2.147921653490043010629481226937850618860E4L, + h2 = 1.643014770044524804175197151958100656728E4L, + h3 = 5.869021995186925517228323497501767586078E3L, + h4 = 9.764244777714344488787381271643502742293E2L, + h5 = 6.442485441570592541741092969581997002349E1L, + /* h6 = 1.000000000000000000000000000000000000000E0 */ + + + /* lgam (x+1) = -0.5 x + x u(x)/v(x) + -0.100006103515625 <= x <= 0.231639862060546875 + peak relative error 1.3e-21 */ + u0 = -8.886217500092090678492242071879342025627E1L, + u1 = 6.840109978129177639438792958320783599310E2L, + u2 = 2.042626104514127267855588786511809932433E3L, + u3 = 1.911723903442667422201651063009856064275E3L, + u4 = 7.447065275665887457628865263491667767695E2L, + u5 = 1.132256494121790736268471016493103952637E2L, + u6 = 4.484398885516614191003094714505960972894E0L, + + v0 = 1.150830924194461522996462401210374632929E3L, + v1 = 3.399692260848747447377972081399737098610E3L, + v2 = 3.786631705644460255229513563657226008015E3L, + v3 = 1.966450123004478374557778781564114347876E3L, + v4 = 4.741359068914069299837355438370682773122E2L, + v5 = 4.508989649747184050907206782117647852364E1L, + /* v6 = 1.000000000000000000000000000000000000000E0 */ + + + /* lgam (x+2) = .5 x + x s(x)/r(x) + 0 <= x <= 1 + peak relative error 7.2e-22 */ + s0 = 1.454726263410661942989109455292824853344E6L, + s1 = -3.901428390086348447890408306153378922752E6L, + s2 = -6.573568698209374121847873064292963089438E6L, + s3 = -3.319055881485044417245964508099095984643E6L, + s4 = -7.094891568758439227560184618114707107977E5L, + s5 = -6.263426646464505837422314539808112478303E4L, + s6 = -1.684926520999477529949915657519454051529E3L, + + r0 = -1.883978160734303518163008696712983134698E7L, + r1 = -2.815206082812062064902202753264922306830E7L, + r2 = -1.600245495251915899081846093343626358398E7L, + r3 = -4.310526301881305003489257052083370058799E6L, + r4 = -5.563807682263923279438235987186184968542E5L, + r5 = -3.027734654434169996032905158145259713083E4L, + r6 = -4.501995652861105629217250715790764371267E2L, + /* r6 = 1.000000000000000000000000000000000000000E0 */ + + +/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2) + x >= 8 + Peak relative error 1.51e-21 + w0 = LS2PI - 0.5 */ + w0 = 4.189385332046727417803e-1L, + w1 = 8.333333333333331447505E-2L, + w2 = -2.777777777750349603440E-3L, + w3 = 7.936507795855070755671E-4L, + w4 = -5.952345851765688514613E-4L, + w5 = 8.412723297322498080632E-4L, + w6 = -1.880801938119376907179E-3L, + w7 = 4.885026142432270781165E-3L; + +static const long double zero = 0.0L; + +static long double +sin_pi(long double x) +{ + long double y, z; + int n, ix; + u_int32_t se, i0, i1; + + GET_LDOUBLE_WORDS (se, i0, i1, x); + ix = se & 0x7fff; + ix = (ix << 16) | (i0 >> 16); + if (ix < 0x3ffd8000) /* 0.25 */ + return sinl (pi * x); + y = -x; /* x is assume negative */ + + /* + * argument reduction, make sure inexact flag not raised if input + * is an integer + */ + z = floorl (y); + if (z != y) + { /* inexact anyway */ + y *= 0.5; + y = 2.0*(y - floorl(y)); /* y = |x| mod 2.0 */ + n = (int) (y*4.0); + } + else + { + if (ix >= 0x403f8000) /* 2^64 */ + { + y = zero; n = 0; /* y must be even */ + } + else + { + if (ix < 0x403e8000) /* 2^63 */ + z = y + two63; /* exact */ + GET_LDOUBLE_WORDS (se, i0, i1, z); + n = i1 & 1; + y = n; + n <<= 2; + } + } + + switch (n) + { + case 0: + y = sinl (pi * y); + break; + case 1: + case 2: + y = cosl (pi * (half - y)); + break; + case 3: + case 4: + y = sinl (pi * (one - y)); + break; + case 5: + case 6: + y = -cosl (pi * (y - 1.5)); + break; + default: + y = sinl (pi * (y - 2.0)); + break; + } + return -y; +} + + +long double +lgammal(long double x) +{ + long double t, y, z, nadj, p, p1, p2, q, r, w; + int i, ix; + u_int32_t se, i0, i1; + + signgam = 1; + GET_LDOUBLE_WORDS (se, i0, i1, x); + ix = se & 0x7fff; + + if ((ix | i0 | i1) == 0) + { + if (se & 0x8000) + signgam = -1; + return one / fabsl (x); + } + + ix = (ix << 16) | (i0 >> 16); + + /* purge off +-inf, NaN, +-0, and negative arguments */ + if (ix >= 0x7fff0000) + return x * x; + + if (ix < 0x3fc08000) /* 2^-63 */ + { /* |x|<2**-63, return -log(|x|) */ + if (se & 0x8000) + { + signgam = -1; + return -logl (-x); + } + else + return -logl (x); + } + if (se & 0x8000) + { + t = sin_pi (x); + if (t == zero) + return one / fabsl (t); /* -integer */ + nadj = logl (pi / fabsl (t * x)); + if (t < zero) + signgam = -1; + x = -x; + } + + /* purge off 1 and 2 */ + if ((((ix - 0x3fff8000) | i0 | i1) == 0) + || (((ix - 0x40008000) | i0 | i1) == 0)) + r = 0; + else if (ix < 0x40008000) /* 2.0 */ + { + /* x < 2.0 */ + if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */ + { + /* lgamma(x) = lgamma(x+1) - log(x) */ + r = -logl (x); + if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */ + { + y = x - one; + i = 0; + } + else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */ + { + y = x - (tc - one); + i = 1; + } + else + { + /* x < 0.23 */ + y = x; + i = 2; + } + } + else + { + r = zero; + if (ix >= 0x3fffdda6) /* 1.73162841796875 */ + { + /* [1.7316,2] */ + y = x - 2.0; + i = 0; + } + else if (ix >= 0x3fff9da6)/* 1.23162841796875 */ + { + /* [1.23,1.73] */ + y = x - tc; + i = 1; + } + else + { + /* [0.9, 1.23] */ + y = x - one; + i = 2; + } + } + switch (i) + { + case 0: + p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5)))); + p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y)))); + r += half * y + y * p1/p2; + break; + case 1: + p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6))))); + p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y))))); + p = tt + y * p1/p2; + r += (tf + p); + break; + case 2: + p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6)))))); + p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y))))); + r += (-half * y + p1 / p2); + } + } + else if (ix < 0x40028000) /* 8.0 */ + { + /* x < 8.0 */ + i = (int) x; + t = zero; + y = x - (double) i; + p = y * + (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); + q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y)))))); + r = half * y + p / q; + z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ + switch (i) + { + case 7: + z *= (y + 6.0); /* FALLTHRU */ + case 6: + z *= (y + 5.0); /* FALLTHRU */ + case 5: + z *= (y + 4.0); /* FALLTHRU */ + case 4: + z *= (y + 3.0); /* FALLTHRU */ + case 3: + z *= (y + 2.0); /* FALLTHRU */ + r += logl (z); + break; + } + } + else if (ix < 0x40418000) /* 2^66 */ + { + /* 8.0 <= x < 2**66 */ + t = logl (x); + z = one / x; + y = z * z; + w = w0 + z * (w1 + + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7)))))); + r = (x - half) * (t - one) + w; + } + else + /* 2**66 <= x <= inf */ + r = x * (logl (x) - one); + if (se & 0x8000) + r = nadj - r; + return r; +} diff --git a/lib/libm/src/ld80/e_log10l.c b/lib/libm/src/ld80/e_log10l.c new file mode 100644 index 00000000000..906c464c9ba --- /dev/null +++ b/lib/libm/src/ld80/e_log10l.c @@ -0,0 +1,206 @@ +/* $OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log10l.c + * + * Common logarithm, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log10l(); + * + * y = log10l( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base 10 logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z**3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20 + * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + * + * ERROR MESSAGES: + * + * log singularity: x = 0; returns MINLOG + * log domain: x < 0; returns MINLOG + */ + +#include + +/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.2e-22 + */ +static long double P[] = { + 4.9962495940332550844739E-1L, + 1.0767376367209449010438E1L, + 7.7671073698359539859595E1L, + 2.5620629828144409632571E2L, + 4.2401812743503691187826E2L, + 3.4258224542413922935104E2L, + 1.0747524399916215149070E2L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0,*/ + 2.3479774160285863271658E1L, + 1.9444210022760132894510E2L, + 7.7952888181207260646090E2L, + 1.6911722418503949084863E3L, + 2.0307734695595183428202E3L, + 1.2695660352705325274404E3L, + 3.2242573199748645407652E2L, +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.16e-22 + */ + +static long double R[4] = { + 1.9757429581415468984296E-3L, +-7.1990767473014147232598E-1L, + 1.0777257190312272158094E1L, +-3.5717684488096787370998E1L, +}; +static long double S[4] = { +/* 1.00000000000000000000E0L,*/ +-2.6201045551331104417768E1L, + 1.9361891836232102174846E2L, +-4.2861221385716144629696E2L, +}; +/* log10(2) */ +#define L102A 0.3125L +#define L102B -1.1470004336018804786261e-2L +/* log10(e) */ +#define L10EA 0.5L +#define L10EB -6.5705518096748172348871e-2L + +#define SQRTH 0.70710678118654752440L + +extern long double __polevll(long double, void *, int); +extern long double __p1evll(long double, void *, int); + +long double +log10l(long double x) +{ +long double y; +volatile long double z; +int e; + +if( isnan(x) ) + return(x); +/* Test for domain */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + return (-1.0L / (x - x)); + else + return (x - x) / (x - x); + } +if( x == INFINITY ) + return(INFINITY); +/* separate mantissa from exponent */ + +/* Note, frexp is used so that denormal numbers + * will be handled properly. + */ +x = frexpl( x, &e ); + + +/* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/x+1) + */ +if( (e > 2) || (e < -2) ) +{ +if( x < SQRTH ) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } +else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } +x = z / y; +z = x*x; +y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); +goto done; +} + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + +if( x < SQRTH ) + { + e -= 1; + x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */ + } +else + { + x = x - 1.0L; + } +z = x*x; +y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) ); +y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */ + +done: + +/* Multiply log of fraction by log10(e) + * and base 2 exponent by log10(2). + * + * ***CAUTION*** + * + * This sequence of operations is critical and it may + * be horribly defeated by some compiler optimizers. + */ +z = y * (L10EB); +z += x * (L10EB); +z += e * (L102B); +z += y * (L10EA); +z += x * (L10EA); +z += e * (L102A); + +return( z ); +} diff --git a/lib/libm/src/ld80/e_log2l.c b/lib/libm/src/ld80/e_log2l.c new file mode 100644 index 00000000000..d25b5dd2459 --- /dev/null +++ b/lib/libm/src/ld80/e_log2l.c @@ -0,0 +1,199 @@ +/* $OpenBSD: e_log2l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log2l.c + * + * Base 2 logarithm, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log2l(); + * + * y = log2l( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base 2 logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the (natural) + * logarithm of the fraction is approximated by + * + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z**3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20 + * IEEE exp(+-10000) 70000 5.4e-20 2.3e-20 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + * + * ERROR MESSAGES: + * + * log singularity: x = 0; returns -INFINITY + * log domain: x < 0; returns NAN + */ + +#include + +/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.2e-22 + */ +static long double P[] = { + 4.9962495940332550844739E-1L, + 1.0767376367209449010438E1L, + 7.7671073698359539859595E1L, + 2.5620629828144409632571E2L, + 4.2401812743503691187826E2L, + 3.4258224542413922935104E2L, + 1.0747524399916215149070E2L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0,*/ + 2.3479774160285863271658E1L, + 1.9444210022760132894510E2L, + 7.7952888181207260646090E2L, + 1.6911722418503949084863E3L, + 2.0307734695595183428202E3L, + 1.2695660352705325274404E3L, + 3.2242573199748645407652E2L, +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.16e-22 + */ +static long double R[4] = { + 1.9757429581415468984296E-3L, +-7.1990767473014147232598E-1L, + 1.0777257190312272158094E1L, +-3.5717684488096787370998E1L, +}; +static long double S[4] = { +/* 1.00000000000000000000E0L,*/ +-2.6201045551331104417768E1L, + 1.9361891836232102174846E2L, +-4.2861221385716144629696E2L, +}; +/* log2(e) - 1 */ +#define LOG2EA 4.4269504088896340735992e-1L + +#define SQRTH 0.70710678118654752440L +extern long double __polevll(long double, void *, int); +extern long double __p1evll(long double, void *, int); + +long double +log2l(long double x) +{ +volatile long double z; +long double y; +int e; + +if( isnan(x) ) + return(x); +if( x == INFINITY ) + return(x); +/* Test for domain */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + return( -INFINITY ); + else + return( NAN ); + } + +/* separate mantissa from exponent */ + +/* Note, frexp is used so that denormal numbers + * will be handled properly. + */ +x = frexpl( x, &e ); + + +/* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/x+1) + */ +if( (e > 2) || (e < -2) ) +{ +if( x < SQRTH ) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } +else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } +x = z / y; +z = x*x; +y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); +goto done; +} + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + +if( x < SQRTH ) + { + e -= 1; + x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */ + } +else + { + x = x - 1.0L; + } +z = x*x; +y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) ); +y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */ + +done: + +/* Multiply log of fraction by log2(e) + * and base 2 exponent by 1 + * + * ***CAUTION*** + * + * This sequence of operations is critical and it may + * be horribly defeated by some compiler optimizers. + */ +z = y * LOG2EA; +z += x * LOG2EA; +z += y; +z += x; +z += e; +return( z ); +} diff --git a/lib/libm/src/ld80/e_logl.c b/lib/libm/src/ld80/e_logl.c new file mode 100644 index 00000000000..d345a59aa5d --- /dev/null +++ b/lib/libm/src/ld80/e_logl.c @@ -0,0 +1,191 @@ +/* $OpenBSD: e_logl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* logl.c + * + * Natural logarithm, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, logl(); + * + * y = logl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z**3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20 + * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + * + * ERROR MESSAGES: + * + * log singularity: x = 0; returns -INFINITY + * log domain: x < 0; returns NAN + */ + +#include + +/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 2.32e-20 + */ +static long double P[] = { + 4.5270000862445199635215E-5L, + 4.9854102823193375972212E-1L, + 6.5787325942061044846969E0L, + 2.9911919328553073277375E1L, + 6.0949667980987787057556E1L, + 5.7112963590585538103336E1L, + 2.0039553499201281259648E1L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0,*/ + 1.5062909083469192043167E1L, + 8.3047565967967209469434E1L, + 2.2176239823732856465394E2L, + 3.0909872225312059774938E2L, + 2.1642788614495947685003E2L, + 6.0118660497603843919306E1L, +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.16e-22 + */ + +static long double R[4] = { + 1.9757429581415468984296E-3L, +-7.1990767473014147232598E-1L, + 1.0777257190312272158094E1L, +-3.5717684488096787370998E1L, +}; +static long double S[4] = { +/* 1.00000000000000000000E0L,*/ +-2.6201045551331104417768E1L, + 1.9361891836232102174846E2L, +-4.2861221385716144629696E2L, +}; +static long double C1 = 6.9314575195312500000000E-1L; +static long double C2 = 1.4286068203094172321215E-6L; + +#define SQRTH 0.70710678118654752440L + +extern long double __polevll(long double, void *, int); +extern long double __p1evll(long double, void *, int); + +long double +logl(long double x) +{ +long double y, z; +int e; + +if( isnan(x) ) + return(x); +if( x == INFINITY ) + return(x); +/* Test for domain */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + return( -INFINITY ); + else + return( NAN ); + } + +/* separate mantissa from exponent */ + +/* Note, frexp is used so that denormal numbers + * will be handled properly. + */ +x = frexpl( x, &e ); + +/* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/x+1) + */ +if( (e > 2) || (e < -2) ) +{ +if( x < SQRTH ) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } +else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } +x = z / y; +z = x*x; +z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); +z = z + e * C2; +z = z + x; +z = z + e * C1; +return( z ); +} + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + +if( x < SQRTH ) + { + e -= 1; + x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */ + } +else + { + x = x - 1.0L; + } +z = x*x; +y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) ); +y = y + e * C2; +z = y - ldexpl( z, -1 ); /* y - 0.5 * z */ +/* Note, the sum of above terms does not exceed x/4, + * so it contributes at most about 1/4 lsb to the error. + */ +z = z + x; +z = z + e * C1; /* This sum has an error of 1/2 lsb. */ +return( z ); +} diff --git a/lib/libm/src/ld80/e_powl.c b/lib/libm/src/ld80/e_powl.c new file mode 100644 index 00000000000..2d9f7239cb8 --- /dev/null +++ b/lib/libm/src/ld80/e_powl.c @@ -0,0 +1,615 @@ +/* $OpenBSD: e_powl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* powl.c + * + * Power function, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, z, powl(); + * + * z = powl( x, y ); + * + * + * + * DESCRIPTION: + * + * Computes x raised to the yth power. Analytically, + * + * x**y = exp( y log(x) ). + * + * Following Cody and Waite, this program uses a lookup table + * of 2**-i/32 and pseudo extended precision arithmetic to + * obtain several extra bits of accuracy in both the logarithm + * and the exponential. + * + * + * + * ACCURACY: + * + * The relative error of pow(x,y) can be estimated + * by y dl ln(2), where dl is the absolute error of + * the internally computed base 2 logarithm. At the ends + * of the approximation interval the logarithm equal 1/32 + * and its relative error is about 1 lsb = 1.1e-19. Hence + * the predicted relative error in the result is 2.3e-21 y . + * + * Relative error: + * arithmetic domain # trials peak rms + * + * IEEE +-1000 40000 2.8e-18 3.7e-19 + * .001 < x < 1000, with log(x) uniformly distributed. + * -1000 < y < 1000, y uniformly distributed. + * + * IEEE 0,8700 60000 6.5e-18 1.0e-18 + * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. + * + * + * ERROR MESSAGES: + * + * message condition value returned + * pow overflow x**y > MAXNUM INFINITY + * pow underflow x**y < 1/MAXNUM 0.0 + * pow domain x<0 and y noninteger 0.0 + * + */ + +#include +#include + +/* Table size */ +#define NXT 32 +/* log2(Table size) */ +#define LNXT 5 + +/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) + * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 + */ +static long double P[] = { + 8.3319510773868690346226E-4L, + 4.9000050881978028599627E-1L, + 1.7500123722550302671919E0L, + 1.4000100839971580279335E0L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0L,*/ + 5.2500282295834889175431E0L, + 8.4000598057587009834666E0L, + 4.2000302519914740834728E0L, +}; +/* A[i] = 2^(-i/32), rounded to IEEE long double precision. + * If i is even, A[i] + B[i/2] gives additional accuracy. + */ +static long double A[33] = { + 1.0000000000000000000000E0L, + 9.7857206208770013448287E-1L, + 9.5760328069857364691013E-1L, + 9.3708381705514995065011E-1L, + 9.1700404320467123175367E-1L, + 8.9735453750155359320742E-1L, + 8.7812608018664974155474E-1L, + 8.5930964906123895780165E-1L, + 8.4089641525371454301892E-1L, + 8.2287773907698242225554E-1L, + 8.0524516597462715409607E-1L, + 7.8799042255394324325455E-1L, + 7.7110541270397041179298E-1L, + 7.5458221379671136985669E-1L, + 7.3841307296974965571198E-1L, + 7.2259040348852331001267E-1L, + 7.0710678118654752438189E-1L, + 6.9195494098191597746178E-1L, + 6.7712777346844636413344E-1L, + 6.6261832157987064729696E-1L, + 6.4841977732550483296079E-1L, + 6.3452547859586661129850E-1L, + 6.2092890603674202431705E-1L, + 6.0762367999023443907803E-1L, + 5.9460355750136053334378E-1L, + 5.8186242938878875689693E-1L, + 5.6939431737834582684856E-1L, + 5.5719337129794626814472E-1L, + 5.4525386633262882960438E-1L, + 5.3357020033841180906486E-1L, + 5.2213689121370692017331E-1L, + 5.1094857432705833910408E-1L, + 5.0000000000000000000000E-1L, +}; +static long double B[17] = { + 0.0000000000000000000000E0L, + 2.6176170809902549338711E-20L, +-1.0126791927256478897086E-20L, + 1.3438228172316276937655E-21L, + 1.2207982955417546912101E-20L, +-6.3084814358060867200133E-21L, + 1.3164426894366316434230E-20L, +-1.8527916071632873716786E-20L, + 1.8950325588932570796551E-20L, + 1.5564775779538780478155E-20L, + 6.0859793637556860974380E-21L, +-2.0208749253662532228949E-20L, + 1.4966292219224761844552E-20L, + 3.3540909728056476875639E-21L, +-8.6987564101742849540743E-22L, +-1.2327176863327626135542E-20L, + 0.0000000000000000000000E0L, +}; + +/* 2^x = 1 + x P(x), + * on the interval -1/32 <= x <= 0 + */ +static long double R[] = { + 1.5089970579127659901157E-5L, + 1.5402715328927013076125E-4L, + 1.3333556028915671091390E-3L, + 9.6181291046036762031786E-3L, + 5.5504108664798463044015E-2L, + 2.4022650695910062854352E-1L, + 6.9314718055994530931447E-1L, +}; + +#define douba(k) A[k] +#define doubb(k) B[k] +#define MEXP (NXT*16384.0L) +/* The following if denormal numbers are supported, else -MEXP: */ +#define MNEXP (-NXT*(16384.0L+64.0L)) +/* log2(e) - 1 */ +#define LOG2EA 0.44269504088896340735992L + +#define F W +#define Fa Wa +#define Fb Wb +#define G W +#define Ga Wa +#define Gb u +#define H W +#define Ha Wb +#define Hb Wb + +static long double MAXLOGL = 1.1356523406294143949492E4L; +static long double MINLOGL = -1.13994985314888605586758E4L; +static long double LOGE2L = 6.9314718055994530941723E-1L; +static volatile long double z; +static long double w, W, Wa, Wb, ya, yb, u; +static const long double huge = 0x1p10000L; +#if 0 /* XXX Prevent gcc from erroneously constant folding this. */ +static const long double twom10000 = 0x1p-10000L; +#else +static volatile long double twom10000 = 0x1p-10000L; +#endif + +extern long double __polevll(long double, void *, int); +extern long double __p1evll(long double, void *, int); +static long double reducl( long double ); +static long double powil ( long double, int ); + +long double +powl(long double x, long double y) +{ +/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ +int i, nflg, iyflg, yoddint; +long e; + +if( y == 0.0L ) + return( 1.0L ); + +if( isnan(x) ) + return( x ); +if( isnan(y) ) + return( y ); + +if( y == 1.0L ) + return( x ); + +if( !isfinite(y) && (x == -1.0L || x == 1.0L) ) + return y - y; /* +-1**inf is NaN */ + +if( x == 1.0L ) + return( 1.0L ); + +if( y >= LDBL_MAX ) + { + if( x > 1.0L ) + return( INFINITY ); + if( x > 0.0L && x < 1.0L ) + return( 0.0L ); + if( x < -1.0L ) + return( INFINITY ); + if( x > -1.0L && x < 0.0L ) + return( 0.0L ); + } +if( y <= -LDBL_MAX ) + { + if( x > 1.0L ) + return( 0.0L ); + if( x > 0.0L && x < 1.0L ) + return( INFINITY ); + if( x < -1.0L ) + return( 0.0L ); + if( x > -1.0L && x < 0.0L ) + return( INFINITY ); + } +if( x >= LDBL_MAX ) + { + if( y > 0.0L ) + return( INFINITY ); + return( 0.0L ); + } + +w = floorl(y); +/* Set iyflg to 1 if y is an integer. */ +iyflg = 0; +if( w == y ) + iyflg = 1; + +/* Test for odd integer y. */ +yoddint = 0; +if( iyflg ) + { + ya = fabsl(y); + ya = floorl(0.5L * ya); + yb = 0.5L * fabsl(w); + if( ya != yb ) + yoddint = 1; + } + +if( x <= -LDBL_MAX ) + { + if( y > 0.0L ) + { + if( yoddint ) + return( -INFINITY ); + return( INFINITY ); + } + if( y < 0.0L ) + { + if( yoddint ) + return( -0.0L ); + return( 0.0 ); + } + } + + +nflg = 0; /* flag = 1 if x<0 raised to integer power */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + { + if( y < 0.0 ) + { + if( signbit(x) && yoddint ) + return( -INFINITY ); + return( INFINITY ); + } + if( y > 0.0 ) + { + if( signbitl(x) && yoddint ) + return( -0.0L ); + return( 0.0 ); + } + if( y == 0.0L ) + return( 1.0L ); /* 0**0 */ + else + return( 0.0L ); /* 0**y */ + } + else + { + if( iyflg == 0 ) + return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ + nflg = 1; + } + } + +/* Integer power of an integer. */ + +if( iyflg ) + { + i = w; + w = floorl(x); + if( (w == x) && (fabsl(y) < 32768.0) ) + { + w = powil( x, (int) y ); + return( w ); + } + } + + +if( nflg ) + x = fabsl(x); + +/* separate significand from exponent */ +x = frexpl( x, &i ); +e = i; + +/* find significand in antilog table A[] */ +i = 1; +if( x <= douba(17) ) + i = 17; +if( x <= douba(i+8) ) + i += 8; +if( x <= douba(i+4) ) + i += 4; +if( x <= douba(i+2) ) + i += 2; +if( x >= douba(1) ) + i = -1; +i += 1; + + +/* Find (x - A[i])/A[i] + * in order to compute log(x/A[i]): + * + * log(x) = log( a x/a ) = log(a) + log(x/a) + * + * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a + */ +x -= douba(i); +x -= doubb(i/2); +x /= douba(i); + + +/* rational approximation for log(1+v): + * + * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) + */ +z = x*x; +w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) ); +w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ + +/* Convert to base 2 logarithm: + * multiply by log2(e) = 1 + LOG2EA + */ +z = LOG2EA * w; +z += w; +z += LOG2EA * x; +z += x; + +/* Compute exponent term of the base 2 logarithm. */ +w = -i; +w = ldexpl( w, -LNXT ); /* divide by NXT */ +w += e; +/* Now base 2 log of x is w + z. */ + +/* Multiply base 2 log by y, in extended precision. */ + +/* separate y into large part ya + * and small part yb less than 1/NXT + */ +ya = reducl(y); +yb = y - ya; + +/* (w+z)(ya+yb) + * = w*ya + w*yb + z*y + */ +F = z * y + w * yb; +Fa = reducl(F); +Fb = F - Fa; + +G = Fa + w * ya; +Ga = reducl(G); +Gb = G - Ga; + +H = Fb + Gb; +Ha = reducl(H); +w = ldexpl( Ga+Ha, LNXT ); + +/* Test the power of 2 for overflow */ +if( w > MEXP ) + return (huge * huge); /* overflow */ + +if( w < MNEXP ) + return (twom10000 * twom10000); /* underflow */ + +e = w; +Hb = H - Ha; + +if( Hb > 0.0L ) + { + e += 1; + Hb -= (1.0L/NXT); /*0.0625L;*/ + } + +/* Now the product y * log2(x) = Hb + e/NXT. + * + * Compute base 2 exponential of Hb, + * where -0.0625 <= Hb <= 0. + */ +z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ + +/* Express e/NXT as an integer plus a negative number of (1/NXT)ths. + * Find lookup table entry for the fractional power of 2. + */ +if( e < 0 ) + i = 0; +else + i = 1; +i = e/NXT + i; +e = NXT*i - e; +w = douba( e ); +z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ +z = z + w; +z = ldexpl( z, i ); /* multiply by integer power of 2 */ + +if( nflg ) + { +/* For negative x, + * find out if the integer exponent + * is odd or even. + */ + w = ldexpl( y, -1 ); + w = floorl(w); + w = ldexpl( w, 1 ); + if( w != y ) + z = -z; /* odd exponent */ + } + +return( z ); +} + + +/* Find a multiple of 1/NXT that is within 1/NXT of x. */ +static long double +reducl(long double x) +{ +long double t; + +t = ldexpl( x, LNXT ); +t = floorl( t ); +t = ldexpl( t, -LNXT ); +return(t); +} + +/* powil.c + * + * Real raised to integer power, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, powil(); + * int n; + * + * y = powil( x, n ); + * + * + * + * DESCRIPTION: + * + * Returns argument x raised to the nth power. + * The routine efficiently decomposes n as a sum of powers of + * two. The desired power is a product of two-to-the-kth + * powers of x. Thus to compute the 32767 power of x requires + * 28 multiplications instead of 32767 multiplications. + * + * + * + * ACCURACY: + * + * + * Relative error: + * arithmetic x domain n domain # trials peak rms + * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 + * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 + * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 + * + * Returns MAXNUM on overflow, zero on underflow. + * + */ + +static long double +powil(long double x, int nn) +{ +long double ww, y; +long double s; +int n, e, sign, asign, lx; + +if( x == 0.0L ) + { + if( nn == 0 ) + return( 1.0L ); + else if( nn < 0 ) + return( LDBL_MAX ); + else + return( 0.0L ); + } + +if( nn == 0 ) + return( 1.0L ); + + +if( x < 0.0L ) + { + asign = -1; + x = -x; + } +else + asign = 0; + + +if( nn < 0 ) + { + sign = -1; + n = -nn; + } +else + { + sign = 1; + n = nn; + } + +/* Overflow detection */ + +/* Calculate approximate logarithm of answer */ +s = x; +s = frexpl( s, &lx ); +e = (lx - 1)*n; +if( (e == 0) || (e > 64) || (e < -64) ) + { + s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); + s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; + } +else + { + s = LOGE2L * e; + } + +if( s > MAXLOGL ) + return (huge * huge); /* overflow */ + +if( s < MINLOGL ) + return (twom10000 * twom10000); /* underflow */ +/* Handle tiny denormal answer, but with less accuracy + * since roundoff error in 1.0/x will be amplified. + * The precise demarcation should be the gradual underflow threshold. + */ +if( s < (-MAXLOGL+2.0L) ) + { + x = 1.0L/x; + sign = -sign; + } + +/* First bit of the power */ +if( n & 1 ) + y = x; + +else + { + y = 1.0L; + asign = 0; + } + +ww = x; +n >>= 1; +while( n ) + { + ww = ww * ww; /* arg to the 2-to-the-kth power */ + if( n & 1 ) /* if that bit is set, then include in product */ + y *= ww; + n >>= 1; + } + +if( asign ) + y = -y; /* odd power of negative number */ +if( sign < 0 ) + y = 1.0L/y; +return(y); +} diff --git a/lib/libm/src/ld80/e_sinhl.c b/lib/libm/src/ld80/e_sinhl.c new file mode 100644 index 00000000000..b5b0be79006 --- /dev/null +++ b/lib/libm/src/ld80/e_sinhl.c @@ -0,0 +1,76 @@ +/* @(#)e_sinh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* sinhl(x) + * Method : + * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 + * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). + * 2. + * E + E/(E+1) + * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) + * 2 + * + * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 + * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) + * ln2ovft < x : sinhl(x) := x*shuge (overflow) + * + * Special cases: + * sinhl(x) is |x| if x is +INF, -INF, or NaN. + * only sinhl(0)=0 is exact for finite x. + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0, shuge = 1.0e4931L; + +long double +sinhl(long double x) +{ + long double t,w,h; + u_int32_t jx,ix,i0,i1; + + /* Words of |x|. */ + GET_LDOUBLE_WORDS(jx,i0,i1,x); + ix = jx&0x7fff; + + /* x is INF or NaN */ + if(ix==0x7fff) return x+x; + + h = 0.5; + if (jx & 0x8000) h = -h; + /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ + if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */ + if (ix<0x3fdf) /* |x|<2**-32 */ + if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ + t = expm1l(fabsl(x)); + if(ix<0x3fff) return h*(2.0*t-t*t/(t+one)); + return h*(t+t/(t+one)); + } + + /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ + if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) + return h*expl(fabsl(x)); + + /* |x| in [log(maxdouble), overflowthreshold] */ + if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 + || (i0 == 0xb174ddc0 + && i1 <= 0x31aec0ea)))) { + w = expl(0.5*fabsl(x)); + t = h*w; + return t*w; + } + + /* |x| > overflowthreshold, sinhl(x) overflow */ + return x*shuge; +} diff --git a/lib/libm/src/ld80/e_tgammal.c b/lib/libm/src/ld80/e_tgammal.c new file mode 100644 index 00000000000..adc38a515e2 --- /dev/null +++ b/lib/libm/src/ld80/e_tgammal.c @@ -0,0 +1,316 @@ +/* $OpenBSD: e_tgammal.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* tgammal.c + * + * Gamma function + * + * + * + * SYNOPSIS: + * + * long double x, y, tgammal(); + * extern int signgam; + * + * y = tgammal( x ); + * + * + * + * DESCRIPTION: + * + * Returns gamma function of the argument. The result is + * correctly signed, and the sign (+1 or -1) is also + * returned in a global (extern) variable named signgam. + * This variable is also filled in by the logarithmic gamma + * function lgamma(). + * + * Arguments |x| <= 13 are reduced by recurrence and the function + * approximated by a rational function of degree 7/8 in the + * interval (2,3). Large arguments are handled by Stirling's + * formula. Large negative arguments are made positive using + * a reflection formula. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -40,+40 10000 3.6e-19 7.9e-20 + * IEEE -1755,+1755 10000 4.8e-18 6.5e-19 + * + * Accuracy for large arguments is dominated by error in powl(). + * + */ + +#include +#include + +/* +tgamma(x+2) = tgamma(x+2) P(x)/Q(x) +0 <= x <= 1 +Relative error +n=7, d=8 +Peak error = 1.83e-20 +Relative error spread = 8.4e-23 +*/ + +static long double P[8] = { + 4.212760487471622013093E-5L, + 4.542931960608009155600E-4L, + 4.092666828394035500949E-3L, + 2.385363243461108252554E-2L, + 1.113062816019361559013E-1L, + 3.629515436640239168939E-1L, + 8.378004301573126728826E-1L, + 1.000000000000000000009E0L, +}; +static long double Q[9] = { +-1.397148517476170440917E-5L, + 2.346584059160635244282E-4L, +-1.237799246653152231188E-3L, +-7.955933682494738320586E-4L, + 2.773706565840072979165E-2L, +-4.633887671244534213831E-2L, +-2.243510905670329164562E-1L, + 4.150160950588455434583E-1L, + 9.999999999999999999908E-1L, +}; + +/* +static long double P[] = { +-3.01525602666895735709e0L, +-3.25157411956062339893e1L, +-2.92929976820724030353e2L, +-1.70730828800510297666e3L, +-7.96667499622741999770e3L, +-2.59780216007146401957e4L, +-5.99650230220855581642e4L, +-7.15743521530849602425e4L +}; +static long double Q[] = { + 1.00000000000000000000e0L, +-1.67955233807178858919e1L, + 8.85946791747759881659e1L, + 5.69440799097468430177e1L, +-1.98526250512761318471e3L, + 3.31667508019495079814e3L, + 1.60577839621734713377e4L, +-2.97045081369399940529e4L, +-7.15743521530849602412e4L +}; +*/ +#define MAXGAML 1755.455L +/*static long double LOGPI = 1.14472988584940017414L;*/ + +/* Stirling's formula for the gamma function +tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x)) +z(x) = x +13 <= x <= 1024 +Relative error +n=8, d=0 +Peak error = 9.44e-21 +Relative error spread = 8.8e-4 +*/ + +static long double STIR[9] = { + 7.147391378143610789273E-4L, +-2.363848809501759061727E-5L, +-5.950237554056330156018E-4L, + 6.989332260623193171870E-5L, + 7.840334842744753003862E-4L, +-2.294719747873185405699E-4L, +-2.681327161876304418288E-3L, + 3.472222222230075327854E-3L, + 8.333333333333331800504E-2L, +}; + +#define MAXSTIR 1024.0L +static long double SQTPI = 2.50662827463100050242E0L; + +/* 1/tgamma(x) = z P(z) + * z(x) = 1/x + * 0 < x < 0.03125 + * Peak relative error 4.2e-23 + */ + +static long double S[9] = { +-1.193945051381510095614E-3L, + 7.220599478036909672331E-3L, +-9.622023360406271645744E-3L, +-4.219773360705915470089E-2L, + 1.665386113720805206758E-1L, +-4.200263503403344054473E-2L, +-6.558780715202540684668E-1L, + 5.772156649015328608253E-1L, + 1.000000000000000000000E0L, +}; + +/* 1/tgamma(-x) = z P(z) + * z(x) = 1/x + * 0 < x < 0.03125 + * Peak relative error 5.16e-23 + * Relative error spread = 2.5e-24 + */ + +static long double SN[9] = { + 1.133374167243894382010E-3L, + 7.220837261893170325704E-3L, + 9.621911155035976733706E-3L, +-4.219773343731191721664E-2L, +-1.665386113944413519335E-1L, +-4.200263503402112910504E-2L, + 6.558780715202536547116E-1L, + 5.772156649015328608727E-1L, +-1.000000000000000000000E0L, +}; + +static long double PIL = 3.1415926535897932384626L; + +extern long double __polevll(long double, void *, int); +static long double stirf ( long double ); + +/* Gamma function computed by Stirling's formula. + */ +static long double stirf(long double x) +{ +long double y, w, v; + +w = 1.0L/x; +/* For large x, use rational coefficients from the analytical expansion. */ +if( x > 1024.0L ) + w = (((((6.97281375836585777429E-5L * w + + 7.84039221720066627474E-4L) * w + - 2.29472093621399176955E-4L) * w + - 2.68132716049382716049E-3L) * w + + 3.47222222222222222222E-3L) * w + + 8.33333333333333333333E-2L) * w + + 1.0L; +else + w = 1.0L + w * __polevll( w, STIR, 8 ); +y = expl(x); +if( x > MAXSTIR ) + { /* Avoid overflow in pow() */ + v = powl( x, 0.5L * x - 0.25L ); + y = v * (v / y); + } +else + { + y = powl( x, x - 0.5L ) / y; + } +y = SQTPI * y * w; +return( y ); +} + +long double +tgammal(long double x) +{ +long double p, q, z; +int i; + +signgam = 1; +if( isnan(x) ) + return(NAN); +if(x == INFINITY) + return(INFINITY); +if(x == -INFINITY) + return(x - x); +q = fabsl(x); + +if( q > 13.0L ) + { + if( q > MAXGAML ) + goto goverf; + if( x < 0.0L ) + { + p = floorl(q); + if( p == q ) + return (x - x) / (x - x); + i = p; + if( (i & 1) == 0 ) + signgam = -1; + z = q - p; + if( z > 0.5L ) + { + p += 1.0L; + z = q - p; + } + z = q * sinl( PIL * z ); + z = fabsl(z) * stirf(q); + if( z <= PIL/LDBL_MAX ) + { +goverf: + return( signgam * INFINITY); + } + z = PIL/z; + } + else + { + z = stirf(x); + } + return( signgam * z ); + } + +z = 1.0L; +while( x >= 3.0L ) + { + x -= 1.0L; + z *= x; + } + +while( x < -0.03125L ) + { + z /= x; + x += 1.0L; + } + +if( x <= 0.03125L ) + goto small; + +while( x < 2.0L ) + { + z /= x; + x += 1.0L; + } + +if( x == 2.0L ) + return(z); + +x -= 2.0L; +p = __polevll( x, P, 7 ); +q = __polevll( x, Q, 8 ); +z = z * p / q; +if( z < 0 ) + signgam = -1; +return z; + +small: +if( x == 0.0L ) + return (x - x) / (x - x); +else + { + if( x < 0.0L ) + { + x = -x; + q = z / (x * __polevll( x, SN, 8 )); + signgam = -1; + } + else + q = z / (x * __polevll( x, S, 8 )); + } +return q; +} diff --git a/lib/libm/src/ld80/s_asinhl.c b/lib/libm/src/ld80/s_asinhl.c new file mode 100644 index 00000000000..1dc804b11ae --- /dev/null +++ b/lib/libm/src/ld80/s_asinhl.c @@ -0,0 +1,54 @@ +/* @(#)s_asinh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* asinhl(x) + * Method : + * Based on + * asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ] + * we have + * asinhl(x) := x if 1+x*x=1, + * := signl(x)*(logl(x)+ln2)) for large |x|, else + * := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else + * := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2))) + */ + +#include + +#include "math_private.h" + +static const long double +one = 1.000000000000000000000e+00L, /* 0x3FFF, 0x00000000, 0x00000000 */ +ln2 = 6.931471805599453094287e-01L, /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */ +huge= 1.000000000000000000e+4900L; + +long double +asinhl(long double x) +{ + long double t,w; + int32_t hx,ix; + GET_LDOUBLE_EXP(hx,x); + ix = hx&0x7fff; + if(ix==0x7fff) return x+x; /* x is inf or NaN */ + if(ix< 0x3fde) { /* |x|<2**-34 */ + if(huge+x>one) return x; /* return x inexact except 0 */ + } + if(ix>0x4020) { /* |x| > 2**34 */ + w = logl(fabsl(x))+ln2; + } else if (ix>0x4000) { /* 2**34 > |x| > 2.0 */ + t = fabsl(x); + w = logl(2.0*t+one/(sqrtl(x*x+one)+t)); + } else { /* 2.0 > |x| > 2**-28 */ + t = x*x; + w =log1pl(fabsl(x)+t/(one+sqrtl(one+t))); + } + if(hx&0x8000) return -w; else return w; +} diff --git a/lib/libm/src/ld80/s_cbrtl.c b/lib/libm/src/ld80/s_cbrtl.c new file mode 100644 index 00000000000..ae06387a94b --- /dev/null +++ b/lib/libm/src/ld80/s_cbrtl.c @@ -0,0 +1,128 @@ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + * The argument reduction and testing for exceptional cases was + * written by Steven G. Kargl with input from Bruce D. Evans + * and David A. Schultz. + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrtl.c,v 1.1 2011/03/12 19:37:35 kargl Exp $"); +#endif + +#include +#include +#include + +#include "math_private.h" + +#define BIAS (LDBL_MAX_EXP - 1) + +static const unsigned + B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ + +long double +cbrtl(long double x) +{ + long double v, r, s, t, w; + double dr, dt, dx; + float ft, fx; + uint32_t hx, lx; + uint16_t expsign, es; + int k; + volatile double vd1, vd2; + + GET_LDOUBLE_EXP(expsign,x); + k = expsign & 0x7fff; + + /* + * If x = +-Inf, then cbrt(x) = +-Inf. + * If x = NaN, then cbrt(x) = NaN. + */ + if (k == BIAS + LDBL_MAX_EXP) + return (x + x); + + if (k == 0) { + /* If x = +-0, then cbrt(x) = +-0. */ + GET_LDOUBLE_WORDS(es,hx,lx,x); + if ((hx|lx) == 0) { + return (x); + } + /* Adjust subnormal numbers. */ + x *= 0x1.0p514; + GET_LDOUBLE_EXP(k,x); + k &= 0x7fff; + k -= BIAS + 514; + } else + k -= BIAS; + SET_LDOUBLE_EXP(x,BIAS); + v = 1; + + switch (k % 3) { + case 1: + case -2: + x = 2*x; + k--; + break; + case 2: + case -1: + x = 4*x; + k -= 2; + break; + } + SET_LDOUBLE_EXP(v, (expsign & 0x8000) | (BIAS + k / 3)); + + /* + * The following is the guts of s_cbrtf, with the handling of + * special values removed and extra care for accuracy not taken, + * but with most of the extra accuracy not discarded. + */ + + /* ~5-bit estimate: */ + fx = x; + GET_FLOAT_WORD(hx, fx); + SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1)); + + /* ~16-bit estimate: */ + dx = x; + dt = ft; + dr = dt * dt * dt; + dt = dt * (dx + dx + dr) / (dx + dr + dr); + + /* ~47-bit estimate: */ + dr = dt * dt * dt; + dt = dt * (dx + dx + dr) / (dx + dr + dr); + + /* + * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8). + * Round it away from zero to 32 bits (32 so that t*t is exact, and + * away from zero for technical reasons). + */ + vd2 = 0x1.0p32; + vd1 = 0x1.0p-31; + #define vd ((long double)vd2 + vd1) + + t = dt + vd - 0x1.0p32; + + /* + * Final step Newton iteration to 64 or 113 bits with + * error < 0.667 ulps + */ + s=t*t; /* t*t is exact */ + r=x/s; /* error <= 0.5 ulps; |r| < |t| */ + w=t+t; /* t+t is exact */ + r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ + t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ + + t *= v; + return (t); +} diff --git a/lib/libm/src/ld80/s_ceill.c b/lib/libm/src/ld80/s_ceill.c new file mode 100644 index 00000000000..5ad3d39dcac --- /dev/null +++ b/lib/libm/src/ld80/s_ceill.c @@ -0,0 +1,78 @@ +/* @(#)s_ceil.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * ceill(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to ceil(x). + */ + +#include + +#include "math_private.h" + +static const long double huge = 1.0e4930; + +long double +ceill(long double x) +{ + int32_t i1,j0; + u_int32_t i,j,se,i0,sx; + GET_LDOUBLE_WORDS(se,i0,i1,x); + sx = (se>>15)&1; + j0 = (se&0x7fff)-0x3fff; + if(j0<31) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(sx) {se=0x8000;i0=0;i1=0;} + else if((i0|i1)!=0) { se=0x3fff;i0=0;i1=0;} + } + } else { + i = (0x7fffffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(sx==0) { + if (j0>0 && (i0+(0x80000000>>j0))>i0) + i0+=0x80000000>>j0; + else + { + i = 0x7fffffff; + ++se; + } + } + i0 &= (~i); i1=0; + } + } + } else if (j0>62) { + if(j0==0x4000) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((u_int32_t)(0xffffffff))>>(j0-31); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(sx==0) { + if(j0==31) i0+=1; + else { + j = i1 + (1<<(63-j0)); + if(j + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* double erf(double x) + * double erfc(double x) + * x + * 2 |\ + * erf(x) = --------- | exp(-t*t)dt + * sqrt(pi) \| + * 0 + * + * erfc(x) = 1-erf(x) + * Note that + * erf(-x) = -erf(x) + * erfc(-x) = 2 - erfc(x) + * + * Method: + * 1. For |x| in [0, 0.84375] + * erf(x) = x + x*R(x^2) + * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] + * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] + * Remark. The formula is derived by noting + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) + * and that + * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 + * is close to one. The interval is chosen because the fix + * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is + * near 0.6174), and by some experiment, 0.84375 is chosen to + * guarantee the error is less than one ulp for erf. + * + * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and + * c = 0.84506291151 rounded to single (24 bits) + * erf(x) = sign(x) * (c + P1(s)/Q1(s)) + * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 + * 1+(c+P1(s)/Q1(s)) if x < 0 + * Remark: here we use the taylor series expansion at x=1. + * erf(1+s) = erf(1) + s*Poly(s) + * = 0.845.. + P1(s)/Q1(s) + * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] + * + * 3. For x in [1.25,1/0.35(~2.857143)], + * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z)) + * z=1/x^2 + * erf(x) = 1 - erfc(x) + * + * 4. For x in [1/0.35,107] + * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 + * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z)) + * if -6.666 x >= 107 + * erf(x) = sign(x) *(1 - tiny) (raise inexact) + * erfc(x) = tiny*tiny (raise underflow) if x > 0 + * = 2 - tiny if x<0 + * + * 7. Special case: + * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, + * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, + * erfc/erf(NaN) is NaN + */ + + +#include + +#include "math_private.h" + +static const long double +tiny = 1e-4931L, + half = 0.5L, + one = 1.0L, + two = 2.0L, + /* c = (float)0.84506291151 */ + erx = 0.845062911510467529296875L, +/* + * Coefficients for approximation to erf on [0,0.84375] + */ + /* 2/sqrt(pi) - 1 */ + efx = 1.2837916709551257389615890312154517168810E-1L, + /* 8 * (2/sqrt(pi) - 1) */ + efx8 = 1.0270333367641005911692712249723613735048E0L, + + pp[6] = { + 1.122751350964552113068262337278335028553E6L, + -2.808533301997696164408397079650699163276E6L, + -3.314325479115357458197119660818768924100E5L, + -6.848684465326256109712135497895525446398E4L, + -2.657817695110739185591505062971929859314E3L, + -1.655310302737837556654146291646499062882E2L, + }, + + qq[6] = { + 8.745588372054466262548908189000448124232E6L, + 3.746038264792471129367533128637019611485E6L, + 7.066358783162407559861156173539693900031E5L, + 7.448928604824620999413120955705448117056E4L, + 4.511583986730994111992253980546131408924E3L, + 1.368902937933296323345610240009071254014E2L, + /* 1.000000000000000000000000000000000000000E0 */ + }, + +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x) + -0.15625 <= x <= +.25 + Peak relative error 8.5e-22 */ + + pa[8] = { + -1.076952146179812072156734957705102256059E0L, + 1.884814957770385593365179835059971587220E2L, + -5.339153975012804282890066622962070115606E1L, + 4.435910679869176625928504532109635632618E1L, + 1.683219516032328828278557309642929135179E1L, + -2.360236618396952560064259585299045804293E0L, + 1.852230047861891953244413872297940938041E0L, + 9.394994446747752308256773044667843200719E-2L, + }, + + qa[7] = { + 4.559263722294508998149925774781887811255E2L, + 3.289248982200800575749795055149780689738E2L, + 2.846070965875643009598627918383314457912E2L, + 1.398715859064535039433275722017479994465E2L, + 6.060190733759793706299079050985358190726E1L, + 2.078695677795422351040502569964299664233E1L, + 4.641271134150895940966798357442234498546E0L, + /* 1.000000000000000000000000000000000000000E0 */ + }, + +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2)) + 1/2.85711669921875 < 1/x < 1/1.25 + Peak relative error 3.1e-21 */ + + ra[] = { + 1.363566591833846324191000679620738857234E-1L, + 1.018203167219873573808450274314658434507E1L, + 1.862359362334248675526472871224778045594E2L, + 1.411622588180721285284945138667933330348E3L, + 5.088538459741511988784440103218342840478E3L, + 8.928251553922176506858267311750789273656E3L, + 7.264436000148052545243018622742770549982E3L, + 2.387492459664548651671894725748959751119E3L, + 2.220916652813908085449221282808458466556E2L, + }, + + sa[] = { + -1.382234625202480685182526402169222331847E1L, + -3.315638835627950255832519203687435946482E2L, + -2.949124863912936259747237164260785326692E3L, + -1.246622099070875940506391433635999693661E4L, + -2.673079795851665428695842853070996219632E4L, + -2.880269786660559337358397106518918220991E4L, + -1.450600228493968044773354186390390823713E4L, + -2.874539731125893533960680525192064277816E3L, + -1.402241261419067750237395034116942296027E2L, + /* 1.000000000000000000000000000000000000000E0 */ + }, +/* + * Coefficients for approximation to erfc in [1/.35,107] + */ +/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2)) + 1/6.6666259765625 < 1/x < 1/2.85711669921875 + Peak relative error 4.2e-22 */ + rb[] = { + -4.869587348270494309550558460786501252369E-5L, + -4.030199390527997378549161722412466959403E-3L, + -9.434425866377037610206443566288917589122E-2L, + -9.319032754357658601200655161585539404155E-1L, + -4.273788174307459947350256581445442062291E0L, + -8.842289940696150508373541814064198259278E0L, + -7.069215249419887403187988144752613025255E0L, + -1.401228723639514787920274427443330704764E0L, + }, + + sb[] = { + 4.936254964107175160157544545879293019085E-3L, + 1.583457624037795744377163924895349412015E-1L, + 1.850647991850328356622940552450636420484E0L, + 9.927611557279019463768050710008450625415E0L, + 2.531667257649436709617165336779212114570E1L, + 2.869752886406743386458304052862814690045E1L, + 1.182059497870819562441683560749192539345E1L, + /* 1.000000000000000000000000000000000000000E0 */ + }, +/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2)) + 1/107 <= 1/x <= 1/6.6666259765625 + Peak relative error 1.1e-21 */ + rc[] = { + -8.299617545269701963973537248996670806850E-5L, + -6.243845685115818513578933902532056244108E-3L, + -1.141667210620380223113693474478394397230E-1L, + -7.521343797212024245375240432734425789409E-1L, + -1.765321928311155824664963633786967602934E0L, + -1.029403473103215800456761180695263439188E0L, + }, + + sc[] = { + 8.413244363014929493035952542677768808601E-3L, + 2.065114333816877479753334599639158060979E-1L, + 1.639064941530797583766364412782135680148E0L, + 4.936788463787115555582319302981666347450E0L, + 5.005177727208955487404729933261347679090E0L, + /* 1.000000000000000000000000000000000000000E0 */ + }; + +long double +erfl(long double x) +{ + long double R, S, P, Q, s, y, z, r; + int32_t ix, i; + u_int32_t se, i0, i1; + + GET_LDOUBLE_WORDS (se, i0, i1, x); + ix = se & 0x7fff; + + if (ix >= 0x7fff) + { /* erf(nan)=nan */ + i = ((se & 0xffff) >> 15) << 1; + return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */ + } + + ix = (ix << 16) | (i0 >> 16); + if (ix < 0x3ffed800) /* |x|<0.84375 */ + { + if (ix < 0x3fde8000) /* |x|<2**-33 */ + { + if (ix < 0x00080000) + return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */ + return x + efx * x; + } + z = x * x; + r = pp[0] + z * (pp[1] + + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); + s = qq[0] + z * (qq[1] + + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); + y = r / s; + return x + x * y; + } + if (ix < 0x3fffa000) /* 1.25 */ + { /* 0.84375 <= |x| < 1.25 */ + s = fabsl (x) - one; + P = pa[0] + s * (pa[1] + s * (pa[2] + + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); + Q = qa[0] + s * (qa[1] + s * (qa[2] + + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); + if ((se & 0x8000) == 0) + return erx + P / Q; + else + return -erx - P / Q; + } + if (ix >= 0x4001d555) /* 6.6666259765625 */ + { /* inf>|x|>=6.666 */ + if ((se & 0x8000) == 0) + return one - tiny; + else + return tiny - one; + } + x = fabsl (x); + s = one / (x * x); + if (ix < 0x4000b6db) /* 2.85711669921875 */ + { + R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + + s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); + S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + + s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); + } + else + { /* |x| >= 1/0.35 */ + R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + + s * (rb[5] + s * (rb[6] + s * rb[7])))))); + S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + + s * (sb[5] + s * (sb[6] + s)))))); + } + z = x; + GET_LDOUBLE_WORDS (i, i0, i1, z); + i1 = 0; + SET_LDOUBLE_WORDS (z, i, i0, i1); + r = + expl (-z * z - 0.5625) * expl ((z - x) * (z + x) + R / S); + if ((se & 0x8000) == 0) + return one - r / x; + else + return r / x - one; +} + +long double +erfcl(long double x) +{ + int32_t hx, ix; + long double R, S, P, Q, s, y, z, r; + u_int32_t se, i0, i1; + + GET_LDOUBLE_WORDS (se, i0, i1, x); + ix = se & 0x7fff; + if (ix >= 0x7fff) + { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (long double) (((se & 0xffff) >> 15) << 1) + one / x; + } + + ix = (ix << 16) | (i0 >> 16); + if (ix < 0x3ffed800) /* |x|<0.84375 */ + { + if (ix < 0x3fbe0000) /* |x|<2**-65 */ + return one - x; + z = x * x; + r = pp[0] + z * (pp[1] + + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); + s = qq[0] + z * (qq[1] + + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); + y = r / s; + if (ix < 0x3ffd8000) /* x<1/4 */ + { + return one - (x + x * y); + } + else + { + r = x * y; + r += (x - half); + return half - r; + } + } + if (ix < 0x3fffa000) /* 1.25 */ + { /* 0.84375 <= |x| < 1.25 */ + s = fabsl (x) - one; + P = pa[0] + s * (pa[1] + s * (pa[2] + + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); + Q = qa[0] + s * (qa[1] + s * (qa[2] + + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); + if ((se & 0x8000) == 0) + { + z = one - erx; + return z - P / Q; + } + else + { + z = erx + P / Q; + return one + z; + } + } + if (ix < 0x4005d600) /* 107 */ + { /* |x|<107 */ + x = fabsl (x); + s = one / (x * x); + if (ix < 0x4000b6db) /* 2.85711669921875 */ + { /* |x| < 1/.35 ~ 2.857143 */ + R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + + s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); + S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + + s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); + } + else if (ix < 0x4001d555) /* 6.6666259765625 */ + { /* 6.666 > |x| >= 1/.35 ~ 2.857143 */ + R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + + s * (rb[5] + s * (rb[6] + s * rb[7])))))); + S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + + s * (sb[5] + s * (sb[6] + s)))))); + } + else + { /* |x| >= 6.666 */ + if (se & 0x8000) + return two - tiny; /* x < -6.666 */ + + R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] + + s * (rc[4] + s * rc[5])))); + S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + + s * (sc[4] + s)))); + } + z = x; + GET_LDOUBLE_WORDS (hx, i0, i1, z); + i1 = 0; + i0 &= 0xffffff00; + SET_LDOUBLE_WORDS (z, hx, i0, i1); + r = expl (-z * z - 0.5625) * + expl ((z - x) * (z + x) + R / S); + if ((se & 0x8000) == 0) + return r / x; + else + return two - r / x; + } + else + { + if ((se & 0x8000) == 0) + return tiny * tiny; + else + return two - tiny; + } +} diff --git a/lib/libm/src/ld80/s_expm1l.c b/lib/libm/src/ld80/s_expm1l.c new file mode 100644 index 00000000000..b9397494129 --- /dev/null +++ b/lib/libm/src/ld80/s_expm1l.c @@ -0,0 +1,138 @@ +/* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* expm1l.c + * + * Exponential function, minus 1 + * Long double precision + * + * + * SYNOPSIS: + * + * long double x, y, expm1l(); + * + * y = expm1l( x ); + * + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power, minus 1. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + * x k f + * e = 2 e. + * + * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 + * in the basic range [-0.5 ln 2, 0.5 ln 2]. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20 + * + * ERROR MESSAGES: + * + * message condition value returned + * expm1l overflow x > MAXLOG MAXNUM + * + */ + +#include + +static long double MAXLOGL = 1.1356523406294143949492E4L; + +/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) + -.5 ln 2 < x < .5 ln 2 + Theoretical peak relative error = 3.4e-22 */ + +static long double + P0 = -1.586135578666346600772998894928250240826E4L, + P1 = 2.642771505685952966904660652518429479531E3L, + P2 = -3.423199068835684263987132888286791620673E2L, + P3 = 1.800826371455042224581246202420972737840E1L, + P4 = -5.238523121205561042771939008061958820811E-1L, + + Q0 = -9.516813471998079611319047060563358064497E4L, + Q1 = 3.964866271411091674556850458227710004570E4L, + Q2 = -7.207678383830091850230366618190187434796E3L, + Q3 = 7.206038318724600171970199625081491823079E2L, + Q4 = -4.002027679107076077238836622982900945173E1L, + /* Q5 = 1.000000000000000000000000000000000000000E0 */ + +/* C1 + C2 = ln 2 */ +C1 = 6.93145751953125E-1L, +C2 = 1.428606820309417232121458176568075500134E-6L, +/* ln 2^-65 */ +minarg = -4.5054566736396445112120088E1L; +static const long double huge = 0x1p10000L; + +long double +expm1l(long double x) +{ +long double px, qx, xx; +int k; + +/* Overflow. */ +if (x > MAXLOGL) + return (huge*huge); /* overflow */ + +if (x == 0.0) + return x; + +/* Minimum value. */ +if (x < minarg) + return -1.0L; + +xx = C1 + C2; + +/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ +px = floorl (0.5 + x / xx); +k = px; +/* remainder times ln 2 */ +x -= px * C1; +x -= px * C2; + +/* Approximate exp(remainder ln 2). */ +px = (((( P4 * x + + P3) * x + + P2) * x + + P1) * x + + P0) * x; + +qx = (((( x + + Q4) * x + + Q3) * x + + Q2) * x + + Q1) * x + + Q0; + +xx = x * x; +qx = x + (0.5 * xx + xx * px / qx); + +/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). + We have qx = exp(remainder ln 2) - 1, so + exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ +px = ldexpl(1.0L, k); +x = px * qx + (px - 1.0); +return x; +} diff --git a/lib/libm/src/ld80/s_floorl.c b/lib/libm/src/ld80/s_floorl.c new file mode 100644 index 00000000000..d9f6ab08734 --- /dev/null +++ b/lib/libm/src/ld80/s_floorl.c @@ -0,0 +1,79 @@ +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * floorl(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floor(x). + */ + +#include + +#include "math_private.h" + +static const long double huge = 1.0e4930; + +long double +floorl(long double x) +{ + int32_t i1,j0; + u_int32_t i,j,se,i0,sx; + GET_LDOUBLE_WORDS(se,i0,i1,x); + sx = (se>>15)&1; + j0 = (se&0x7fff)-0x3fff; + if(j0<31) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(sx==0) {se=0;i0=i1=0;} + else if(((se&0x7fff)|i0|i1)!=0) + { se=0xbfff;i0=i1=0;} + } + } else { + i = (0x7fffffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(sx) { + if (j0>0 && (i0+(0x80000000>>j0))>i0) + i0 += (0x80000000)>>j0; + else + { + i = 0x7fffffff; + ++se; + } + } + i0 &= (~i); i1=0; + } + } + } else if (j0>62) { + if(j0==0x4000) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((u_int32_t)(0xffffffff))>>(j0-31); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(sx) { + if(j0==31) i0+=1; + else { + j = i1+(1<<(63-j0)); + if(j + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* log1pl.c + * + * Relative error logarithm + * Natural logarithm of 1+x, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log1pl(); + * + * y = log1pl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of 1+x. + * + * The argument 1+x is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/x+1), + * + * log(x) = z + z^3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20 + * + * ERROR MESSAGES: + * + * log singularity: x-1 = 0; returns -INFINITY + * log domain: x-1 < 0; returns NAN + */ + +#include + +/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 2.32e-20 + */ + +static long double P[] = { + 4.5270000862445199635215E-5L, + 4.9854102823193375972212E-1L, + 6.5787325942061044846969E0L, + 2.9911919328553073277375E1L, + 6.0949667980987787057556E1L, + 5.7112963590585538103336E1L, + 2.0039553499201281259648E1L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0,*/ + 1.5062909083469192043167E1L, + 8.3047565967967209469434E1L, + 2.2176239823732856465394E2L, + 3.0909872225312059774938E2L, + 2.1642788614495947685003E2L, + 6.0118660497603843919306E1L, +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.16e-22 + */ + +static long double R[4] = { + 1.9757429581415468984296E-3L, +-7.1990767473014147232598E-1L, + 1.0777257190312272158094E1L, +-3.5717684488096787370998E1L, +}; +static long double S[4] = { +/* 1.00000000000000000000E0L,*/ +-2.6201045551331104417768E1L, + 1.9361891836232102174846E2L, +-4.2861221385716144629696E2L, +}; +static long double C1 = 6.9314575195312500000000E-1L; +static long double C2 = 1.4286068203094172321215E-6L; + +#define SQRTH 0.70710678118654752440L +extern long double __polevll(long double, void *, int); +extern long double __p1evll(long double, void *, int); + +long double +log1pl(long double xm1) +{ +long double x, y, z; +int e; + +if( isnan(xm1) ) + return(xm1); +if( xm1 == INFINITY ) + return(xm1); +if(xm1 == 0.0) + return(xm1); + +x = xm1 + 1.0L; + +/* Test for domain errors. */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + return( -INFINITY ); + else + return( NAN ); + } + +/* Separate mantissa from exponent. + Use frexp so that denormal numbers will be handled properly. */ +x = frexpl( x, &e ); + +/* logarithm using log(x) = z + z^3 P(z)/Q(z), + where z = 2(x-1)/x+1) */ +if( (e > 2) || (e < -2) ) +{ +if( x < SQRTH ) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } +else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } +x = z / y; +z = x*x; +z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); +z = z + e * C2; +z = z + x; +z = z + e * C1; +return( z ); +} + + +/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + +if( x < SQRTH ) + { + e -= 1; + if (e != 0) + x = 2.0 * x - 1.0L; + else + x = xm1; + } +else + { + if (e != 0) + x = x - 1.0L; + else + x = xm1; + } +z = x*x; +y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) ); +y = y + e * C2; +z = y - 0.5 * z; +z = z + x; +z = z + e * C1; +return( z ); +} diff --git a/lib/libm/src/ld80/s_modfl.c b/lib/libm/src/ld80/s_modfl.c new file mode 100644 index 00000000000..ebfca4b7385 --- /dev/null +++ b/lib/libm/src/ld80/s_modfl.c @@ -0,0 +1,69 @@ +/* @(#)s_modf.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * modfl(long double x, long double *iptr) + * return fraction part of x, and return x's integral part in *iptr. + * Method: + * Bit twiddling. + * + * Exception: + * No exception. + */ + +#include + +#include "math_private.h" + +static const long double one = 1.0; + +long double +modfl(long double x, long double *iptr) +{ + int32_t i0,i1,jj0; + u_int32_t i,se; + GET_LDOUBLE_WORDS(se,i0,i1,x); + jj0 = (se&0x7fff)-0x3fff; /* exponent of x */ + if(jj0<32) { /* integer part in high x */ + if(jj0<0) { /* |x|<1 */ + SET_LDOUBLE_WORDS(*iptr,se&0x8000,0,0); /* *iptr = +-0 */ + return x; + } else { + i = (0x7fffffff)>>jj0; + if(((i0&i)|i1)==0) { /* x is integral */ + *iptr = x; + SET_LDOUBLE_WORDS(x,se&0x8000,0,0); /* return +-0 */ + return x; + } else { + SET_LDOUBLE_WORDS(*iptr,se,i0&(~i),0); + return x - *iptr; + } + } + } else if (jj0>63) { /* no fraction part */ + *iptr = x*one; + /* We must handle NaNs separately. */ + if (jj0 == 0x4000 && ((i0 & 0x7fffffff) | i1)) + return x*one; + SET_LDOUBLE_WORDS(x,se&0x8000,0,0); /* return +-0 */ + return x; + } else { /* fraction part in low x */ + i = ((u_int32_t)(0x7fffffff))>>(jj0-32); + if((i1&i)==0) { /* x is integral */ + *iptr = x; + SET_LDOUBLE_WORDS(x,se&0x8000,0,0); /* return +-0 */ + return x; + } else { + SET_LDOUBLE_WORDS(*iptr,se,i0,i1&(~i)); + return x - *iptr; + } + } +} diff --git a/lib/libm/src/ld80/s_nextafterl.c b/lib/libm/src/ld80/s_nextafterl.c new file mode 100644 index 00000000000..80f0118c178 --- /dev/null +++ b/lib/libm/src/ld80/s_nextafterl.c @@ -0,0 +1,88 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nextafterl(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * Special cases: + */ + +#include +#include + +#include "math_private.h" + +long double +nextafterl(long double x, long double y) +{ + int32_t hx,hy,ix,iy; + u_int32_t lx,ly,esx,esy; + + GET_LDOUBLE_WORDS(esx,hx,lx,x); + GET_LDOUBLE_WORDS(esy,hy,ly,y); + ix = esx&0x7fff; /* |x| */ + iy = esy&0x7fff; /* |y| */ + + if (((ix==0x7fff)&&((hx|lx)!=0)) || /* x is nan */ + ((iy==0x7fff)&&((hy|ly)!=0))) /* y is nan */ + return x+y; + if(x==y) return y; /* x=y, return y */ + if((ix|hx|lx)==0) { /* x == 0 */ + volatile long double u; + SET_LDOUBLE_WORDS(x,esy&0x8000,0,1);/* return +-minsubnormal */ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(esx<0x8000) { /* x > 0 */ + if(ix>iy||((ix==iy) && (hx>hy||((hx==hy)&&(lx>ly))))) { + /* x > y, x -= ulp */ + if(lx==0) { + if (hx==0) esx -= 1; + hx -= 1; + } + lx -= 1; + } else { /* x < y, x += ulp */ + lx += 1; + if(lx==0) { + hx += 1; + if (hx==0) + esx += 1; + } + } + } else { /* x < 0 */ + if(esy>=0||(ix>iy||((ix==iy)&&(hx>hy||((hx==hy)&&(lx>ly)))))){ + /* x < y, x -= ulp */ + if(lx==0) { + if (hx==0) esx -= 1; + hx -= 1; + } + lx -= 1; + } else { /* x > y, x += ulp */ + lx += 1; + if(lx==0) { + hx += 1; + if (hx==0) esx += 1; + } + } + } + esy = esx&0x7fff; + if(esy==0x7fff) return x+x; /* overflow */ + if(esy==0) { + volatile long double u = x*x; /* underflow */ + } + SET_LDOUBLE_WORDS(x,esx,hx,lx); + return x; +} + +__weak_alias(nexttowardl, nextafterl); diff --git a/lib/libm/src/ld80/s_nexttoward.c b/lib/libm/src/ld80/s_nexttoward.c new file mode 100644 index 00000000000..d85c97ef61a --- /dev/null +++ b/lib/libm/src/ld80/s_nexttoward.c @@ -0,0 +1,82 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nexttoward(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * Special cases: + */ + +#include +#include + +#include "math_private.h" + +double +nexttoward(double x, long double y) +{ + int32_t hx,ix,iy; + u_int32_t lx,hy,ly,esy; + + EXTRACT_WORDS(hx,lx,x); + GET_LDOUBLE_WORDS(esy,hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = esy&0x7fff; /* |y| */ + + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ + ((iy>=0x7fff)&&(hy|ly)!=0)) /* y is nan */ + return x+y; + if((long double) x==y) return y; /* x=y, return y */ + if((ix|lx)==0) { /* x == 0 */ + volatile double u; + INSERT_WORDS(x,(esy&0x8000)<<16,1); /* return +-minsub */ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if (esy>=0x8000||((ix>>20)&0x7ff)>iy-0x3c00 + || (((ix>>20)&0x7ff)==iy-0x3c00 + && (((hx<<11)|(lx>>21))>(hy&0x7fffffff) + || (((hx<<11)|(lx>>21))==(hy&0x7fffffff) + && (lx<<11)>ly)))) { /* x > y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x < y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } else { /* x < 0 */ + if (esy<0x8000||((ix>>20)&0x7ff)>iy-0x3c00 + || (((ix>>20)&0x7ff)==iy-0x3c00 + && (((hx<<11)|(lx>>21))>(hy&0x7fffffff) + || (((hx<<11)|(lx>>21))==(hy&0x7fffffff) + && (lx<<11)>ly)))) {/* x < y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x > y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } + hy = hx&0x7ff00000; + if(hy>=0x7ff00000) { + x = x+x; /* overflow */ + return x; + } + if(hy<0x00100000) { + volatile double u = x*x; /* underflow */ + } + INSERT_WORDS(x,hx,lx); + return x; +} diff --git a/lib/libm/src/ld80/s_nexttowardf.c b/lib/libm/src/ld80/s_nexttowardf.c new file mode 100644 index 00000000000..3e0a2af8778 --- /dev/null +++ b/lib/libm/src/ld80/s_nexttowardf.c @@ -0,0 +1,67 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include +#include + +#include "math_private.h" + +float +nexttowardf(float x, long double y) +{ + int32_t hx,ix,iy; + u_int32_t hy,ly,esy; + + GET_FLOAT_WORD(hx,x); + GET_LDOUBLE_WORDS(esy,hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = esy&0x7fff; /* |y| */ + + if((ix>0x7f800000) || /* x is nan */ + (iy>=0x7fff&&((hy|ly)!=0))) /* y is nan */ + return x+y; + if((long double) x==y) return y; /* x=y, return y */ + if(ix==0) { /* x == 0 */ + volatile float u; + SET_FLOAT_WORD(x,((esy&0x8000)<<16)|1);/* return +-minsub*/ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if(esy>=0x8000||((ix>>23)&0xff)>iy-0x3f80 + || (((ix>>23)&0xff)==iy-0x3f80 + && ((ix&0x7fffff)<<8)>(hy&0x7fffffff))) {/* x > y, x -= ulp */ + hx -= 1; + } else { /* x < y, x += ulp */ + hx += 1; + } + } else { /* x < 0 */ + if(esy<0x8000||((ix>>23)&0xff)>iy-0x3f80 + || (((ix>>23)&0xff)==iy-0x3f80 + && ((ix&0x7fffff)<<8)>(hy&0x7fffffff))) {/* x < y, x -= ulp */ + hx -= 1; + } else { /* x > y, x += ulp */ + hx += 1; + } + } + hy = hx&0x7f800000; + if(hy>=0x7f800000) { + x = x+x; /* overflow */ + return x; + } + if(hy<0x00800000) { + volatile float u = x*x; /* underflow */ + } + SET_FLOAT_WORD(x,hx); + return x; +} diff --git a/lib/libm/src/ld80/s_remquol.c b/lib/libm/src/ld80/s_remquol.c new file mode 100644 index 00000000000..8b2ddd362ae --- /dev/null +++ b/lib/libm/src/ld80/s_remquol.c @@ -0,0 +1,171 @@ +/* @(#)e_fmod.c 1.3 95/01/18 */ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_remquol.c,v 1.2 2008/07/31 20:09:47 das Exp $"); +#endif + +#include +#include + +#include +#include +#include + +#include "math_private.h" + +#define BIAS (LDBL_MAX_EXP - 1) + +/* + * These macros add and remove an explicit integer bit in front of the + * fractional mantissa, if the architecture doesn't have such a bit by + * default already. + */ +#ifdef LDBL_IMPLICIT_NBIT +#define LDBL_NBIT 0 +#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) +#define HFRAC_BITS EXT_FRACHBITS +#else +#define LDBL_NBIT 0x80000000 +#define SET_NBIT(hx) (hx) +#define HFRAC_BITS (EXT_FRACHBITS - 1) +#endif + +#define MANL_SHIFT (EXT_FRACLBITS - 1) + +static const long double Zero[] = {0.0L, -0.0L}; + +/* + * Return the IEEE remainder and set *quo to the last n bits of the + * quotient, rounded to the nearest integer. We choose n=31 because + * we wind up computing all the integer bits of the quotient anyway as + * a side-effect of computing the remainder by the shift and subtract + * method. In practice, this is far more bits than are needed to use + * remquo in reduction algorithms. + * + * Assumptions: + * - The low part of the mantissa fits in a manl_t exactly. + * - The high part of the mantissa fits in an int64_t with enough room + * for an explicit integer bit in front of the fractional bits. + */ +long double +remquol(long double x, long double y, int *quo) +{ + int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */ + uint32_t hy; + uint32_t lx,ly,lz; + uint32_t esx, esy; + int ix,iy,n,q,sx,sxy; + + GET_LDOUBLE_WORDS(esx,hx,lx,x); + GET_LDOUBLE_WORDS(esy,hy,ly,y); + sx = esx & 0x8000; + sxy = sx ^ (esy & 0x8000); + esx &= 0x7fff; /* |x| */ + esy &= 0x7fff; /* |y| */ + SET_LDOUBLE_EXP(x,esx); + SET_LDOUBLE_EXP(y,esy); + + /* purge off exception values */ + if((esy|hy|ly)==0 || /* y=0 */ + (esx == BIAS + LDBL_MAX_EXP) || /* or x not finite */ + (esy == BIAS + LDBL_MAX_EXP && + ((hy&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */ + return (x*y)/(x*y); + if(esx<=esy) { + if((esx>MANL_SHIFT); lx = lx+lx;} + else {hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;} + q <<= 1; + } + hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;q++;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) { /* return sign(x)*0 */ + *quo = (sxy ? -q : q); + return Zero[sx!=0]; + } + while(hx<(1ULL<>MANL_SHIFT); lx = lx+lx; + iy -= 1; + } + if (iy < LDBL_MIN_EXP) { + esx = (iy + BIAS + 512) & 0x7fff; + SET_LDOUBLE_WORDS(x,esx,hx,lx); + x *= 0x1p-512; + GET_LDOUBLE_WORDS(esx,hx,lx,x); + } else { + esx = (iy + BIAS) & 0x7fff; + } + SET_LDOUBLE_WORDS(x,esx,hx,lx); +fixup: + y = fabsl(y); + if (y < LDBL_MIN * 2) { + if (x+x>y || (x+x==y && (q & 1))) { + q++; + x-=y; + } + } else if (x>0.5*y || (x==0.5*y && (q & 1))) { + q++; + x-=y; + } + + GET_LDOUBLE_EXP(esx,x); + esx ^= sx; + SET_LDOUBLE_EXP(x,esx); + + q &= 0x7fffffff; + *quo = (sxy ? -q : q); + return x; +} diff --git a/lib/libm/src/ld80/s_tanhl.c b/lib/libm/src/ld80/s_tanhl.c new file mode 100644 index 00000000000..a0b7bd8e4c3 --- /dev/null +++ b/lib/libm/src/ld80/s_tanhl.c @@ -0,0 +1,79 @@ +/* @(#)s_tanh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* tanhl(x) + * Return the Hyperbolic Tangent of x + * + * Method : + * x -x + * e - e + * 0. tanhl(x) is defined to be ----------- + * x -x + * e + e + * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). + * 2. 0 <= x <= 2**-55 : tanhl(x) := x*(one+x) + * -t + * 2**-55 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) + * t + 2 + * 2 + * 1 <= x <= 23.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) + * t + 2 + * 23.0 < x <= INF : tanhl(x) := 1. + * + * Special cases: + * tanhl(NaN) is NaN; + * only tanhl(0)=0 is exact for finite argument. + */ + +#include + +#include "math_private.h" + +static const long double one=1.0, two=2.0, tiny = 1.0e-4900L; + +long double +tanhl(long double x) +{ + long double t,z; + int32_t se; + u_int32_t jj0,jj1,ix; + + /* High word of |x|. */ + GET_LDOUBLE_WORDS(se,jj0,jj1,x); + ix = se&0x7fff; + + /* x is INF or NaN */ + if(ix==0x7fff) { + /* for NaN it's not important which branch: tanhl(NaN) = NaN */ + if (se&0x8000) return one/x-one; /* tanhl(-inf)= -1; */ + else return one/x+one; /* tanhl(+inf)=+1 */ + } + + /* |x| < 23 */ + if (ix < 0x4003 || (ix == 0x4003 && jj0 < 0xb8000000u)) {/* |x|<23 */ + if ((ix|jj0|jj1) == 0) + return x; /* x == +- 0 */ + if (ix<0x3fc8) /* |x|<2**-55 */ + return x*(one+tiny); /* tanh(small) = small */ + if (ix>=0x3fff) { /* |x|>=1 */ + t = expm1l(two*fabsl(x)); + z = one - two/(t+two); + } else { + t = expm1l(-two*fabsl(x)); + z= -t/(t+two); + } + /* |x| > 23, return +-1 */ + } else { + z = one - tiny; /* raised inexact flag */ + } + return (se&0x8000)? -z: z; +} diff --git a/lib/libm/src/ld80/s_truncl.c b/lib/libm/src/ld80/s_truncl.c new file mode 100644 index 00000000000..63cccf260ec --- /dev/null +++ b/lib/libm/src/ld80/s_truncl.c @@ -0,0 +1,77 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + * From: @(#)s_floor.c 5.1 93/09/24 + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_truncl.c,v 1.9 2008/02/14 15:10:34 bde Exp $"); +#endif + +/* + * truncl(x) + * Return x rounded toward 0 to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to truncl(x). + */ + +#include +#include + +#include +#include +#include + +#include "math_private.h" + +#ifdef LDBL_IMPLICIT_NBIT +#define MANH_SIZE (EXT_FRACHBITS + 1) +#else +#define MANH_SIZE EXT_FRACHBITS +#endif + +static const long double huge = 1.0e300; +static const float zero[] = { 0.0, -0.0 }; + +long double +truncl(long double x) +{ + int e, es; + uint32_t ix0, ix1; + + GET_LDOUBLE_WORDS(es,ix0,ix1,x); + e = (es&0x7fff) - LDBL_MAX_EXP + 1; + + if (e < MANH_SIZE - 1) { + if (e < 0) { /* raise inexact if x != 0 */ + if (huge + x > 0.0) + return (zero[(es&0x8000)!=0]); + } else { + uint64_t m = ((1llu << MANH_SIZE) - 1) >> (e + 1); + if (((ix0 & m) | ix1) == 0) + return (x); /* x is integral */ + if (huge + x > 0.0) { /* raise inexact flag */ + ix0 &= ~m; + ix1 = 0; + } + } + } else if (e < LDBL_MANT_DIG - 1) { + uint64_t m = (uint64_t)-1 >> (64 - LDBL_MANT_DIG + e + 1); + if ((ix1 & m) == 0) + return (x); /* x is integral */ + if (huge + x > 0.0) /* raise inexact flag */ + ix1 &= ~m; + } + SET_LDOUBLE_WORDS(x,es,ix0,ix1); + return (x); +} diff --git a/lib/libm/src/math_private.h b/lib/libm/src/math_private.h index 456c96e792c..00c88387874 100644 --- a/lib/libm/src/math_private.h +++ b/lib/libm/src/math_private.h @@ -1,4 +1,4 @@ -/* $OpenBSD: math_private.h,v 1.12 2011/07/04 15:00:56 martynas Exp $ */ +/* $OpenBSD: math_private.h,v 1.13 2011/07/06 00:02:42 martynas Exp $ */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. @@ -160,21 +160,21 @@ typedef union /* Get three 32 bit ints from a double. */ -#define GET_LDOUBLE_WORDS(exp,ix0,ix1,d) \ +#define GET_LDOUBLE_WORDS(se,ix0,ix1,d) \ do { \ ieee_extended_shape_type ew_u; \ ew_u.value = (d); \ - (exp) = ew_u.parts.exp; \ + (se) = ew_u.parts.exp; \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ -#define SET_LDOUBLE_WORDS(d,exp,ix0,ix1) \ +#define SET_LDOUBLE_WORDS(d,se,ix0,ix1) \ do { \ ieee_extended_shape_type iw_u; \ - iw_u.parts.exp = (exp); \ + iw_u.parts.exp = (se); \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ @@ -201,20 +201,20 @@ do { \ /* Get int from the exponent of a long double. */ -#define GET_LDOUBLE_EXP(exp,d) \ +#define GET_LDOUBLE_EXP(se,d) \ do { \ ieee_extended_shape_type ge_u; \ ge_u.value = (d); \ - (exp) = ge_u.parts.exp; \ + (se) = ge_u.parts.exp; \ } while (0) /* Set exponent of a long double from an int. */ -#define SET_LDOUBLE_EXP(d,exp) \ +#define SET_LDOUBLE_EXP(d,se) \ do { \ ieee_extended_shape_type se_u; \ se_u.value = (d); \ - se_u.parts.exp = (exp); \ + se_u.parts.exp = (se); \ (d) = se_u.value; \ } while (0) diff --git a/lib/libm/src/polevll.c b/lib/libm/src/polevll.c new file mode 100644 index 00000000000..31964a91630 --- /dev/null +++ b/lib/libm/src/polevll.c @@ -0,0 +1,102 @@ +/* $OpenBSD: polevll.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* polevll.c + * p1evll.c + * + * Evaluate polynomial + * + * + * + * SYNOPSIS: + * + * int N; + * long double x, y, coef[N+1], polevl[]; + * + * y = polevll( x, coef, N ); + * + * + * + * DESCRIPTION: + * + * Evaluates polynomial of degree N: + * + * 2 N + * y = C + C x + C x +...+ C x + * 0 1 2 N + * + * Coefficients are stored in reverse order: + * + * coef[0] = C , ..., coef[N] = C . + * N 0 + * + * The function p1evll() assumes that coef[N] = 1.0 and is + * omitted from the array. Its calling arguments are + * otherwise the same as polevll(). + * + * + * SPEED: + * + * In the interest of speed, there are no checks for out + * of bounds arithmetic. This routine is used by most of + * the functions in the library. Depending on available + * equipment features, the user may wish to rewrite the + * program in microcode or assembly language. + * + */ + +#include + +/* + * Polynomial evaluator: + * P[0] x^n + P[1] x^(n-1) + ... + P[n] + */ +long double +__polevll(long double x, void *PP, int n) +{ + long double y; + long double *P; + + P = (long double *)PP; + y = *P++; + do { + y = y * x + *P++; + } while (--n); + + return (y); +} + +/* + * Polynomial evaluator: + * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] + */ +long double +__p1evll(long double x, void *PP, int n) +{ + long double y; + long double *P; + + P = (long double *)PP; + n -= 1; + y = x + *P++; + do { + y = y * x + *P++; + } while (--n); + + return (y); +} diff --git a/lib/libm/src/s_asinh.c b/lib/libm/src/s_asinh.c index aa4085ae799..2899d4c2cd6 100644 --- a/lib/libm/src/s_asinh.c +++ b/lib/libm/src/s_asinh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* asinh(x) * Method : * Based on @@ -21,7 +23,10 @@ * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -51,3 +56,12 @@ asinh(double x) } if(hx>0) return w; else return -w; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double asinhl(long double); +#else /* lint */ +__weak_alias(asinhl, asinh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_cbrt.c b/lib/libm/src/s_cbrt.c index a6245b3c46f..2ec4378d096 100644 --- a/lib/libm/src/s_cbrt.c +++ b/lib/libm/src/s_cbrt.c @@ -10,7 +10,12 @@ * ==================================================== */ -#include "math.h" +/* LINTLIBRARY */ + +#include +#include +#include + #include "math_private.h" /* cbrt(x) @@ -75,3 +80,12 @@ cbrt(double x) SET_HIGH_WORD(t,high|sign); return(t); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double cbrtl(long double); +#else /* lint */ +__weak_alias(cbrtl, cbrt); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_ceil.c b/lib/libm/src/s_ceil.c index c5daeff163a..3825377c4d7 100644 --- a/lib/libm/src/s_ceil.c +++ b/lib/libm/src/s_ceil.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* * ceil(x) * Return x rounded toward -inf to integral value @@ -19,7 +21,10 @@ * Inexact flag raised if x not equal to ceil(x). */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double huge = 1.0e300; @@ -66,3 +71,12 @@ ceil(double x) INSERT_WORDS(x,i0,i1); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double ceill(long double); +#else /* lint */ +__weak_alias(ceill, ceil); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_erf.c b/lib/libm/src/s_erf.c index 64d99f411c3..619e3ea0e33 100644 --- a/lib/libm/src/s_erf.c +++ b/lib/libm/src/s_erf.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* double erf(double x) * double erfc(double x) * x @@ -104,8 +106,10 @@ * erfc/erf(NaN) is NaN */ +#include +#include +#include -#include "math.h" #include "math_private.h" static const double @@ -295,3 +299,14 @@ erfc(double x) if(hx>0) return tiny*tiny; else return two-tiny; } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double erfl(long double); +long double erfcl(long double); +#else /* lint */ +__weak_alias(erfl, erf); +__weak_alias(erfcl, erf); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_expm1.c b/lib/libm/src/s_expm1.c index 3f28b70131b..8d391c2dd8f 100644 --- a/lib/libm/src/s_expm1.c +++ b/lib/libm/src/s_expm1.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * @@ -105,7 +107,10 @@ * to produce the hexadecimal values shown. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -214,3 +219,12 @@ expm1(double x) } return y; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double expm1l(long double); +#else /* lint */ +__weak_alias(expm1l, expm1); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_floor.c b/lib/libm/src/s_floor.c index cccd7860971..3717861b914 100644 --- a/lib/libm/src/s_floor.c +++ b/lib/libm/src/s_floor.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* * floor(x) * Return x rounded toward -inf to integral value @@ -19,7 +21,10 @@ * Inexact flag raised if x not equal to floor(x). */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double huge = 1.0e300; @@ -67,3 +72,12 @@ floor(double x) INSERT_WORDS(x,i0,i1); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double floorl(long double); +#else /* lint */ +__weak_alias(floorl, floor); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_fma.c b/lib/libm/src/s_fma.c new file mode 100644 index 00000000000..7f22094e268 --- /dev/null +++ b/lib/libm/src/s_fma.c @@ -0,0 +1,218 @@ +/* $OpenBSD: s_fma.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2005 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +/* LINTLIBRARY */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.5 2008/04/03 06:14:51 das Exp $"); +#endif + +#include +#include +#include + +/* + * Fused multiply-add: Compute x * y + z with a single rounding error. + * + * We use scaling to avoid overflow/underflow, along with the + * canonical precision-doubling technique adapted from: + * + * Dekker, T. A Floating-Point Technique for Extending the + * Available Precision. Numer. Math. 18, 224-242 (1971). + * + * This algorithm is sensitive to the rounding precision. FPUs such + * as the i387 must be set in double-precision mode if variables are + * to be stored in FP registers in order to avoid incorrect results. + * This is the default on FreeBSD, but not on many other systems. + * + * Hardware instructions should be used on architectures that support it, + * since this implementation will likely be several times slower. + */ +#if LDBL_MANT_DIG != 113 +double +fma(double x, double y, double z) +{ + static const double split = 0x1p27 + 1.0; + double xs, ys, zs; + double c, cc, hx, hy, p, q, tx, ty; + double r, rr, s; + int oround; + int ex, ey, ez; + int spread; + + /* + * Handle special cases. The order of operations and the particular + * return values here are crucial in handling special cases involving + * infinities, NaNs, overflows, and signed zeroes correctly. + */ + if (x == 0.0 || y == 0.0) + return (x * y + z); + if (z == 0.0) + return (x * y); + if (!isfinite(x) || !isfinite(y)) + return (x * y + z); + if (!isfinite(z)) + return (z); + + xs = frexp(x, &ex); + ys = frexp(y, &ey); + zs = frexp(z, &ez); + oround = fegetround(); + spread = ex + ey - ez; + + /* + * If x * y and z are many orders of magnitude apart, the scaling + * will overflow, so we handle these cases specially. Rounding + * modes other than FE_TONEAREST are painful. + */ + if (spread > DBL_MANT_DIG * 2) { + fenv_t env; + feraiseexcept(FE_INEXACT); + switch(oround) { + case FE_TONEAREST: + return (x * y); + case FE_TOWARDZERO: + if (x > 0.0 ^ y < 0.0 ^ z < 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafter(r, 0); + feupdateenv(&env); + return (r); + case FE_DOWNWARD: + if (z > 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafter(r, -INFINITY); + feupdateenv(&env); + return (r); + default: /* FE_UPWARD */ + if (z < 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafter(r, INFINITY); + feupdateenv(&env); + return (r); + } + } + if (spread < -DBL_MANT_DIG) { + feraiseexcept(FE_INEXACT); + if (!isnormal(z)) + feraiseexcept(FE_UNDERFLOW); + switch (oround) { + case FE_TONEAREST: + return (z); + case FE_TOWARDZERO: + if (x > 0.0 ^ y < 0.0 ^ z < 0.0) + return (z); + else + return (nextafter(z, 0)); + case FE_DOWNWARD: + if (x > 0.0 ^ y < 0.0) + return (z); + else + return (nextafter(z, -INFINITY)); + default: /* FE_UPWARD */ + if (x > 0.0 ^ y < 0.0) + return (nextafter(z, INFINITY)); + else + return (z); + } + } + + /* + * Use Dekker's algorithm to perform the multiplication and + * subsequent addition in twice the machine precision. + * Arrange so that x * y = c + cc, and x * y + z = r + rr. + */ + fesetround(FE_TONEAREST); + + p = xs * split; + hx = xs - p; + hx += p; + tx = xs - hx; + + p = ys * split; + hy = ys - p; + hy += p; + ty = ys - hy; + + p = hx * hy; + q = hx * ty + tx * hy; + c = p + q; + cc = p - c + q + tx * ty; + + zs = ldexp(zs, -spread); + r = c + zs; + s = r - c; + rr = (c - (r - s)) + (zs - s) + cc; + + spread = ex + ey; + if (spread + ilogb(r) > -1023) { + fesetround(oround); + r = r + rr; + } else { + /* + * The result is subnormal, so we round before scaling to + * avoid double rounding. + */ + p = ldexp(copysign(0x1p-1022, r), -spread); + c = r + p; + s = c - r; + cc = (r - (c - s)) + (p - s) + rr; + fesetround(oround); + r = (c + cc) - p; + } + return (ldexp(r, spread)); +} +#else /* LDBL_MANT_DIG == 113 */ +/* + * 113 bits of precision is more than twice the precision of a double, + * so it is enough to represent the intermediate product exactly. + */ +double +fma(double x, double y, double z) +{ + return ((long double)x * y + z); +} +#endif /* LDBL_MANT_DIG != 113 */ + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double fmal(long double, long double, long double); +#else /* lint */ +__weak_alias(fmal, fma); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_fmaf.c b/lib/libm/src/s_fmaf.c new file mode 100644 index 00000000000..172f270b058 --- /dev/null +++ b/lib/libm/src/s_fmaf.c @@ -0,0 +1,52 @@ +/* $OpenBSD: s_fmaf.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2005 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_fmaf.c,v 1.2 2008/03/29 16:38:29 das Exp $"); +#endif + +#include + +/* + * Fused multiply-add: Compute x * y + z with a single rounding error. + * + * A double has more than twice as much precision than a float, so + * direct double-precision arithmetic suffices. + * + * XXX We are relying on the compiler to convert from double to float + * using the current rounding mode and with the appropriate + * side-effects. But on at least one platform (gcc 3.4.2/sparc64), + * this appears to be too much to ask for. The precision + * reduction should be done manually. + */ +float +fmaf(float x, float y, float z) +{ + return ((double)x * y + z); +} diff --git a/lib/libm/src/s_fmal.c b/lib/libm/src/s_fmal.c new file mode 100644 index 00000000000..e8bb1c2848c --- /dev/null +++ b/lib/libm/src/s_fmal.c @@ -0,0 +1,191 @@ +/* $OpenBSD: s_fmal.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2005 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_fmal.c,v 1.4 2008/04/03 06:14:51 das Exp $"); +#endif + +#include +#include +#include + +/* + * Fused multiply-add: Compute x * y + z with a single rounding error. + * + * We use scaling to avoid overflow/underflow, along with the + * canonical precision-doubling technique adapted from: + * + * Dekker, T. A Floating-Point Technique for Extending the + * Available Precision. Numer. Math. 18, 224-242 (1971). + */ +long double +fmal(long double x, long double y, long double z) +{ +#if LDBL_MANT_DIG == 64 + static const long double split = 0x1p32L + 1.0; +#elif LDBL_MANT_DIG == 113 + static const long double split = 0x1p57L + 1.0; +#endif + long double xs, ys, zs; + long double c, cc, hx, hy, p, q, tx, ty; + long double r, rr, s; + int oround; + int ex, ey, ez; + int spread; + + /* + * Handle special cases. The order of operations and the particular + * return values here are crucial in handling special cases involving + * infinities, NaNs, overflows, and signed zeroes correctly. + */ + if (x == 0.0 || y == 0.0) + return (x * y + z); + if (z == 0.0) + return (x * y); + if (!isfinite(x) || !isfinite(y)) + return (x * y + z); + if (!isfinite(z)) + return (z); + + xs = frexpl(x, &ex); + ys = frexpl(y, &ey); + zs = frexpl(z, &ez); + oround = fegetround(); + spread = ex + ey - ez; + + /* + * If x * y and z are many orders of magnitude apart, the scaling + * will overflow, so we handle these cases specially. Rounding + * modes other than FE_TONEAREST are painful. + */ + if (spread > LDBL_MANT_DIG * 2) { + fenv_t env; + feraiseexcept(FE_INEXACT); + switch(oround) { + case FE_TONEAREST: + return (x * y); + case FE_TOWARDZERO: + if (x > 0.0 ^ y < 0.0 ^ z < 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafterl(r, 0); + feupdateenv(&env); + return (r); + case FE_DOWNWARD: + if (z > 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafterl(r, -INFINITY); + feupdateenv(&env); + return (r); + default: /* FE_UPWARD */ + if (z < 0.0) + return (x * y); + feholdexcept(&env); + r = x * y; + if (!fetestexcept(FE_INEXACT)) + r = nextafterl(r, INFINITY); + feupdateenv(&env); + return (r); + } + } + if (spread < -LDBL_MANT_DIG) { + feraiseexcept(FE_INEXACT); + if (!isnormal(z)) + feraiseexcept(FE_UNDERFLOW); + switch (oround) { + case FE_TONEAREST: + return (z); + case FE_TOWARDZERO: + if (x > 0.0 ^ y < 0.0 ^ z < 0.0) + return (z); + else + return (nextafterl(z, 0)); + case FE_DOWNWARD: + if (x > 0.0 ^ y < 0.0) + return (z); + else + return (nextafterl(z, -INFINITY)); + default: /* FE_UPWARD */ + if (x > 0.0 ^ y < 0.0) + return (nextafterl(z, INFINITY)); + else + return (z); + } + } + + /* + * Use Dekker's algorithm to perform the multiplication and + * subsequent addition in twice the machine precision. + * Arrange so that x * y = c + cc, and x * y + z = r + rr. + */ + fesetround(FE_TONEAREST); + + p = xs * split; + hx = xs - p; + hx += p; + tx = xs - hx; + + p = ys * split; + hy = ys - p; + hy += p; + ty = ys - hy; + + p = hx * hy; + q = hx * ty + tx * hy; + c = p + q; + cc = p - c + q + tx * ty; + + zs = ldexpl(zs, -spread); + r = c + zs; + s = r - c; + rr = (c - (r - s)) + (zs - s) + cc; + + spread = ex + ey; + if (spread + ilogbl(r) > -16383) { + fesetround(oround); + r = r + rr; + } else { + /* + * The result is subnormal, so we round before scaling to + * avoid double rounding. + */ + p = ldexpl(copysignl(0x1p-16382L, r), -spread); + c = r + p; + s = c - r; + cc = (r - (c - s)) + (p - s) + rr; + fesetround(oround); + r = (c + cc) - p; + } + return (ldexpl(r, spread)); +} diff --git a/lib/libm/src/s_llrint.c b/lib/libm/src/s_llrint.c index 56c321f3d41..c4a984e6566 100644 --- a/lib/libm/src/s_llrint.c +++ b/lib/libm/src/s_llrint.c @@ -1,4 +1,4 @@ -/* $OpenBSD: s_llrint.c,v 1.1 2006/09/25 20:25:41 kettenis Exp $ */ +/* $OpenBSD: s_llrint.c,v 1.2 2011/07/06 00:02:42 martynas Exp $ */ /* $NetBSD: llrint.c,v 1.2 2004/10/13 15:18:32 drochner Exp $ */ /* @@ -6,9 +6,20 @@ * Public domain. */ +/* LINTLIBRARY */ + #define LRINTNAME llrint #define RESTYPE long long int #define RESTYPE_MIN LLONG_MIN #define RESTYPE_MAX LLONG_MAX #include "s_lrint.c" + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long long int llrintl(long double); +#else /* lint */ +__weak_alias(llrintl, llrint); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_llrintl.c b/lib/libm/src/s_llrintl.c new file mode 100644 index 00000000000..2d29727592f --- /dev/null +++ b/lib/libm/src/s_llrintl.c @@ -0,0 +1,12 @@ +/* $OpenBSD: s_llrintl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Written by Martynas Venckus. Public domain + */ + +#define type long double +#define roundit rintl +#define dtype long long +#define fn llrintl + +#include "s_lrintl.c" diff --git a/lib/libm/src/s_llround.c b/lib/libm/src/s_llround.c index e9ba5c05363..de130396f2d 100644 --- a/lib/libm/src/s_llround.c +++ b/lib/libm/src/s_llround.c @@ -1,4 +1,4 @@ -/* $OpenBSD: s_llround.c,v 1.1 2008/07/21 20:29:14 martynas Exp $ */ +/* $OpenBSD: s_llround.c,v 1.2 2011/07/06 00:02:42 martynas Exp $ */ /* $NetBSD: llround.c,v 1.2 2004/10/13 15:18:32 drochner Exp $ */ /* @@ -6,9 +6,20 @@ * Public domain. */ +/* LINTLIBRARY */ + #define LROUNDNAME llround #define RESTYPE long long int #define RESTYPE_MIN LLONG_MIN #define RESTYPE_MAX LLONG_MAX #include "s_lround.c" + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long long int llroundl(long double); +#else /* lint */ +__weak_alias(llroundl, llround); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_llroundl.c b/lib/libm/src/s_llroundl.c new file mode 100644 index 00000000000..926bc0bbbe1 --- /dev/null +++ b/lib/libm/src/s_llroundl.c @@ -0,0 +1,14 @@ +/* $OpenBSD: s_llroundl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/* + * Written by Martynas Venckus. Public domain + */ + +#define type long double +#define roundit roundl +#define dtype long long +#define DTYPE_MIN LLONG_MIN +#define DTYPE_MAX LLONG_MAX +#define fn llroundl + +#include "s_lroundl.c" diff --git a/lib/libm/src/s_log1p.c b/lib/libm/src/s_log1p.c index 076f3d91061..2fbe0a9bed5 100644 --- a/lib/libm/src/s_log1p.c +++ b/lib/libm/src/s_log1p.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* double log1p(double x) * * Method : @@ -75,7 +77,10 @@ * See HP-15C Advanced Functions Handbook, p.193. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double @@ -155,3 +160,12 @@ log1p(double x) if(k==0) return f-(hfsq-s*(hfsq+R)); else return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double log1pl(long double); +#else /* lint */ +__weak_alias(log1pl, log1p); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_lrint.c b/lib/libm/src/s_lrint.c index 8e0e554348a..7a1c73f2933 100644 --- a/lib/libm/src/s_lrint.c +++ b/lib/libm/src/s_lrint.c @@ -1,4 +1,4 @@ -/* $OpenBSD: s_lrint.c,v 1.6 2011/04/20 21:32:59 martynas Exp $ */ +/* $OpenBSD: s_lrint.c,v 1.7 2011/07/06 00:02:42 martynas Exp $ */ /* $NetBSD: lrint.c,v 1.3 2004/10/13 15:18:32 drochner Exp $ */ /*- @@ -27,11 +27,15 @@ * SUCH DAMAGE. */ +/* LINTLIBRARY */ + #include #include +#include #include #include #include + #include "math_private.h" #ifndef LRINTNAME @@ -95,3 +99,12 @@ LRINTNAME(double x) return (s ? -res : res); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long int lrintl(long double); +#else /* lint */ +__weak_alias(lrintl, lrint); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_lrintl.c b/lib/libm/src/s_lrintl.c new file mode 100644 index 00000000000..66f699c8116 --- /dev/null +++ b/lib/libm/src/s_lrintl.c @@ -0,0 +1,62 @@ +/* $OpenBSD: s_lrintl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2005 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#include +#include + +#ifndef type +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_lrint.c,v 1.1 2005/01/11 23:12:55 das Exp $"); +#endif +#define type long double +#define roundit rintl +#define dtype long +#define fn lrintl +#endif + +/* + * C99 says we should not raise a spurious inexact exception when an + * invalid exception is raised. Unfortunately, the set of inputs + * that overflows depends on the rounding mode when 'dtype' has more + * significant bits than 'type'. Hence, we bend over backwards for the + * sake of correctness; an MD implementation could be more efficient. + */ +dtype +fn(type x) +{ + fenv_t env; + dtype d; + + feholdexcept(&env); + d = (dtype)roundit(x); + if (fetestexcept(FE_INVALID)) + feclearexcept(FE_INEXACT); + feupdateenv(&env); + return (d); +} diff --git a/lib/libm/src/s_lround.c b/lib/libm/src/s_lround.c index 647e35396d7..91e2c79e8a2 100644 --- a/lib/libm/src/s_lround.c +++ b/lib/libm/src/s_lround.c @@ -1,4 +1,4 @@ -/* $OpenBSD: s_lround.c,v 1.3 2011/04/17 13:59:54 martynas Exp $ */ +/* $OpenBSD: s_lround.c,v 1.4 2011/07/06 00:02:42 martynas Exp $ */ /* $NetBSD: lround.c,v 1.2 2004/10/13 15:18:32 drochner Exp $ */ /*- @@ -27,8 +27,11 @@ * SUCH DAMAGE. */ +/* LINTLIBRARY */ + #include #include +#include #include #include #include @@ -86,3 +89,12 @@ LROUNDNAME(double x) return (s ? -res : res); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long int lroundl(long double); +#else /* lint */ +__weak_alias(lroundl, lround); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_lroundl.c b/lib/libm/src/s_lroundl.c new file mode 100644 index 00000000000..ca24910866b --- /dev/null +++ b/lib/libm/src/s_lroundl.c @@ -0,0 +1,70 @@ +/* $OpenBSD: s_lroundl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2005 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#include +#include +#include + +#ifndef type +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_lround.c,v 1.2 2005/04/08 00:52:16 das Exp $"); +#endif +#define type long double +#define roundit roundl +#define dtype long +#define DTYPE_MIN LONG_MIN +#define DTYPE_MAX LONG_MAX +#define fn lroundl +#endif + +/* + * If type has more precision than dtype, the endpoints dtype_(min|max) are + * of the form xxx.5; they are "out of range" because lround() rounds away + * from 0. On the other hand, if type has less precision than dtype, then + * all values that are out of range are integral, so we might as well assume + * that everything is in range. At compile time, INRANGE(x) should reduce to + * two floating-point comparisons in the former case, or TRUE otherwise. + */ +static const type dtype_min = DTYPE_MIN - 0.5; +static const type dtype_max = DTYPE_MAX + 0.5; +#define INRANGE(x) (dtype_max - DTYPE_MAX != 0.5 || \ + ((x) > dtype_min && (x) < dtype_max)) + +dtype +fn(type x) +{ + + if (INRANGE(x)) { + x = roundit(x); + return ((dtype)x); + } else { + feraiseexcept(FE_INVALID); + return (DTYPE_MAX); + } +} diff --git a/lib/libm/src/s_modf.c b/lib/libm/src/s_modf.c index 9511e77169c..c97408aa99f 100644 --- a/lib/libm/src/s_modf.c +++ b/lib/libm/src/s_modf.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* * modf(double x, double *iptr) * return fraction part of x, and return x's integral part in *iptr. @@ -20,7 +22,10 @@ * No exception. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one = 1.0; @@ -69,3 +74,12 @@ modf(double x, double *iptr) } } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double modfl(long double, long double *); +#else /* lint */ +__weak_alias(modfl, modf); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_nextafter.c b/lib/libm/src/s_nextafter.c index 9b148b47b33..ead67afd86c 100644 --- a/lib/libm/src/s_nextafter.c +++ b/lib/libm/src/s_nextafter.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* IEEE functions * nextafter(x,y) * return the next machine floating-point number of x in the @@ -17,7 +19,10 @@ * Special cases: */ -#include "math.h" +#include +#include +#include + #include "math_private.h" double @@ -31,15 +36,15 @@ nextafter(double x, double y) ix = hx&0x7fffffff; /* |x| */ iy = hy&0x7fffffff; /* |y| */ - if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ - ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */ + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ + ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */ return x+y; if(x==y) return y; /* x=y, return y */ if((ix|lx)==0) { /* x == 0 */ INSERT_WORDS(x,hy&0x80000000,1); /* return +-minsubnormal */ y = x*x; if(y==x) return y; else return x; /* raise underflow flag */ - } + } if(hx>=0) { /* x > 0 */ if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */ if(lx==0) hx -= 1; @@ -69,3 +74,16 @@ nextafter(double x, double y) INSERT_WORDS(x,hx,lx); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double nextafterl(long double, long double); +double nexttoward(double, long double); +long double nexttowardl(long double, long double); +#else /* lint */ +__weak_alias(nextafterl, nextafter); +__weak_alias(nexttoward, nextafter); +__weak_alias(nexttowardl, nextafter); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_nexttowardf.c b/lib/libm/src/s_nexttowardf.c new file mode 100644 index 00000000000..ee22018343d --- /dev/null +++ b/lib/libm/src/s_nexttowardf.c @@ -0,0 +1,74 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nexttowardf(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * This is for machines which use the same binary type for double and + * long double. + * Special cases: + */ + +#include +#include + +#include "math_private.h" + +float +nexttowardf(float x, long double y) +{ + int32_t hx,hy,ix,iy; + u_int32_t ly; + + GET_FLOAT_WORD(hx,x); + EXTRACT_WORDS(hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = hy&0x7fffffff; /* |y| */ + + if((ix>0x7f800000) || /* x is nan */ + ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */ + return x+y; + if((long double) x==y) return y; /* x=y, return y */ + if(ix==0) { /* x == 0 */ + volatile float u; + SET_FLOAT_WORD(x,(u_int32_t)(hy&0x80000000)|1);/* return +-minsub*/ + u = x; + u = u * u; /* raise underflow flag */ + return x; + } + if(hx>=0) { /* x > 0 */ + if(hy<0||(ix>>23)>(iy>>20)-0x380 + || ((ix>>23)==(iy>>20)-0x380 + && (ix&0x7fffff)>(((hy<<3)|(ly>>29))&0x7fffff))) /* x > y, x -= ulp */ + hx -= 1; + else /* x < y, x += ulp */ + hx += 1; + } else { /* x < 0 */ + if(hy>=0||(ix>>23)>(iy>>20)-0x380 + || ((ix>>23)==(iy>>20)-0x380 + && (ix&0x7fffff)>(((hy<<3)|(ly>>29))&0x7fffff))) /* x < y, x -= ulp */ + hx -= 1; + else /* x > y, x += ulp */ + hx += 1; + } + hy = hx&0x7f800000; + if(hy>=0x7f800000) { + x = x+x; /* overflow */ + return x; + } + if(hy<0x00800000) { + volatile float u = x*x; /* underflow */ + } + SET_FLOAT_WORD(x,hx); + return x; +} diff --git a/lib/libm/src/s_remquo.c b/lib/libm/src/s_remquo.c index b033071180b..1c00f104b3e 100644 --- a/lib/libm/src/s_remquo.c +++ b/lib/libm/src/s_remquo.c @@ -10,9 +10,12 @@ * ==================================================== */ +/* LINTLIBRARY */ + +#include #include +#include -#include "math.h" #include "math_private.h" static const double Zero[] = {0.0, -0.0,}; @@ -149,3 +152,12 @@ fixup: *quo = (sxy ? -q : q); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double remquol(long double, long double, int *); +#else /* lint */ +__weak_alias(remquol, remquo); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_round.c b/lib/libm/src/s_round.c index cb2db491cbd..356447a72fc 100644 --- a/lib/libm/src/s_round.c +++ b/lib/libm/src/s_round.c @@ -1,4 +1,4 @@ -/* $OpenBSD: s_round.c,v 1.1 2006/07/12 07:26:08 brad Exp $ */ +/* $OpenBSD: s_round.c,v 1.2 2011/07/06 00:02:42 martynas Exp $ */ /*- * Copyright (c) 2003, Steven G. Kargl @@ -26,7 +26,12 @@ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ -#include "math.h" +/* LINTLIBRARY */ + +#include +#include +#include + #include "math_private.h" double @@ -49,3 +54,12 @@ round(double x) return (-t); } } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double roundl(long double); +#else /* lint */ +__weak_alias(roundl, round); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_roundl.c b/lib/libm/src/s_roundl.c new file mode 100644 index 00000000000..05cdaed3304 --- /dev/null +++ b/lib/libm/src/s_roundl.c @@ -0,0 +1,55 @@ +/* $OpenBSD: s_roundl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ + +/*- + * Copyright (c) 2003, Steven G. Kargl + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice unmodified, this list of conditions, and the following + * disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#if 0 +__FBSDID("$FreeBSD: src/lib/msun/src/s_roundl.c,v 1.2 2005/12/02 13:45:06 bde Exp $"); +#endif + +#include + +long double +roundl(long double x) +{ + long double t; + + if (!isfinite(x)) + return (x); + + if (x >= 0.0) { + t = floorl(x); + if (t - x <= -0.5) + t += 1.0; + return (t); + } else { + t = floorl(-x); + if (t + x <= -0.5) + t += 1.0; + return (-t); + } +} diff --git a/lib/libm/src/s_tanh.c b/lib/libm/src/s_tanh.c index c5730590dfc..7daaf83844b 100644 --- a/lib/libm/src/s_tanh.c +++ b/lib/libm/src/s_tanh.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* Tanh(x) * Return the Hyperbolic Tangent of x * @@ -34,7 +36,10 @@ * only tanh(0)=0 is exact for finite argument. */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double one=1.0, two=2.0, tiny = 1.0e-300; @@ -74,3 +79,12 @@ tanh(double x) } return (jx>=0)? z: -z; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double tanhl(long double); +#else /* lint */ +__weak_alias(tanhl, tanh); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/s_trunc.c b/lib/libm/src/s_trunc.c index 3fdf02a2bc0..8c2b165ddb6 100644 --- a/lib/libm/src/s_trunc.c +++ b/lib/libm/src/s_trunc.c @@ -10,6 +10,8 @@ * ==================================================== */ +/* LINTLIBRARY */ + #if 0 #include __FBSDID("$FreeBSD: src/lib/msun/src/s_trunc.c,v 1.1 2004/06/20 09:25:43 das Exp $"); @@ -24,7 +26,10 @@ __FBSDID("$FreeBSD: src/lib/msun/src/s_trunc.c,v 1.1 2004/06/20 09:25:43 das Exp * Inexact flag raised if x not equal to trunc(x). */ -#include "math.h" +#include +#include +#include + #include "math_private.h" static const double huge = 1.0e300; @@ -61,3 +66,12 @@ trunc(double x) INSERT_WORDS(x,i0,i1); return x; } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double truncl(long double); +#else /* lint */ +__weak_alias(truncl, trunc); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ diff --git a/lib/libm/src/w_lgamma.c b/lib/libm/src/w_lgamma.c index 8e5b9b7cb8c..bf69e9a734f 100644 --- a/lib/libm/src/w_lgamma.c +++ b/lib/libm/src/w_lgamma.c @@ -10,13 +10,18 @@ * ==================================================== */ +/* LINTLIBRARY */ + /* double lgamma(double x) * Return the logarithm of the Gamma function of x. * * Method: call lgamma_r */ -#include "math.h" +#include +#include +#include + #include "math_private.h" extern int signgam; @@ -26,3 +31,12 @@ lgamma(double x) { return lgamma_r(x,&signgam); } + +#if LDBL_MANT_DIG == 53 +#ifdef lint +/* PROTOLIB1 */ +long double lgammal(long double); +#else /* lint */ +__weak_alias(lgammal, lgamma); +#endif /* lint */ +#endif /* LDBL_MANT_DIG == 53 */ -- cgit v1.2.3