/* Definitions of target machine for GNU compiler, for Sun SPARC. Copyright (C) 1987, 88, 89, 92, 94-98, 1999 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com). 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, at Cygnus Support. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Note that some other tm.h files include this one and then override whatever definitions are necessary. */ /* Specify this in a cover file to provide bi-architecture (32/64) support. */ /* #define SPARC_BI_ARCH */ /* Macro used later in this file to determine default architecture. */ #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0) /* TARGET_ARCH{32,64} are the main macros to decide which of the two architectures to compile for. We allow targets to choose compile time or runtime selection. */ #ifdef SPARC_BI_ARCH #ifdef IN_LIBGCC2 #if defined(__sparcv9) || defined(__sparcv_v9) || defined(__arch64__) #define TARGET_ARCH32 0 #else #define TARGET_ARCH32 1 #endif /* V9 sparc */ #else #define TARGET_ARCH32 (! TARGET_64BIT) #endif /* IN_LIBGCC2 */ #else #define TARGET_ARCH32 (DEFAULT_ARCH32_P) #endif /* SPARC_BI_ARCH */ #define TARGET_ARCH64 (! TARGET_ARCH32) /* Code model selection. -mcmodel is used to select the v9 code model. Different code models aren't supported for v8 code. TARGET_CM_32: 32 bit address space, top 32 bits = 0, pointers are 32 bits. Note that this isn't intended to imply a v8 abi. TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0, avoid generating %uhi and %ulo terms, pointers are 64 bits. TARGET_CM_MEDMID: 64 bit address space. The executable must be in the low 16 TB of memory. This corresponds to the low 44 bits, and the %[hml]44 relocs are used. The text segment has a maximum size of 31 bits. TARGET_CM_MEDANY: 64 bit address space. The text and data segments have a maximum size of 31 bits and may be located anywhere. The maximum offset from any instruction to the label _GLOBAL_OFFSET_TABLE_ is 31 bits. TARGET_CM_EMBMEDANY: 64 bit address space. The text and data segments have a maximum size of 31 bits and may be located anywhere. Register %g4 contains the start address of the data segment. */ enum cmodel { CM_32, CM_MEDLOW, CM_MEDMID, CM_MEDANY, CM_EMBMEDANY }; /* Value of -mcmodel specified by user. */ extern const char *sparc_cmodel_string; /* One of CM_FOO. */ extern enum cmodel sparc_cmodel; /* V9 code model selection. */ #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW) #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID) #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY) #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY) #define SPARC_DEFAULT_CMODEL CM_MEDLOW /* This is call-clobbered in the normal ABI, but is reserved in the home grown (aka upward compatible) embedded ABI. */ #define EMBMEDANY_BASE_REG "%g4" /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile, and specified by the user via --with-cpu=foo. This specifies the cpu implementation, not the architecture size. */ /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit capable cpu's. */ #define TARGET_CPU_sparc 0 #define TARGET_CPU_v7 0 /* alias for previous */ #define TARGET_CPU_sparclet 1 #define TARGET_CPU_sparclite 2 #define TARGET_CPU_v8 3 /* generic v8 implementation */ #define TARGET_CPU_supersparc 4 #define TARGET_CPU_hypersparc 5 #define TARGET_CPU_sparc86x 6 #define TARGET_CPU_sparclite86x 6 #define TARGET_CPU_v9 7 /* generic v9 implementation */ #define TARGET_CPU_sparcv9 7 /* alias */ #define TARGET_CPU_sparc64 7 /* alias */ #define TARGET_CPU_ultrasparc 8 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \ || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc #define CPP_CPU32_DEFAULT_SPEC "" #define ASM_CPU32_DEFAULT_SPEC "" #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 /* ??? What does Sun's CC pass? */ #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" /* ??? It's not clear how other assemblers will handle this, so by default use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case is handled in sol2.h. */ #define ASM_CPU64_DEFAULT_SPEC "-Av9" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" #define ASM_CPU64_DEFAULT_SPEC "-Av9a" #endif #else #define CPP_CPU64_DEFAULT_SPEC "" #define ASM_CPU64_DEFAULT_SPEC "" #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \ || TARGET_CPU_DEFAULT == TARGET_CPU_v8 #define CPP_CPU32_DEFAULT_SPEC "" #define ASM_CPU32_DEFAULT_SPEC "" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__" #define ASM_CPU32_DEFAULT_SPEC "-Asparclet" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__" #define ASM_CPU32_DEFAULT_SPEC "-Asparclite" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__" #define ASM_CPU32_DEFAULT_SPEC "" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__" #define ASM_CPU32_DEFAULT_SPEC "" #endif #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__ -D__sparc_v8__" #define ASM_CPU32_DEFAULT_SPEC "-Av8" #endif #endif #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC) Unrecognized value in TARGET_CPU_DEFAULT. #endif #ifdef SPARC_BI_ARCH #define CPP_CPU_DEFAULT_SPEC \ (DEFAULT_ARCH32_P ? "\ %{m64:" CPP_CPU64_DEFAULT_SPEC "} \ %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \ " : "\ %{m32:" CPP_CPU32_DEFAULT_SPEC "} \ %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \ ") #define ASM_CPU_DEFAULT_SPEC \ (DEFAULT_ARCH32_P ? "\ %{m64:" ASM_CPU64_DEFAULT_SPEC "} \ %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \ " : "\ %{m32:" ASM_CPU32_DEFAULT_SPEC "} \ %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \ ") #else /* !SPARC_BI_ARCH */ #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC) #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC) #endif /* !SPARC_BI_ARCH */ /* Names to predefine in the preprocessor for this target machine. ??? It would be nice to not include any subtarget specific values here, however there's no way to portably provide subtarget values to CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into foo, __foo and __foo__. */ #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem(unix) -Asystem(bsd)" /* Define macros to distinguish architectures. */ /* Common CPP definitions used by CPP_SPEC amongst the various targets for handling -mcpu=xxx switches. */ #define CPP_CPU_SPEC "\ %{mcypress:} \ %{msparclite:-D__sparclite__} \ %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \ %{mv8:-D__sparc_v8__} \ %{msupersparc:-D__supersparc__ -D__sparc_v8__} \ %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \ %{mcpu=sparclite:-D__sparclite__} \ %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \ %{mcpu=v8:-D__sparc_v8__} \ %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \ %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \ %{mcpu=sparclite86x:-D__sparclite86x__ -D__sparc_v8__} \ %{mcpu=v9:-D__sparc_v9__} \ %{mcpu=ultrasparc:-D__sparc_v9__} \ %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \ " /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses the right varags.h file when bootstrapping. */ /* ??? It's not clear what value we want to use for -Acpu/machine for sparc64 in 32 bit environments, so for now we only use `sparc64' in 64 bit environments. */ #ifdef SPARC_BI_ARCH #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \ -D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)" #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \ -D__arch64__ -Acpu(sparc64) -Amachine(sparc64)" #else #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)" #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu(sparc64) -Amachine(sparc64)" #endif #define CPP_ARCH_DEFAULT_SPEC \ (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC) #define CPP_ARCH_SPEC "\ %{m32:%(cpp_arch32)} \ %{m64:%(cpp_arch64)} \ %{!m32:%{!m64:%(cpp_arch_default)}} \ " /* Macros to distinguish endianness. */ #define CPP_ENDIAN_SPEC "\ %{mlittle-endian:-D__LITTLE_ENDIAN__} \ %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}" /* Macros to distinguish the particular subtarget. */ #define CPP_SUBTARGET_SPEC "" #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)" /* Prevent error on `-sun4' and `-target sun4' options. */ /* This used to translate -dalign to -malign, but that is no good because it can't turn off the usual meaning of making debugging dumps. */ /* Translate old style -m into new style -mcpu=. ??? Delete support for -m for 2.9. */ #define CC1_SPEC "\ %{sun4:} %{target:} \ %{mcypress:-mcpu=cypress} \ %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \ %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \ " /* Override in target specific files. */ #define ASM_CPU_SPEC "\ %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \ %{msparclite:-Asparclite} \ %{mf930:-Asparclite} %{mf934:-Asparclite} \ %{mcpu=sparclite:-Asparclite} \ %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \ %{mv8plus:-Av8plus} \ %{mcpu=v9:-Av9} \ %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \ %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \ " /* Word size selection, among other things. This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */ #define ASM_ARCH32_SPEC "-32" #define ASM_ARCH64_SPEC "-64" #define ASM_ARCH_DEFAULT_SPEC \ (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC) #define ASM_ARCH_SPEC "\ %{m32:%(asm_arch32)} \ %{m64:%(asm_arch64)} \ %{!m32:%{!m64:%(asm_arch_default)}} \ " /* Special flags to the Sun-4 assembler when using pipe for input. */ #define ASM_SPEC "\ %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \ %(asm_cpu) \ " #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}" /* Provide required defaults for linker -e and -d switches. */ #define LINK_SPEC \ "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \ %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}" /* This macro defines names of additional specifications to put in the specs that can be used in various specifications like CC1_SPEC. Its definition is an initializer with a subgrouping for each command option. Each subgrouping contains a string constant, that defines the specification name, and a string constant that used by the GNU CC driver program. Do not define this macro if it does not need to do anything. */ #define EXTRA_SPECS \ { "cpp_cpu", CPP_CPU_SPEC }, \ { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ { "cpp_arch32", CPP_ARCH32_SPEC }, \ { "cpp_arch64", CPP_ARCH64_SPEC }, \ { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\ { "cpp_arch", CPP_ARCH_SPEC }, \ { "cpp_endian", CPP_ENDIAN_SPEC }, \ { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \ { "asm_cpu", ASM_CPU_SPEC }, \ { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \ { "asm_arch32", ASM_ARCH32_SPEC }, \ { "asm_arch64", ASM_ARCH64_SPEC }, \ { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\ { "asm_arch", ASM_ARCH_SPEC }, \ SUBTARGET_EXTRA_SPECS #define SUBTARGET_EXTRA_SPECS #ifdef SPARC_BI_ARCH #define NO_BUILTIN_PTRDIFF_TYPE #define NO_BUILTIN_SIZE_TYPE #endif #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int") #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int") /* ??? This should be 32 bits for v9 but what can we do? */ #define WCHAR_TYPE "short unsigned int" #define WCHAR_TYPE_SIZE 16 #define MAX_WCHAR_TYPE_SIZE 16 /* Show we can debug even without a frame pointer. */ #define CAN_DEBUG_WITHOUT_FP /* To make profiling work with -f{pic,PIC}, we need to emit the profiling code into the rtl. Also, if we are profiling, we cannot eliminate the frame pointer (because the return address will get smashed). */ void sparc_override_options (); #define OVERRIDE_OPTIONS \ do { \ if (profile_flag || profile_block_flag || profile_arc_flag) \ { \ if (flag_pic) \ { \ const char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\ warning ("%s and profiling conflict: disabling %s", \ pic_string, pic_string); \ flag_pic = 0; \ } \ flag_omit_frame_pointer = 0; \ } \ sparc_override_options (); \ SUBTARGET_OVERRIDE_OPTIONS; \ } while (0) /* This is meant to be redefined in the host dependent files. */ #define SUBTARGET_OVERRIDE_OPTIONS /* These compiler options take an argument. We ignore -target for now. */ #define WORD_SWITCH_TAKES_ARG(STR) \ (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \ || !strcmp (STR, "target") || !strcmp (STR, "assert")) /* Print subsidiary information on the compiler version in use. */ #define TARGET_VERSION fprintf (stderr, " (sparc)"); /* Generate DBX debugging information. */ #define DBX_DEBUGGING_INFO /* Run-time compilation parameters selecting different hardware subsets. */ extern int target_flags; /* Nonzero if we should generate code to use the fpu. */ #define MASK_FPU 1 #define TARGET_FPU (target_flags & MASK_FPU) /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we use fast return insns, but lose some generality. */ #define MASK_EPILOGUE 2 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE) /* Nonzero if we should assume that double pointers might be unaligned. This can happen when linking gcc compiled code with other compilers, because the ABI only guarantees 4 byte alignment. */ #define MASK_UNALIGNED_DOUBLES 4 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES) /* Nonzero means that we should generate code for a v8 sparc. */ #define MASK_V8 0x8 #define TARGET_V8 (target_flags & MASK_V8) /* Nonzero means that we should generate code for a sparclite. This enables the sparclite specific instructions, but does not affect whether FPU instructions are emitted. */ #define MASK_SPARCLITE 0x10 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE) /* Nonzero if we're compiling for the sparclet. */ #define MASK_SPARCLET 0x20 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET) /* Nonzero if we're compiling for v9 sparc. Note that v9's can run in 32 bit mode so this doesn't necessarily mean the word size is 64. */ #define MASK_V9 0x40 #define TARGET_V9 (target_flags & MASK_V9) /* Non-zero to generate code that uses the instructions deprecated in the v9 architecture. This option only applies to v9 systems. */ /* ??? This isn't user selectable yet. It's used to enable such insns on 32 bit v9 systems and for the moment they're permanently disabled on 64 bit v9 systems. */ #define MASK_DEPRECATED_V8_INSNS 0x80 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS) /* Mask of all CPU selection flags. */ #define MASK_ISA \ (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS) /* Non-zero means don't pass `-assert pure-text' to the linker. */ #define MASK_IMPURE_TEXT 0x100 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT) /* Nonzero means that we should generate code using a flat register window model, i.e. no save/restore instructions are generated, which is compatible with normal sparc code. The frame pointer is %i7 instead of %fp. */ #define MASK_FLAT 0x200 #define TARGET_FLAT (target_flags & MASK_FLAT) /* Nonzero means use the registers that the Sparc ABI reserves for application software. This must be the default to coincide with the setting in FIXED_REGISTERS. */ #define MASK_APP_REGS 0x400 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS) /* Option to select how quad word floating point is implemented. When TARGET_HARD_QUAD is true, we use the hardware quad instructions. Otherwise, we use the SPARC ABI quad library functions. */ #define MASK_HARD_QUAD 0x800 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD) /* Non-zero on little-endian machines. */ /* ??? Little endian support currently only exists for sparclet-aout and sparc64-elf configurations. May eventually want to expand the support to all targets, but for now it's kept local to only those two. */ #define MASK_LITTLE_ENDIAN 0x1000 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN) /* 0x2000, 0x4000 are unused */ /* Nonzero if pointers are 64 bits. At the moment it must follow architecture size flag. */ #define MASK_PTR64 0x8000 #define TARGET_PTR64 (target_flags & MASK_PTR64) /* Nonzero if generating code to run in a 64 bit environment. This is intended to only be used by TARGET_ARCH{32,64} as they are the mechanism used to control compile time or run time selection. */ #define MASK_64BIT 0x10000 #define TARGET_64BIT (target_flags & MASK_64BIT) /* 0x20000,0x40000 unused */ /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by adding 2047 to %sp. This option is for v9 only and is the default. */ #define MASK_STACK_BIAS 0x80000 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS) /* Non-zero means %g0 is a normal register. We still clobber it as necessary, but we can't rely on it always having a zero value. We don't bother to support this in true 64 bit mode. */ #define MASK_LIVE_G0 0x100000 #define TARGET_LIVE_G0 (target_flags & MASK_LIVE_G0) /* Non-zero means the cpu has broken `save' and `restore' insns, only the trivial versions work (save %g0,%g0,%g0; restore %g0,%g0,%g0). We assume the environment will properly handle or otherwise avoid trouble associated with an interrupt occurring after the `save' or trap occurring during it. */ #define MASK_BROKEN_SAVERESTORE 0x200000 #define TARGET_BROKEN_SAVERESTORE (target_flags & MASK_BROKEN_SAVERESTORE) /* Non-zero means -m{,no-}fpu was passed on the command line. */ #define MASK_FPU_SET 0x400000 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET) /* Use the UltraSPARC Visual Instruction Set extensions. */ #define MASK_VIS 0x1000000 #define TARGET_VIS (target_flags & MASK_VIS) /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of the current out and global registers. Linux saves the high bits on context switches but not signals. */ #define MASK_V8PLUS 0x2000000 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS) /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y. TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y to get high 32 bits. False in V8+ or V9 because multiply stores a 64 bit result in a register. */ #define TARGET_HARD_MUL32 \ ((TARGET_V8 || TARGET_SPARCLITE \ || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \ && ! TARGET_V8PLUS) #define TARGET_HARD_MUL \ (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \ || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS) /* Macro to define tables used to set the flags. This is a list in braces of pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits to set or minus the bits to clear. An empty string NAME is used to identify the default VALUE. */ #define TARGET_SWITCHES \ { {"fpu", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \ {"no-fpu", -MASK_FPU, "Do not use hardware fp" }, \ {"no-fpu", MASK_FPU_SET, "Do not use hardware fp" }, \ {"hard-float", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \ {"soft-float", -MASK_FPU, "Do not use hardware fp" }, \ {"soft-float", MASK_FPU_SET, "Do not use hardware fp" }, \ {"epilogue", MASK_EPILOGUE, "Use FUNCTION_EPILOGUE" }, \ {"no-epilogue", -MASK_EPILOGUE, "Do not use FUNCTION_EPILOGUE" }, \ {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, "Assume possible double misalignment" },\ {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, "Assume all doubles are aligned" }, \ {"impure-text", MASK_IMPURE_TEXT, "Pass -assert pure-text to linker" }, \ {"no-impure-text", -MASK_IMPURE_TEXT, "Do not pass -assert pure-text to linker" }, \ {"flat", MASK_FLAT, "Use flat register window model" }, \ {"no-flat", -MASK_FLAT, "Do not use flat register window model" }, \ {"app-regs", MASK_APP_REGS, "Use ABI reserved registers" }, \ {"no-app-regs", -MASK_APP_REGS, "Do not use ABI reserved registers" }, \ {"hard-quad-float", MASK_HARD_QUAD, "Use hardware quad fp instructions" }, \ {"soft-quad-float", -MASK_HARD_QUAD, "Do not use hardware quad fp instructions" }, \ {"v8plus", MASK_V8PLUS, "Compile for v8plus ABI" }, \ {"no-v8plus", -MASK_V8PLUS, "Do not compile for v8plus ABI" }, \ {"vis", MASK_VIS, "Utilize Visual Instruction Set" }, \ {"no-vis", -MASK_VIS, "Do not utilize Visual Instruction Set" }, \ /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \ {"cypress", 0, "Optimize for Cypress processors" }, \ {"sparclite", 0, "Optimize for SparcLite processors" }, \ {"f930", 0, "Optimize for F930 processors" }, \ {"f934", 0, "Optimize for F934 processors" }, \ {"v8", 0, "Use V8 Sparc ISA" }, \ {"supersparc", 0, "Optimize for SuperSparc processors" }, \ /* End of deprecated options. */ \ {"ptr64", MASK_PTR64, "Pointers are 64-bit" }, \ {"ptr32", -MASK_PTR64, "Pointers are 32-bit" }, \ {"32", -MASK_64BIT, "Use 32-bit ABI" }, \ {"64", MASK_64BIT, "Use 64-bit ABI" }, \ {"stack-bias", MASK_STACK_BIAS, "Use stack bias" }, \ {"no-stack-bias", -MASK_STACK_BIAS, "Do not use stack bias" }, \ SUBTARGET_SWITCHES \ { "", TARGET_DEFAULT, ""}} /* MASK_APP_REGS must always be the default because that's what FIXED_REGISTERS is set to and -ffixed- is processed before CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */ #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU) /* This is meant to be redefined in target specific files. */ #define SUBTARGET_SWITCHES /* Processor type. These must match the values for the cpu attribute in sparc.md. */ enum processor_type { PROCESSOR_V7, PROCESSOR_CYPRESS, PROCESSOR_V8, PROCESSOR_SUPERSPARC, PROCESSOR_SPARCLITE, PROCESSOR_F930, PROCESSOR_F934, PROCESSOR_HYPERSPARC, PROCESSOR_SPARCLITE86X, PROCESSOR_SPARCLET, PROCESSOR_TSC701, PROCESSOR_V9, PROCESSOR_ULTRASPARC }; /* This is set from -m{cpu,tune}=xxx. */ extern enum processor_type sparc_cpu; /* Recast the cpu class to be the cpu attribute. Every file includes us, but not every file includes insn-attr.h. */ #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu) /* This macro is similar to `TARGET_SWITCHES' but defines names of command options that have values. Its definition is an initializer with a subgrouping for each command option. Each subgrouping contains a string constant, that defines the fixed part of the option name, and the address of a variable. The variable, type `char *', is set to the variable part of the given option if the fixed part matches. The actual option name is made by appending `-m' to the specified name. Here is an example which defines `-mshort-data-NUMBER'. If the given option is `-mshort-data-512', the variable `m88k_short_data' will be set to the string `"512"'. extern char *m88k_short_data; #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */ #define TARGET_OPTIONS \ { \ { "cpu=", &sparc_select[1].string, "Use features of and schedule code for given CPU" }, \ { "tune=", &sparc_select[2].string, "Schedule code for given CPU" }, \ { "cmodel=", &sparc_cmodel_string, "Use given Sparc code model" }, \ { "align-loops=", &sparc_align_loops_string, "Loop code aligned to this power of 2" }, \ { "align-jumps=", &sparc_align_jumps_string, "Jump targets are aligned to this power of 2" }, \ { "align-functions=", &sparc_align_funcs_string, "Function starts are aligned to this power of 2" }, \ SUBTARGET_OPTIONS \ } /* This is meant to be redefined in target specific files. */ #define SUBTARGET_OPTIONS /* sparc_select[0] is reserved for the default cpu. */ struct sparc_cpu_select { const char *string; const char *name; int set_tune_p; int set_arch_p; }; extern struct sparc_cpu_select sparc_select[]; /* Variables to record values the user passes. */ extern const char *sparc_align_loops_string; extern const char *sparc_align_jumps_string; extern const char *sparc_align_funcs_string; /* Parsed values as a power of two. */ extern int sparc_align_loops; extern int sparc_align_jumps; extern int sparc_align_funcs; #define DEFAULT_SPARC_ALIGN_FUNCS \ (sparc_cpu == PROCESSOR_ULTRASPARC ? 5 : 2) /* target machine storage layout */ /* Define for cross-compilation to a sparc target with no TFmode from a host with a different float format (e.g. VAX). */ #define REAL_ARITHMETIC /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is the lowest numbered. */ #define WORDS_BIG_ENDIAN 1 /* Define this to set the endianness to use in libgcc2.c, which can not depend on target_flags. */ #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__) #define LIBGCC2_WORDS_BIG_ENDIAN 0 #else #define LIBGCC2_WORDS_BIG_ENDIAN 1 #endif /* number of bits in an addressable storage unit */ #define BITS_PER_UNIT 8 /* Width in bits of a "word", which is the contents of a machine register. Note that this is not necessarily the width of data type `int'; if using 16-bit ints on a 68000, this would still be 32. But on a machine with 16-bit registers, this would be 16. */ #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32) #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4) #define MIN_UNITS_PER_WORD 4 /* Now define the sizes of the C data types. */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE 32 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32) #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #if defined (SPARC_BI_ARCH) #define MAX_LONG_TYPE_SIZE 64 #endif #if 0 /* ??? This does not work in SunOS 4.x, so it is not enabled here. Instead, it is enabled in sol2.h, because it does work under Solaris. */ /* Define for support of TFmode long double and REAL_ARITHMETIC. Sparc ABI says that long double is 4 words. */ #define LONG_DOUBLE_TYPE_SIZE 128 #endif /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32) /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and which has the specified mode and signedness is to be stored in a register. This macro is only called when TYPE is a scalar type. */ #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ if (TARGET_ARCH64 \ && GET_MODE_CLASS (MODE) == MODE_INT \ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ { \ (MODE) = DImode; \ } /* Define this macro if the promotion described by PROMOTE_MODE should also be done for outgoing function arguments. */ /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test for this value. */ #define PROMOTE_FUNCTION_ARGS /* Define this macro if the promotion described by PROMOTE_MODE should also be done for the return value of functions. If this macro is defined, FUNCTION_VALUE must perform the same promotions done by PROMOTE_MODE. */ /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test for this value. */ #define PROMOTE_FUNCTION_RETURN /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32) /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64) /* ALIGN FRAMES on double word boundaries */ #define SPARC_STACK_ALIGN(LOC) \ (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7)) /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY (1 << (sparc_align_funcs + 3)) /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32) /* Every structure's size must be a multiple of this. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* A bitfield declared as `int' forces `int' alignment for the struct. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64) /* The best alignment to use in cases where we have a choice. */ #define FASTEST_ALIGNMENT 64 /* Make strings word-aligned so strcpy from constants will be faster. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ((TREE_CODE (EXP) == STRING_CST \ && (ALIGN) < FASTEST_ALIGNMENT) \ ? FASTEST_ALIGNMENT : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) /* Set this nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Things that must be doubleword aligned cannot go in the text section, because the linker fails to align the text section enough! Put them in the data section. This macro is only used in this file. */ #define MAX_TEXT_ALIGN 32 /* This forces all variables and constants to the data section when PIC. This is because the SunOS 4 shared library scheme thinks everything in text is a function, and patches the address to point to a loader stub. */ /* This is defined to zero for every system which doesn't use the a.out object file format. */ #ifndef SUNOS4_SHARED_LIBRARIES #define SUNOS4_SHARED_LIBRARIES 0 #endif /* This is defined differently for v9 in a cover file. */ #define SELECT_SECTION(T,RELOC) \ { \ if (TREE_CODE (T) == VAR_DECL) \ { \ if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \ && DECL_INITIAL (T) \ && (DECL_INITIAL (T) == error_mark_node \ || TREE_CONSTANT (DECL_INITIAL (T))) \ && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \ && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \ text_section (); \ else \ data_section (); \ } \ else if (TREE_CODE (T) == CONSTRUCTOR) \ { \ if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \ data_section (); \ } \ else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \ { \ if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \ || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \ || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \ data_section (); \ else \ text_section (); \ } \ } /* Use text section for a constant unless we need more alignment than that offers. */ /* This is defined differently for v9 in a cover file. */ #define SELECT_RTX_SECTION(MODE, X) \ { \ if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \ && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \ text_section (); \ else \ data_section (); \ } /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. SPARC has 32 integer registers and 32 floating point registers. 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not accessible. We still account for them to simplify register computations (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so 32+32+32+4 == 100. Register 100 is used as the integer condition code register. */ #define FIRST_PSEUDO_REGISTER 101 #define SPARC_FIRST_FP_REG 32 /* Additional V9 fp regs. */ #define SPARC_FIRST_V9_FP_REG 64 #define SPARC_LAST_V9_FP_REG 95 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */ #define SPARC_FIRST_V9_FCC_REG 96 #define SPARC_LAST_V9_FCC_REG 99 /* V8 fcc reg. */ #define SPARC_FCC_REG 96 /* Integer CC reg. We don't distinguish %icc from %xcc. */ #define SPARC_ICC_REG 100 /* Nonzero if REGNO is an fp reg. */ #define SPARC_FP_REG_P(REGNO) \ ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG) /* Argument passing regs. */ #define SPARC_OUTGOING_INT_ARG_FIRST 8 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24) #define SPARC_FP_ARG_FIRST 32 /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On non-v9 systems: g1 is free to use as temporary. g2-g4 are reserved for applications. Gcc normally uses them as temporaries, but this can be disabled via the -mno-app-regs option. g5 through g7 are reserved for the operating system. On v9 systems: g1,g5 are free to use as temporaries, and are free to use between calls if the call is to an external function via the PLT. g4 is free to use as a temporary in the non-embedded case. g4 is reserved in the embedded case. g2-g3 are reserved for applications. Gcc normally uses them as temporaries, but this can be disabled via the -mno-app-regs option. g6-g7 are reserved for the operating system (or application in embedded case). ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must currently be a fixed register until this pattern is rewritten. Register 1 is also used when restoring call-preserved registers in large stack frames. Registers fixed in arch32 and not arch64 (or vice-versa) are marked in CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-. */ #define FIXED_REGISTERS \ {1, 0, 0, 0, 0, 0, 1, 1, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ \ 0, 0, 0, 0, 0} /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ #define CALL_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ \ 1, 1, 1, 1, 1} /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that they won't be allocated. */ #define CONDITIONAL_REGISTER_USAGE \ do \ { \ if (flag_pic) \ { \ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ } \ if (TARGET_ARCH32) \ { \ fixed_regs[5] = 1; \ } \ if (TARGET_LIVE_G0) \ fixed_regs[0] = 0; \ if (! TARGET_V9) \ { \ int regno; \ for (regno = SPARC_FIRST_V9_FP_REG; \ regno <= SPARC_LAST_V9_FP_REG; \ regno++) \ fixed_regs[regno] = 1; \ /* %fcc0 is used by v8 and v9. */ \ for (regno = SPARC_FIRST_V9_FCC_REG + 1; \ regno <= SPARC_LAST_V9_FCC_REG; \ regno++) \ fixed_regs[regno] = 1; \ } \ if (! TARGET_FPU) \ { \ int regno; \ for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \ fixed_regs[regno] = 1; \ } \ /* Don't unfix g2-g4 if they were fixed with -ffixed-. */ \ fixed_regs[2] |= ! TARGET_APP_REGS; \ fixed_regs[3] |= ! TARGET_APP_REGS; \ fixed_regs[4] |= ! TARGET_APP_REGS || TARGET_CM_EMBMEDANY; \ if (TARGET_FLAT) \ { \ /* Let the compiler believe the frame pointer is still \ %fp, but output it as %i7. */ \ fixed_regs[31] = 1; \ reg_names[FRAME_POINTER_REGNUM] = "%i7"; \ /* ??? This is a hack to disable leaf functions. */ \ global_regs[7] = 1; \ } \ if (profile_block_flag) \ { \ /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \ uses them. */ \ fixed_regs[1] = 1; \ fixed_regs[2] = 1; \ } \ } \ while (0) /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. On SPARC, ordinary registers hold 32 bits worth; this means both integer and floating point registers. On v9, integer regs hold 64 bits worth; floating point regs hold 32 bits worth (this includes the new fp regs as even the odd ones are included in the hard register count). */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (TARGET_ARCH64 \ ? ((REGNO) < 32 \ ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \ : (GET_MODE_SIZE (MODE) + 3) / 4) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* A subreg in 64 bit mode will have the wrong offset for a floating point register. The least significant part is at offset 1, compared to 0 for integer registers. This only applies when FMODE is a larger mode. We also need to handle a special case of TF-->DF conversions. */ #define ALTER_HARD_SUBREG(TMODE, WORD, FMODE, REGNO) \ (TARGET_ARCH64 \ && (REGNO) >= SPARC_FIRST_FP_REG \ && (REGNO) <= SPARC_LAST_V9_FP_REG \ && (TMODE) == SImode \ && !((FMODE) == QImode || (FMODE) == HImode) \ ? ((REGNO) + 1) \ : ((TMODE) == DFmode && (FMODE) == TFmode) \ ? ((REGNO) + ((WORD) * 2)) \ : ((REGNO) + (WORD))) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. See sparc.c for how we initialize this. */ extern int *hard_regno_mode_classes; extern int sparc_mode_class[]; #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. For V9: SFmode can't be combined with other float modes, because they can't be allocated to the %d registers. Also, DFmode won't fit in odd %f registers, but SFmode will. */ #define MODES_TIEABLE_P(MODE1, MODE2) \ ((MODE1) == (MODE2) \ || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \ && (! TARGET_V9 \ || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \ || (MODE1 != SFmode && MODE2 != SFmode))))) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* SPARC pc isn't overloaded on a register that the compiler knows about. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 14 /* Actual top-of-stack address is 92/176 greater than the contents of the stack pointer register for !v9/v9. That is: - !v9: 64 bytes for the in and local registers, 4 bytes for structure return address, and 6*4 bytes for the 6 register parameters. - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer parameter regs. */ #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0) /* The stack bias (amount by which the hardware register is offset by). */ #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0) /* Is stack biased? */ #define STACK_BIAS SPARC_STACK_BIAS /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 30 #if 0 /* Register that is used for the return address for the flat model. */ #define RETURN_ADDR_REGNUM 15 #endif /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. This is computed in `reload', in reload1.c. Used in flow.c, global.c, and reload1.c. Being a non-leaf function does not mean a frame pointer is needed in the flat window model. However, the debugger won't be able to backtrace through us with out it. */ #define FRAME_POINTER_REQUIRED \ (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \ || !leaf_function_p ()) \ : ! (leaf_function_p () && only_leaf_regs_used ())) /* C statement to store the difference between the frame pointer and the stack pointer values immediately after the function prologue. Note, we always pretend that this is a leaf function because if it's not, there's no point in trying to eliminate the frame pointer. If it is a leaf function, we guessed right! */ #define INITIAL_FRAME_POINTER_OFFSET(VAR) \ ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \ : compute_frame_size (get_frame_size (), 1))) /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM /* Register in which static-chain is passed to a function. This must not be a register used by the prologue. */ #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2) /* Register which holds offset table for position-independent data references. */ #define PIC_OFFSET_TABLE_REGNUM 23 #define FINALIZE_PIC finalize_pic () /* Pick a default value we can notice from override_options: !v9: Default is on. v9: Default is off. */ #define DEFAULT_PCC_STRUCT_RETURN -1 /* Sparc ABI says that quad-precision floats and all structures are returned in memory. For v9: unions <= 32 bytes in size are returned in int regs, structures up to 32 bytes are returned in int and fp regs. */ #define RETURN_IN_MEMORY(TYPE) \ (TARGET_ARCH32 \ ? (TYPE_MODE (TYPE) == BLKmode \ || TYPE_MODE (TYPE) == TFmode \ || TYPE_MODE (TYPE) == TCmode) \ : (TYPE_MODE (TYPE) == BLKmode \ && int_size_in_bytes (TYPE) > 32)) /* Functions which return large structures get the address to place the wanted value at offset 64 from the frame. Must reserve 64 bytes for the in and local registers. v9: Functions which return large structures get the address to place the wanted value from an invisible first argument. */ /* Used only in other #defines in this file. */ #define STRUCT_VALUE_OFFSET 64 #define STRUCT_VALUE \ (TARGET_ARCH64 \ ? 0 \ : gen_rtx_MEM (Pmode, \ gen_rtx_PLUS (Pmode, stack_pointer_rtx, \ GEN_INT (STRUCT_VALUE_OFFSET)))) #define STRUCT_VALUE_INCOMING \ (TARGET_ARCH64 \ ? 0 \ : gen_rtx_MEM (Pmode, \ gen_rtx_PLUS (Pmode, frame_pointer_rtx, \ GEN_INT (STRUCT_VALUE_OFFSET)))) /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The SPARC has various kinds of registers: general, floating point, and condition codes [well, it has others as well, but none that we care directly about]. For v9 we must distinguish between the upper and lower floating point registers because the upper ones can't hold SFmode values. HARD_REGNO_MODE_OK won't help here because reload assumes that register(s) satisfying a group need for a class will also satisfy a single need for that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp regs. It is important that one class contains all the general and all the standard fp regs. Otherwise find_reg() won't properly allocate int regs for moves, because reg_class_record() will bias the selection in favor of fp regs, because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS, because FP_REGS > GENERAL_REGS. It is also important that one class contain all the general and all the fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to bypass it causing an abort because the compiler thinks it doesn't have a spill reg when in fact it does. v9 also has 4 floating point condition code registers. Since we don't have a class that is the union of FPCC_REGS with either of the others, it is important that it appear first. Otherwise the compiler will die trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its constraints. It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine may try to use it to hold an SImode value. See register_operand. ??? Should %fcc[0123] be handled similarly? */ enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \ "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \ "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS \ {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \ {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \ {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}} /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ extern enum reg_class sparc_regno_reg_class[]; #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)] /* This is the order in which to allocate registers normally. We put %f0/%f1 last among the float registers, so as to make it more likely that a pseudo-register which dies in the float return register will get allocated to the float return register, thus saving a move instruction at the end of the function. */ #define REG_ALLOC_ORDER \ { 8, 9, 10, 11, 12, 13, 2, 3, \ 15, 16, 17, 18, 19, 20, 21, 22, \ 23, 24, 25, 26, 27, 28, 29, 31, \ 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \ 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \ 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \ 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \ 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \ 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \ 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \ 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \ 32, 33, /* %f0,%f1 */ \ 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \ 1, 4, 5, 6, 7, 0, 14, 30} /* This is the order in which to allocate registers for leaf functions. If all registers can fit in the "i" registers, then we have the possibility of having a leaf function. */ #define REG_LEAF_ALLOC_ORDER \ { 2, 3, 24, 25, 26, 27, 28, 29, \ 15, 8, 9, 10, 11, 12, 13, \ 16, 17, 18, 19, 20, 21, 22, 23, \ 34, 35, 36, 37, 38, 39, \ 40, 41, 42, 43, 44, 45, 46, 47, \ 48, 49, 50, 51, 52, 53, 54, 55, \ 56, 57, 58, 59, 60, 61, 62, 63, \ 64, 65, 66, 67, 68, 69, 70, 71, \ 72, 73, 74, 75, 76, 77, 78, 79, \ 80, 81, 82, 83, 84, 85, 86, 87, \ 88, 89, 90, 91, 92, 93, 94, 95, \ 32, 33, \ 96, 97, 98, 99, 100, \ 1, 4, 5, 6, 7, 0, 14, 30, 31} #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc () /* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when -mflat is used. Function only_leaf_regs_used will return 0 if a global register is used and is not permitted in a leaf function. We make %g7 a global reg if -mflat and voila. Since %g7 is a system register and is fixed it won't be used by gcc anyway. */ #define LEAF_REGISTERS \ { 1, 1, 1, 1, 1, 1, 1, 0, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 0, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1} extern char leaf_reg_remap[]; #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO]) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS GENERAL_REGS /* Local macro to handle the two v9 classes of FP regs. */ #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS) /* Get reg_class from a letter such as appears in the machine description. In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the .md file for v8 and v9. 'd' and 'b' are used for single and double precision VIS operations, if TARGET_VIS. 'h' is used for V8+ 64 bit global and out registers. */ #define REG_CLASS_FROM_LETTER(C) \ (TARGET_V9 \ ? ((C) == 'f' ? FP_REGS \ : (C) == 'e' ? EXTRA_FP_REGS \ : (C) == 'c' ? FPCC_REGS \ : ((C) == 'd' && TARGET_VIS) ? FP_REGS\ : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\ : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\ : NO_REGS) \ : ((C) == 'f' ? FP_REGS \ : (C) == 'e' ? FP_REGS \ : (C) == 'c' ? FPCC_REGS \ : NO_REGS)) /* The letters I, J, K, L and M in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. `I' is used for the range of constants an insn can actually contain. `J' is used for the range which is just zero (since that is R0). `K' is used for constants which can be loaded with a single sethi insn. `L' is used for the range of constants supported by the movcc insns. `M' is used for the range of constants supported by the movrcc insns. */ #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400) #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800) #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000) /* 10 and 11 bit immediates are only used for a few specific insns. SMALL_INT is used throughout the port so we continue to use it. */ #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X))) /* 13 bit immediate, considering only the low 32 bits */ #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff)) #define SPARC_SETHI_P(X) \ (((unsigned HOST_WIDE_INT) (X) & ~(unsigned HOST_WIDE_INT) 0xfffffc00) == 0) #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \ : (C) == 'J' ? (VALUE) == 0 \ : (C) == 'K' ? SPARC_SETHI_P (VALUE) \ : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \ : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \ : 0) /* Similar, but for floating constants, and defining letters G and H. Here VALUE is the CONST_DOUBLE rtx itself. */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'G' ? fp_zero_operand (VALUE) \ : (C) == 'H' ? arith_double_operand (VALUE, DImode) \ : 0) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. */ /* - We can't load constants into FP registers. We can't load any FP constant if an 'E' constraint fails to match it. - Try and reload integer constants (symbolic or otherwise) back into registers directly, rather than having them dumped to memory. */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ (CONSTANT_P (X) \ ? ((FP_REG_CLASS_P (CLASS) \ || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \ || HOST_BITS_PER_INT != BITS_PER_WORD))) \ ? NO_REGS \ : (!FP_REG_CLASS_P (CLASS) \ && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \ ? GENERAL_REGS \ : (CLASS)) \ : (CLASS)) /* Return the register class of a scratch register needed to load IN into a register of class CLASS in MODE. We need a temporary when loading/storing a HImode/QImode value between memory and the FPU registers. This can happen when combine puts a paradoxical subreg in a float/fix conversion insn. */ #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \ ((FP_REG_CLASS_P (CLASS) \ && ((MODE) == HImode || (MODE) == QImode) \ && (GET_CODE (IN) == MEM \ || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ && true_regnum (IN) == -1))) \ ? GENERAL_REGS \ : (((TARGET_CM_MEDANY \ && symbolic_operand ((IN), (MODE))) \ || (TARGET_CM_EMBMEDANY \ && text_segment_operand ((IN), (MODE)))) \ && !flag_pic) \ ? GENERAL_REGS \ : NO_REGS) #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \ ((FP_REG_CLASS_P (CLASS) \ && ((MODE) == HImode || (MODE) == QImode) \ && (GET_CODE (IN) == MEM \ || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ && true_regnum (IN) == -1))) \ ? GENERAL_REGS \ : (((TARGET_CM_MEDANY \ && symbolic_operand ((IN), (MODE))) \ || (TARGET_CM_EMBMEDANY \ && text_segment_operand ((IN), (MODE)))) \ && !flag_pic) \ ? GENERAL_REGS \ : NO_REGS) /* On SPARC it is not possible to directly move data between GENERAL_REGS and FP_REGS. */ #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) /* Return the stack location to use for secondary memory needed reloads. We want to use the reserved location just below the frame pointer. However, we must ensure that there is a frame, so use assign_stack_local if the frame size is zero. */ #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ (get_frame_size () == 0 \ ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \ : gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, frame_pointer_rtx, \ GEN_INT (STARTING_FRAME_OFFSET)))) /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9 because the movsi and movsf patterns don't handle r/f moves. For v8 we copy the default definition. */ #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ (TARGET_ARCH64 \ ? (GET_MODE_BITSIZE (MODE) < 32 \ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ : MODE) \ : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \ ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \ : MODE)) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ /* On SPARC, this is the size of MODE in words. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \ : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Stack layout; function entry, exit and calling. */ /* Define the number of register that can hold parameters. This macro is only used in other macro definitions below and in sparc.c. MODE is the mode of the argument. !v9: All args are passed in %o0-%o5. v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values. See the description in sparc.c. */ #define NPARM_REGS(MODE) \ (TARGET_ARCH64 \ ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \ : 6) /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ /* This allows space for one TFmode floating point value. */ #define STARTING_FRAME_OFFSET \ (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \ : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT))) /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On SPARC, don't define this because there are no push insns. */ /* #define PUSH_ROUNDING(BYTES) */ /* Offset of first parameter from the argument pointer register value. !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg even if this function isn't going to use it. v9: This is 128 for the ins and locals. */ #define FIRST_PARM_OFFSET(FNDECL) \ (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \ : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)) /* Offset from the argument pointer register value to the CFA. */ #define ARG_POINTER_CFA_OFFSET SPARC_STACK_BIAS /* When a parameter is passed in a register, stack space is still allocated for it. !v9: All 6 possible integer registers have backing store allocated. v9: Only space for the arguments passed is allocated. */ /* ??? Ideally, we'd use zero here (as the minimum), but zero has special meaning to the backend. Further, we need to be able to detect if a varargs/unprototyped function is called, as they may want to spill more registers than we've provided space. Ugly, ugly. So for now we retain all 6 slots even for v9. */ #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD) /* Keep the stack pointer constant throughout the function. This is both an optimization and a necessity: longjmp doesn't behave itself when the stack pointer moves within the function! */ #define ACCUMULATE_OUTGOING_ARGS /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. */ #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 /* Some subroutine macros specific to this machine. When !TARGET_FPU, put float return values in the general registers, since we don't have any fp registers. */ #define BASE_RETURN_VALUE_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \ : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)) #define BASE_OUTGOING_VALUE_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \ : TARGET_FLAT ? 8 : 24) \ : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \ : (TARGET_FLAT ? 8 : 24))) #define BASE_PASSING_ARG_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \ : 8) /* ??? FIXME -- seems wrong for v9 structure passing... */ #define BASE_INCOMING_ARG_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \ : TARGET_FLAT ? 8 : 24) \ : (TARGET_FLAT ? 8 : 24)) /* Define this macro if the target machine has "register windows". This C expression returns the register number as seen by the called function corresponding to register number OUT as seen by the calling function. Return OUT if register number OUT is not an outbound register. */ #define INCOMING_REGNO(OUT) \ ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16) /* Define this macro if the target machine has "register windows". This C expression returns the register number as seen by the calling function corresponding to register number IN as seen by the called function. Return IN if register number IN is not an inbound register. */ #define OUTGOING_REGNO(IN) \ ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16) /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ /* On SPARC the value is found in the first "output" register. */ extern struct rtx_def *function_value (); #define FUNCTION_VALUE(VALTYPE, FUNC) \ function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1) /* But the called function leaves it in the first "input" register. */ #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \ function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) \ function_value (NULL_TREE, (MODE), 1) /* 1 if N is a possible register number for a function value as seen by the caller. On SPARC, the first "output" reg is used for integer values, and the first floating point register is used for floating point values. */ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32) /* Define the size of space to allocate for the return value of an untyped_call. */ #define APPLY_RESULT_SIZE 16 /* 1 if N is a possible register number for function argument passing. On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */ #define FUNCTION_ARG_REGNO_P(N) \ (TARGET_ARCH64 \ ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \ : ((N) >= 8 && (N) <= 13)) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On SPARC (!v9), this is a single integer, which is a number of words of arguments scanned so far (including the invisible argument, if any, which holds the structure-value-address). Thus 7 or more means all following args should go on the stack. For v9, we also need to know whether a prototype is present. */ struct sparc_args { int words; /* number of words passed so far */ int prototype_p; /* non-zero if a prototype is present */ int libcall_p; /* non-zero if a library call */ }; #define CUMULATIVE_ARGS struct sparc_args /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ extern void init_cumulative_args (); #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \ init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT)); /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. TYPE is null for libcalls where that information may not be available. */ extern void function_arg_advance (); #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED)) /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ extern struct rtx_def *function_arg (); #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0) /* Define where a function finds its arguments. This is different from FUNCTION_ARG because of register windows. */ #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1) /* For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. */ extern int function_arg_partial_nregs (); #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED)) /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. */ extern int function_arg_pass_by_reference (); #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED)) /* If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value should be of type `enum direction': either `upward' to pad above the argument, `downward' to pad below, or `none' to inhibit padding. */ #define FUNCTION_ARG_PADDING(MODE, TYPE) \ function_arg_padding ((MODE), (TYPE)) /* If defined, a C expression that gives the alignment boundary, in bits, of an argument with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all arguments. For sparc64, objects requiring 16 byte alignment are passed that way. */ #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ ((TARGET_ARCH64 \ && (GET_MODE_ALIGNMENT (MODE) == 128 \ || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \ ? 128 : PARM_BOUNDARY) /* Define the information needed to generate branch and scc insns. This is stored from the compare operation. Note that we can't use "rtx" here since it hasn't been defined! */ extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1; /* Define the function that build the compare insn for scc and bcc. */ extern struct rtx_def *gen_compare_reg (); /* This function handles all v9 scc insns */ extern int gen_v9_scc (); /* Generate the special assembly code needed to tell the assembler whatever it might need to know about the return value of a function. For Sparc assemblers, we need to output a .proc pseudo-op which conveys information to the assembler relating to peephole optimization (done in the assembler). */ #define ASM_DECLARE_RESULT(FILE, RESULT) \ fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT))) /* Output the label for a function definition. */ #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ do { \ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ ASM_OUTPUT_LABEL (FILE, NAME); \ } while (0) /* This macro generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. */ /* On SPARC, move-double insns between fpu and cpu need an 8-byte block of memory. If any fpu reg is used in the function, we allocate such a block here, at the bottom of the frame, just in case it's needed. If this function is a leaf procedure, then we may choose not to do a "save" insn. The decision about whether or not to do this is made in regclass.c. */ #define FUNCTION_PROLOGUE(FILE, SIZE) \ (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, (int)SIZE) \ : output_function_prologue (FILE, (int)SIZE, \ current_function_uses_only_leaf_regs)) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ sparc_function_profiler(FILE, LABELNO) /* Set the name of the mcount function for the system. */ #define MCOUNT_FUNCTION "*mcount" /* The following macro shall output assembler code to FILE to initialize basic-block profiling. */ #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \ sparc_function_block_profiler(FILE, BLOCK_OR_LABEL) /* The following macro shall output assembler code to FILE to increment a counter associated with basic block number BLOCKNO. */ #define BLOCK_PROFILER(FILE, BLOCKNO) \ sparc_block_profiler (FILE, BLOCKNO) /* The following macro shall output assembler code to FILE to indicate a return from function during basic-block profiling. */ #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \ sparc_function_block_profiler_exit(FILE) /* The function `__bb_trace_func' is called in every basic block and is not allowed to change the machine state. Saving (restoring) the state can either be done in the BLOCK_PROFILER macro, before calling function (rsp. after returning from function) `__bb_trace_func', or it can be done inside the function by defining the macros: MACHINE_STATE_SAVE(ID) MACHINE_STATE_RESTORE(ID) In the latter case care must be taken, that the prologue code of function `__bb_trace_func' does not already change the state prior to saving it with MACHINE_STATE_SAVE. The parameter `ID' is a string identifying a unique macro use. On sparc it is sufficient to save the psw register to memory. Unfortunately the psw register can be read in supervisor mode only, so we read only the condition codes by using branch instructions and hope that this is enough. */ #define MACHINE_STATE_SAVE(ID) \ int ms_flags, ms_saveret; \ asm volatile( \ "mov %%g0,%0\n\ be,a LFLGNZ"ID"\n\ or %0,4,%0\n\ LFLGNZ"ID":\n\ bcs,a LFLGNC"ID"\n\ or %0,1,%0\n\ LFLGNC"ID":\n\ bvs,a LFLGNV"ID"\n\ or %0,2,%0\n\ LFLGNV"ID":\n\ bneg,a LFLGNN"ID"\n\ or %0,8,%0\n\ LFLGNN"ID":\n\ mov %%g2,%1" \ : "=r"(ms_flags), "=r"(ms_saveret)); /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory. The psw register can be written in supervisor mode only, which is true even for simple condition codes. We use some combination of instructions to produce the proper condition codes, but some flag combinations can not be generated in this way. If this happens an unimplemented instruction will be executed to abort the program. */ #define MACHINE_STATE_RESTORE(ID) \ { extern char flgtab[] __asm__("LFLGTAB"ID); \ int scratch; \ asm volatile ( \ "jmpl %2+%1,%%g0\n\ ! Do part of VC in the delay slot here, as it needs 3 insns.\n\ addcc 2,%3,%%g0\n\ LFLGTAB" ID ":\n\ ! 0\n\ ba LFLGRET"ID"\n\ orcc 1,%%g0,%%g0\n\ ! C\n\ ba LFLGRET"ID"\n\ addcc 2,%3,%%g0\n\ ! V\n\ unimp\n\ nop\n\ ! VC\n\ ba LFLGRET"ID"\n\ addxcc %4,%4,%0\n\ ! Z\n\ ba LFLGRET"ID"\n\ subcc %%g0,%%g0,%%g0\n\ ! ZC\n\ ba LFLGRET"ID"\n\ addcc 1,%3,%0\n\ ! ZVC\n\ ba LFLGRET"ID"\n\ addcc %4,%4,%0\n\ ! N\n\ ba LFLGRET"ID"\n\ orcc %%g0,-1,%%g0\n\ ! NC\n\ ba LFLGRET"ID"\n\ addcc %%g0,%3,%%g0\n\ ! NV\n\ unimp\n\ nop\n\ ! NVC\n\ unimp\n\ nop\n\ ! NZ\n\ unimp\n\ nop\n\ ! NZC\n\ unimp\n\ nop\n\ ! NZV\n\ unimp\n\ nop\n\ ! NZVC\n\ unimp\n\ nop\n\ LFLGRET"ID":\n\ mov %5,%%g2" \ : "=r"(scratch) \ : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \ "r"(0x80000000), "r"(ms_saveret) \ : "cc", "%g2"); } /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ extern int current_function_calls_alloca; extern int current_function_outgoing_args_size; #define EXIT_IGNORE_STACK \ (get_frame_size () != 0 \ || current_function_calls_alloca || current_function_outgoing_args_size) /* This macro generates the assembly code for function exit, on machines that need it. If FUNCTION_EPILOGUE is not defined then individual return instructions are generated for each return statement. Args are same as for FUNCTION_PROLOGUE. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ /* This declaration is needed due to traditional/ANSI incompatibilities which cannot be #ifdefed away because they occur inside of macros. Sigh. */ extern union tree_node *current_function_decl; #define FUNCTION_EPILOGUE(FILE, SIZE) \ (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, (int)SIZE) \ : output_function_epilogue (FILE, (int)SIZE, \ current_function_uses_only_leaf_regs)) #define DELAY_SLOTS_FOR_EPILOGUE \ (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1) #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \ (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \ : eligible_for_epilogue_delay (trial, slots_filled)) /* Define registers used by the epilogue and return instruction. */ #define EPILOGUE_USES(REGNO) \ (!TARGET_FLAT && REGNO == 31) /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16) #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */ /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void sparc_initialize_trampoline (); void sparc64_initialize_trampoline (); #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ if (TARGET_ARCH64) \ sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \ else \ sparc_initialize_trampoline (TRAMP, FNADDR, CXT) /* Generate necessary RTL for __builtin_saveregs(). ARGLIST is the argument list; see expr.c. */ extern struct rtx_def *sparc_builtin_saveregs (); #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST) /* Define this macro if the location where a function argument is passed depends on whether or not it is a named argument. This macro controls how the NAMED argument to FUNCTION_ARG is set for varargs and stdarg functions. With this macro defined, the NAMED argument is always true for named arguments, and false for unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS is defined, then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named. For the v9 we want NAMED to mean what it says it means. */ #define STRICT_ARGUMENT_NAMING TARGET_V9 /* Generate RTL to flush the register windows so as to make arbitrary frames available. */ #define SETUP_FRAME_ADDRESSES() \ emit_insn (gen_flush_register_windows ()) /* Given an rtx for the address of a frame, return an rtx for the address of the word in the frame that holds the dynamic chain--the previous frame's address. ??? -mflat support? */ #define DYNAMIC_CHAIN_ADDRESS(frame) \ plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS) /* The return address isn't on the stack, it is in a register, so we can't access it from the current frame pointer. We can access it from the previous frame pointer though by reading a value from the register window save area. */ #define RETURN_ADDR_IN_PREVIOUS_FRAME /* This is the offset of the return address to the true next instruction to be executed for the current function. */ #define RETURN_ADDR_OFFSET \ (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct)) /* The current return address is in %i7. The return address of anything farther back is in the register window save area at [%fp+60]. */ /* ??? This ignores the fact that the actual return address is +8 for normal returns, and +12 for structure returns. */ #define RETURN_ADDR_RTX(count, frame) \ ((count == -1) \ ? gen_rtx_REG (Pmode, 31) \ : gen_rtx_MEM (Pmode, \ memory_address (Pmode, plus_constant (frame, \ 15 * UNITS_PER_WORD \ + SPARC_STACK_BIAS)))) /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's +12, but always using +8 is close enough for frame unwind purposes. Actually, just using %o7 is close enough for unwinding, but %o7+8 is something you can return to. */ #define INCOMING_RETURN_ADDR_RTX \ gen_rtx_PLUS (word_mode, gen_rtx_REG (word_mode, 15), GEN_INT (8)) /* The offset from the incoming value of %sp to the top of the stack frame for the current function. On sparc64, we have to account for the stack bias if present. */ #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS #define DOESNT_NEED_UNWINDER (! TARGET_FLAT) /* Addressing modes, and classification of registers for them. */ /* #define HAVE_POST_INCREMENT 0 */ /* #define HAVE_POST_DECREMENT 0 */ /* #define HAVE_PRE_DECREMENT 0 */ /* #define HAVE_PRE_INCREMENT 0 */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32) #define REGNO_OK_FOR_BASE_P(REGNO) \ ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32) #define REGNO_OK_FOR_FP_P(REGNO) \ (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \ || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32))) #define REGNO_OK_FOR_CCFP_P(REGNO) \ (TARGET_V9 \ && (((unsigned) (REGNO) - 96 < (unsigned)4) \ || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4))) /* Now macros that check whether X is a register and also, strictly, whether it is in a specified class. These macros are specific to the SPARC, and may be used only in code for printing assembler insns and in conditions for define_optimization. */ /* 1 if X is an fp register. */ #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */ #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31)) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. When PIC, we do not accept an address that would require a scratch reg to load into a register. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \ || (GET_CODE (X) == CONST \ && ! (flag_pic && pic_address_needs_scratch (X)))) /* Define this, so that when PIC, reload won't try to reload invalid addresses which require two reload registers. */ #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X)) /* Nonzero if the constant value X is a legitimate general operand. Anything can be made to work except floating point constants. If TARGET_VIS, 0.0 can be made to work as well. */ #define LEGITIMATE_CONSTANT_P(X) \ (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \ (TARGET_VIS && (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode) && \ fp_zero_operand (X))) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ /* Optional extra constraints for this machine. 'T' handles memory addresses where the alignment is known to be at least 8 bytes. `U' handles all pseudo registers or a hard even numbered integer register, needed for ldd/std instructions. */ #ifndef REG_OK_STRICT /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) \ (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32)) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) \ (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32)) /* 'T', 'U' are for aligned memory loads which aren't needed for v9. */ #define EXTRA_CONSTRAINT(OP, C) \ ((! TARGET_ARCH64 && (C) == 'T') \ ? (mem_min_alignment (OP, 8)) \ : ((! TARGET_ARCH64 && (C) == 'U') \ ? (register_ok_for_ldd (OP)) \ : 0)) #else /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #define EXTRA_CONSTRAINT(OP, C) \ ((! TARGET_ARCH64 && (C) == 'T') \ ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \ : ((! TARGET_ARCH64 && (C) == 'U') \ ? (GET_CODE (OP) == REG \ && (REGNO (OP) < FIRST_PSEUDO_REGISTER \ || reg_renumber[REGNO (OP)] >= 0) \ && register_ok_for_ldd (OP)) \ : 0)) #endif /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT ordinarily. This changes a bit when generating PIC. If you change this, execute "rm explow.o recog.o reload.o". */ #define RTX_OK_FOR_BASE_P(X) \ ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ || (GET_CODE (X) == SUBREG \ && GET_CODE (SUBREG_REG (X)) == REG \ && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) #define RTX_OK_FOR_INDEX_P(X) \ ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ || (GET_CODE (X) == SUBREG \ && GET_CODE (SUBREG_REG (X)) == REG \ && REG_OK_FOR_INDEX_P (SUBREG_REG (X)))) #define RTX_OK_FOR_OFFSET_P(X) \ (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000) #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { if (RTX_OK_FOR_BASE_P (X)) \ goto ADDR; \ else if (GET_CODE (X) == PLUS) \ { \ register rtx op0 = XEXP (X, 0); \ register rtx op1 = XEXP (X, 1); \ if (flag_pic && op0 == pic_offset_table_rtx) \ { \ if (RTX_OK_FOR_BASE_P (op1)) \ goto ADDR; \ else if (flag_pic == 1 \ && GET_CODE (op1) != REG \ && GET_CODE (op1) != LO_SUM \ && GET_CODE (op1) != MEM \ && (GET_CODE (op1) != CONST_INT \ || SMALL_INT (op1))) \ goto ADDR; \ } \ else if (RTX_OK_FOR_BASE_P (op0)) \ { \ if ((RTX_OK_FOR_INDEX_P (op1) \ /* We prohibit REG + REG for TFmode when \ there are no instructions which accept \ REG+REG instructions. We do this \ because REG+REG is not an offsetable \ address. If we get the situation \ in reload where source and destination \ of a movtf pattern are both MEMs with \ REG+REG address, then only one of them \ gets converted to an offsetable \ address. */ \ && (MODE != TFmode \ || (TARGET_FPU && TARGET_ARCH64 \ && TARGET_V9 \ && TARGET_HARD_QUAD))) \ || RTX_OK_FOR_OFFSET_P (op1)) \ goto ADDR; \ } \ else if (RTX_OK_FOR_BASE_P (op1)) \ { \ if ((RTX_OK_FOR_INDEX_P (op0) \ /* See the previous comment. */ \ && (MODE != TFmode \ || (TARGET_FPU && TARGET_ARCH64 \ && TARGET_V9 \ && TARGET_HARD_QUAD))) \ || RTX_OK_FOR_OFFSET_P (op0)) \ goto ADDR; \ } \ } \ else if (GET_CODE (X) == LO_SUM) \ { \ register rtx op0 = XEXP (X, 0); \ register rtx op1 = XEXP (X, 1); \ if (RTX_OK_FOR_BASE_P (op0) \ && CONSTANT_P (op1) \ /* We can't allow TFmode, because an offset \ greater than or equal to the alignment (8) \ may cause the LO_SUM to overflow if !v9. */\ && (MODE != TFmode || TARGET_V9)) \ goto ADDR; \ } \ else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \ goto ADDR; \ } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. */ /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ extern struct rtx_def *legitimize_pic_address (); #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ { rtx sparc_x = (X); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \ (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \ force_operand (XEXP (X, 0), NULL_RTX)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \ (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \ force_operand (XEXP (X, 1), NULL_RTX)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \ (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\ XEXP (X, 1)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \ (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \ force_operand (XEXP (X, 1), NULL_RTX)); \ if (sparc_x != (X) && memory_address_p (MODE, X)) \ goto WIN; \ if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \ else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \ copy_to_mode_reg (Pmode, XEXP (X, 1))); \ else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \ (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \ copy_to_mode_reg (Pmode, XEXP (X, 0))); \ else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \ || GET_CODE (X) == LABEL_REF) \ (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \ if (memory_address_p (MODE, X)) \ goto WIN; } /* Try a machine-dependent way of reloading an illegitimate address operand. If we find one, push the reload and jump to WIN. This macro is used in only one place: `find_reloads_address' in reload.c. For Sparc 32, we wish to handle addresses by splitting them into HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference. This cuts the number of extra insns by one. Do nothing when generating PIC code and the address is a symbolic operand or requires a scratch register. */ #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ do { \ /* Decompose SImode constants into hi+lo_sum. We do have to \ rerecognize what we produce, so be careful. */ \ if (CONSTANT_P (X) \ && (MODE != TFmode || TARGET_V9) \ && GET_MODE (X) == SImode \ && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \ && ! (flag_pic \ && (symbolic_operand (X, Pmode) \ || pic_address_needs_scratch (X)))) \ { \ X = gen_rtx_LO_SUM (GET_MODE (X), \ gen_rtx_HIGH (GET_MODE (X), X), X); \ push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \ BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \ OPNUM, TYPE); \ goto WIN; \ } \ /* ??? 64-bit reloads. */ \ } while (0) /* Go to LABEL if ADDR (a legitimate address expression) has an effect that depends on the machine mode it is used for. On the SPARC this is never true. */ #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) /* If we are referencing a function make the SYMBOL_REF special. In the Embedded Medium/Anywhere code model, %g4 points to the data segment so we must not add it to function addresses. */ #define ENCODE_SECTION_INFO(DECL) \ do { \ if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \ SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \ } while (0) /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ /* If we ever implement any of the full models (such as CM_FULLANY), this has to be DImode in that case */ #ifdef HAVE_GAS_SUBSECTION_ORDERING #define CASE_VECTOR_MODE \ (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode) #else /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise we have to sign extend which slows things down. */ #define CASE_VECTOR_MODE \ (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode) #endif /* Define as C expression which evaluates to nonzero if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ /* #define CASE_VECTOR_PC_RELATIVE 1 */ /* Specify the tree operation to be used to convert reals to integers. */ #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR /* This is the kind of divide that is easiest to do in the general case. */ #define EASY_DIV_EXPR TRUNC_DIV_EXPR /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 8 #if 0 /* Sun 4 has matherr, so this is no good. */ /* This is the value of the error code EDOM for this machine, used by the sqrt instruction. */ #define TARGET_EDOM 33 /* This is how to refer to the variable errno. */ #define GEN_ERRNO_RTX \ gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno")) #endif /* 0 */ /* Define if operations between registers always perform the operation on the full register even if a narrower mode is specified. */ #define WORD_REGISTER_OPERATIONS /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD will either zero-extend or sign-extend. The value of this macro should be the code that says which one of the two operations is implicitly done, NIL if none. */ #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND /* Nonzero if access to memory by bytes is slow and undesirable. For RISC chips, it means that access to memory by bytes is no better than access by words when possible, so grab a whole word and maybe make use of that. */ #define SLOW_BYTE_ACCESS 1 /* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */ #define STORE_FLAG_VALUE 1 /* When a prototype says `char' or `short', really pass an `int'. */ #define PROMOTE_PROTOTYPES /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. */ #define SHIFT_COUNT_TRUNCATED 1 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode (TARGET_PTR64 ? DImode : SImode) /* Generate calls to memcpy, memcmp and memset. */ #define TARGET_MEM_FUNCTIONS /* Add any extra modes needed to represent the condition code. On the Sparc, we have a "no-overflow" mode which is used when an add or subtract insn is used to set the condition code. Different branches are used in this case for some operations. We also have two modes to indicate that the relevant condition code is in the floating-point condition code register. One for comparisons which will generate an exception if the result is unordered (CCFPEmode) and one for comparisons which will never trap (CCFPmode). CCXmode and CCX_NOOVmode are only used by v9. */ #define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode /* Define the names for the modes specified above. */ #define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE" /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special processing is needed. */ #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \ : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \ || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \ ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \ : ((TARGET_ARCH64 || TARGET_V8PLUS) && GET_MODE (X) == DImode ? CCXmode : CCmode))) /* Return non-zero if SELECT_CC_MODE will never return MODE for a floating point inequality comparison. */ #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE SImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ #define NO_FUNCTION_CSE /* alloca should avoid clobbering the old register save area. */ #define SETJMP_VIA_SAVE_AREA /* Define subroutines to call to handle multiply and divide. Use the subroutines that Sun's library provides. The `*' prevents an underscore from being prepended by the compiler. */ #define DIVSI3_LIBCALL "*.div" #define UDIVSI3_LIBCALL "*.udiv" #define MODSI3_LIBCALL "*.rem" #define UMODSI3_LIBCALL "*.urem" /* .umul is a little faster than .mul. */ #define MULSI3_LIBCALL "*.umul" /* Define library calls for quad FP operations. These are all part of the SPARC32 ABI. The SPARC64 ABI defines _Qp_*, but we don't generate correct code for those, so punt and emit SPARC32 ABI calls. */ #define ADDTF3_LIBCALL "_Q_add" #define SUBTF3_LIBCALL "_Q_sub" #define NEGTF2_LIBCALL "_Q_neg" #define MULTF3_LIBCALL "_Q_mul" #define DIVTF3_LIBCALL "_Q_div" #define FLOATSITF2_LIBCALL "_Q_itoq" #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi" #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou" #define EXTENDSFTF2_LIBCALL "_Q_stoq" #define TRUNCTFSF2_LIBCALL "_Q_qtos" #define EXTENDDFTF2_LIBCALL "_Q_dtoq" #define TRUNCTFDF2_LIBCALL "_Q_qtod" #define EQTF2_LIBCALL "_Q_feq" #define NETF2_LIBCALL "_Q_fne" #define GTTF2_LIBCALL "_Q_fgt" #define GETF2_LIBCALL "_Q_fge" #define LTTF2_LIBCALL "_Q_flt" #define LETF2_LIBCALL "_Q_fle" /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because with soft-float, the SFmode and DFmode sqrt instructions will be absent, and the compiler will notice and try to use the TFmode sqrt instruction for calls to the builtin function sqrt, but this fails. */ #define INIT_TARGET_OPTABS \ do { \ add_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, ADDTF3_LIBCALL); \ sub_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, SUBTF3_LIBCALL); \ neg_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, NEGTF2_LIBCALL); \ smul_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, MULTF3_LIBCALL); \ flodiv_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, DIVTF3_LIBCALL); \ eqtf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EQTF2_LIBCALL); \ netf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, NETF2_LIBCALL); \ gttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GTTF2_LIBCALL); \ getf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GETF2_LIBCALL); \ lttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LTTF2_LIBCALL); \ letf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LETF2_LIBCALL); \ trunctfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFSF2_LIBCALL); \ trunctfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFDF2_LIBCALL); \ extendsftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDSFTF2_LIBCALL); \ extenddftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDDFTF2_LIBCALL); \ floatsitf_libfunc = gen_rtx_SYMBOL_REF (Pmode, FLOATSITF2_LIBCALL); \ fixtfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, FIX_TRUNCTFSI2_LIBCALL); \ fixunstfsi_libfunc \ = gen_rtx_SYMBOL_REF (Pmode, FIXUNS_TRUNCTFSI2_LIBCALL); \ if (TARGET_FPU) \ sqrt_optab->handlers[(int) TFmode].libfunc \ = gen_rtx_SYMBOL_REF (Pmode, "_Q_sqrt"); \ INIT_SUBTARGET_OPTABS; \ } while (0) /* This is meant to be redefined in the host dependent files */ #define INIT_SUBTARGET_OPTABS /* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */ #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ case CONST_INT: \ if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \ return 0; \ case HIGH: \ return 2; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 4; \ case CONST_DOUBLE: \ if (GET_MODE (RTX) == DImode) \ if ((XINT (RTX, 3) == 0 \ && (unsigned) XINT (RTX, 2) < 0x1000) \ || (XINT (RTX, 3) == -1 \ && XINT (RTX, 2) < 0 \ && XINT (RTX, 2) >= -0x1000)) \ return 0; \ return 8; #define ADDRESS_COST(RTX) 1 /* Compute extra cost of moving data between one register class and another. */ #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS) #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \ || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \ || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \ ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2) /* Provide the costs of a rtl expression. This is in the body of a switch on CODE. The purpose for the cost of MULT is to encourage `synth_mult' to find a synthetic multiply when reasonable. If we need more than 12 insns to do a multiply, then go out-of-line, since the call overhead will be < 10% of the cost of the multiply. */ #define RTX_COSTS(X,CODE,OUTER_CODE) \ case MULT: \ if (sparc_cpu == PROCESSOR_ULTRASPARC) \ return (GET_MODE (X) == DImode ? \ COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \ return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \ case DIV: \ case UDIV: \ case MOD: \ case UMOD: \ if (sparc_cpu == PROCESSOR_ULTRASPARC) \ return (GET_MODE (X) == DImode ? \ COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \ return COSTS_N_INSNS (25); \ /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\ so that cse will favor the latter. */ \ case FLOAT: \ case FIX: \ return 19; #define ISSUE_RATE sparc_issue_rate() /* Adjust the cost of dependencies. */ #define ADJUST_COST(INSN,LINK,DEP,COST) \ sparc_adjust_cost(INSN, LINK, DEP, COST) extern void ultrasparc_sched_reorder (); extern void ultrasparc_sched_init (); extern int ultrasparc_variable_issue (); #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE) \ if (sparc_cpu == PROCESSOR_ULTRASPARC) \ ultrasparc_sched_init (DUMP, SCHED_VERBOSE) #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY) \ if (sparc_cpu == PROCESSOR_ULTRASPARC) \ ultrasparc_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY) #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \ if (sparc_cpu == PROCESSOR_ULTRASPARC) \ (CAN_ISSUE_MORE) = ultrasparc_variable_issue (INSN); \ else \ (CAN_ISSUE_MORE)-- /* Conditional branches with empty delay slots have a length of two. */ #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ if (GET_CODE (INSN) == CALL_INSN \ || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \ LENGTH += 1; else /* Control the assembler format that we output. */ /* Output at beginning of assembler file. */ #define ASM_FILE_START(file) /* A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line. */ #define ASM_COMMENT_START "!" /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" /* ??? Try to make the style consistent here (_OP?). */ #define ASM_LONGLONG ".xword" #define ASM_LONG ".word" #define ASM_SHORT ".half" #define ASM_BYTE_OP ".byte" #define ASM_FLOAT ".single" #define ASM_DOUBLE ".double" #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */ /* Output before read-only data. */ #define TEXT_SECTION_ASM_OP ".text" /* Output before writable data. */ #define DATA_SECTION_ASM_OP ".data" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \ "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \ "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \ "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \ "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \ "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \ "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \ "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \ "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \ "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \ "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \ "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \ "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"} /* Define additional names for use in asm clobbers and asm declarations. */ #define ADDITIONAL_REGISTER_NAMES \ {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}} /* How to renumber registers for dbx and gdb. In the flat model, the frame pointer is really %i7. */ #define DBX_REGISTER_NUMBER(REGNO) \ (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO) /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length can run past this up to a continuation point. Once we used 1500, but a single entry in C++ can run more than 500 bytes, due to the length of mangled symbol names. dbxout.c should really be fixed to do continuations when they are actually needed instead of trying to guess... */ #define DBX_CONTIN_LENGTH 1000 /* This is how to output a note to DBX telling it the line number to which the following sequence of instructions corresponds. This is needed for SunOS 4.0, and should not hurt for 3.2 versions either. */ #define ASM_OUTPUT_SOURCE_LINE(file, line) \ { static int sym_lineno = 1; \ fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \ line, sym_lineno, sym_lineno); \ sym_lineno += 1; } /* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */ #define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) /* This is how to output a command to make the user-level label named NAME defined for reference from other files. */ #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) /* The prefix to add to user-visible assembler symbols. */ #define USER_LABEL_PREFIX "_" /* This is how to output a definition of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d:\n", PREFIX, NUM) /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM)) /* This is how to output an assembler line defining a `float' constant. We always have to use a .long pseudo-op to do this because the native SVR4 ELF assembler is buggy and it generates incorrect values when we try to use the .float pseudo-op instead. */ #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ { \ long t; \ char str[30]; \ REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \ fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \ ASM_COMMENT_START, str); \ } \ /* This is how to output an assembler line defining a `double' constant. We always have to use a .long pseudo-op to do this because the native SVR4 ELF assembler is buggy and it generates incorrect values when we try to use the .float pseudo-op instead. */ #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ { \ long t[2]; \ char str[30]; \ REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \ fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \ ASM_COMMENT_START, str); \ fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \ } /* This is how to output an assembler line defining a `long double' constant. */ #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \ { \ long t[4]; \ char str[30]; \ REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \ fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \ ASM_COMMENT_START, str); \ fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \ fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \ fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \ } /* This is how to output an assembler line defining an `int' constant. */ #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_LONG), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* This is how to output an assembler line defining a DImode constant. */ #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ output_double_int (FILE, VALUE) /* Likewise for `char' and `short' constants. */ #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_SHORT), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* This is how to output an assembler line for a numeric constant byte. */ #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE)) /* This is how we hook in and defer the case-vector until the end of the function. */ extern void sparc_defer_case_vector (); #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \ sparc_defer_case_vector ((LAB),(VEC), 0) #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \ sparc_defer_case_vector ((LAB),(VEC), 1) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ do { \ char label[30]; \ ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ if (CASE_VECTOR_MODE == SImode) \ fprintf (FILE, "\t.word\t"); \ else \ fprintf (FILE, "\t.xword\t"); \ assemble_name (FILE, label); \ fputc ('\n', FILE); \ } while (0) /* This is how to output an element of a case-vector that is relative. (SPARC uses such vectors only when generating PIC.) */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ do { \ char label[30]; \ ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \ if (CASE_VECTOR_MODE == SImode) \ fprintf (FILE, "\t.word\t"); \ else \ fprintf (FILE, "\t.xword\t"); \ assemble_name (FILE, label); \ ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \ fputc ('-', FILE); \ assemble_name (FILE, label); \ fputc ('\n', FILE); \ } while (0) /* This is what to output before and after case-vector (both relative and absolute). If .subsection -1 works, we put case-vectors at the beginning of the current section. */ #ifdef HAVE_GAS_SUBSECTION_ORDERING #define ASM_OUTPUT_ADDR_VEC_START(FILE) \ fprintf(FILE, "\t.subsection\t-1\n") #define ASM_OUTPUT_ADDR_VEC_END(FILE) \ fprintf(FILE, "\t.previous\n") #endif /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\t.align %d\n", (1<<(LOG))) #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (sparc_align_jumps) #define LOOP_ALIGN(LABEL) (sparc_align_loops) #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t.skip %u\n", (SIZE)) /* This says how to output an assembler line to define a global common symbol. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.common ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u,\"bss\"\n", (SIZE))) /* This says how to output an assembler line to define a local common symbol. */ #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \ ( fputs ("\t.reserve ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u,\"bss\",%u\n", \ (SIZE), ((ALIGNED) / BITS_PER_UNIT))) /* A C statement (sans semicolon) to output to the stdio stream FILE the assembler definition of uninitialized global DECL named NAME whose size is SIZE bytes and alignment is ALIGN bytes. Try to use asm_output_aligned_bss to implement this macro. */ #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ do { \ fputs (".globl ", (FILE)); \ assemble_name ((FILE), (NAME)); \ fputs ("\n", (FILE)); \ ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \ } while (0) /* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) #define IDENT_ASM_OP ".ident" /* Output #ident as a .ident. */ #define ASM_OUTPUT_IDENT(FILE, NAME) \ fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME); /* Output code to add DELTA to the first argument, and then jump to FUNCTION. Used for C++ multiple inheritance. */ #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \ do { \ int big_delta = (DELTA) >= 4096 || (DELTA) < -4096; \ if (big_delta) \ fprintf (FILE, "\tset %d,%%g1\n\tadd %%o0,%%g1,%%o0\n", (DELTA)); \ /* Don't use the jmp solution unless we know the target is local to \ the application or shared object. \ XXX: Wimp out and don't actually check anything except if this is \ an embedded target where we assume there are no shared libs. */ \ if (!TARGET_CM_EMBMEDANY || flag_pic) \ { \ if (! big_delta) \ fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \ fprintf (FILE, "\tmov %%o7,%%g1\n"); \ fprintf (FILE, "\tcall "); \ assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \ fprintf (FILE, ",0\n"); \ } \ else if (TARGET_CM_EMBMEDANY) \ { \ fprintf (FILE, "\tsetx "); \ assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \ fprintf (FILE, ",%%g5,%%g1\n\tjmp %%g1\n"); \ } \ else \ { \ fprintf (FILE, "\tsethi %%hi("); \ assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \ fprintf (FILE, "),%%g1\n\tjmp %%g1+%%lo("); \ assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \ fprintf (FILE, ")\n"); \ } \ if (!TARGET_CM_EMBMEDANY || flag_pic) \ fprintf (FILE, "\tmov %%g1,%%o7\n"); \ else if (big_delta) \ fprintf (FILE, "\tnop\n"); \ else \ fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \ } while (0) /* Define the parentheses used to group arithmetic operations in assembler code. */ #define ASM_OPEN_PAREN "(" #define ASM_CLOSE_PAREN ")" /* Define results of standard character escape sequences. */ #define TARGET_BELL 007 #define TARGET_BS 010 #define TARGET_TAB 011 #define TARGET_NEWLINE 012 #define TARGET_VT 013 #define TARGET_FF 014 #define TARGET_CR 015 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_') /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { register rtx base, index = 0; \ int offset = 0; \ register rtx addr = ADDR; \ if (GET_CODE (addr) == REG) \ fputs (reg_names[REGNO (addr)], FILE); \ else if (GET_CODE (addr) == PLUS) \ { \ if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\ else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\ else \ base = XEXP (addr, 0), index = XEXP (addr, 1); \ fputs (reg_names[REGNO (base)], FILE); \ if (index == 0) \ fprintf (FILE, "%+d", offset); \ else if (GET_CODE (index) == REG) \ fprintf (FILE, "+%s", reg_names[REGNO (index)]); \ else if (GET_CODE (index) == SYMBOL_REF \ || GET_CODE (index) == CONST) \ fputc ('+', FILE), output_addr_const (FILE, index); \ else abort (); \ } \ else if (GET_CODE (addr) == MINUS \ && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \ { \ output_addr_const (FILE, XEXP (addr, 0)); \ fputs ("-(", FILE); \ output_addr_const (FILE, XEXP (addr, 1)); \ fputs ("-.)", FILE); \ } \ else if (GET_CODE (addr) == LO_SUM) \ { \ output_operand (XEXP (addr, 0), 0); \ if (TARGET_CM_MEDMID) \ fputs ("+%l44(", FILE); \ else \ fputs ("+%lo(", FILE); \ output_address (XEXP (addr, 1)); \ fputc (')', FILE); \ } \ else if (flag_pic && GET_CODE (addr) == CONST \ && GET_CODE (XEXP (addr, 0)) == MINUS \ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \ && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \ && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \ { \ addr = XEXP (addr, 0); \ output_addr_const (FILE, XEXP (addr, 0)); \ /* Group the args of the second CONST in parenthesis. */ \ fputs ("-(", FILE); \ /* Skip past the second CONST--it does nothing for us. */\ output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \ /* Close the parenthesis. */ \ fputc (')', FILE); \ } \ else \ { \ output_addr_const (FILE, addr); \ } \ } /* Define the codes that are matched by predicates in sparc.c. */ #define PREDICATE_CODES \ {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \ {"fp_zero_operand", {CONST_DOUBLE}}, \ {"intreg_operand", {SUBREG, REG}}, \ {"fcc_reg_operand", {REG}}, \ {"icc_or_fcc_reg_operand", {REG}}, \ {"restore_operand", {REG}}, \ {"call_operand", {MEM}}, \ {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \ ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \ {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE}}, \ {"symbolic_memory_operand", {SUBREG, MEM}}, \ {"label_ref_operand", {LABEL_REF}}, \ {"sp64_medium_pic_operand", {CONST}}, \ {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \ {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \ {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \ {"splittable_symbolic_memory_operand", {MEM}}, \ {"splittable_immediate_memory_operand", {MEM}}, \ {"eq_or_neq", {EQ, NE}}, \ {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \ {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \ {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \ {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \ {"cc_arithop", {AND, IOR, XOR}}, \ {"cc_arithopn", {AND, IOR}}, \ {"arith_operand", {SUBREG, REG, CONST_INT}}, \ {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \ {"arith11_operand", {SUBREG, REG, CONST_INT}}, \ {"arith10_operand", {SUBREG, REG, CONST_INT}}, \ {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \ {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \ {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \ {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \ {"small_int", {CONST_INT}}, \ {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \ {"uns_small_int", {CONST_INT}}, \ {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \ {"clobbered_register", {REG}}, \ {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \ {"zero_operand", {CONST_INT}}, \ {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \ {"const64_high_operand", {CONST_INT, CONST_DOUBLE}}, /* The number of Pmode words for the setjmp buffer. */ #define JMP_BUF_SIZE 12 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic) /* Declare functions defined in sparc.c and used in templates. */ extern void sparc_emit_set_const32 (); extern void sparc_emit_set_const64 (); extern void sparc_emit_set_symbolic_const64 (); extern int sparc_splitdi_legitimate (); extern int sparc_absnegfloat_split_legitimate (); extern char *output_cbranch (); extern const char *output_return (); extern char *output_v9branch (); extern void emit_v9_brxx_insn (); extern void finalize_pic (); extern void order_regs_for_local_alloc (); extern void output_double_int (); extern void output_function_epilogue (); extern void output_function_prologue (); extern void print_operand (); extern void sparc_flat_output_function_epilogue (); extern void sparc_flat_output_function_prologue (); extern int addrs_ok_for_ldd_peep (); extern int arith10_double_operand (); extern int arith10_operand (); extern int arith11_double_operand (); extern int arith11_operand (); extern int arith_double_operand (); extern int arith_double_4096_operand (); extern int arith_double_add_operand (); extern int arith_operand (); extern int arith_4096_operand (); extern int arith_add_operand (); extern int call_operand_address (); extern int input_operand (); extern int zero_operand (); extern int const64_operand (); extern int const64_high_operand (); extern int cc_arithop (); extern int cc_arithopn (); extern int check_pic (); extern int compute_frame_size (); extern int data_segment_operand (); extern int eligible_for_epilogue_delay (); extern int eligible_for_return_delay (); extern int emit_move_sequence (); extern int extend_op (); extern int fcc_reg_operand (); extern int fp_zero_operand (); extern int icc_or_fcc_reg_operand (); extern int label_ref_operand (); extern int mem_min_alignment (); extern int noov_compare_op (); extern int pic_address_needs_scratch (); extern int reg_or_0_operand (); extern int reg_or_nonsymb_mem_operand (); extern int reg_unused_after (); extern int register_ok_for_ldd (); extern int registers_ok_for_ldd_peep (); extern int restore_operand (); extern int short_branch (); extern int small_int (); extern int small_int_or_double (); extern int sp64_medium_pic_operand (); extern int sparc_flat_eligible_for_epilogue_delay (); extern int sparc_flat_epilogue_delay_slots (); extern int sparc_issue_rate (); extern int splittable_immediate_memory_operand (); extern int splittable_symbolic_memory_operand (); extern int sparc_adjust_cost (); extern int symbolic_memory_operand (); extern int symbolic_operand (); extern int text_segment_operand (); extern int uns_small_int (); extern int v9_regcmp_op (); extern int v9_regcmp_p (); extern unsigned long sparc_flat_compute_frame_size (); extern unsigned long sparc_type_code (); extern void sparc_function_profiler (); extern void sparc_function_block_profiler (); extern void sparc_block_profiler (); extern void sparc_function_block_profiler_exit (); extern char *sparc_v8plus_shift (); #ifdef __STDC__ /* Function used for V8+ code generation. Returns 1 if the high 32 bits of REG are 0 before INSN. */ extern int sparc_check_64 (struct rtx_def *, struct rtx_def *); extern int sparc_return_peephole_ok (struct rtx_def *, struct rtx_def *); extern int compute_frame_size (int, int); #endif /* Defined in flags.h, but insn-emit.c does not include flags.h. */ extern int flag_pic;