# $OpenBSD: TOUR,v 1.3 1996/10/20 00:54:43 millert Exp $ # $NetBSD: TOUR,v 1.7 1995/05/11 21:28:38 christos Exp $ # @(#)TOUR 8.1 (Berkeley) 5/31/93 NOTE -- This is the original TOUR paper distributed with ash and does not represent the current state of the shell. It is provided anyway since it provides helpful information for how the shell is structured, but be warned that things have changed -- the current shell is still under development. ================================================================ A Tour through Ash Copyright 1989 by Kenneth Almquist. DIRECTORIES: The subdirectory bltin contains commands which can be compiled stand-alone. The rest of the source is in the main ash directory. SOURCE CODE GENERATORS: Files whose names begin with "mk" are programs that generate source code. A complete list of these programs is: program intput files generates ------- ------------ --------- mkbuiltins builtins builtins.h builtins.c mkinit *.c init.c mknodes nodetypes nodes.h nodes.c mksignames - signames.h signames.c mksyntax - syntax.h syntax.c mktokens - token.h bltin/mkexpr unary_op binary_op operators.h operators.c There are undoubtedly too many of these. Mkinit searches all the C source files for entries looking like: INIT { x = 1; /* executed during initialization */ } RESET { x = 2; /* executed when the shell does a longjmp back to the main command loop */ } SHELLPROC { x = 3; /* executed when the shell runs a shell procedure */ } It pulls this code out into routines which are when particular events occur. The intent is to improve modularity by isolating the information about which modules need to be explicitly initialized/reset within the modules themselves. Mkinit recognizes several constructs for placing declarations in the init.c file. INCLUDE "file.h" includes a file. The storage class MKINIT makes a declaration available in the init.c file, for example: MKINIT int funcnest; /* depth of function calls */ MKINIT alone on a line introduces a structure or union declara- tion: MKINIT struct redirtab { short renamed[10]; }; Preprocessor #define statements are copied to init.c without any special action to request this. INDENTATION: The ash source is indented in multiples of six spaces. The only study that I have heard of on the subject con- cluded that the optimal amount to indent is in the range of four to six spaces. I use six spaces since it is not too big a jump from the widely used eight spaces. If you really hate six space indentation, use the adjind (source included) program to change it to something else. EXCEPTIONS: Code for dealing with exceptions appears in exceptions.c. The C language doesn't include exception handling, so I implement it using setjmp and longjmp. The global variable exception contains the type of exception. EXERROR is raised by calling error. EXINT is an interrupt. EXSHELLPROC is an excep- tion which is raised when a shell procedure is invoked. The pur- pose of EXSHELLPROC is to perform the cleanup actions associated with other exceptions. After these cleanup actions, the shell can interpret a shell procedure itself without exec'ing a new copy of the shell. INTERRUPTS: In an interactive shell, an interrupt will cause an EXINT exception to return to the main command loop. (Exception: EXINT is not raised if the user traps interrupts using the trap command.) The INTOFF and INTON macros (defined in exception.h) provide uninterruptable critical sections. Between the execution of INTOFF and the execution of INTON, interrupt signals will be held for later delivery. INTOFF and INTON can be nested. MEMALLOC.C: Memalloc.c defines versions of malloc and realloc which call error when there is no memory left. It also defines a stack oriented memory allocation scheme. Allocating off a stack is probably more efficient than allocation using malloc, but the big advantage is that when an exception occurs all we have to do to free up the memory in use at the time of the exception is to restore the stack pointer. The stack is implemented using a linked list of blocks. STPUTC: If the stack were contiguous, it would be easy to store strings on the stack without knowing in advance how long the string was going to be: p = stackptr; *p++ = c; /* repeated as many times as needed */ stackptr = p; The folloing three macros (defined in memalloc.h) perform these operations, but grow the stack if you run off the end: STARTSTACKSTR(p); STPUTC(c, p); /* repeated as many times as needed */ grabstackstr(p); We now start a top-down look at the code: MAIN.C: The main routine performs some initialization, executes the user's profile if necessary, and calls cmdloop. Cmdloop is repeatedly parses and executes commands. OPTIONS.C: This file contains the option processing code. It is called from main to parse the shell arguments when the shell is invoked, and it also contains the set builtin. The -i and -j op- tions (the latter turns on job control) require changes in signal handling. The routines setjobctl (in jobs.c) and setinteractive (in trap.c) are called to handle changes to these options. PARSING: The parser code is all in parser.c. A recursive des- cent parser is used. Syntax tables (generated by mksyntax) are used to classify characters during lexical analysis. There are three tables: one for normal use, one for use when inside single quotes, and one for use when inside double quotes. The tables are machine dependent because they are indexed by character vari- ables and the range of a char varies from machine to machine. PARSE OUTPUT: The output of the parser consists of a tree of nodes. The various types of nodes are defined in the file node- types. Nodes of type NARG are used to represent both words and the con- tents of here documents. An early version of ash kept the con- tents of here documents in temporary files, but keeping here do- cuments in memory typically results in significantly better per- formance. It would have been nice to make it an option to use temporary files for here documents, for the benefit of small machines, but the code to keep track of when to delete the tem- porary files was complex and I never fixed all the bugs in it. (AT&T has been maintaining the Bourne shell for more than ten years, and to the best of my knowledge they still haven't gotten it to handle temporary files correctly in obscure cases.) The text field of a NARG structure points to the text of the word. The text consists of ordinary characters and a number of special codes defined in parser.h. The special codes are: CTLVAR Variable substitution CTLENDVAR End of variable substitution CTLBACKQ Command substitution CTLBACKQ|CTLQUOTE Command substitution inside double quotes CTLESC Escape next character A variable substitution contains the following elements: CTLVAR type name '=' [ alternative-text CTLENDVAR ] The type field is a single character specifying the type of sub- stitution. The possible types are: VSNORMAL $var VSMINUS ${var-text} VSMINUS|VSNUL ${var:-text} VSPLUS ${var+text} VSPLUS|VSNUL ${var:+text} VSQUESTION ${var?text} VSQUESTION|VSNUL ${var:?text} VSASSIGN ${var=text} VSASSIGN|VSNUL ${var=text} In addition, the type field will have the VSQUOTE flag set if the variable is enclosed in double quotes. The name of the variable comes next, terminated by an equals sign. If the type is not VSNORMAL, then the text field in the substitution follows, ter- minated by a CTLENDVAR byte. Commands in back quotes are parsed and stored in a linked list. The locations of these commands in the string are indicated by CTLBACKQ and CTLBACKQ+CTLQUOTE characters, depending upon whether the back quotes were enclosed in double quotes. The character CTLESC escapes the next character, so that in case any of the CTL characters mentioned above appear in the input, they can be passed through transparently. CTLESC is also used to escape '*', '?', '[', and '!' characters which were quoted by the user and thus should not be used for file name generation. CTLESC characters have proved to be particularly tricky to get right. In the case of here documents which are not subject to variable and command substitution, the parser doesn't insert any CTLESC characters to begin with (so the contents of the text field can be written without any processing). Other here docu- ments, and words which are not subject to splitting and file name generation, have the CTLESC characters removed during the vari- able and command substitution phase. Words which are subject splitting and file name generation have the CTLESC characters re- moved as part of the file name phase. EXECUTION: Command execution is handled by the following files: eval.c The top level routines. redir.c Code to handle redirection of input and output. jobs.c Code to handle forking, waiting, and job control. exec.c Code to to path searches and the actual exec sys call. expand.c Code to evaluate arguments. var.c Maintains the variable symbol table. Called from expand.c. EVAL.C: Evaltree recursively executes a parse tree. The exit status is returned in the global variable exitstatus. The alter- native entry evalbackcmd is called to evaluate commands in back quotes. It saves the result in memory if the command is a buil- tin; otherwise it forks off a child to execute the command and connects the standard output of the child to a pipe. JOBS.C: To create a process, you call makejob to return a job structure, and then call forkshell (passing the job structure as an argument) to create the process. Waitforjob waits for a job to complete. These routines take care of process groups if job control is defined. REDIR.C: Ash allows file descriptors to be redirected and then restored without forking off a child process. This is accom- plished by duplicating the original file descriptors. The redir- tab structure records where the file descriptors have be dupli- cated to. EXEC.C: The routine find_command locates a command, and enters the command in the hash table if it is not already there. The third argument specifies whether it is to print an error message if the command is not found. (When a pipeline is set up, find_command is called for all the commands in the pipeline be- fore any forking is done, so to get the commands into the hash table of the parent process. But to make command hashing as transparent as possible, we silently ignore errors at that point and only print error messages if the command cannot be found later.) The routine shellexec is the interface to the exec system call. EXPAND.C: Arguments are processed in three passes. The first (performed by the routine argstr) performs variable and command substitution. The second (ifsbreakup) performs word splitting and the third (expandmeta) performs file name generation. If the "/u" directory is simulated, then when "/u/username" is replaced by the user's home directory, the flag "didudir" is set. This tells the cd command that it should print out the directory name, just as it would if the "/u" directory were implemented using symbolic links. VAR.C: Variables are stored in a hash table. Probably we should switch to extensible hashing. The variable name is stored in the same string as the value (using the format "name=value") so that no string copying is needed to create the environment of a com- mand. Variables which the shell references internally are preal- located so that the shell can reference the values of these vari- ables without doing a lookup. When a program is run, the code in eval.c sticks any environment variables which precede the command (as in "PATH=xxx command") in the variable table as the simplest way to strip duplicates, and then calls "environment" to get the value of the environment. There are two consequences of this. First, if an assignment to PATH precedes the command, the value of PATH before the assign- ment must be remembered and passed to shellexec. Second, if the program turns out to be a shell procedure, the strings from the environment variables which preceded the command must be pulled out of the table and replaced with strings obtained from malloc, since the former will automatically be freed when the stack (see the entry on memalloc.c) is emptied. BUILTIN COMMANDS: The procedures for handling these are scat- tered throughout the code, depending on which location appears most appropriate. They can be recognized because their names al- ways end in "cmd". The mapping from names to procedures is specified in the file builtins, which is processed by the mkbuil- tins command. A builtin command is invoked with argc and argv set up like a normal program. A builtin command is allowed to overwrite its arguments. Builtin routines can call nextopt to do option pars- ing. This is kind of like getopt, but you don't pass argc and argv to it. Builtin routines can also call error. This routine normally terminates the shell (or returns to the main command loop if the shell is interactive), but when called from a builtin command it causes the builtin command to terminate with an exit status of 2. The directory bltins contains commands which can be compiled in- dependently but can also be built into the shell for efficiency reasons. The makefile in this directory compiles these programs in the normal fashion (so that they can be run regardless of whether the invoker is ash), but also creates a library named bltinlib.a which can be linked with ash. The header file bltin.h takes care of most of the differences between the ash and the stand-alone environment. The user should call the main routine "main", and #define main to be the name of the routine to use when the program is linked into ash. This #define should appear before bltin.h is included; bltin.h will #undef main if the pro- gram is to be compiled stand-alone. CD.C: This file defines the cd and pwd builtins. The pwd com- mand runs /bin/pwd the first time it is invoked (unless the user has already done a cd to an absolute pathname), but then remembers the current directory and updates it when the cd com- mand is run, so subsequent pwd commands run very fast. The main complication in the cd command is in the docd command, which resolves symbolic links into actual names and informs the user where the user ended up if he crossed a symbolic link. SIGNALS: Trap.c implements the trap command. The routine set- signal figures out what action should be taken when a signal is received and invokes the signal system call to set the signal ac- tion appropriately. When a signal that a user has set a trap for is caught, the routine "onsig" sets a flag. The routine dotrap is called at appropriate points to actually handle the signal. When an interrupt is caught and no trap has been set for that signal, the routine "onint" in error.c is called. OUTPUT: Ash uses it's own output routines. There are three out- put structures allocated. "Output" represents the standard out- put, "errout" the standard error, and "memout" contains output which is to be stored in memory. This last is used when a buil- tin command appears in backquotes, to allow its output to be col- lected without doing any I/O through the UNIX operating system. The variables out1 and out2 normally point to output and errout, respectively, but they are set to point to memout when appropri- ate inside backquotes. INPUT: The basic input routine is pgetc, which reads from the current input file. There is a stack of input files; the current input file is the top file on this stack. The code allows the input to come from a string rather than a file. (This is for the -c option and the "." and eval builtin commands.) The global variable plinno is saved and restored when files are pushed and popped from the stack. The parser routines store the number of the current line in this variable. DEBUGGING: If DEBUG is defined in shell.h, then the shell will write debugging information to the file $HOME/trace. Most of this is done using the TRACE macro, which takes a set of printf arguments inside two sets of parenthesis. Example: "TRACE(("n=%d0, n))". The double parenthesis are necessary be- cause the preprocessor can't handle functions with a variable number of arguments. Defining DEBUG also causes the shell to generate a core dump if it is sent a quit signal. The tracing code is in show.c.