/* $OpenBSD: pickmove.c,v 1.8 2003/04/06 18:50:37 deraadt Exp $ */ /* * Copyright (c) 1994 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)pickmove.c 8.2 (Berkeley) 5/3/95"; #else static char rcsid[] = "$OpenBSD: pickmove.c,v 1.8 2003/04/06 18:50:37 deraadt Exp $"; #endif #endif /* not lint */ #include "gomoku.h" #include #include #include #include #define BITS_PER_INT (sizeof(int) * CHAR_BIT) #define MAPSZ (BAREA / BITS_PER_INT) #define BIT_SET(a, b) ((a)[(b)/BITS_PER_INT] |= (1 << ((b) % BITS_PER_INT))) #define BIT_CLR(a, b) ((a)[(b)/BITS_PER_INT] &= ~(1 << ((b) % BITS_PER_INT))) #define BIT_TEST(a, b) ((a)[(b)/BITS_PER_INT] & (1 << ((b) % BITS_PER_INT))) struct combostr *hashcombos[FAREA]; /* hash list for finding duplicates */ struct combostr *sortcombos; /* combos at higher levels */ int combolen; /* number of combos in sortcombos */ int nextcolor; /* color of next move */ int elistcnt; /* count of struct elist allocated */ int combocnt; /* count of struct combostr allocated */ int forcemap[MAPSZ]; /* map for blocking <1,x> combos */ int tmpmap[MAPSZ]; /* map for blocking <1,x> combos */ int nforce; /* count of opponent <1,x> combos */ int pickmove(us) int us; { struct spotstr *sp, *sp1, *sp2; union comboval *Ocp, *Tcp; int m; /* first move is easy */ if (movenum == 1) return (PT(K,10)); /* initialize all the board values */ for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) { sp->s_combo[BLACK].s = MAXCOMBO + 1; sp->s_combo[WHITE].s = MAXCOMBO + 1; sp->s_level[BLACK] = 255; sp->s_level[WHITE] = 255; sp->s_nforce[BLACK] = 0; sp->s_nforce[WHITE] = 0; sp->s_flg &= ~(FFLAGALL | MFLAGALL); } nforce = 0; memset(forcemap, 0, sizeof(forcemap)); /* compute new values */ nextcolor = us; scanframes(BLACK); scanframes(WHITE); /* find the spot with the highest value */ for (sp = sp1 = sp2 = &board[PT(T,19)]; --sp >= &board[PT(A,1)]; ) { if (sp->s_occ != EMPTY) continue; if (debug && (sp->s_combo[BLACK].c.a == 1 || sp->s_combo[WHITE].c.a == 1)) { snprintf(fmtbuf, sizeof fmtbuf, "- %s %x/%d %d %x/%d %d %d", stoc(sp - board), sp->s_combo[BLACK].s, sp->s_level[BLACK], sp->s_nforce[BLACK], sp->s_combo[WHITE].s, sp->s_level[WHITE], sp->s_nforce[WHITE], sp->s_wval); dlog(fmtbuf); } /* pick the best black move */ if (better(sp, sp1, BLACK)) sp1 = sp; /* pick the best white move */ if (better(sp, sp2, WHITE)) sp2 = sp; } if (debug) { snprintf(fmtbuf, sizeof fmtbuf, "B %s %x/%d %d %x/%d %d %d", stoc(sp1 - board), sp1->s_combo[BLACK].s, sp1->s_level[BLACK], sp1->s_nforce[BLACK], sp1->s_combo[WHITE].s, sp1->s_level[WHITE], sp1->s_nforce[WHITE], sp1->s_wval); dlog(fmtbuf); snprintf(fmtbuf, sizeof fmtbuf, "W %s %x/%d %d %x/%d %d %d", stoc(sp2 - board), sp2->s_combo[WHITE].s, sp2->s_level[WHITE], sp2->s_nforce[WHITE], sp2->s_combo[BLACK].s, sp2->s_level[BLACK], sp2->s_nforce[BLACK], sp2->s_wval); dlog(fmtbuf); /* * Check for more than one force that can't * all be blocked with one move. */ sp = (us == BLACK) ? sp2 : sp1; m = sp - board; if (sp->s_combo[!us].c.a == 1 && !BIT_TEST(forcemap, m)) dlog("*** Can't be blocked"); } if (us == BLACK) { Ocp = &sp1->s_combo[BLACK]; Tcp = &sp2->s_combo[WHITE]; } else { Tcp = &sp1->s_combo[BLACK]; Ocp = &sp2->s_combo[WHITE]; sp = sp1; sp1 = sp2; sp2 = sp; } /* * Block their combo only if we have to (i.e., if they are one move * away from completing a force and we don't have a force that * we can complete which takes fewer moves to win). */ if (Tcp->c.a <= 1 && (Ocp->c.a > 1 || Tcp->c.a + Tcp->c.b < Ocp->c.a + Ocp->c.b)) return (sp2 - board); return (sp1 - board); } /* * Return true if spot 'sp' is better than spot 'sp1' for color 'us'. */ int better(sp, sp1, us) struct spotstr *sp; struct spotstr *sp1; int us; { int them, s, s1; if (sp->s_combo[us].s < sp1->s_combo[us].s) return (1); if (sp->s_combo[us].s != sp1->s_combo[us].s) return (0); if (sp->s_level[us] < sp1->s_level[us]) return (1); if (sp->s_level[us] != sp1->s_level[us]) return (0); if (sp->s_nforce[us] > sp1->s_nforce[us]) return (1); if (sp->s_nforce[us] != sp1->s_nforce[us]) return (0); them = !us; s = sp - board; s1 = sp1 - board; if (BIT_TEST(forcemap, s) && !BIT_TEST(forcemap, s1)) return (1); if (!BIT_TEST(forcemap, s) && BIT_TEST(forcemap, s1)) return (0); if (sp->s_combo[them].s < sp1->s_combo[them].s) return (1); if (sp->s_combo[them].s != sp1->s_combo[them].s) return (0); if (sp->s_level[them] < sp1->s_level[them]) return (1); if (sp->s_level[them] != sp1->s_level[them]) return (0); if (sp->s_nforce[them] > sp1->s_nforce[them]) return (1); if (sp->s_nforce[them] != sp1->s_nforce[them]) return (0); if (sp->s_wval > sp1->s_wval) return (1); if (sp->s_wval != sp1->s_wval) return (0); #ifdef SVR4 return (rand() & 1); #else return ((int)random() & 1); #endif } int curcolor; /* implicit parameter to makecombo() */ int curlevel; /* implicit parameter to makecombo() */ /* * Scan the sorted list of non-empty frames and * update the minimum combo values for each empty spot. * Also, try to combine frames to find more complex (chained) moves. */ void scanframes(color) int color; { struct combostr *cbp, *ecbp; struct spotstr *sp; union comboval *cp; struct elist *ep, *nep; int i, r, d, n; union comboval cb; curcolor = color; /* check for empty list of frames */ cbp = sortframes[color]; if (cbp == (struct combostr *)0) return; /* quick check for four in a row */ sp = &board[cbp->c_vertex]; cb.s = sp->s_fval[color][d = cbp->c_dir].s; if (cb.s < 0x101) { d = dd[d]; for (i = 5 + cb.c.b; --i >= 0; sp += d) { if (sp->s_occ != EMPTY) continue; sp->s_combo[color].s = cb.s; sp->s_level[color] = 1; } return; } /* * Update the minimum combo value for each spot in the frame * and try making all combinations of two frames intersecting at * an empty spot. */ n = combolen; ecbp = cbp; do { sp = &board[cbp->c_vertex]; cp = &sp->s_fval[color][r = cbp->c_dir]; d = dd[r]; if (cp->c.b) { /* * Since this is the first spot of an open ended * frame, we treat it as a closed frame. */ cb.c.a = cp->c.a + 1; cb.c.b = 0; if (cb.s < sp->s_combo[color].s) { sp->s_combo[color].s = cb.s; sp->s_level[color] = 1; } /* * Try combining other frames that intersect * at this spot. */ makecombo2(cbp, sp, 0, cb.s); if (cp->s != 0x101) cb.s = cp->s; else if (color != nextcolor) memset(tmpmap, 0, sizeof(tmpmap)); sp += d; i = 1; } else { cb.s = cp->s; i = 0; } for (; i < 5; i++, sp += d) { /* for each spot */ if (sp->s_occ != EMPTY) continue; if (cp->s < sp->s_combo[color].s) { sp->s_combo[color].s = cp->s; sp->s_level[color] = 1; } if (cp->s == 0x101) { sp->s_nforce[color]++; if (color != nextcolor) { n = sp - board; BIT_SET(tmpmap, n); } } /* * Try combining other frames that intersect * at this spot. */ makecombo2(cbp, sp, i, cb.s); } if (cp->s == 0x101 && color != nextcolor) { if (nforce == 0) memcpy(forcemap, tmpmap, sizeof(tmpmap)); else { for (i = 0; i < MAPSZ; i++) forcemap[i] &= tmpmap[i]; } } /* mark frame as having been processed */ board[cbp->c_vertex].s_flg |= MFLAG << r; } while ((cbp = cbp->c_next) != ecbp); /* * Try to make new 3rd level combos, 4th level, etc. * Limit the search depth early in the game. */ d = 2; while (d <= ((unsigned)(movenum + 1) >> 1) && combolen > n) { if (debug) { snprintf(fmtbuf, sizeof fmtbuf, "%cL%d %d %d %d", "BW"[color], d, combolen - n, combocnt, elistcnt); dlog(fmtbuf); refresh(); } n = combolen; addframes(d); d++; } /* scan for combos at empty spots */ for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) { for (ep = sp->s_empty; ep; ep = nep) { cbp = ep->e_combo; if (cbp->c_combo.s <= sp->s_combo[color].s) { if (cbp->c_combo.s != sp->s_combo[color].s) { sp->s_combo[color].s = cbp->c_combo.s; sp->s_level[color] = cbp->c_nframes; } else if (cbp->c_nframes < sp->s_level[color]) sp->s_level[color] = cbp->c_nframes; } nep = ep->e_next; free(ep); elistcnt--; } sp->s_empty = (struct elist *)0; for (ep = sp->s_nempty; ep; ep = nep) { cbp = ep->e_combo; if (cbp->c_combo.s <= sp->s_combo[color].s) { if (cbp->c_combo.s != sp->s_combo[color].s) { sp->s_combo[color].s = cbp->c_combo.s; sp->s_level[color] = cbp->c_nframes; } else if (cbp->c_nframes < sp->s_level[color]) sp->s_level[color] = cbp->c_nframes; } nep = ep->e_next; free(ep); elistcnt--; } sp->s_nempty = (struct elist *)0; } /* remove old combos */ if ((cbp = sortcombos) != (struct combostr *)0) { struct combostr *ncbp; /* scan the list */ ecbp = cbp; do { ncbp = cbp->c_next; free(cbp); combocnt--; } while ((cbp = ncbp) != ecbp); sortcombos = (struct combostr *)0; } combolen = 0; #ifdef DEBUG if (combocnt) { snprintf(fmtbuf, sizeof fmtbuf, "scanframes: %c combocnt %d", "BW"[color], combocnt); dlog(fmtbuf); whatsup(0); } if (elistcnt) { snprintf(fmtbuf, sizeof fmtbuf, "scanframes: %c elistcnt %d", "BW"[color], elistcnt); dlog(fmtbuf); whatsup(0); } #endif } /* * Compute all level 2 combos of frames intersecting spot 'osp' * within the frame 'ocbp' and combo value 's'. */ void makecombo2(ocbp, osp, off, s) struct combostr *ocbp; struct spotstr *osp; int off; int s; { struct spotstr *fsp; struct combostr *ncbp; int f, r, d, c; int baseB, fcnt, emask, bmask, n; union comboval ocb, fcb; struct combostr **scbpp, *fcbp; /* try to combine a new frame with those found so far */ ocb.s = s; baseB = ocb.c.a + ocb.c.b - 1; fcnt = ocb.c.a - 2; emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0; for (r = 4; --r >= 0; ) { /* for each direction */ /* don't include frames that overlap in the same direction */ if (r == ocbp->c_dir) continue; d = dd[r]; /* * Frame A combined with B is the same value as B combined with A * so skip frames that have already been processed (MFLAG). * Also skip blocked frames (BFLAG) and frames that are <1,x> * since combining another frame with it isn't valid. */ bmask = (BFLAG | FFLAG | MFLAG) << r; fsp = osp; for (f = 0; f < 5; f++, fsp -= d) { /* for each frame */ if (fsp->s_occ == BORDER) break; if (fsp->s_flg & bmask) continue; /* don't include frames of the wrong color */ fcb.s = fsp->s_fval[curcolor][r].s; if (fcb.c.a >= MAXA) continue; /* * Get the combo value for this frame. * If this is the end point of the frame, * use the closed ended value for the frame. */ if (f == 0 && (fcb.c.b || fcb.s == 0x101)) { fcb.c.a++; fcb.c.b = 0; } /* compute combo value */ c = fcb.c.a + ocb.c.a - 3; if (c > 4) continue; n = fcb.c.a + fcb.c.b - 1; if (baseB < n) n = baseB; /* make a new combo! */ ncbp = (struct combostr *)malloc(sizeof(struct combostr) + 2 * sizeof(struct combostr *)); if (ncbp == (struct combostr *)NULL) qlog("Memory allocation failure."); scbpp = (struct combostr **)(ncbp + 1); fcbp = fsp->s_frame[r]; if (ocbp < fcbp) { scbpp[0] = ocbp; scbpp[1] = fcbp; } else { scbpp[0] = fcbp; scbpp[1] = ocbp; } ncbp->c_combo.c.a = c; ncbp->c_combo.c.b = n; ncbp->c_link[0] = ocbp; ncbp->c_link[1] = fcbp; ncbp->c_linkv[0].s = ocb.s; ncbp->c_linkv[1].s = fcb.s; ncbp->c_voff[0] = off; ncbp->c_voff[1] = f; ncbp->c_vertex = osp - board; ncbp->c_nframes = 2; ncbp->c_dir = 0; ncbp->c_frameindex = 0; ncbp->c_flg = (ocb.c.b) ? C_OPEN_0 : 0; if (fcb.c.b) ncbp->c_flg |= C_OPEN_1; ncbp->c_framecnt[0] = fcnt; ncbp->c_emask[0] = emask; ncbp->c_framecnt[1] = fcb.c.a - 2; ncbp->c_emask[1] = ncbp->c_framecnt[1] ? ((fcb.c.b ? 0x1E : 0x1F) & ~(1 << f)) : 0; combocnt++; if (c == 1 && debug > 1) { snprintf(fmtbuf, sizeof fmtbuf, "%c c %d %d m %x %x o %d %d", "bw"[curcolor], ncbp->c_framecnt[0], ncbp->c_framecnt[1], ncbp->c_emask[0], ncbp->c_emask[1], ncbp->c_voff[0], ncbp->c_voff[1]); dlog(fmtbuf); printcombo(ncbp, fmtbuf, sizeof fmtbuf); dlog(fmtbuf); } if (c > 1) { /* record the empty spots that will complete this combo */ makeempty(ncbp); /* add the new combo to the end of the list */ appendcombo(ncbp); } else { updatecombo(ncbp, curcolor); free(ncbp); combocnt--; } #ifdef DEBUG if (c == 1 && debug > 1 || debug > 5) { markcombo(ncbp); bdisp(); whatsup(0); clearcombo(ncbp, 0); } #endif /* DEBUG */ } } } /* * Scan the sorted list of frames and try to add a frame to * combinations of 'level' number of frames. */ void addframes(level) int level; { struct combostr *cbp, *ecbp; struct spotstr *sp, *fsp; struct elist *ep, *nep; int i, r, d; struct combostr **cbpp, *pcbp; union comboval fcb, cb; curlevel = level; /* scan for combos at empty spots */ i = curcolor; for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) { for (ep = sp->s_empty; ep; ep = nep) { cbp = ep->e_combo; if (cbp->c_combo.s <= sp->s_combo[i].s) { if (cbp->c_combo.s != sp->s_combo[i].s) { sp->s_combo[i].s = cbp->c_combo.s; sp->s_level[i] = cbp->c_nframes; } else if (cbp->c_nframes < sp->s_level[i]) sp->s_level[i] = cbp->c_nframes; } nep = ep->e_next; free(ep); elistcnt--; } sp->s_empty = sp->s_nempty; sp->s_nempty = (struct elist *)0; } /* try to add frames to the uncompleted combos at level curlevel */ cbp = ecbp = sortframes[curcolor]; do { fsp = &board[cbp->c_vertex]; r = cbp->c_dir; /* skip frames that are part of a <1,x> combo */ if (fsp->s_flg & (FFLAG << r)) continue; /* * Don't include <1,x> combo frames, * treat it as a closed three in a row instead. */ fcb.s = fsp->s_fval[curcolor][r].s; if (fcb.s == 0x101) fcb.s = 0x200; /* * If this is an open ended frame, use * the combo value with the end closed. */ if (fsp->s_occ == EMPTY) { if (fcb.c.b) { cb.c.a = fcb.c.a + 1; cb.c.b = 0; } else cb.s = fcb.s; makecombo(cbp, fsp, 0, cb.s); } /* * The next four spots are handled the same for both * open and closed ended frames. */ d = dd[r]; sp = fsp + d; for (i = 1; i < 5; i++, sp += d) { if (sp->s_occ != EMPTY) continue; makecombo(cbp, sp, i, fcb.s); } } while ((cbp = cbp->c_next) != ecbp); /* put all the combos in the hash list on the sorted list */ cbpp = &hashcombos[FAREA]; do { cbp = *--cbpp; if (cbp == (struct combostr *)0) continue; *cbpp = (struct combostr *)0; ecbp = sortcombos; if (ecbp == (struct combostr *)0) sortcombos = cbp; else { /* append to sort list */ pcbp = ecbp->c_prev; pcbp->c_next = cbp; ecbp->c_prev = cbp->c_prev; cbp->c_prev->c_next = ecbp; cbp->c_prev = pcbp; } } while (cbpp != hashcombos); } /* * Compute all level N combos of frames intersecting spot 'osp' * within the frame 'ocbp' and combo value 's'. */ void makecombo(ocbp, osp, off, s) struct combostr *ocbp; struct spotstr *osp; int off; int s; { struct combostr *cbp, *ncbp; struct spotstr *sp; struct elist *ep; int n, c; struct elist *nep; struct combostr **scbpp; int baseB, fcnt, emask, verts; union comboval ocb; struct ovlp_info vertices[1]; ocb.s = s; baseB = ocb.c.a + ocb.c.b - 1; fcnt = ocb.c.a - 2; emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0; for (ep = osp->s_empty; ep; ep = ep->e_next) { /* check for various kinds of overlap */ cbp = ep->e_combo; verts = checkframes(cbp, ocbp, osp, s, vertices); if (verts < 0) continue; /* check to see if this frame forms a valid loop */ if (verts) { sp = &board[vertices[0].o_intersect]; #ifdef DEBUG if (sp->s_occ != EMPTY) { snprintf(fmtbuf, sizeof fmtbuf, "loop: %c %s", "BW"[curcolor], stoc(sp - board)); dlog(fmtbuf); whatsup(0); } #endif /* * It is a valid loop if the intersection spot * of the frame we are trying to attach is one * of the completion spots of the combostr * we are trying to attach the frame to. */ for (nep = sp->s_empty; nep; nep = nep->e_next) { if (nep->e_combo == cbp) goto fnd; if (nep->e_combo->c_nframes < cbp->c_nframes) break; } /* frame overlaps but not at a valid spot */ continue; fnd: ; } /* compute the first half of the combo value */ c = cbp->c_combo.c.a + ocb.c.a - verts - 3; if (c > 4) continue; /* compute the second half of the combo value */ n = ep->e_fval.c.a + ep->e_fval.c.b - 1; if (baseB < n) n = baseB; /* make a new combo! */ ncbp = (struct combostr *)malloc(sizeof(struct combostr) + (cbp->c_nframes + 1) * sizeof(struct combostr *)); if (ncbp == (struct combostr *)NULL) qlog("Memory allocation failure."); scbpp = (struct combostr **)(ncbp + 1); if (sortcombo(scbpp, (struct combostr **)(cbp + 1), ocbp)) { free(ncbp); continue; } combocnt++; ncbp->c_combo.c.a = c; ncbp->c_combo.c.b = n; ncbp->c_link[0] = cbp; ncbp->c_link[1] = ocbp; ncbp->c_linkv[1].s = ocb.s; ncbp->c_voff[1] = off; ncbp->c_vertex = osp - board; ncbp->c_nframes = cbp->c_nframes + 1; ncbp->c_flg = ocb.c.b ? C_OPEN_1 : 0; ncbp->c_frameindex = ep->e_frameindex; /* * Update the completion spot mask of the frame we * are attaching 'ocbp' to so the intersection isn't * listed twice. */ ncbp->c_framecnt[0] = ep->e_framecnt; ncbp->c_emask[0] = ep->e_emask; if (verts) { ncbp->c_flg |= C_LOOP; ncbp->c_dir = vertices[0].o_frameindex; ncbp->c_framecnt[1] = fcnt - 1; if (ncbp->c_framecnt[1]) { n = (vertices[0].o_intersect - ocbp->c_vertex) / dd[ocbp->c_dir]; ncbp->c_emask[1] = emask & ~(1 << n); } else ncbp->c_emask[1] = 0; ncbp->c_voff[0] = vertices[0].o_off; } else { ncbp->c_dir = 0; ncbp->c_framecnt[1] = fcnt; ncbp->c_emask[1] = emask; ncbp->c_voff[0] = ep->e_off; } if (c == 1 && debug > 1) { snprintf(fmtbuf, sizeof fmtbuf, "%c v%d i%d d%d c %d %d m %x %x o %d %d", "bw"[curcolor], verts, ncbp->c_frameindex, ncbp->c_dir, ncbp->c_framecnt[0], ncbp->c_framecnt[1], ncbp->c_emask[0], ncbp->c_emask[1], ncbp->c_voff[0], ncbp->c_voff[1]); dlog(fmtbuf); printcombo(ncbp, fmtbuf, sizeof fmtbuf); dlog(fmtbuf); } if (c > 1) { /* record the empty spots that will complete this combo */ makeempty(ncbp); combolen++; } else { /* update board values */ updatecombo(ncbp, curcolor); } #ifdef DEBUG if (c == 1 && debug > 1 || debug > 4) { markcombo(ncbp); bdisp(); whatsup(0); clearcombo(ncbp, 0); } #endif /* DEBUG */ } } #define MAXDEPTH 100 struct elist einfo[MAXDEPTH]; struct combostr *ecombo[MAXDEPTH]; /* separate from elist to save space */ /* * Add the combostr 'ocbp' to the empty spots list for each empty spot * in 'ocbp' that will complete the combo. */ void makeempty(ocbp) struct combostr *ocbp; { struct combostr *cbp, **cbpp; struct elist *ep, *nep; struct spotstr *sp; int s, d, m, emask, i; int nframes; if (debug > 2) { snprintf(fmtbuf, sizeof fmtbuf, "E%c ", "bw"[curcolor]); printcombo(ocbp, fmtbuf + 3, sizeof fmtbuf - 3); dlog(fmtbuf); } /* should never happen but check anyway */ if ((nframes = ocbp->c_nframes) >= MAXDEPTH) return; /* * The lower level combo can be pointed to by more than one * higher level 'struct combostr' so we can't modify the * lower level. Therefore, higher level combos store the * real mask of the lower level frame in c_emask[0] and the * frame number in c_frameindex. * * First we traverse the tree from top to bottom and save the * connection info. Then we traverse the tree from bottom to * top overwriting lower levels with the newer emask information. */ ep = &einfo[nframes]; cbpp = &ecombo[nframes]; for (cbp = ocbp; cbp->c_link[1] != NULL; cbp = cbp->c_link[0]) { ep--; ep->e_combo = cbp; *--cbpp = cbp->c_link[1]; ep->e_off = cbp->c_voff[1]; ep->e_frameindex = cbp->c_frameindex; ep->e_fval.s = cbp->c_linkv[1].s; ep->e_framecnt = cbp->c_framecnt[1]; ep->e_emask = cbp->c_emask[1]; } cbp = ep->e_combo; ep--; ep->e_combo = cbp; *--cbpp = cbp->c_link[0]; ep->e_off = cbp->c_voff[0]; ep->e_frameindex = 0; ep->e_fval.s = cbp->c_linkv[0].s; ep->e_framecnt = cbp->c_framecnt[0]; ep->e_emask = cbp->c_emask[0]; /* now update the emask info */ s = 0; for (i = 2, ep += 2; i < nframes; i++, ep++) { cbp = ep->e_combo; nep = &einfo[ep->e_frameindex]; nep->e_framecnt = cbp->c_framecnt[0]; nep->e_emask = cbp->c_emask[0]; if (cbp->c_flg & C_LOOP) { s++; /* * Account for the fact that this frame connects * to a previous one (thus forming a loop). */ nep = &einfo[cbp->c_dir]; if (--nep->e_framecnt) nep->e_emask &= ~(1 << cbp->c_voff[0]); else nep->e_emask = 0; } } /* * We only need to update the emask values of "complete" loops * to include the intersection spots. */ if (s && ocbp->c_combo.c.a == 2) { /* process loops from the top down */ ep = &einfo[nframes]; do { ep--; cbp = ep->e_combo; if (!(cbp->c_flg & C_LOOP)) continue; /* * Update the emask values to include the * intersection spots. */ nep = &einfo[cbp->c_dir]; nep->e_framecnt = 1; nep->e_emask = 1 << cbp->c_voff[0]; ep->e_framecnt = 1; ep->e_emask = 1 << ep->e_off; ep = &einfo[ep->e_frameindex]; do { ep->e_framecnt = 1; ep->e_emask = 1 << ep->e_off; ep = &einfo[ep->e_frameindex]; } while (ep > nep); } while (ep != einfo); } /* check all the frames for completion spots */ for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) { /* skip this frame if there are no incomplete spots in it */ if ((emask = ep->e_emask) == 0) continue; cbp = *cbpp; sp = &board[cbp->c_vertex]; d = dd[cbp->c_dir]; for (s = 0, m = 1; s < 5; s++, sp += d, m <<= 1) { if (sp->s_occ != EMPTY || !(emask & m)) continue; /* add the combo to the list of empty spots */ nep = (struct elist *)malloc(sizeof(struct elist)); if (nep == (struct elist *)NULL) qlog("Memory allocation failure."); nep->e_combo = ocbp; nep->e_off = s; nep->e_frameindex = i; if (ep->e_framecnt > 1) { nep->e_framecnt = ep->e_framecnt - 1; nep->e_emask = emask & ~m; } else { nep->e_framecnt = 0; nep->e_emask = 0; } nep->e_fval.s = ep->e_fval.s; if (debug > 2) { snprintf(fmtbuf, sizeof fmtbuf, "e %s o%d i%d c%d m%x %x", stoc(sp - board), nep->e_off, nep->e_frameindex, nep->e_framecnt, nep->e_emask, nep->e_fval.s); dlog(fmtbuf); } /* sort by the number of frames in the combo */ nep->e_next = sp->s_nempty; sp->s_nempty = nep; elistcnt++; } } } /* * Update the board value based on the combostr. * This is called only if 'cbp' is a <1,x> combo. * We handle things differently depending on whether the next move * would be trying to "complete" the combo or trying to block it. */ void updatecombo(cbp, color) struct combostr *cbp; int color; { struct spotstr *sp; struct combostr *tcbp; int i, d; int nframes, s, flg = 0; union comboval cb; /* save the top level value for the whole combo */ cb.c.a = cbp->c_combo.c.a; nframes = cbp->c_nframes; if (color != nextcolor) memset(tmpmap, 0, sizeof(tmpmap)); for (; (tcbp = cbp->c_link[1]) != NULL; cbp = cbp->c_link[0]) { flg = cbp->c_flg; cb.c.b = cbp->c_combo.c.b; if (color == nextcolor) { /* update the board value for the vertex */ sp = &board[cbp->c_vertex]; sp->s_nforce[color]++; if (cb.s <= sp->s_combo[color].s) { if (cb.s != sp->s_combo[color].s) { sp->s_combo[color].s = cb.s; sp->s_level[color] = nframes; } else if (nframes < sp->s_level[color]) sp->s_level[color] = nframes; } } else { /* update the board values for each spot in frame */ sp = &board[s = tcbp->c_vertex]; d = dd[tcbp->c_dir]; i = (flg & C_OPEN_1) ? 6 : 5; for (; --i >= 0; sp += d, s += d) { if (sp->s_occ != EMPTY) continue; sp->s_nforce[color]++; if (cb.s <= sp->s_combo[color].s) { if (cb.s != sp->s_combo[color].s) { sp->s_combo[color].s = cb.s; sp->s_level[color] = nframes; } else if (nframes < sp->s_level[color]) sp->s_level[color] = nframes; } BIT_SET(tmpmap, s); } } /* mark the frame as being part of a <1,x> combo */ board[tcbp->c_vertex].s_flg |= FFLAG << tcbp->c_dir; } if (color != nextcolor) { /* update the board values for each spot in frame */ sp = &board[s = cbp->c_vertex]; d = dd[cbp->c_dir]; i = (flg & C_OPEN_0) ? 6 : 5; for (; --i >= 0; sp += d, s += d) { if (sp->s_occ != EMPTY) continue; sp->s_nforce[color]++; if (cb.s <= sp->s_combo[color].s) { if (cb.s != sp->s_combo[color].s) { sp->s_combo[color].s = cb.s; sp->s_level[color] = nframes; } else if (nframes < sp->s_level[color]) sp->s_level[color] = nframes; } BIT_SET(tmpmap, s); } if (nforce == 0) memcpy(forcemap, tmpmap, sizeof(tmpmap)); else { for (i = 0; i < MAPSZ; i++) forcemap[i] &= tmpmap[i]; } nforce++; } /* mark the frame as being part of a <1,x> combo */ board[cbp->c_vertex].s_flg |= FFLAG << cbp->c_dir; } /* * Add combo to the end of the list. */ void appendcombo(cbp) struct combostr *cbp; { struct combostr *pcbp, *ncbp; combolen++; ncbp = sortcombos; if (ncbp == (struct combostr *)0) { sortcombos = cbp; cbp->c_next = cbp; cbp->c_prev = cbp; return; } pcbp = ncbp->c_prev; cbp->c_next = ncbp; cbp->c_prev = pcbp; ncbp->c_prev = cbp; pcbp->c_next = cbp; } /* * Return zero if it is valid to combine frame 'fcbp' with the frames * in 'cbp' and forms a linked chain of frames (i.e., a tree; no loops). * Return positive if combining frame 'fcbp' to the frames in 'cbp' * would form some kind of valid loop. Also return the intersection spots * in 'vertices[]' beside the known intersection at spot 'osp'. * Return -1 if 'fcbp' should not be combined with 'cbp'. * 's' is the combo value for frame 'fcpb'. */ int checkframes(cbp, fcbp, osp, s, vertices) struct combostr *cbp; struct combostr *fcbp; struct spotstr *osp; int s; struct ovlp_info *vertices; { struct combostr *tcbp, *lcbp = NULL; int i, n, mask, flg, verts, idx, fcnt; union comboval cb; u_char *str; short *ip; cb.s = s; fcnt = cb.c.a - 2; verts = 0; flg = 0; idx = cbp->c_nframes; n = (fcbp - frames) * FAREA; str = &overlap[n]; ip = &intersect[n]; /* * i == which overlap bit to test based on whether 'fcbp' is * an open or closed frame. */ i = cb.c.b ? 2 : 0; for (; (tcbp = cbp->c_link[1]) != NULL; lcbp = cbp, cbp = cbp->c_link[0]) { if (tcbp == fcbp) return (-1); /* fcbp is already included */ /* check for intersection of 'tcbp' with 'fcbp' */ idx--; mask = str[tcbp - frames]; flg = cbp->c_flg; n = i + ((flg & C_OPEN_1) != 0); if (mask & (1 << n)) { /* * The two frames are not independent if they * both lie in the same line and intersect at * more than one point. */ if (tcbp->c_dir == fcbp->c_dir && (mask & (0x10 << n))) return (-1); /* * If this is not the spot we are attaching * 'fcbp' to and it is a reasonable intersection * spot, then there might be a loop. */ n = ip[tcbp - frames]; if (osp != &board[n]) { /* check to see if this is a valid loop */ if (verts) return (-1); if (fcnt == 0 || cbp->c_framecnt[1] == 0) return (-1); /* * Check to be sure the intersection is not * one of the end points if it is an open * ended frame. */ if ((flg & C_OPEN_1) && (n == tcbp->c_vertex || n == tcbp->c_vertex + 5 * dd[tcbp->c_dir])) return (-1); /* invalid overlap */ if (cb.c.b && (n == fcbp->c_vertex || n == fcbp->c_vertex + 5 * dd[fcbp->c_dir])) return (-1); /* invalid overlap */ vertices->o_intersect = n; vertices->o_fcombo = cbp; vertices->o_link = 1; vertices->o_off = (n - tcbp->c_vertex) / dd[tcbp->c_dir]; vertices->o_frameindex = idx; verts++; } } n = i + ((flg & C_OPEN_0) != 0); } if (cbp == fcbp) return (-1); /* fcbp is already included */ /* check for intersection of 'cbp' with 'fcbp' */ mask = str[cbp - frames]; if (mask & (1 << n)) { /* * The two frames are not independent if they * both lie in the same line and intersect at * more than one point. */ if (cbp->c_dir == fcbp->c_dir && (mask & (0x10 << n))) return (-1); /* * If this is not the spot we are attaching * 'fcbp' to and it is a reasonable intersection * spot, then there might be a loop. */ n = ip[cbp - frames]; if (osp != &board[n]) { /* check to see if this is a valid loop */ if (verts) return (-1); if (fcnt == 0 || lcbp->c_framecnt[0] == 0) return (-1); /* * Check to be sure the intersection is not * one of the end points if it is an open * ended frame. */ if ((flg & C_OPEN_0) && (n == cbp->c_vertex || n == cbp->c_vertex + 5 * dd[cbp->c_dir])) return (-1); /* invalid overlap */ if (cb.c.b && (n == fcbp->c_vertex || n == fcbp->c_vertex + 5 * dd[fcbp->c_dir])) return (-1); /* invalid overlap */ vertices->o_intersect = n; vertices->o_fcombo = lcbp; vertices->o_link = 0; vertices->o_off = (n - cbp->c_vertex) / dd[cbp->c_dir]; vertices->o_frameindex = 0; verts++; } } return (verts); } /* * Merge sort the frame 'fcbp' and the sorted list of frames 'cbpp' and * store the result in 'scbpp'. 'curlevel' is the size of the 'cbpp' array. * Return true if this list of frames is already in the hash list. * Otherwise, add the new combo to the hash list. */ int sortcombo(scbpp, cbpp, fcbp) struct combostr **scbpp; struct combostr **cbpp; struct combostr *fcbp; { struct combostr **spp, **cpp; struct combostr *cbp, *ecbp; int n, inx; #ifdef DEBUG if (debug > 3) { char *str; snprintf(fmtbuf, sizeof fmtbuf, "sortc: %s%c l%d", stoc(fcbp->c_vertex), pdir[fcbp->c_dir], curlevel); dlog(fmtbuf); str = fmtbuf; for (cpp = cbpp; cpp < cbpp + curlevel; cpp++) { snprintf(str, fmtbuf + sizeof fmtbut - str, " %s%c", stoc((*cpp)->c_vertex), pdir[(*cpp)->c_dir]); str += strlen(str); } dlog(fmtbuf); } #endif /* DEBUG */ /* first build the new sorted list */ n = curlevel + 1; spp = scbpp + n; cpp = cbpp + curlevel; do { cpp--; if (fcbp > *cpp) { *--spp = fcbp; do *--spp = *cpp; while (cpp-- != cbpp); goto inserted; } *--spp = *cpp; } while (cpp != cbpp); *--spp = fcbp; inserted: /* now check to see if this list of frames has already been seen */ cbp = hashcombos[inx = *scbpp - frames]; if (cbp == (struct combostr *)0) { /* * Easy case, this list hasn't been seen. * Add it to the hash list. */ fcbp = (struct combostr *) ((char *)scbpp - sizeof(struct combostr)); hashcombos[inx] = fcbp; fcbp->c_next = fcbp->c_prev = fcbp; return (0); } ecbp = cbp; do { cbpp = (struct combostr **)(cbp + 1); cpp = cbpp + n; spp = scbpp + n; cbpp++; /* first frame is always the same */ do { if (*--spp != *--cpp) goto next; } while (cpp != cbpp); /* we found a match */ #ifdef DEBUG if (debug > 3) { char *str; snprintf(fmtbuf, sizeof fmtbuf, "sort1: n%d", n); dlog(fmtbuf); str = fmtbuf; for (cpp = scbpp; cpp < scbpp + n; cpp++) { snprintf(str, fmtbuf + sizeof fmtbuf - str, " %s%c", stoc((*cpp)->c_vertex), pdir[(*cpp)->c_dir]); str += strlen(str); } dlog(fmtbuf); printcombo(cbp, fmtbuf, sizeof fmtbuf); dlog(fmtbuf); str = fmtbuf; cbpp--; for (cpp = cbpp; cpp < cbpp + n; cpp++) { snprintf(str, fmtbuf + sizeof fmtbuf - str, " %s%c", stoc((*cpp)->c_vertex), pdir[(*cpp)->c_dir]); str += strlen(str); } dlog(fmtbuf); } #endif /* DEBUG */ return (1); next: ; } while ((cbp = cbp->c_next) != ecbp); /* * This list of frames hasn't been seen. * Add it to the hash list. */ ecbp = cbp->c_prev; fcbp = (struct combostr *)((char *)scbpp - sizeof(struct combostr)); fcbp->c_next = cbp; fcbp->c_prev = ecbp; cbp->c_prev = fcbp; ecbp->c_next = fcbp; return (0); } /* * Print the combo into string 'str'. */ void printcombo(cbp, str, strl) struct combostr *cbp; char *str; size_t strl; { char *basestr = str; struct combostr *tcbp; snprintf(str, strl, "%x/%d", cbp->c_combo.s, cbp->c_nframes); str += strlen(str); for (; (tcbp = cbp->c_link[1]) != NULL; cbp = cbp->c_link[0]) { snprintf(str, basestr + strl - str, " %s%c%x", stoc(tcbp->c_vertex), pdir[tcbp->c_dir], cbp->c_flg); str += strlen(str); } snprintf(str, basestr + strl - str, " %s%c", stoc(cbp->c_vertex), pdir[cbp->c_dir]); } #ifdef DEBUG void markcombo(ocbp) struct combostr *ocbp; { struct combostr *cbp, *tcbp, **cbpp; struct elist *ep, *nep, **epp; struct spotstr *sp; int s, d, m, i; int nframes; int r, n, flg, cmask, omask; /* should never happen but check anyway */ if ((nframes = ocbp->c_nframes) >= MAXDEPTH) return; /* * The lower level combo can be pointed to by more than one * higher level 'struct combostr' so we can't modify the * lower level. Therefore, higher level combos store the * real mask of the lower level frame in c_emask[0] and the * frame number in c_frameindex. * * First we traverse the tree from top to bottom and save the * connection info. Then we traverse the tree from bottom to * top overwriting lower levels with the newer emask information. */ ep = &einfo[nframes]; cbpp = &ecombo[nframes]; for (cbp = ocbp; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) { ep--; ep->e_combo = cbp; *--cbpp = cbp->c_link[1]; ep->e_off = cbp->c_voff[1]; ep->e_frameindex = cbp->c_frameindex; ep->e_fval.s = cbp->c_linkv[1].s; ep->e_framecnt = cbp->c_framecnt[1]; ep->e_emask = cbp->c_emask[1]; } cbp = ep->e_combo; ep--; ep->e_combo = cbp; *--cbpp = cbp->c_link[0]; ep->e_off = cbp->c_voff[0]; ep->e_frameindex = 0; ep->e_fval.s = cbp->c_linkv[0].s; ep->e_framecnt = cbp->c_framecnt[0]; ep->e_emask = cbp->c_emask[0]; /* now update the emask info */ s = 0; for (i = 2, ep += 2; i < nframes; i++, ep++) { cbp = ep->e_combo; nep = &einfo[ep->e_frameindex]; nep->e_framecnt = cbp->c_framecnt[0]; nep->e_emask = cbp->c_emask[0]; if (cbp->c_flg & C_LOOP) { s++; /* * Account for the fact that this frame connects * to a previous one (thus forming a loop). */ nep = &einfo[cbp->c_dir]; if (--nep->e_framecnt) nep->e_emask &= ~(1 << cbp->c_voff[0]); else nep->e_emask = 0; } } /* * We only need to update the emask values of "complete" loops * to include the intersection spots. */ if (s && ocbp->c_combo.c.a == 2) { /* process loops from the top down */ ep = &einfo[nframes]; do { ep--; cbp = ep->e_combo; if (!(cbp->c_flg & C_LOOP)) continue; /* * Update the emask values to include the * intersection spots. */ nep = &einfo[cbp->c_dir]; nep->e_framecnt = 1; nep->e_emask = 1 << cbp->c_voff[0]; ep->e_framecnt = 1; ep->e_emask = 1 << ep->e_off; ep = &einfo[ep->e_frameindex]; do { ep->e_framecnt = 1; ep->e_emask = 1 << ep->e_off; ep = &einfo[ep->e_frameindex]; } while (ep > nep); } while (ep != einfo); } /* mark all the frames with the completion spots */ for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) { m = ep->e_emask; cbp = *cbpp; sp = &board[cbp->c_vertex]; d = dd[s = cbp->c_dir]; cmask = CFLAG << s; omask = (IFLAG | CFLAG) << s; s = ep->e_fval.c.b ? 6 : 5; for (; --s >= 0; sp += d, m >>= 1) sp->s_flg |= (m & 1) ? omask : cmask; } } void clearcombo(cbp, open) struct combostr *cbp; int open; { struct spotstr *sp; struct combostr *tcbp; int d, n, mask; for (; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) { clearcombo(tcbp, cbp->c_flg & C_OPEN_1); open = cbp->c_flg & C_OPEN_0; } sp = &board[cbp->c_vertex]; d = dd[n = cbp->c_dir]; mask = ~((IFLAG | CFLAG) << n); n = open ? 6 : 5; for (; --n >= 0; sp += d) sp->s_flg &= mask; } int list_eq(scbpp, cbpp, n) struct combostr **scbpp; struct combostr **cbpp; int n; { struct combostr **spp, **cpp; spp = scbpp + n; cpp = cbpp + n; do { if (*--spp != *--cpp) return (0); } while (cpp != cbpp); /* we found a match */ return (1); } #endif /* DEBUG */