/* Definitions of target machine for GNU compiler. Alliant FX version. Copyright (C) 1989, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) and Joe Weening (weening@gang-of-four.stanford.edu). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file is based on m68k.h, simplified by removing support for the Sun FPA and other things not applicable to the Alliant. Some remnants of these features remain. */ /* Names to predefine in the preprocessor for this target machine. */ #define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)" /* Print subsidiary information on the compiler version in use. */ #define TARGET_VERSION fprintf (stderr, " (Alliant)"); /* Run-time compilation parameters selecting different hardware subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs are no longer supported.) The Alliant CE is 68020-compatible, and also has floating point, vector and concurrency instructions. Although the IP doesn't have floating point, it emulates it in the operating system. Using this generally is faster than running code compiled with -msoft-float, because the soft-float code still uses (simulated) FP registers and ends up emulating several fmove{s,d} instructions per call. So I don't recommend using soft-float for any Alliant code. -- JSW */ extern int target_flags; /* Macros used in the machine description to test the flags. */ /* Compile for a 68020 (not a 68000 or 68010). */ #define TARGET_68020 (target_flags & 1) /* Compile CE insns for floating point (not library calls). */ #define TARGET_CE (target_flags & 2) /* Compile using 68020 bitfield insns. */ #define TARGET_BITFIELD (target_flags & 4) /* Compile with 16-bit `int'. */ #define TARGET_SHORT (target_flags & 040) /* Default 3 means compile 68020 and CE instructions. We don't use bitfield instructions because there appears to be a bug in the implementation of bfins on the CE. */ #define TARGET_DEFAULT 3 /* Define __HAVE_CE__ in preprocessor according to the -m flags. This will control the use of inline FP insns in certain macros. Also inform the program which CPU this is for. */ #if TARGET_DEFAULT & 02 /* -mce is the default */ #define CPP_SPEC \ "%{!msoft-float:-D__HAVE_CE__ }\ %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" #else /* -msoft-float is the default */ #define CPP_SPEC \ "%{mce:-D__HAVE_CE__ }\ %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" #endif /* Link with libg.a when debugging, for dbx's sake. */ #define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} " /* Make the linker remove temporary labels, since the Alliant assembler doesn't. */ #define LINK_SPEC "-X" /* Every structure or union's size must be a multiple of 2 bytes. */ #define STRUCTURE_SIZE_BOUNDARY 16 /* This is BSD, so it wants DBX format. */ #define DBX_DEBUGGING_INFO /* Macro to define tables used to set the flags. This is a list in braces of pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits to set or minus the bits to clear. An empty string NAME is used to identify the default VALUE. */ #define TARGET_SWITCHES \ { { "68020", 5, "Generate code for a mc68020"}, \ { "c68020", 5, "Generate code for a mc68020"}, \ { "bitfield", 4, "Use bitfield instructions"}, \ { "68000", -7, "Generate code for a mc68000"}, \ { "c68000", -7, "Generate code for a mc68000"}, \ { "soft-float", -2, "Generate software FP code"}, \ { "nobitfield", -4, "Do not generate bitfield insns"}, \ { "short", 040, "Use 16bit integers"}, \ { "noshort", -040, "Use 32bit integers"}, \ { "", TARGET_DEFAULT, NULL}} /* target machine storage layout */ /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. This is true for 68020 insns such as bfins and bfexts. We make it true always by avoiding using the single-bit insns except in special cases with constant bit numbers. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ /* That is true on the 68000. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is the lowest numbered. */ /* For 68000 we can decide arbitrarily since there are no machine instructions for them. */ #define WORDS_BIG_ENDIAN 0 /* number of bits in an addressable storage unit */ #define BITS_PER_UNIT 8 /* Width in bits of a "word", which is the contents of a machine register. Note that this is not necessarily the width of data type `int'; if using 16-bit ints on a 68000, this would still be 32. But on a machine with 16-bit registers, this would be 16. */ #define BITS_PER_WORD 32 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD 4 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ #define POINTER_SIZE 32 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32) /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY 16 /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 16 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 16 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 16 /* Set this non-zero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Define number of bits in most basic integer type. (If undefined, default is BITS_PER_WORD). */ #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32) /* Define these to avoid dependence on meaning of `int'. Note that WCHAR_TYPE_SIZE is used in cexp.y, where TARGET_SHORT is not available. */ #define WCHAR_TYPE "long int" #define WCHAR_TYPE_SIZE 32 /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. For the Alliant, we give the data registers numbers 0-7, the address registers numbers 010-017, and the floating point registers numbers 020-027. */ #define FIRST_PSEUDO_REGISTER 24 /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On the Alliant, these are a0 (argument pointer), a6 (frame pointer) and a7 (stack pointer). */ #define FIXED_REGISTERS \ {0, 0, 0, 0, 0, 0, 0, 0, \ 1, 0, 0, 0, 0, 0, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0 } /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. The Alliant calling sequence allows a function to use any register, so we include them all here. */ #define CALL_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1 } /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. On the Alliant, ordinary registers hold 32 bits worth; for the FP registers, a single register is always enough for any floating-point value. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. On the Alliant, the cpu registers can hold any mode but the FP registers can hold only floating point. */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) \ (((MODE1) == SFmode || (MODE1) == DFmode \ || (MODE1) == SCmode || (MODE1) == DCmode) \ == ((MODE2) == SFmode || (MODE2) == DFmode \ || (MODE2) == SCmode || (MODE2) == DCmode)) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* m68000 pc isn't overloaded on a register. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 15 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 14 /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. This is computed in `reload', in reload1.c. */ /* Set for now on Alliant until we find a way to make this work with their calling sequence. */ #define FRAME_POINTER_REQUIRED 1 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 8 /* Register in which static-chain is passed to a function. */ #define STATIC_CHAIN_REGNUM 10 /* Register in which address to store a structure value is passed to a function. */ #define STRUCT_VALUE_REGNUM 9 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The Alliant has three kinds of registers, so eight classes would be a complete set. One of them is not needed. */ enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS, ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \ "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS \ { \ 0, /* NO_REGS */ \ 0x00ff0000, /* FP_REGS */ \ 0x000000ff, /* DATA_REGS */ \ 0x00ff00ff, /* DATA_OR_FP_REGS */ \ 0x0000ff00, /* ADDR_REGS */ \ 0x0000ffff, /* GENERAL_REGS */ \ 0x00ffffff /* ALL_REGS */ \ } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ extern enum reg_class regno_reg_class[]; #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3]) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS ADDR_REGS /* Get reg_class from a letter such as appears in the machine description. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'a' ? ADDR_REGS : \ ((C) == 'd' ? DATA_REGS : \ ((C) == 'f' ? FP_REGS : \ NO_REGS))) /* The letters I, J, K, L and M in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. For the 68000, `I' is used for the range 1 to 8 allowed as immediate shift counts and in addq. `J' is used for the range of signed numbers that fit in 16 bits. `K' is for numbers that moveq can't handle. `L' is for range -8 to -1, range of values that can be added with subq. */ #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \ (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \ (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \ (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0) #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. On the 68000 series, use a data reg if possible when the value is a constant in the range where moveq could be used and we ensure that QImodes are reloaded into data regs. */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ ((GET_CODE (X) == CONST_INT \ && (unsigned) (INTVAL (X) + 0x80) < 0x100 \ && (CLASS) != ADDR_REGS) \ ? DATA_REGS \ : GET_MODE (X) == QImode \ ? DATA_REGS \ : (CLASS)) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ /* On the 68000, this is the size of MODE in words, except in the FP regs, where a single reg is always enough. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((CLASS) == FP_REGS ? 1 \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* Moves between fp regs and other regs are two insns. */ #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \ ? 4 : 2) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD /* The Alliant uses -fcaller-saves by default. */ #define DEFAULT_CALLER_SAVES /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET -4 /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On the 68000, sp@- in a byte insn really pushes a word. */ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) /* Offset of first parameter from the argument pointer register value. */ #define FIRST_PARM_OFFSET(FNDECL) 0 /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the Alliant we define this as SIZE and make the calling sequence (in alliant.md) pop the args. This wouldn't be necessary if we could add to the pending stack adjustment the size of the argument descriptors that are pushed after the arguments. */ #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE) /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ /* On the Alliant the return value is in FP0 if real, else D0. */ #define FUNCTION_VALUE(VALTYPE, FUNC) \ (TREE_CODE (VALTYPE) == REAL_TYPE \ ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \ : gen_rtx (REG, TYPE_MODE (VALTYPE), 0)) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ /* On the Alliant the return value is in FP0 if real, else D0. The Alliant library functions for floating-point emulation return their values both in FP0 and in D0/D1. But since not all libgcc functions return the results of these directly, we cannot assume that D0/D1 contain the values we expect on return from a libgcc function. */ #define LIBCALL_VALUE(MODE) \ (((MODE) == DFmode || (MODE) == SFmode) \ ? gen_rtx (REG, MODE, 16) \ : gen_rtx (REG, MODE, 0)) /* 1 if N is a possible register number for a function value. On the Alliant, D0 and FP0 are the only registers thus used. (No need to mention D1 when used as a pair with D0.) */ #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0) /* Define this if PCC uses the nonreentrant convention for returning structure and union values. */ #define PCC_STATIC_STRUCT_RETURN /* 1 if N is a possible register number for function argument passing. On the Alliant, no registers are used in this way. */ #define FUNCTION_ARG_REGNO_P(N) 0 /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On the Alliant, this is a single integer, which is a number of bytes of arguments scanned so far. */ #define CUMULATIVE_ARGS int /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. On the Alliant, the offset starts at 0. */ #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ ((CUM) = 0) /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ((CUM) += ((MODE) != BLKmode \ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ : (int_size_in_bytes (TYPE) + 3) & ~3)) /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ /* On the Alliant all args are pushed. */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 /* For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. */ #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 /* This macro generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. The Alliant uses caller-saves, so this macro is very simple. */ #define FUNCTION_PROLOGUE(FILE, SIZE) \ { int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \ if (frame_pointer_needed) \ { \ if (fsize < 0x8000) \ fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \ else if (TARGET_68020) \ fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \ else \ fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \ fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }} /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ fprintf (FILE, "\tjbsr __mcount_\n") /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ #define EXIT_IGNORE_STACK 1 /* This macro generates the assembly code for function exit, on machines that need it. If FUNCTION_EPILOGUE is not defined then individual return instructions are generated for each return statement. Args are same as for FUNCTION_PROLOGUE. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ #define FUNCTION_EPILOGUE(FILE, SIZE) \ { if (frame_pointer_needed) \ fprintf (FILE, "\tunlk a6\n"); \ fprintf (FILE, "\trts\n"); } /* Store in the variable DEPTH the initial difference between the frame pointer reg contents and the stack pointer reg contents, as of the start of the function body. This depends on the layout of the fixed parts of the stack frame and on how registers are saved. */ #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ { \ int regno; \ int offset = -4; \ for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \ if (regs_ever_live[regno] && ! call_used_regs[regno]) \ offset += 12; \ for (regno = 0; regno < 16; regno++) \ if (regs_ever_live[regno] && ! call_used_regs[regno]) \ offset += 4; \ (DEPTH) = offset - ((get_frame_size () + 3) & -4); \ } /* Addressing modes, and classification of registers for them. */ #define HAVE_POST_INCREMENT 1 /* #define HAVE_POST_DECREMENT 0 */ #define HAVE_PRE_DECREMENT 1 /* #define HAVE_PRE_INCREMENT 0 */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) #define REGNO_OK_FOR_BASE_P(REGNO) \ (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8) #define REGNO_OK_FOR_DATA_P(REGNO) \ ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) #define REGNO_OK_FOR_FP_P(REGNO) \ (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8) /* Now macros that check whether X is a register and also, strictly, whether it is in a specified class. These macros are specific to the 68000, and may be used only in code for printing assembler insns and in conditions for define_optimization. */ /* 1 if X is a data register. */ #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) /* 1 if X is an fp register. */ #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) /* 1 if X is an address register */ #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ || GET_CODE (X) == HIGH) /* Nonzero if the constant value X is a legitimate general operand. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ /* Alliant FP instructions don't take immediate operands, so this forces them into memory. */ #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ #ifndef REG_OK_STRICT /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0) #else /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #endif /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ #define INDIRECTABLE_1_ADDRESS_P(X) \ (CONSTANT_ADDRESS_P (X) \ || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ && REG_P (XEXP (X, 0)) \ && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ || (GET_CODE (X) == PLUS \ && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ && GET_CODE (XEXP (X, 1)) == CONST_INT \ && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; } #define GO_IF_INDEXABLE_BASE(X, ADDR) \ { if (GET_CODE (X) == LABEL_REF) goto ADDR; \ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; } #define GO_IF_INDEXING(X, ADDR) \ { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } #define GO_IF_INDEXED_ADDRESS(X, ADDR) \ { GO_IF_INDEXING (X, ADDR); \ if (GET_CODE (X) == PLUS) \ { if (GET_CODE (XEXP (X, 1)) == CONST_INT \ && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \ { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \ if (GET_CODE (XEXP (X, 0)) == CONST_INT \ && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \ { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } } #define LEGITIMATE_INDEX_REG_P(X) \ ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ || (GET_CODE (X) == SIGN_EXTEND \ && GET_CODE (XEXP (X, 0)) == REG \ && GET_MODE (XEXP (X, 0)) == HImode \ && REG_OK_FOR_INDEX_P (XEXP (X, 0)))) #define LEGITIMATE_INDEX_P(X) \ (LEGITIMATE_INDEX_REG_P (X) \ || (TARGET_68020 && GET_CODE (X) == MULT \ && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ && GET_CODE (XEXP (X, 1)) == CONST_INT \ && (INTVAL (XEXP (X, 1)) == 2 \ || INTVAL (XEXP (X, 1)) == 4 \ || INTVAL (XEXP (X, 1)) == 8))) #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ GO_IF_INDEXED_ADDRESS (X, ADDR); } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 68000, we handle X+REG by loading X into a register R and using R+REG. R will go in an address reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in an address reg. */ #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ { register int ch = (X) != (OLDX); \ if (GET_CODE (X) == PLUS) \ { if (GET_CODE (XEXP (X, 0)) == MULT) \ ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \ if (GET_CODE (XEXP (X, 1)) == MULT) \ ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \ if (ch && GET_CODE (XEXP (X, 1)) == REG \ && GET_CODE (XEXP (X, 0)) == REG) \ goto WIN; \ if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ if (GET_CODE (XEXP (X, 0)) == REG \ || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \ && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \ { register rtx temp = gen_reg_rtx (Pmode); \ register rtx val = force_operand (XEXP (X, 1), 0); \ emit_move_insn (temp, val); \ XEXP (X, 1) = temp; \ goto WIN; } \ else if (GET_CODE (XEXP (X, 1)) == REG \ || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \ && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \ { register rtx temp = gen_reg_rtx (Pmode); \ register rtx val = force_operand (XEXP (X, 0), 0); \ emit_move_insn (temp, val); \ XEXP (X, 0) = temp; \ goto WIN; }}} /* Go to LABEL if ADDR (a legitimate address expression) has an effect that depends on the machine mode it is used for. On the 68000, only predecrement and postincrement address depend thus (the amount of decrement or increment being the length of the operand). */ #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE HImode /* Define as C expression which evaluates to nonzero if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ #define CASE_VECTOR_PC_RELATIVE 1 /* Specify the tree operation to be used to convert reals to integers. */ #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR /* This is the kind of divide that is easiest to do in the general case. */ #define EASY_DIV_EXPR TRUNC_DIV_EXPR /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 4 /* Define this if zero-extension is slow (more than one real instruction). */ #define SLOW_ZERO_EXTEND /* Nonzero if access to memory by bytes is slow and undesirable. */ #define SLOW_BYTE_ACCESS 0 /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. */ #define SHIFT_COUNT_TRUNCATED 1 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */ #define STORE_FLAG_VALUE -1 /* When a prototype says `char' or `short', really pass an `int'. */ #define PROMOTE_PROTOTYPES /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode SImode /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE QImode /* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */ #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ case CONST_INT: \ /* Constant zero is super cheap due to clr instruction. */ \ if (RTX == const0_rtx) return 0; \ if ((unsigned) INTVAL (RTX) < 077) return 1; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 3; \ case CONST_DOUBLE: \ return 5; /* Check a `double' value for validity for a particular machine mode. This is defined to avoid crashes outputting certain constants. */ #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ if (OVERFLOW) \ (D) = 3.4028234663852890e+38; \ else if ((MODE) == SFmode) \ { \ if ((d) > 3.4028234663852890e+38) \ (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \ else if ((D) < -3.4028234663852890e+38) \ (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \ else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \ (OVERFLOW) = 1, (D) = 0.0; \ else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \ (OVERFLOW) = 1, (D) = 0.0; \ } /* Tell final.c how to eliminate redundant test instructions. */ /* Here we define machine-dependent flags and fields in cc_status (see `conditions.h'). */ /* On the Alliant, floating-point instructions do not modify the ordinary CC register. Only fcmp and ftest instructions modify the floating-point CC register. We should actually keep track of what both kinds of CC registers contain, but for now we only consider the most recent instruction that has set either register. */ /* Set if the cc value came from a floating point test, so a floating point conditional branch must be output. */ #define CC_IN_FP 04000 /* Store in cc_status the expressions that the condition codes will describe after execution of an instruction whose pattern is EXP. Do not alter them if the instruction would not alter the cc's. */ /* On the 68000, all the insns to store in an address register fail to set the cc's. However, in some cases these instructions can make it possibly invalid to use the saved cc's. In those cases we clear out some or all of the saved cc's so they won't be used. */ #define NOTICE_UPDATE_CC(EXP, INSN) \ { \ if (GET_CODE (EXP) == SET) \ { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \ { if (cc_status.value1 \ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \ cc_status.value1 = 0; \ if (cc_status.value2 \ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \ cc_status.value2 = 0; } \ else if (GET_CODE (SET_SRC (EXP)) == MOD \ || GET_CODE (SET_SRC (EXP)) == UMOD \ || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \ && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \ || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \ /* The swap insn produces cc's that don't correspond to the \ result. */ \ CC_STATUS_INIT; \ else if (SET_DEST (EXP) != cc0_rtx \ && (FP_REG_P (SET_SRC (EXP)) \ || GET_CODE (SET_SRC (EXP)) == FIX \ || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \ || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \ { CC_STATUS_INIT; } \ /* A pair of move insns doesn't produce a useful overall cc. */ \ else if (!FP_REG_P (SET_DEST (EXP)) \ && !FP_REG_P (SET_SRC (EXP)) \ && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \ && (GET_CODE (SET_SRC (EXP)) == REG \ || GET_CODE (SET_SRC (EXP)) == MEM \ || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\ { CC_STATUS_INIT; } \ else if (GET_CODE (SET_SRC (EXP)) == CALL) \ { CC_STATUS_INIT; } \ else if (XEXP (EXP, 0) != pc_rtx) \ { cc_status.flags = 0; \ cc_status.value1 = XEXP (EXP, 0); \ cc_status.value2 = XEXP (EXP, 1); } } \ else if (GET_CODE (EXP) == PARALLEL \ && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ { \ if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \ CC_STATUS_INIT; \ else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \ { cc_status.flags = 0; \ cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \ cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \ else CC_STATUS_INIT; \ if (cc_status.value2 != 0 \ && ADDRESS_REG_P (cc_status.value2) \ && GET_MODE (cc_status.value2) == QImode) \ CC_STATUS_INIT; \ if (cc_status.value2 != 0) \ switch (GET_CODE (cc_status.value2)) \ { case PLUS: case MINUS: case MULT: \ case DIV: case UDIV: case MOD: case UMOD: case NEG: \ case ASHIFT: case ASHIFTRT: case LSHIFTRT: \ case ROTATE: case ROTATERT: \ if (GET_MODE (cc_status.value2) != VOIDmode) \ cc_status.flags |= CC_NO_OVERFLOW; \ break; \ case ZERO_EXTEND: \ /* (SET r1 (ZERO_EXTEND r2)) on this machine ends with a move insn moving r2 in r2's mode. Thus, the cc's are set for r2. This can set N bit spuriously. */ \ cc_status.flags |= CC_NOT_NEGATIVE; } \ if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ && cc_status.value2 \ && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ cc_status.value2 = 0; \ if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \ || (cc_status.value2 && FP_REG_P (cc_status.value2))) \ cc_status.flags = CC_IN_FP; } #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ { if (cc_prev_status.flags & CC_IN_FP) \ return FLOAT; \ if (cc_prev_status.flags & CC_NO_OVERFLOW) \ return NO_OV; \ return NORMAL; } /* Control the assembler format that we output. */ /* Output at beginning of assembler file. */ #define ASM_FILE_START(FILE) \ fprintf (FILE, "#NO_APP\n"); /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "#APP\n" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "#NO_APP\n" /* Output before read-only data. */ #define TEXT_SECTION_ASM_OP ".text" /* Output before writable data. */ #define DATA_SECTION_ASM_OP ".data" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" } /* How to renumber registers for dbx and gdb. On the Sun-3, the floating point registers have numbers 18 to 25, not 16 to 23 as they do in the compiler. */ /* (On the Alliant, dbx isn't working yet at all. */ #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2) /* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */ #define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) /* This is how to output a command to make the user-level label named NAME defined for reference from other files. */ #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) /* The prefix to add to user-visible assembler symbols. */ #define USER_LABEL_PREFIX "_" /* This is how to output an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d:\n", PREFIX, NUM) /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*%s%d", PREFIX, NUM) /* This is how to output an assembler line defining a `double' constant. */ #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ do { union { double d; long v[2];} tem; \ tem.d = (VALUE); \ fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \ } while (0) /* This is how to output an assembler line defining a `float' constant. */ #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ do { union { float f; long l;} tem; \ tem.f = (VALUE); \ fprintf (FILE, "\t.long 0x%x\n", tem.l); \ } while (0) /* This is how to output an assembler line defining an `int' constant. */ #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\t.long "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* Likewise for `char' and `short' constants. */ #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\t.word "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\t.byte "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \ do { int i; unsigned char *pp = (unsigned char *) (PTR); \ fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \ for (i = 1; i < (SIZE); ++i, ++pp) { \ if ((i % 8) == 0) \ fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \ else \ fprintf((FILE), ",%d", (unsigned int) *pp); } \ fprintf ((FILE), "\n"); } while (0) /* This is how to output an assembler line for a numeric constant byte. */ #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) /* This is how to output an insn to push a register on the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO]) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO]) /* This is how to output an element of a case-vector that is absolute. (The 68000 does not use such vectors, but we must define this macro anyway.) */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t.long L%d\n", VALUE) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) == 1) \ fprintf (FILE, "\t.even\n"); \ else if ((LOG) != 0) \ fprintf (FILE, "\t.align %dn", (LOG)); #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t. = . + %u\n", (SIZE)) /* This says how to output an assembler line to define a global common symbol. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.comm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED))) /* This says how to output an assembler line to define a local common symbol. */ #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.lcomm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED))) /* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) /* Define the parentheses used to group arithmetic operations in assembler code. */ #define ASM_OPEN_PAREN "(" #define ASM_CLOSE_PAREN ")" /* Define results of standard character escape sequences. */ #define TARGET_BELL 007 #define TARGET_BS 010 #define TARGET_TAB 011 #define TARGET_NEWLINE 012 #define TARGET_VT 013 #define TARGET_FF 014 #define TARGET_CR 015 /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. On the Alliant, we use several CODE characters: '.' for dot needed in Motorola-style opcode names. '-' for an operand pushing on the stack: sp@-, -(sp) or -(%sp) depending on the style of syntax. '+' for an operand pushing on the stack: sp@+, (sp)+ or (%sp)+ depending on the style of syntax. '@' for a reference to the top word on the stack: sp@, (sp) or (%sp) depending on the style of syntax. '#' for an immediate operand prefix (# in MIT and Motorola syntax but & in SGS syntax). '!' for the cc register (used in an `and to cc' insn). 'b' for byte insn (no effect, on the Sun; this is for the ISI). 'd' to force memory addressing to be absolute, not relative. 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex), or print pair of registers as rx:ry. */ #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \ || (CODE) == '+' || (CODE) == '@' || (CODE) == '!') #define PRINT_OPERAND(FILE, X, CODE) \ { int i; \ if (CODE == '.') ; \ else if (CODE == '#') fprintf (FILE, "#"); \ else if (CODE == '-') fprintf (FILE, "sp@-"); \ else if (CODE == '+') fprintf (FILE, "sp@+"); \ else if (CODE == '@') fprintf (FILE, "sp@"); \ else if (CODE == '!') fprintf (FILE, "cc"); \ else if ((X) == 0 ) ; \ else if (GET_CODE (X) == REG) \ { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \ fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \ else \ fprintf (FILE, "%s", reg_names[REGNO (X)]); \ } \ else if (GET_CODE (X) == MEM) \ { \ output_address (XEXP (X, 0)); \ if (CODE == 'd' && ! TARGET_68020 \ && CONSTANT_ADDRESS_P (XEXP (X, 0)) \ && !(GET_CODE (XEXP (X, 0)) == CONST_INT \ && INTVAL (XEXP (X, 0)) < 0x8000 \ && INTVAL (XEXP (X, 0)) >= -0x8000)) \ fprintf (FILE, ":l"); \ } \ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ { union { double d; int i[2]; } u; \ union { float f; int i; } u1; \ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ u1.f = u.d; \ if (CODE == 'f') \ fprintf (FILE, "#0r%.9g", u1.f); \ else \ fprintf (FILE, "#0x%x", u1.i); } \ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \ { union { double d; int i[2]; } u; \ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ fprintf (FILE, "#0r%.20g", u.d); } \ else { putc ('#', FILE); output_addr_const (FILE, X); }} /* Note that this contains a kludge that knows that the only reason we have an address (plus (label_ref...) (reg...)) is in the insn before a tablejump, and we know that m68k.md generates a label LInnn: on such an insn. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { register rtx reg1, reg2, breg, ireg; \ register rtx addr = ADDR; \ static char *sz = ".BW.L...D"; \ rtx offset; \ switch (GET_CODE (addr)) \ { \ case REG: \ fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \ break; \ case PRE_DEC: \ fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \ break; \ case POST_INC: \ fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \ break; \ case PLUS: \ reg1 = 0; reg2 = 0; \ ireg = 0; breg = 0; \ offset = 0; \ if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \ { \ offset = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \ { \ offset = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ if (GET_CODE (addr) != PLUS) ; \ else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ else if (GET_CODE (XEXP (addr, 0)) == MULT) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == MULT) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ else if (GET_CODE (XEXP (addr, 0)) == REG) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == REG) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \ || GET_CODE (addr) == SIGN_EXTEND) \ { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \ /* for OLD_INDEXING \ else if (GET_CODE (addr) == PLUS) \ { \ if (GET_CODE (XEXP (addr, 0)) == REG) \ { \ reg2 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == REG) \ { \ reg2 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ } \ */ \ if (offset != 0) { if (addr != 0) abort (); addr = offset; } \ if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \ || GET_CODE (reg1) == MULT)) \ || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \ { breg = reg2; ireg = reg1; } \ else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \ { breg = reg1; ireg = reg2; } \ if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \ { int scale = 1; \ if (GET_CODE (ireg) == MULT) \ { scale = INTVAL (XEXP (ireg, 1)); \ ireg = XEXP (ireg, 0); } \ if (GET_CODE (ireg) == SIGN_EXTEND) \ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (XEXP (ireg, 0))]); \ else \ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (ireg)]); \ fprintf (FILE, ":%c", sz[scale]); \ putc (']', FILE); \ break; } \ if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \ { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (breg)]); \ break; } \ if (ireg != 0 || breg != 0) \ { int scale = 1; \ if (breg == 0) \ abort (); \ if (addr && GET_CODE (addr) == LABEL_REF) abort (); \ fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \ if (addr != 0) { \ putc( '(', FILE ); \ output_addr_const (FILE, addr); \ if (ireg != 0) { \ if (GET_CODE(addr) == CONST_INT) { \ int size_of = 1, val = INTVAL(addr); \ if (val < -0x8000 || val >= 0x8000) \ size_of = 4; \ else if (val < -0x80 || val >= 0x80) \ size_of = 2; \ fprintf(FILE, ":%c", sz[size_of]); \ } \ else \ fprintf(FILE, ":L"); } \ putc( ')', FILE ); } \ if (ireg != 0) { \ putc ('[', FILE); \ if (ireg != 0 && GET_CODE (ireg) == MULT) \ { scale = INTVAL (XEXP (ireg, 1)); \ ireg = XEXP (ireg, 0); } \ if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \ fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \ else if (ireg != 0) \ fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \ fprintf (FILE, ":%c", sz[scale]); \ putc (']', FILE); \ } \ break; \ } \ else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \ { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (reg1)]); \ break; } \ default: \ if (GET_CODE (addr) == CONST_INT \ && INTVAL (addr) < 0x8000 \ && INTVAL (addr) >= -0x8000) \ fprintf (FILE, "%d:W", INTVAL (addr)); \ else \ output_addr_const (FILE, addr); \ }} /* Local variables: version-control: t End: */