OpenBSDInstallPrelude dnl No extra line, this has to stick to the geometry notes paragraph. The file `HP-IB.geometry' has geometry information for several HP-IB disks, but may be incomplete. Geometry may be calculated from an HP-UX `/etc/disktab' entry, but note that HP-UX geometry is based on 1024 byte sectors, while OpenBSD's is based on 512 byte sectors. The ramdisk kernel may be loaded from the network, from CD-ROM, or other SCSI devices (such as Zip(tm) disk). Note that loading from HPIB or SCSI cartridge tape is possible, but not currently supported. Booting from CD-ROM installation media: You can burn a bootable CD-ROM and boot from it. To boot from SCSI CD-ROM, simply insert the CD into the drive before power up, then during the computer's self-test cycle, press the space bar. Shortly, you should see a menu of possible boot options appear. Select the option corresponding to SYS_CDBOOT. SYS_CDBOOT will then load and begin loading bsd.rd from the CD; depending on your ROM revision and hardware configuration, you may or may not see any messages on the console while this happens. Please note that booting from CD-ROM may not be supported by all models of MACHINE. You will also need a CD-ROM drive which uses 512 byte blocks; anything which shipped with an MACHINE or is known to boot a SPARC or black NeXTStation should work. Modern CD-ROM drives jumpered to use 512-byte blocks should work as well. Booting from Network: Note: Booting SYS_UBOOT via the network is only possible if your bootrom is `rev. c' or later. (This only applies to the 320/350 era machines.) If you wish to load the SYS_UBOOT program via the network, you need to either have another OpenBSD system on the network, or something else capable of running the rbootd(8) program. Source code may be found under usr.sbin/rbootd in the OpenBSD source tree, but requires the Berkeley Packet Filter (bpf) in order to function. It may be possible to use HP-UX, but is not recommended (or documented here). For more information on diskless booting under OpenBSD, see the diskless(8) manual page. First of all, configure your rbootd to handle boot requests from the client. NOTE: OpenBSD's `rbootd' is slightly different from HP-UX's. To configure OpenBSD's `rbootd', create a file called `/etc/rbootd.conf' and place in it an entry like the following: 08:00:09:04:AA:33 SYS_UBOOT # thunder-egg The first column is the ethernet address of the client's network interface. The second column is the program to send to the client, and anything after the `#' is a comment. Once you have rbootd running, copy the SYS_UBOOT program to the /usr/mdec/rbootd directory on your server. If this directory doesn't exist already, you will need to create it. Next, add the client to /etc/ethers on your server. For example: 08:00:09:04:AA:33 thunder-egg Then start `rarpd' on your server; `rarpd -a' should do the trick. Finally, you need to add an entry in /etc/bootparams. For example: thunder-egg root=myserver:/export/MACHINE Where myserver is the name of your server machine and `/export/MACHINE' is the directory that holds the ramdisk kernel image (`bsd.rd'). Now run `rpc.bootparamd' and make sure that this directory is NFS exported to the client. See the manual pages on your server system if you need more information about exporting filesystems. If you run into problems you may wish to run `rpc.bootparamd' with the `-d' flag on your server to get extra debugging information. You are now ready to load SYS_UBOOT. During the client's self-test cycle, press the space bar. Shortly, you should see a menu of possible boot options appear. Select the option corresponding to SYS_UBOOT. SYS_UBOOT will then load and prompt you for a kernel name. NFS file names should not have a leading '/' prepended to them, simply use `bsd.rd'. Installing using the CD-ROM or netboot procedure: OpenBSDInstallPart2 Boot your machine from the installation media as described above. When presented with the boot prompt, enter the path of your kernel (which is likely to be `bsd.rd'). It will take a while to load the kernel especially from a slow speed cdrom or slow network connection, most likely more than a minute. If some action doesn't eventually happen, or the spinning cursor has stopped and nothing further has happened, either your boot media is bad, your diskless setup is incorrect, or you may have a hardware or configuration problem. Remember that if your machine is a 425e, you must use a serial console, even if you can initiate the boot process from the graphics console. OpenBSDBootMsgs You will next be asked for your terminal type. There are only a few specific terminal types supported. If you are using a graphics display, just hit return to select the default (hp300h). If you are using an ASCII terminal, it should either be an HP or vt100 compatible terminal; nothing else is supported. (If your terminal type is xterm, just use vt100). After entering the terminal type you will be asked whether you wish to do an "(I)nstall" or an "(U)pgrade". Enter 'I' for a fresh install or 'U' to upgrade an existing installation. You will be presented with a welcome message and asked if you really wish to install (or upgrade). Assuming you answered yes, the install program will then tell you which disks of that type it can install on, and ask you which it should use. The name of the disk is typically "hd0" for HPIB/CS80 drives or "sd0" for SCSI drives. Reply with the name of your disk. Next the disk label which defines the layout of the OpenBSD file systems must be set up. The installation script will invoke an interactive editor allowing you to do this. Note that partition 'c' inside this disk label should ALWAYS reflect the entire disk, including any non-OpenBSD portions. The root file system should be in partition 'a', and swap is usually in partition 'b'. It is recommended that you create separate partitions for /usr and /var, and if you have room for it, one for /home. For help in the disk label editor, enter '?' or 'M' to view the manual page (see the info on the ``-E'' flag). Since the target disk will become the boot disk for your new OpenBSD/MACHINE installation, the disklabel program will restrict the available disk area to keep the first cylinder, which will contain the bootblock, safe from being overwritten. If you don't plan to install a bootblock on this disk, you can reclaim this space with the 'b' command. The swap partition (usually 'b') should have a type of "swap", all other native OpenBSD partitions should have a type of "4.2BSD". Block and fragment sizes are usually 8192 and 1024 bytes, but can also be 4096 and 512 or even 16384 and 2048 bytes. The install program will now label your disk and ask which file systems should be created on which partitions. It will auto- matically select the 'a' partition to be the root file system. Next it will ask for which disk and partition you want a file system created on. This will be the same as the disk name (e.g. "hd0") with the letter identifying the partition (e.g. "d") appended (e.g. "hd0d"). Then it will ask where this partition is to be mounted, e.g. /usr. This process will be repeated until you enter "done". At this point you will be asked to confirm that the file system information you have entered is correct, and given an opportunity to change the file system table. Next it will create the new file systems as specified, OVERWRITING ANY EXISTING DATA. This is the point of no return. After all your file systems have been created, the install program will give you an opportunity to configure the network. The network configuration you enter (if any) can then be used to do the install from another system using NFS, HTTP or FTP, and will also be the configuration used by the system after the installation is complete. If you select to configure the network, the install program will ask you for a name of your system and the DNS domain name to use. Note that the host name should be without the domain part, and that the domain name should NOT {:-include-:} the host name part. Next the system will give you a list of network interfaces you can configure. For each network interface you select to configure, it will ask for the IP address to use, the symbolic host name to use, the netmask to use and any interface-specific flags to set. No interface-specific flags should be required. After all network interfaces has been configured the install pro- gram will ask for a default route and IP address of the primary name server to use. You will also be presented with an opportunity to edit the host table. At this point you will be allowed to edit the file system table that will be used for the remainder of the installation and that will be used by the finished system, following which the new file systems will be mounted to complete the installation. After these preparatory steps have been completed, you will be able to extract the distribution sets onto your system. There are several install methods supported; FTP, HTTP, tape, CD-ROM, NFS or a local disk partition. OpenBSDFTPInstall OpenBSDHTTPInstall OpenBSDTAPEInstall OpenBSDCDROMInstall OpenBSDNFSInstall OpenBSDDISKInstall({:-"hdN" or -:},{:-only -:}) OpenBSDCommonFS OpenBSDCommonURL OpenBSDCongratulations