/* $OpenBSD: wump.c,v 1.8 1998/08/19 07:42:27 pjanzen Exp $ */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Dave Taylor, of Intuitive Systems. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char copyright[] = "@(#) Copyright (c) 1989, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint #if 0 static char sccsid[] = "@(#)wump.c 8.1 (Berkeley) 5/31/93"; #else static char rcsid[] = "$OpenBSD: wump.c,v 1.8 1998/08/19 07:42:27 pjanzen Exp $"; #endif #endif /* not lint */ /* * A very new version of the age old favorite Hunt-The-Wumpus game that has * been a part of the BSD distribution of Unix for longer than us old folk * would care to remember. */ #include #include #include #include #include #include #include "pathnames.h" /* some defines to spec out what our wumpus cave should look like */ /* #define MAX_ARROW_SHOT_DISTANCE 6 */ /* +1 for '0' stopper */ #define MAX_LINKS_IN_ROOM 25 /* a complex cave */ #define MAX_ROOMS_IN_CAVE 250 #define ROOMS_IN_CAVE 20 #define MIN_ROOMS_IN_CAVE 10 #define LINKS_IN_ROOM 3 #define NUMBER_OF_ARROWS 5 #define PIT_COUNT 3 #define BAT_COUNT 3 #define EASY 1 /* levels of play */ #define HARD 2 /* some macro definitions for cleaner output */ #define plural(n) (n == 1 ? "" : "s") /* simple cave data structure; +1 so we can index from '1' not '0' */ struct room_record { int tunnel[MAX_LINKS_IN_ROOM]; int has_a_pit, has_a_bat; } cave[MAX_ROOMS_IN_CAVE+1]; /* * global variables so we can keep track of where the player is, how * many arrows they still have, where el wumpo is, and so on... */ int player_loc = -1; /* player location */ int wumpus_loc = -1; /* The Bad Guy location */ int level = EASY; /* level of play */ int arrows_left; /* arrows unshot */ #ifdef DEBUG int debug = 0; #endif int pit_num = PIT_COUNT; /* # pits in cave */ int bat_num = BAT_COUNT; /* # bats */ int room_num = ROOMS_IN_CAVE; /* # rooms in cave */ int link_num = LINKS_IN_ROOM; /* links per room */ int arrow_num = NUMBER_OF_ARROWS; /* arrow inventory */ char answer[20]; /* user input */ int bats_nearby __P((void)); void cave_init __P((void)); void clear_things_in_cave __P((void)); void display_room_stats __P((void)); int getans __P((const char *)); void initialize_things_in_cave __P((void)); void instructions __P((void)); int int_compare __P((const void *, const void *)); /* void jump __P((int)); */ void kill_wump __P((void)); int main __P((int, char **)); int move_to __P((const char *)); void move_wump __P((void)); void no_arrows __P((void)); void pit_kill __P((void)); void pit_kill_bat __P((void)); int pit_nearby __P((void)); void pit_survive __P((void)); int shoot __P((char *)); void shoot_self __P((void)); int take_action __P((void)); void usage __P((void)); void wump_kill __P((void)); void wump_bat_kill __P((void)); void wump_walk_kill __P((void)); int wump_nearby __P((void)); int main(argc, argv) int argc; char **argv; { int c; /* revoke */ setegid(getgid()); setgid(getgid()); #ifdef DEBUG while ((c = getopt(argc, argv, "a:b:hp:r:t:d")) != -1) #else while ((c = getopt(argc, argv, "a:b:hp:r:t:")) != -1) #endif switch (c) { case 'a': arrow_num = atoi(optarg); break; case 'b': bat_num = atoi(optarg); break; #ifdef DEBUG case 'd': debug = 1; break; #endif case 'h': level = HARD; break; case 'p': pit_num = atoi(optarg); break; case 'r': room_num = atoi(optarg); if (room_num < MIN_ROOMS_IN_CAVE) { (void)fprintf(stderr, "No self-respecting wumpus would live in such a small cave!\n"); exit(1); } if (room_num > MAX_ROOMS_IN_CAVE) { (void)fprintf(stderr, "Even wumpii can't furnish caves that large!\n"); exit(1); } break; case 't': link_num = atoi(optarg); if (link_num < 2) { (void)fprintf(stderr, "Wumpii like extra doors in their caves!\n"); exit(1); } break; case '?': default: usage(); } if (link_num > MAX_LINKS_IN_ROOM || link_num > room_num - (room_num / 4)) { (void)fprintf(stderr, "Too many tunnels! The cave collapsed!\n(Fortunately, the wumpus escaped!)\n"); exit(1); } if (level == HARD) { srandom((int)time((time_t *)0)); if (room_num / 2 - bat_num) bat_num += (random() % (room_num / 2 - bat_num)); if (room_num / 2 - pit_num) pit_num += (random() % (room_num / 2 - pit_num)); } /* Leave at least two rooms free--one for the player to start in, and * potentially one for the wumpus. */ if (bat_num > room_num / 2 - 1) { (void)fprintf(stderr, "The wumpus refused to enter the cave, claiming it was too crowded!\n"); exit(1); } if (pit_num > room_num / 2 - 1) { (void)fprintf(stderr, "The wumpus refused to enter the cave, claiming it was too dangerous!\n"); exit(1); } instructions(); cave_init(); /* and we're OFF! da dum, da dum, da dum, da dum... */ (void)printf( "\nYou're in a cave with %d rooms and %d tunnels leading from each room.\n\ There are %d bat%s and %d pit%s scattered throughout the cave, and your\n\ quiver holds %d custom super anti-evil Wumpus arrows. Good luck.\n", room_num, link_num, bat_num, plural(bat_num), pit_num, plural(pit_num), arrow_num); for (;;) { initialize_things_in_cave(); arrows_left = arrow_num; do { display_room_stats(); (void)printf("Move or shoot? (m-s) "); (void)fflush(stdout); (void)fpurge(stdin); if (!fgets(answer, sizeof(answer), stdin)) break; } while (!take_action()); (void)fpurge(stdin); if (!getans("\nCare to play another game? (y-n) ")) exit(0); clear_things_in_cave(); if (!getans("In the same cave? (y-n) ")) cave_init(); } /* NOTREACHED */ } void display_room_stats() { register int i; /* * Routine will explain what's going on with the current room, as well * as describe whether there are pits, bats, & wumpii nearby. It's * all pretty mindless, really. */ (void)printf( "\nYou are in room %d of the cave, and have %d arrow%s left.\n", player_loc, arrows_left, plural(arrows_left)); if (bats_nearby()) (void)printf("*rustle* *rustle* (must be bats nearby)\n"); if (pit_nearby()) (void)printf("*whoosh* (I feel a draft from some pits).\n"); if (wump_nearby()) (void)printf("*sniff* (I can smell the evil Wumpus nearby!)\n"); (void)printf("There are tunnels to rooms %d, ", cave[player_loc].tunnel[0]); for (i = 1; i < link_num - 1; i++) /* if (cave[player_loc].tunnel[i] <= room_num) */ (void)printf("%d, ", cave[player_loc].tunnel[i]); (void)printf("and %d.\n", cave[player_loc].tunnel[link_num - 1]); } int take_action() { /* * Do the action specified by the player, either 'm'ove, 's'hoot * or something exceptionally bizarre and strange! Returns 1 * iff the player died during this turn, otherwise returns 0. */ switch (*answer) { case 'M': case 'm': /* move */ return(move_to(answer + 1)); case 'S': case 's': /* shoot */ return(shoot(answer + 1)); case 'Q': case 'q': case 'x': exit(0); case '\n': return(0); } if (random() % 15 == 1) (void)printf("Que pasa?\n"); else (void)printf("I don't understand!\n"); return(0); } int move_to(room_number) const char *room_number; { int i, just_moved_by_bats, next_room, tunnel_available; /* * This is responsible for moving the player into another room in the * cave as per their directions. If room_number is a null string, * then we'll prompt the user for the next room to go into. Once * we've moved into the room, we'll check for things like bats, pits, * and so on. This routine returns 1 if something occurs that kills * the player and 0 otherwise... */ tunnel_available = just_moved_by_bats = 0; next_room = atoi(room_number); /* crap for magic tunnels */ /* if (next_room == room_num + 1 && * cave[player_loc].tunnel[link_num-1] != next_room) * ++next_room; */ while (next_room < 1 || next_room > room_num /* + 1 */) { if (next_room < 0 && next_room != -1) (void)printf("Sorry, but we're constrained to a semi-Euclidean cave!\n"); if (next_room > room_num /* + 1 */) (void)printf("What? The cave surely isn't quite that big!\n"); /* if (next_room == room_num + 1 && * cave[player_loc].tunnel[link_num-1] != next_room) { * (void)printf("What? The cave isn't that big!\n"); * ++next_room; * } */ (void)printf("To which room do you wish to move? "); (void)fflush(stdout); if (!fgets(answer, sizeof(answer), stdin)) return(1); next_room = atoi(answer); } /* now let's see if we can move to that room or not */ tunnel_available = 0; for (i = 0; i < link_num; i++) if (cave[player_loc].tunnel[i] == next_room) tunnel_available = 1; if (!tunnel_available) { (void)printf("*Oof!* (You hit the wall)\n"); if (random() % 6 == 1) { (void)printf("Your colorful comments awaken the wumpus!\n"); move_wump(); if (wumpus_loc == player_loc) { wump_walk_kill(); return(1); } } return(0); } /* now let's move into that room and check it out for dangers */ /* if (next_room == room_num + 1) * jump(next_room = (random() % room_num) + 1); */ player_loc = next_room; for (;;) { if (next_room == wumpus_loc) { /* uh oh... */ if (just_moved_by_bats) wump_bat_kill(); else wump_kill(); return(1); } if (cave[next_room].has_a_pit) { if (random() % 12 < 2) { pit_survive(); return(0); } else { if (just_moved_by_bats) pit_kill_bat(); else pit_kill(); return(1); } } if (cave[next_room].has_a_bat) { (void)printf( "*flap* *flap* *flap* (humongous bats pick you up and move you%s!)\n", just_moved_by_bats ? " again": ""); next_room = player_loc = (random() % room_num) + 1; just_moved_by_bats = 1; } else break; } return(0); } int shoot(room_list) char *room_list; { int chance, next, roomcnt; int j, arrow_location, link, ok; char *p; /* * Implement shooting arrows. Arrows are shot by the player indicating * a space-separated list of rooms that the arrow should pass through; * if any of the rooms they specify are not accessible via tunnel from * the room the arrow is in, it will instead fly randomly into another * room. If the player hits the wumpus, this routine will indicate * such. If it misses, this routine may *move* the wumpus one room. * If it's the last arrow, then the player dies... Returns 1 if the * player has won or died, 0 if nothing has happened. */ arrow_location = player_loc; for (roomcnt = 1;; ++roomcnt, room_list = NULL) { if (!(p = strtok(room_list, " \t\n"))) { if (roomcnt == 1) { (void)printf("Enter a list of rooms to shoot into:\n"); (void)fflush(stdout); if (!(p = strtok(fgets(answer, sizeof(answer), stdin), " \t\n"))) { (void)printf( "The arrow falls to the ground at your feet.\n"); return(0); } } else break; } if (roomcnt > 5) { (void)printf( "The arrow wavers in its flight and and can go no further than room %d!\n", arrow_location); break; } next = atoi(p); if (next == 0) break; /* Old wumpus used room 0 as the terminator */ chance = random() % 10; if (roomcnt == 4 && chance < 2) { (void)printf( "Your finger slips on the bowstring! *twaaaaaang*\n\ The arrow is weakly shot and can go no further than room %d!\n",arrow_location); break; } else if (roomcnt == 5 && chance < 6) { (void)printf( "The arrow wavers in its flight and and can go no further than room %d!\n", arrow_location); break; } for (j = 0, ok = 0; j < link_num; j++) if (cave[arrow_location].tunnel[j] == next) ok = 1; if (ok) { /* if (next > room_num) { * (void)printf( * "A faint gleam tells you the arrow has gone through a magic tunnel!\n"); * arrow_location = (random() % room_num) + 1; * } else */ arrow_location = next; } else { link = (random() % link_num); if (cave[arrow_location].tunnel[link] == player_loc) (void)printf( "*thunk* The arrow can't find a way from %d to %d and flies back into\n\ your room!\n", arrow_location, next); /* else if (cave[arrow_location].tunnel[link] > room_num) * (void)printf( *"*thunk* The arrow flies randomly into a magic tunnel, thence into\n\ *room %d!\n", * cave[arrow_location].tunnel[link]); */ else (void)printf( "*thunk* The arrow can't find a way from %d to %d and flies randomly\n\ into room %d!\n", arrow_location, next, cave[arrow_location].tunnel[link]); arrow_location = cave[arrow_location].tunnel[link]; } /* * now we've gotten into the new room let us see if El Wumpo is * in the same room ... if so we've a HIT and the player WON! */ if (arrow_location == wumpus_loc) { kill_wump(); return(1); } if (arrow_location == player_loc) { shoot_self(); return(1); } } if (!--arrows_left) { no_arrows(); return(1); } { /* each time you shoot, it's more likely the wumpus moves */ static int lastchance = 2; if (random() % level == EASY ? 12 : 9 < (lastchance += 2)) { move_wump(); if (wumpus_loc == player_loc) { wump_walk_kill(); lastchance = random() % 3; /* Reset for next game */ return(1); } } } (void)printf("The arrow hit nothing.\n"); return(0); } void cave_init() { register int i, j, k, link; int delta, int_compare(); time_t time(); /* * This does most of the interesting work in this program actually! * In this routine we'll initialize the Wumpus cave to have all rooms * linking to all others by stepping through our data structure once, * recording all forward links and backwards links too. The parallel * "linkcount" data structure ensures that no room ends up with more * than three links, regardless of the quality of the random number * generator that we're using. */ /* Note that throughout the source there are commented-out vestigial * remains of the 'magic tunnel', which was a tunnel to room * room_num +1. It was necessary if all paths were two-way and * there was an odd number of rooms, each with an odd number of * exits. It's being kept in case cave_init ever gets reworked into * something more traditional. */ srandom((int)time((time_t *)0)); /* initialize the cave first off. */ for (i = 1; i <= room_num; ++i) for (j = 0; j < link_num ; ++j) cave[i].tunnel[j] = -1; /* choose a random 'hop' delta for our guaranteed link */ while (!(delta = random() % ((room_num - 1) / 2))); for (i = 1; i <= room_num; ++i) { link = ((i + delta) % room_num) + 1; /* connection */ cave[i].tunnel[0] = link; /* forw link */ cave[link].tunnel[1] = i; /* back link */ } /* now fill in the rest of the cave with random connections. * This is a departure from historical versions of wumpus. */ for (i = 1; i <= room_num; i++) for (j = 2; j < link_num ; j++) { if (cave[i].tunnel[j] != -1) continue; try_again: link = (random() % room_num) + 1; /* skip duplicates */ for (k = 0; k < j; k++) if (cave[i].tunnel[k] == link) goto try_again; /* don't let a room connect to itself */ if (link == i) goto try_again; cave[i].tunnel[j] = link; if (random() % 2 == 1) continue; for (k = 0; k < link_num; ++k) { /* if duplicate, skip it */ if (cave[link].tunnel[k] == i) k = link_num; else { /* if open link, use it, force exit */ if (cave[link].tunnel[k] == -1) { cave[link].tunnel[k] = i; k = link_num; } } } } /* * now that we're done, sort the tunnels in each of the rooms to * make it easier on the intrepid adventurer. */ for (i = 1; i <= room_num; ++i) qsort(cave[i].tunnel, (u_int)link_num, sizeof(cave[i].tunnel[0]), int_compare); #ifdef DEBUG if (debug) for (i = 1; i <= room_num; ++i) { (void)printf("\n"); } #endif } void clear_things_in_cave() { register int i; /* * remove bats and pits from the current cave in preparation for us * adding new ones via the initialize_things_in_cave() routines. */ for (i = 1; i <= room_num; ++i) cave[i].has_a_bat = cave[i].has_a_pit = 0; } void initialize_things_in_cave() { register int i, loc; /* place some bats, pits, the wumpus, and the player. */ for (i = 0; i < bat_num; ++i) { do { loc = (random() % room_num) + 1; } while (cave[loc].has_a_bat); cave[loc].has_a_bat = 1; #ifdef DEBUG if (debug) (void)printf("\n", loc); #endif } for (i = 0; i < pit_num; ++i) { do { loc = (random() % room_num) + 1; } while (cave[loc].has_a_pit || cave[loc].has_a_bat); /* Above used to be &&; || makes sense but so does just * checking cave[loc].has_a_pit */ cave[loc].has_a_pit = 1; #ifdef DEBUG if (debug) (void)printf("\n", loc); #endif } wumpus_loc = (random() % room_num) + 1; #ifdef DEBUG if (debug) (void)printf("\n", wumpus_loc); #endif do { player_loc = (random() % room_num) + 1; } while (player_loc == wumpus_loc || cave[player_loc].has_a_pit || cave[player_loc].has_a_bat); /* Replaced (level == HARD ? * (link_num / room_num < 0.4 ? wump_nearby() : 0) : 0) * with bat/pit checks in initial room. If this is kept there is * a slight chance that no room satisfies all four conditions. */ } int getans(prompt) const char *prompt; { char buf[20]; /* * simple routine to ask the yes/no question specified until the user * answers yes or no, then return 1 if they said 'yes' and 0 if they * answered 'no'. */ for (;;) { (void)printf("%s", prompt); (void)fflush(stdout); if (!fgets(buf, sizeof(buf), stdin)) return(0); if (*buf == 'N' || *buf == 'n') return(0); if (*buf == 'Y' || *buf == 'y') return(1); (void)printf( "I don't understand your answer; please enter 'y' or 'n'!\n"); } /* NOTREACHED */ } int bats_nearby() { register int i; /* check for bats in the immediate vicinity */ for (i = 0; i < link_num; ++i) if (cave[cave[player_loc].tunnel[i]].has_a_bat) return(1); return(0); } int pit_nearby() { register int i; /* check for pits in the immediate vicinity */ for (i = 0; i < link_num; ++i) if (cave[cave[player_loc].tunnel[i]].has_a_pit) return(1); return(0); } int wump_nearby() { register int i, j; /* check for a wumpus within TWO caves of where we are */ for (i = 0; i < link_num; ++i) { if (cave[player_loc].tunnel[i] == wumpus_loc) return(1); for (j = 0; j < link_num; ++j) if (cave[cave[player_loc].tunnel[i]].tunnel[j] == wumpus_loc) return(1); } return(0); } void move_wump() { wumpus_loc = cave[wumpus_loc].tunnel[random() % link_num]; #ifdef DEBUG if (debug) (void)printf("Wumpus moved to room %d\n",wumpus_loc); #endif } int int_compare(a, b) const void *a, *b; { return(*(int *)a < *(int *)b ? -1 : 1); } void instructions() { char buf[120], *p, *getenv(); /* * read the instructions file, if needed, and show the user how to * play this game! */ if (!getans("Instructions? (y-n) ")) return; if (access(_PATH_WUMPINFO, R_OK)) { (void)printf( "Sorry, but the instruction file seems to have disappeared in a\n\ puff of greasy black smoke! (poof)\n"); return; } if (!(p = getenv("PAGER")) || strlen(p) > sizeof(buf) + strlen(_PATH_WUMPINFO) + 5) p = _PATH_PAGER; (void)sprintf(buf, "%s %s", p, _PATH_WUMPINFO); (void)system(buf); } void usage() { (void)fprintf(stderr, "usage: wump [-h] [-a arrows] [-b bats] [-p pits] [-r rooms] [-t tunnels]\n"); exit(1); } /* messages */ void wump_kill() { (void)printf( "*ROAR* *chomp* *snurfle* *chomp*!\n\ Much to the delight of the Wumpus, you walk right into his mouth,\n\ making you one of the easiest dinners he's ever had! For you, however,\n\ it's a rather unpleasant death. The only good thing is that it's been\n\ so long since the evil Wumpus cleaned his teeth that you immediately\n\ pass out from the stench!\n"); } void wump_walk_kill() { (void)printf( "Oh dear. All the commotion has managed to awaken the evil Wumpus, who\n\ has chosen to walk into this very room! Your eyes open wide as they behold\n\ the great sucker-footed bulk that is the Wumpus; the mouth of the Wumpus\n\ also opens wide as the the evil beast beholds dinner.\n\ *ROAR* *chomp* *snurfle* *chomp*!\n"); } void wump_bat_kill() { (void)printf( "Flap, flap. The bats fly you right into the room with the evil Wumpus!\n\ The Wumpus, seeing a fine dinner flying overhead, takes a swipe at you,\n\ and the bats, not wanting to serve as hors d'oeuvres, drop their\n\ soon-to-be-dead weight and take off in the way that only bats flying out\n\ of a very bad place can. As you fall towards the large, sharp, and very\n\ foul-smelling teeth of the Wumpus, you think, \"Man, this is going to hurt.\"\n\ It does.\n"); } void kill_wump() { (void)printf( "*thwock!* *groan* *crash*\n\n\ A horrible roar fills the cave, and you realize, with a smile, that you\n\ have slain the evil Wumpus and won the game! You don't want to tarry for\n\ long, however, because not only is the Wumpus famous, but the stench of\n\ dead Wumpus is also quite well known--a stench powerful enough to slay the\n\ mightiest adventurer at a single whiff!!\n"); } void no_arrows() { (void)printf( "\nYou turn and look at your quiver, and realize with a sinking feeling\n\ that you've just shot your last arrow (figuratively, too). Sensing this\n\ with its psychic powers, the evil Wumpus rampages through the cave, finds\n\ you, and with a mighty *ROAR* eats you alive!\n"); } void shoot_self() { (void)printf( "\n*Thwack!* A sudden piercing feeling informs you that your wild arrow\n\ has ricocheted back and wedged in your side, causing extreme agony. The\n\ evil Wumpus, with its psychic powers, realizes this and immediately rushes\n\ to your side, not to help, alas, but to EAT YOU!\n\ (*CHOMP*)\n"); } /* * void * jump(where) * int where; * { * (void)printf( * "\nWith a jaunty step you enter the magic tunnel. As you do, you\n\ * notice that the walls are shimmering and glowing. Suddenly you feel\n\ * a very curious, warm sensation and find yourself in room %d!!\n", where); * } */ void pit_kill() { (void)printf( "*AAAUUUUGGGGGHHHHHhhhhhhhhhh...*\n\ The whistling sound and updraft as you walked into this room of the\n\ cave apparently weren't enough to clue you in to the presence of the\n\ bottomless pit. You have a lot of time to reflect on this error as\n\ you fall many miles to the core of the earth. Look on the bright side;\n\ you can at least find out if Jules Verne was right...\n"); } void pit_kill_bat() { (void)printf( "*AAAUUUUGGGGGHHHHHhhhhhhhhhh...*\n\ It appears the bats have decided to drop you into a bottomless pit. At\n\ least, that's what the whistling sound and updraft would suggest. Look on\n\ the bright side; you can at least find out if Jules Verne was right...\n"); } void pit_survive() { (void)printf( "Without conscious thought you grab for the side of the cave and manage\n\ to grasp onto a rocky outcrop. Beneath your feet stretches the limitless\n\ depths of a bottomless pit! Rock crumbles beneath your feet!\n"); }