/* libgcc1 routines for the Texas Instruments TMS320C[34]x Copyright (C) 1997,98, 1999 Free Software Foundation, Inc. Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz) and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file with other programs, and to distribute those programs without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into another program.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ ; These routines are called using the standard TI register argument ; passing model. ; The following registers do not have to be saved: ; r0, r1, r2, r3, ar0, ar1, ar2, ir0, ir1, bk, rs, rc, re, (r9, r10, r11) ; ; Perform floating point divqf3 ; ; This routine performs a reciprocal of the divisor using the method ; described in the C30/C40 user manuals. It then multiplies that ; result by the dividend. ; ; Let r be the reciprocal of the divisor v and let the ith estimate ; of r be denoted by r[i]. An iterative approach can be used to ; improve the estimate of r, given an initial estimate r[0], where ; ; r[i + 1] = r[i] * (2.0 - v * r[i]) ; ; The normalised error e[i] at the ith iteration is ; ; e[i] = (r - r[i]) / r = (1 / v - r[i]) * v = (1 - v * r[i]) ; ; Note that ; ; e[i + 1] = (1 - v * r[i + 1]) = 1 - 2 * v * r[i] + v^2 + (r[i])^2 ; = (1 - v * r[i])^2 = (e[i])^2 ; r2 dividend, r3 divisor, r0 quotient ; clobbers r1, ar1 #ifdef L_divqf3 .text .global ___divqf3 ___divqf3: #ifdef _TMS320C4x .if .REGPARM == 0 lda sp,ar0 ldf *-ar0(2), r3 .endif pop ar1 ; Pop return address ; r0 = estimate of r, r1 = tmp, r2 = dividend, r3 = divisor rcpf r3, r0 ; Compute initial estimate r[0] mpyf3 r0, r3, r1 ; r1 = r[0] * v subrf 2.0, r1 ; r1 = 2.0 - r[0] * v mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1] ; End of 1st iteration (16 bits accuracy) mpyf3 r0, r3, r1 ; r1 = r[1] * v subrf 2.0, r1 ; r1 = 2.0 - r[1] * v bud ar1 ; Delayed branch mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2] ; End of 2nd iteration (32 bits accuracy) .if .REGPARM == 0 mpyf *-ar0(1), r0 ; Multiply by the dividend .else mpyf r2, r0 ; Multiply by the dividend .endif rnd r0 ; Branch occurs here #else .if .REGPARM == 0 ldiu sp,ar0 ldf *-ar0(2), r3 .endif pop ar1 ; Pop return address ; Initial estimate r[0] = 1.0 * 2^(-e - 1) ; where v = m * 2^e ; r0 = estimate of r, r1 = tmp, r2 = dividend, r3 = divisor ; Calculate initial estimate r[0] pushf r3 pop r0 not r0 ; r0 = -e ; complement exponent = -e -1 ; complement sign (side effect) ; complement mantissa (almost 3 bit accurate) push r0 popf r0 ; r0 = 1.0 * e^(-e - 1) + inverted mantissa ldf -1.0, r1 ; undo complement sign bit xor r1, r0 mpyf3 r0, r3, r1 ; r1 = r[0] * v subrf 2.0, r1 ; r1 = 2.0 - r[0] * v mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1] ; End of 1st iteration mpyf3 r0, r3, r1 ; r1 = r[1] * v subrf 2.0, r1 ; r1 = 2.0 - r[1] * v mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2] ; End of 2nd iteration mpyf3 r0, r3, r1 ; r1 = r[2] * v subrf 2.0, r1 ; r1 = 2.0 - r[2] * v mpyf r1, r0 ; r0 = r[2] * (2.0 - r[2] * v) = r[3] ; End of 3rd iteration or 080h, r0 ; add 1 lsb to result. needed when complemeting ; 1.0 / 2.0 rnd r0 ; Use modified last iteration ; r[4] = (r[3] * (1.0 - (v * r[3]))) + r[3] mpyf3 r0, r3, r1 ; r1 = r[3] * v subrf 1.0, r1 ; r1 = 1.0 - r[3] * v mpyf r0, r1 ; r1 = r[3] * (1.0 - r[3] * v) bud ar1 ; Delayed branch addf r1, r0 ; r0 = r[3] * (1.0 - r[3] * v) + r[3] = r[4] .if .REGPARM == 0 mpyf *-ar0(1), r0 ; Multiply by the dividend .else mpyf r2, r0 ; Multiply by the dividend .endif rnd r0 ; Branch occurs here #endif #endif ; ; Integer signed division ; ; ar2 dividend, r2 divisor, r0 quotient ; clobbers r1, r3, ar0, ar1, ir0, ir1, rc, rs, re #ifdef L_divqi3 .text .global ___divqi3 .ref udivqi3n ___divqi3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif xor3 ar2, r2, r3 ; Get the sign absi ar2, r0 bvd divq32 ldi r0, ar2 absi r2, r2 cmpi ar2, r2 ; Divisor > dividend? pop ir1 bhid zero ; If so, return 0 ; ; Normalize oeprands. Use difference exponents as shift count ; for divisor, and as repeat count for "subc" ; float ar2, r1 ; Normalize dividend pushf r1 ; Get as integer pop ar0 lsh -24, ar0 ; Get exponent float r2, r1 ; Normalize divisor pushf r1 ; Get as integer pop ir0 lsh -24, ir0 ; Get exponent subi ir0, ar0 ; Get difference of exponents lsh ar0, r2 ; Align divisor with dividend ; ; Do count + 1 subtracts and shifts ; rpts ar0 subc r2, ar2 ; ; Mask off the lower count+1 bits of ar2 ; subri 31, ar0 ; Shift count is (32 - (ar0 + 1)) lsh ar0, ar2 ; Shift left negi ar0, ar0 lsh3 ar0, ar2, r0 ; Shift right and put result in r0 ; ; Check sign and negate result if necessary ; bud ir1 ; Delayed return negi r0, r1 ; Negate result ash -31, r3 ; Check sign ldinz r1, r0 ; If set, use negative result ; Branch occurs here zero: bud ir1 ; Delayed branch ldi 0, r0 nop nop ; Branch occurs here ; ; special case where ar2 = abs(ar2) = 0x80000000. We handle this by ; calling unsigned divide and negating the result if necessary. ; divq32: push r3 ; Save sign call udivqi3n pop r3 pop ir1 bd ir1 negi r0, r1 ; Negate result ash -31, r3 ; Check sign ldinz r1, r0 ; If set, use negative result ; Branch occurs here #endif ; ; ; ar2 dividend, r2 divisor, r0 quotient, ; clobbers r1, r3, ar0, ar1, ir0, ir1, rc, rs, re #ifdef L_udivqi3 .text .global ___udivqi3 .global udivqi3n ___udivqi3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif udivqi3n: pop ir1 cmpi ar2, r2 ; If divisor > dividend bhi qzero ; return zero ldi r2, ar1 ; Store divisor in ar1 tstb ar2, ar2 ; Check top bit, jump if set to special handler bld div_32 ; Delayed branch ; ; Get divisor exponent ; float ar1, r1 ; Normalize the divisor pushf r1 ; Get into int register pop rc ; branch occurs here bzd qzero ; if (float) divisor zero, return zero float ar2, r1 ; Normalize the dividend pushf r1 ; Get into int register pop ar0 lsh -24, ar0 ; Get both the exponents lsh -24, rc subi rc, ar0 ; Get the difference between the exponents lsh ar0, ar1 ; Normalize the divisor with the dividend ; ; Do count_1 subtracts and shifts ; rpts ar0 subc ar1, ar2 ; ; mask off the lower count+1 bits ; subri 31, ar0 ; Shift count (31 - (ar0+1)) bud ir1 ; Delayed return lsh3 ar0, ar2, r0 negi ar0, ar0 lsh ar0, r0 ; Branch occurs here ; ; Handle a full 32-bit dividend ; div_32: tstb ar1, ar1 bld qone ; if divisor high bit is one, the result is one lsh -24, rc subri 31, rc lsh rc, ar1 ; Line up the divisor ; ; Now divisor and dividend are aligned. Do first SUBC by hand, save ; of the forst quotient digit. Then, shift divisor right rather ; than shifting dividend left. This leaves a zero in the top bit of ; the divident ; ldi 1, ar0 ; Initizialize MSB of quotient lsh rc, ar0 ; create a mask for MSBs subi 1, ar0 ; mask is (2 << count) - 1 subi3 ar1, ar2, r1 ldihs r1, ar2 ldihs 1, r1 ldilo 0, r1 lsh rc, r1 lsh -1, ar1 subi 1, rc ; ; do the rest of the shifts and subtracts ; rpts rc subc ar1, ar2 bud ir1 and ar0, ar2 or3 r1, ar2, r0 nop qone: bud ir1 ldi 1, r0 nop nop qzero: bud ir1 ldi 0, r0 nop nop #endif #ifdef L_umodqi3 .text .global ___umodqi3 .global umodqi3n ___umodqi3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif umodqi3n: pop ir1 ; return address cmpi ar2, r2 ; divisor > dividend ? bhi uzero ; if so, return dividend ldi r2, ar1 ; load divisor ; ; If top bit of dividend is set, handle specially. ; tstb ar2, ar2 ; check top bit bld umod_32 ; get divisor exponent, then jump. ; ; Get divisor exponent by converting to float. ; float ar1, r1 ; normalize divisor pushf r1 ; push as float pop rc ; pop as int to get exponent bzd uzero ; if (float)divisor was zero, return ; ; 31 or less bits in dividend. Get dividend exponent. ; float ar2, r1 ; normalize dividend pushf r1 ; push as float pop ar0 ; pop as int to get exponent ; ; Use difference in exponents as shift count to line up MSBs. ; lsh -24, rc ; divisor exponent lsh -24, ar0 ; dividend exponent subi rc, ar0 ; difference lsh ar0, ar1 ; shift divisor up ; ; Do COUNT+1 subtract & shifts. ; rpts ar0 subc ar1, ar2 ; ; Remainder is in upper 31-COUNT bits. ; bud ir1 ; delayed branch to return addi 1, ar0 ; shift count is COUNT+1 negi ar0, ar0 ; negate for right shift lsh3 ar0, ar2, r0 ; shift to get result ; Return occurs here ; ; The following code handles cases of a full 32-bit dividend. Before ; SUBC can be used, the top bit must be cleared (otherwise SUBC can ; possibly shift a significant 1 out the top of the dividend). This ; is accomplished by first doing a normal subtraction, then proceeding ; with SUBCs. ; umod_32: ; ; If the top bit of the divisor is set too, the remainder is simply ; the difference between the dividend and divisor. Otherwise, shift ; the divisor up to line up the MSBs. ; tstb ar1, ar1 ; check divisor bld uone ; if negative, remainder is diff lsh -24, rc ; divisor exponent subri 31, rc ; shift count = 31 - exp negi rc, ar0 ; used later as shift count lsh rc, ar1 ; shift up to line up MSBs ; ; Now MSBs are aligned. Do first SUBC by hand using a plain subtraction. ; Then, shift divisor right rather than shifting dividend left. This leaves ; a 0 in the top bit of the dividend. ; subi3 ar1, ar2, r1 ; subtract ldihs r1, ar2 ; if positive, replace dividend subi 1, rc ; first iteration is done lsh -1, ar1 ; shift divisor down ; ; Do EXP subtract & shifts. ; rpts rc subc ar1, ar2 ; ; Quotient is in EXP+1 LSBs; shift remainder (in MSBs) down. ; bud ir1 lsh3 ar0, ar2, r0 ; COUNT contains -(EXP+1) nop nop ; ; Return (dividend - divisor). ; uone: bud ir1 subi3 r2, ar2, r0 nop nop ; ; Return dividend. ; uzero: bud ir1 ldi ar2, r0 ; set status from result nop nop #endif #ifdef L_modqi3 .text .global ___modqi3 .ref umodqi3n ___modqi3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif ; ; Determine sign of result. Get absolute value of operands. ; ldi ar2, ar0 ; sign of result same as dividend absi ar2, r0 ; make dividend positive bvd mod_32 ; if still negative, escape absi r2, r1 ; make divisor positive ldi r1, ar1 ; save in ar1 cmpi r0, ar1 ; divisor > dividend ? pop ir1 ; return address bhid return ; if so, return dividend ; ; Normalize operands. Use difference in exponents as shift count ; for divisor, and as repeat count for SUBC. ; float r1, r1 ; normalize divisor pushf r1 ; push as float pop rc ; pop as int bzd return ; if (float)divisor was zero, return float r0, r1 ; normalize dividend pushf r1 ; push as float pop r1 ; pop as int lsh -24, rc ; get divisor exponent lsh -24, r1 ; get dividend exponent subi rc, r1 ; get difference in exponents lsh r1, ar1 ; align divisor with dividend ; ; Do COUNT+1 subtract & shifts. ; rpts r1 subc ar1, r0 ; ; Remainder is in upper bits of R0 ; addi 1, r1 ; shift count is -(r1+1) negi r1, r1 lsh r1, r0 ; shift right ; ; Check sign and negate result if necessary. ; return: bud ir1 ; delayed branch to return negi r0, r1 ; negate result cmpi 0, ar0 ; check sign ldin r1, r0 ; if set, use negative result ; Return occurs here ; ; The following code handles cases of a full 32-bit dividend. This occurs ; when R0 = abs(R0) = 080000000h. Handle this by calling the unsigned mod ; function, then negating the result if necessary. ; mod_32: push ar0 ; remember sign call umodqi3n ; do divide brd return ; return pop ar0 ; restore sign pop ir1 ; return address nop #endif #ifdef L_unsfltconst .section .const .global ___unsfltconst ___unsfltconst: .float 4294967296.0 #endif #ifdef L_unsfltcompare .section .const .global ___unsfltcompare ___unsfltcompare: .float 2147483648.0 #endif ; Integer 32-bit signed multiplication ; ; The TMS320C3x MPYI instruction takes two 24-bit signed integers ; and produces a 48-bit signed result which is truncated to 32-bits. ; ; A 32-bit by 32-bit multiplication thus requires a number of steps. ; ; Consider the product of two 32-bit signed integers, ; ; z = x * y ; ; where x = (b << 16) + a, y = (d << 16) + c ; ; This can be expressed as ; ; z = ((b << 16) + a) * ((d << 16) + c) ; ; = ((b * d) << 32) + ((b * c + a * d) << 16) + a * c ; ; Let z = (f << 16) + e where f < (1 << 16). ; ; Since we are only interested in a 32-bit result, we can ignore the ; (b * d) << 32 term, and thus ; ; f = b * c + a * d, e = a * c ; ; We can simplify things if we have some a priori knowledge of the ; operands, for example, if -32768 <= y <= 32767, then y = c and d = 0 and thus ; ; f = b * c, e = a * c ; ; ar2 multiplier, r2 multiplicand, r0 product ; clobbers r1, r2, r3 #ifdef L_mulqi3 .text .global ___mulqi3 ___mulqi3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif pop ir1 ; return address ldi ar2, r0 ; and 0ffffh, r0 ; a lsh -16, ar2 ; b ldi r2, r3 ; and 0ffffh, r3 ; c mpyi r3, ar2 ; c * b lsh -16, r2 ; d mpyi r0, r2 ; a * d addi ar2, r2 ; c * b + a * d bd ir1 ; delayed branch to return lsh 16, r2 ; (c * b + a * d) << 16 mpyi r3, r0 ; a * c addi r2, r0 ; a * c + (c * b + a * d) << 16 ; branch occurs here #endif ; ; Integer 64 by 64 multiply ; long1 and long2 on stack ; result in r0,r1 ; #ifdef L_mulhi3 .text .global ___mulhi3 #ifdef _TMS320C4x ___mulhi3: pop ar0 ldi sp,ar2 ldi *-ar2(1),r2 ldi *-ar2(3),r3 mpyi3 r2,r3,r0 mpyuhi3 r2,r3,r1 mpyi *-ar2(2),r2 bd ar0 mpyi *-ar2(0),r3 addi r2,r1 addi r3,r1 #else ___mulhi3: ldi sp,ar2 ldi -16,rs ldi *-ar2(2),ar0 ldi *-ar2(4),ar1 ldi ar0,r2 and 0ffffh,r2 ldi ar1,r3 and 0ffffh,r3 lsh rs,ar0 lsh rs,ar1 mpyi r2,r3,r0 mpyi ar0,ar1,r1 mpyi r2,ar1,rc lsh rs,rc,re addi re,r1 lsh 16,rc addi rc,r0 addc 0,r1 mpyi r3,ar0,rc lsh rs,rc,re addi re,r1 lsh 16,rc addi rc,r0 addc 0,r1 ldi *-ar2(1),ar0 ldi ar0,r2 and 0ffffh,r2 lsh rs,ar0 mpyi r2,r3,rc addi rc,r1 mpyi r2,ar1,rc mpyi r3,ar0,re addi re,rc lsh 16,rc addi rc,r1 ldi *-ar2(2),ar0 ldi *-ar2(3),ar1 ldi ar0,r2 and 0ffffh,r2 ldi ar1,r3 and 0ffffh,r3 lsh rs,ar0 lsh rs,ar1 mpyi r2,r3,rc addi rc,r1 mpyi r2,ar1,rc mpyi r3,ar0,re pop ar0 bd ar0 addi re,rc lsh 16,rc addi rc,r1 #endif #endif ; ; Integer 32 by 32 multiply highpart unsigned ; src1 in ar2 ; src2 in r2 ; result in r0 ; #ifdef L_umulhi3_high .text .global ___umulhi3_high ___umulhi3_high: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif ldi -16,rs ldi r2,r3 and 0ffffh,r2 ldi ar2,ar1 and 0ffffh,ar2 lsh rs,r3 lsh rs,ar1 mpyi ar2,r2,r1 mpyi ar1,r3,r0 mpyi ar2,r3,rc lsh rs,rc,re addi re,r0 lsh 16,rc addi rc,r1 addc 0,r0 mpyi r2,ar1,rc lsh rs,rc,re addi re,r0 pop ar0 bd ar0 lsh 16,rc addi rc,r1 addc 0,r0 #endif ; ; Integer 32 by 32 multiply highpart signed ; src1 in ar2 ; src2 in r2 ; result in r0 ; #ifdef L_smulhi3_high .text .global ___smulhi3_high ___smulhi3_high: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 ldi *-ar0(2), r2 .endif ldi -16,rs ldi 0,rc subi3 ar2,rc,r0 ldi r2,r3 ldilt r0,rc subi3 r2,rc,r0 ldi ar2,ar1 tstb ar1,ar1 ldilt r0,rc and 0ffffh,r2 and 0ffffh,ar2 lsh rs,r3 lsh rs,ar1 mpyi ar2,r2,r1 mpyi ar1,r3,r0 addi rc,r0 mpyi ar2,r3,rc lsh rs,rc,re addi re,r0 lsh 16,rc addi rc,r1 addc 0,r0 mpyi r2,ar1,rc lsh rs,rc,re addi re,r0 pop ar0 bd ar0 lsh 16,rc addi rc,r1 addc 0,r0 #endif ; ; Integer 64 by 64 unsigned divide ; long1 and long2 on stack ; divide in r0,r1 ; modulo in r2,r3 ; routine takes a maximum of 64*9+21=597 cycles = 24 us @ 50Mhz ; #ifdef L_udivhi3 .text .global ___udivhi3 .global ___udivide .global ___umodulo .ref udivqi3n .ref umodqi3n ___udivhi3: ldi sp,ar2 ldi *-ar2(4),ar0 ldi *-ar2(3),ar1 ldi *-ar2(2),r0 ldi *-ar2(1),r1 ___udivide: or r1,ar1,r2 bne udiv0 ldi ar0,r2 ldi r0,ar2 call udivqi3n ldiu 0,r1 rets ___umodulo: or r1,ar1,r2 bne udiv0 ldi ar0,r2 ldi r0,ar2 call umodqi3n ldi r0,r2 ldiu 0,r3 rets udiv0: tstb ar1,ar1 bne udiv1 tstb ar0,ar0 bn udiv1 ldiu 63,rc #ifdef _TMS320C4x rptbd udivend0 ldiu 0,r2 addi r0,r0 rolc r1 #else ldiu 0,r2 addi r0,r0 rolc r1 rptb udivend0 #endif rolc r2 subi3 ar0,r2,r3 xor 1,st ldic r3,r2 rolc r0 udivend0: rolc r1 ldiu 0,r3 rets udiv1: push r4 push r5 ldiu 63,rc ldiu 0,r2 #ifdef _TMS320C4x rptbd udivend1 ldiu 0,r3 addi r0,r0 rolc r1 #else ldiu 0,r3 addi r0,r0 rolc r1 rptb udivend1 #endif rolc r2 rolc r3 subi3 ar0,r2,r4 subb3 ar1,r3,r5 xor 1,st ldic r4,r2 ldic r5,r3 rolc r0 udivend1: rolc r1 pop r5 pop r4 rets #endif ; ; Integer 64 by 64 unsigned modulo ; long1 and long2 on stack ; result in r0,r1 ; #ifdef L_umodhi3 .text .global ___umodhi3 .ref ___modulo ___umodhi3: ldi sp,ar2 ldi *-ar2(4),ar0 ldi *-ar2(3),ar1 ldi *-ar2(2),r0 ldi *-ar2(1),r1 call ___umodulo pop ar0 bd ar0 ldi r2,r0 ldi r3,r1 nop #endif ; ; Integer 64 by 64 signed divide ; long1 and long2 on stack ; result in r0,r1 ; #ifdef L_divhi3 .text .global ___divhi3 .ref ___udivide ___divhi3: ldi 0,ir0 ldi sp,ar2 ldi *-ar2(4),r0 ldi *-ar2(3),r1 bge div1 not ir0 negi r0 negb r1 div1: ldi r0,ar0 ldi r1,ar1 ldi *-ar2(2),r0 ldi *-ar2(1),r1 bge div2 not ir0 negi r0 negb r1 div2: call ___udivide tstb ir0,ir0 bge div3 negi r0 negb r1 div3: rets #endif ; ; Integer 64 by 64 signed modulo ; long1 and long2 on stack ; result in r0,r1 ; #ifdef L_modhi3 .text .global ___modhi3 .ref ___umodulo ___modhi3: ldi 0,ir0 ldi sp,ar2 ldi *-ar2(4),r0 ldi *-ar2(3),r1 bge mod1 not ir0 negi r0 negb r1 mod1: ldi r0,ar0 ldi r1,ar1 ldi *-ar2(2),r0 ldi *-ar2(1),r1 bge mod2 not ir0 negi r0 negb r1 mod2: call ___umodulo ldi r2,r0 ldi r3,r1 tstb ir0,ir0 bge mod3 negi r0 negb r1 mod3: rets #endif ; ; double to signed long long converion ; input in r2 ; result in r0,r1 ; #ifdef L_fix_truncqfhi2 .text .global ___fix_truncqfhi2 .ref ufix_truncqfhi2n ___fix_truncqfhi2: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(1), r2 .endif cmpf 0.0,r2 bge ufix_truncqfhi2n negf r2 call ufix_truncqfhi2n negi r0 negb r1 rets #endif ; ; double to unsigned long long converion ; input in r2 ; result in r0,r1 ; #ifdef L_ufix_truncqfhi2 .text .global ___ufix_truncqfhi2 .global ufix_truncqfhi2n ___ufix_truncqfhi2: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(1), r2 .endif ufix_truncqfhi2n: cmpf 0.0,r2 ble ufix1 pushf r2 pop r3 ash -24,r3 subi 31,r3 cmpi 32,r3 bge ufix1 cmpi -32,r3 ble ufix1 ldi 1,r0 ash 31,r0 or3 r0,r2,r0 ldi r0,r1 lsh3 r3,r0,r0 subi 32,r3 cmpi -32,r3 ldile 0,r1 lsh3 r3,r1,r1 rets ufix1: ldi 0,r0 ldi 0,r1 rets #endif ; ; signed long long to double converion ; input on stack ; result in r0 ; #ifdef L_floathiqf2 .text .global ___floathiqf2 .ref ufloathiqf2n ___floathiqf2: ldi sp,ar2 ldi *-ar2(2),r0 ldi *-ar2(1),r1 bge ufloathiqf2n negi r0 negb r1 call ufloathiqf2n negf r0 rets #endif ; ; unsigned long long to double converion ; input on stack ; result in r0 ; #ifdef L_ufloathiqf2 .text .global ___ufloathiqf2 .global ufloathiqf2n .ref ___unsfltconst ___ufloathiqf2: ldi sp,ar2 ldi *-ar2(2),r0 ldi *-ar2(1),r1 ufloathiqf2n: .if .BIGMODEL #ifdef _TMS320C4x ldpk @___unsfltconst #else ldp @___unsfltconst #endif .endif ldf @___unsfltconst,r2 float r0 bge uflt1 addf r2,r0 uflt1: float r1 bge uflt2 addf r2,r1 uflt2: #ifdef _TMS320C4x pop r3 bd r3 mpyf r2,r1 addf r1,r0 nop #else ldf r1,r3 and 0ffh,r3 norm r3,r3 mpyf r2,r3 pop ar2 bd ar2 addf r3,r0 mpyf r2,r1 addf r1,r0 #endif #endif ; ; long double to signed long long converion ; input in r2 ; result in r0,r1 ; #ifdef L_fix_trunchfhi2 .text .global ___fix_trunchfhi2 .ref ufix_trunchfhi2n ___fix_trunchfhi2: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(2), r2 ldi *-ar0(1), r2 .endif cmpf 0.0,r2 bge ufix_trunchfhi2n negf r2 call ufix_trunchfhi2n negi r0 negb r1 rets #endif ; ; long double to unsigned long long converion ; input in r2 ; result in r0,r1 ; #ifdef L_ufix_trunchfhi2 .text .global ___ufix_trunchfhi2 .global ufix_trunchfhi2n ___ufix_trunchfhi2: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(2), r2 ldi *-ar0(1), r2 .endif ufix_trunchfhi2n: cmpf 0.0,r2 ble ufixh1 pushf r2 pop r3 ash -24,r3 subi 31,r3 cmpi 32,r3 bge ufixh1 cmpi -32,r3 ble ufixh1 ldi 1,r0 ash 31,r0 or3 r0,r2,r0 ldi r0,r1 lsh3 r3,r0,r0 subi 32,r3 cmpi -32,r3 ldile 0,r1 lsh3 r3,r1,r1 rets ufixh1: ldi 0,r0 ldi 0,r1 rets #endif ; ; signed long long to long double converion ; input on stack ; result in r0 ; #ifdef L_floathihf2 .text .global ___floathihf2 .ref ufloathihf2n ___floathihf2: ldi sp,ar2 ldi *-ar2(2),r0 ldi *-ar2(1),r1 bge ufloathihf2n negi r0 negb r1 call ufloathihf2n negf r0 rets #endif ; ; unsigned long long to double converion ; input on stack ; result in r0 ; #ifdef L_ufloathihf2 .text .global ___ufloathihf2 .global ufloathihf2n .ref ___unsfltconst ___ufloathihf2: ldi sp,ar2 ldi *-ar2(2),r0 ldi *-ar2(1),r1 ufloathihf2n .if .BIGMODEL #ifdef _TMS320C4x ldpk @___unsfltconst #else ldp @___unsfltconst #endif .endif ldf @___unsfltconst,r2 float r0 bge uflth1 addf r2,r0 uflth1: float r1 bge uflth2 addf r2,r1 uflth2: #ifdef _TMS320C4x pop r3 bd r3 mpyf r2,r1 addf r1,r0 nop #else ldf r1,r3 and 0ffh,r3 norm r3,r3 mpyf r2,r3 pop ar2 bd ar2 addf r3,r0 mpyf r2,r1 addf r1,r0 #endif #endif ; ; calculate ffs ; input in ar2 ; result in r0 ; #ifdef L_ffs .global ___ffs .ref ___unsfltconst .text ___ffs: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldi *-ar0(1), ar2 .endif negi ar2,r0 and ar2,r0 float r0,r0 ldfu 0.0,r1 .if .BIGMODEL #ifdef _TMS320C4x ldpk @___unsfltconst #else ldp @___unsfltconst #endif .endif ldflt @___unsfltconst,r1 addf r1,r0 pushf r0 pop r0 pop ar0 bd ar0 ash -24,r0 ldilt -1,r0 addi 1,r0 #endif ; ; calculate long double * long double ; input in r2, r3 ; output in r0 ; #ifdef L_mulhf3 .global ___mulhf3 .text ___mulhf3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(2), r2 ldi *-ar0(1), r2 ldf *-ar0(4), r3 ldi *-ar0(3), r3 .endif pop ar2 ; return ad ldf r2,r0 ; copy lsb0 ldf r3,r1 ; copy lsb1 and 0ffh,r0 ; mask lsb0 and 0ffh,r1 ; mask lsb1 norm r0,r0 ; correct lsb0 norm r1,r1 ; correct lsb1 mpyf r2,r1 ; arg0*lsb1 mpyf r3,r0 ; arg1*lsb0 bd ar2 ; return (delayed) addf r0,r1 ; arg0*lsb1 + arg1*lsb0 mpyf r2,r3,r0 ; msb0*msb1 addf r1,r0 ; msb0*msb1 + arg0*lsb1 + arg1*lsb0 #endif ; ; calculate long double / long double ; r2 dividend, r3 divisor, r0 quotient ; #ifdef L_divhf3 .global ___divhf3 .text ___divhf3: .if .REGPARM == 0 #ifdef _TMS320C4x lda sp,ar0 #else ldiu sp,ar0 #endif ldf *-ar0(2), r2 ldi *-ar0(1), r2 ldf *-ar0(4), r3 ldi *-ar0(3), r3 .endif #ifdef _TMS320C4x pop ar1 rcpf r3, r0 mpyf3 r0, r3, r1 subrf 2.0, r1 mpyf r1, r0 mpyf3 r0, r3, r1 bud ar1 subrf 2.0, r1 mpyf r1, r0 mpyf r2, r0 #else pop ar1 pushf r3 pop r0 not r0 push r0 popf r0 ldf -1.0, r1 xor r1, r0 mpyf3 r0, r3, r1 ; r1 = r[0] * v subrf 2.0, r1 ; r1 = 2.0 - r[0] * v mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1] ; End of 1st iteration mpyf3 r0, r3, r1 ; r1 = r[1] * v subrf 2.0, r1 ; r1 = 2.0 - r[1] * v mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2] ; End of 2nd iteration mpyf3 r0, r3, r1 ; r1 = r[2] * v subrf 2.0, r1 ; r1 = 2.0 - r[2] * v mpyf r1, r0 ; r0 = r[2] * (2.0 - r[2] * v) = r[3] ; End of 3rd iteration or 080h, r0 rnd r0 ; mpyf3 r0, r3, r1 ; r1 = r[3] * v push r4 pushf r4 mpyf r0, r3, r1 ldf r0, r4 and 0ffh, r4 norm r4, r4 mpyf r3, r4 addf r4, r1 ldf r3, r4 and 0ffh, r4 norm r4, r4 mpyf r0, r4 addf r4, r1 subrf 2.0, r1 ; r1 = 2.0 - r[3] * v mpyf r1, r0, r3 ; r3 = r[3] * (2.0 - r[3] * v) = r[5] ldf r1, r4 and 0ffh, r4 norm r4, r4 mpyf r0, r4 addf r4, r3 ldf r0, r4 and 0ffh, r4 norm r4, r4 mpyf r1, r4 addf r4, r3 mpyf r2, r3, r0 ; Multiply by the dividend ldf r2, r4 and 0ffh, r4 norm r4, r4 mpyf r3, r4 addf r4, r0 ldf r3, r4 and 0ffh, r4 norm r4, r4 mpyf r2, r4 bd ar1 addf r4, r0 popf r4 pop r4 #endif #endif