/* Subroutines for insn-output.c for NEC V850 series Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. Contributed by Jeff Law (law@cygnus.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include "tree.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "recog.h" #include "expr.h" #include "obstack.h" #include "toplev.h" #ifndef streq #define streq(a,b) (strcmp (a, b) == 0) #endif /* Function prototypes that cannot exist in v850.h due to dependency compilcations. */ extern rtx function_arg PROTO ((CUMULATIVE_ARGS *, enum machine_mode, tree, int)); extern int function_arg_partial_nregs PROTO ((CUMULATIVE_ARGS *, enum machine_mode, tree, int)); extern void asm_file_start PROTO ((FILE *)); extern void print_operand PROTO ((FILE *, rtx, int )); extern void print_operand_address PROTO ((FILE *, rtx)); extern void v850_output_aligned_bss PROTO ((FILE *, tree, char *, int, int)); extern void v850_output_common PROTO ((FILE *, tree, char *, int, int)); extern void v850_output_local PROTO ((FILE *, tree, char *, int, int)); extern int const_costs PROTO ((rtx, enum rtx_code)); extern char * output_move_double PROTO ((rtx *)); extern char * output_move_single PROTO ((rtx *)); extern int ep_memory_operand PROTO ((rtx, enum machine_mode, int)); extern int reg_or_0_operand PROTO ((rtx, enum machine_mode)); extern int reg_or_int5_operand PROTO ((rtx, enum machine_mode)); extern int call_address_operand PROTO ((rtx, enum machine_mode)); extern int movsi_source_operand PROTO ((rtx, enum machine_mode)); extern int power_of_two_operand PROTO ((rtx, enum machine_mode)); extern int not_power_of_two_operand PROTO ((rtx, enum machine_mode)); extern int special_symbolref_operand PROTO ((rtx, enum machine_mode)); extern void v850_reorg PROTO ((rtx)); extern void notice_update_cc PROTO ((rtx, rtx)); extern int v850_valid_machine_decl_attribute PROTO ((tree, tree, tree)); extern int v850_interrupt_function_p PROTO ((tree)); extern int pattern_is_ok_for_prologue PROTO ((rtx, enum machine_mode)); extern int pattern_is_ok_for_epilogue PROTO ((rtx, enum machine_mode)); extern int register_is_ok_for_epilogue PROTO ((rtx, enum machine_mode)); extern char * construct_save_jarl PROTO ((rtx)); extern char * construct_restore_jr PROTO ((rtx)); extern void v850_encode_data_area PROTO ((tree)); extern void v850_set_default_decl_attr PROTO ((tree)); /* Function prototypes for stupid compilers: */ static void const_double_split PROTO ((rtx, HOST_WIDE_INT *, HOST_WIDE_INT *)); static int const_costs_int PROTO ((HOST_WIDE_INT, int)); static void substitute_ep_register PROTO ((rtx, rtx, int, int, rtx *, rtx *)); static int push_data_area PROTO ((v850_data_area)); static int pop_data_area PROTO ((v850_data_area)); static int parse_ghs_pragma_token PROTO ((char *)); static int ep_memory_offset PROTO ((enum machine_mode, int)); static int mark_current_function_as_interrupt PROTO ((void)); static void v850_set_data_area PROTO ((tree, v850_data_area)); /* True if the current function has anonymous arguments. */ int current_function_anonymous_args; /* Information about the various small memory areas. */ struct small_memory_info small_memory[ (int)SMALL_MEMORY_max ] = { /* name value max physical max */ { "tda", (char *)0, 0, 256 }, { "sda", (char *)0, 0, 65536 }, { "zda", (char *)0, 0, 32768 }, }; /* True if we don't need to check any more if the current function is an interrupt handler */ static int v850_interrupt_cache_p = FALSE; /* Whether current function is an interrupt handler. */ static int v850_interrupt_p = FALSE; /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ void override_options () { int i; extern int atoi PROTO ((const char *)); /* Parse -m{s,t,z}da=nnn switches */ for (i = 0; i < (int)SMALL_MEMORY_max; i++) { if (small_memory[i].value) { if (!isdigit (*small_memory[i].value)) error ("%s=%s is not numeric.", small_memory[i].name, small_memory[i].value); else { small_memory[i].max = atoi (small_memory[i].value); if (small_memory[i].max > small_memory[i].physical_max) error ("%s=%s is too large.", small_memory[i].name, small_memory[i].value); } } } } /* Output assembly code for the start of the file. */ void asm_file_start (file) FILE *file; { output_file_directive (file, main_input_filename); } /* Return an RTX to represent where a value with mode MODE will be returned from a function. If the result is 0, the argument is pushed. */ rtx function_arg (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { rtx result = 0; int size, align; if (TARGET_GHS && !named) return NULL_RTX; if (mode == BLKmode) size = int_size_in_bytes (type); else size = GET_MODE_SIZE (mode); if (type) align = TYPE_ALIGN (type) / BITS_PER_UNIT; else align = size; cum->nbytes = (cum->nbytes + align - 1) &~(align - 1); if (cum->nbytes > 4 * UNITS_PER_WORD) return 0; if (type == NULL_TREE && cum->nbytes + size > 4 * UNITS_PER_WORD) return 0; switch (cum->nbytes / UNITS_PER_WORD) { case 0: result = gen_rtx (REG, mode, 6); break; case 1: result = gen_rtx (REG, mode, 7); break; case 2: result = gen_rtx (REG, mode, 8); break; case 3: result = gen_rtx (REG, mode, 9); break; default: result = 0; } return result; } /* Return the number of words which must be put into registers for values which are part in registers and part in memory. */ int function_arg_partial_nregs (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int size, align; if (TARGET_GHS && !named) return 0; if (mode == BLKmode) size = int_size_in_bytes (type); else size = GET_MODE_SIZE (mode); if (type) align = TYPE_ALIGN (type) / BITS_PER_UNIT; else align = size; cum->nbytes = (cum->nbytes + align - 1) &~(align - 1); if (cum->nbytes > 4 * UNITS_PER_WORD) return 0; if (cum->nbytes + size <= 4 * UNITS_PER_WORD) return 0; if (type == NULL_TREE && cum->nbytes + size > 4 * UNITS_PER_WORD) return 0; return (4 * UNITS_PER_WORD - cum->nbytes) / UNITS_PER_WORD; } /* Return the high and low words of a CONST_DOUBLE */ static void const_double_split (x, p_high, p_low) rtx x; HOST_WIDE_INT *p_high; HOST_WIDE_INT *p_low; { if (GET_CODE (x) == CONST_DOUBLE) { long t[2]; REAL_VALUE_TYPE rv; switch (GET_MODE (x)) { case DFmode: REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_DOUBLE (rv, t); *p_high = t[1]; /* since v850 is little endian */ *p_low = t[0]; /* high is second word */ return; case SFmode: REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_SINGLE (rv, *p_high); *p_low = 0; return; case VOIDmode: case DImode: *p_high = CONST_DOUBLE_HIGH (x); *p_low = CONST_DOUBLE_LOW (x); return; default: break; } } fatal_insn ("const_double_split got a bad insn:", x); } /* Return the cost of the rtx R with code CODE. */ static int const_costs_int (value, zero_cost) HOST_WIDE_INT value; int zero_cost; { if (CONST_OK_FOR_I (value)) return zero_cost; else if (CONST_OK_FOR_J (value)) return 1; else if (CONST_OK_FOR_K (value)) return 2; else return 4; } int const_costs (r, c) rtx r; enum rtx_code c; { HOST_WIDE_INT high, low; switch (c) { case CONST_INT: return const_costs_int (INTVAL (r), 0); case CONST_DOUBLE: const_double_split (r, &high, &low); if (GET_MODE (r) == SFmode) return const_costs_int (high, 1); else return const_costs_int (high, 1) + const_costs_int (low, 1); case SYMBOL_REF: case LABEL_REF: case CONST: return 2; case HIGH: return 1; default: return 4; } } /* Print operand X using operand code CODE to assembly language output file FILE. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { HOST_WIDE_INT high, low; switch (code) { case 'c': /* We use 'c' operands with symbols for .vtinherit */ if (GET_CODE (x) == SYMBOL_REF) { output_addr_const(file, x); break; } /* fall through */ case 'b': case 'B': case 'C': switch ((code == 'B' || code == 'C') ? reverse_condition (GET_CODE (x)) : GET_CODE (x)) { case NE: if (code == 'c' || code == 'C') fprintf (file, "nz"); else fprintf (file, "ne"); break; case EQ: if (code == 'c' || code == 'C') fprintf (file, "z"); else fprintf (file, "e"); break; case GE: fprintf (file, "ge"); break; case GT: fprintf (file, "gt"); break; case LE: fprintf (file, "le"); break; case LT: fprintf (file, "lt"); break; case GEU: fprintf (file, "nl"); break; case GTU: fprintf (file, "h"); break; case LEU: fprintf (file, "nh"); break; case LTU: fprintf (file, "l"); break; default: abort (); } break; case 'F': /* high word of CONST_DOUBLE */ if (GET_CODE (x) == CONST_INT) fprintf (file, "%d", (INTVAL (x) >= 0) ? 0 : -1); else if (GET_CODE (x) == CONST_DOUBLE) { const_double_split (x, &high, &low); fprintf (file, "%ld", (long) high); } else abort (); break; case 'G': /* low word of CONST_DOUBLE */ if (GET_CODE (x) == CONST_INT) fprintf (file, "%ld", (long) INTVAL (x)); else if (GET_CODE (x) == CONST_DOUBLE) { const_double_split (x, &high, &low); fprintf (file, "%ld", (long) low); } else abort (); break; case 'L': fprintf (file, "%d\n", INTVAL (x) & 0xffff); break; case 'M': fprintf (file, "%d", exact_log2 (INTVAL (x))); break; case 'O': if (special_symbolref_operand (x, VOIDmode)) { char* name; if (GET_CODE (x) == SYMBOL_REF) name = XSTR (x, 0); else if (GET_CODE (x) == CONST) name = XSTR (XEXP (XEXP (x, 0), 0), 0); else abort (); if (ZDA_NAME_P (name)) fprintf (file, "zdaoff"); else if (SDA_NAME_P (name)) fprintf (file, "sdaoff"); else if (TDA_NAME_P (name)) fprintf (file, "tdaoff"); else abort (); } else abort (); break; case 'P': if (special_symbolref_operand (x, VOIDmode)) output_addr_const (file, x); else abort (); break; case 'Q': if (special_symbolref_operand (x, VOIDmode)) { char* name; if (GET_CODE (x) == SYMBOL_REF) name = XSTR (x, 0); else if (GET_CODE (x) == CONST) name = XSTR (XEXP (XEXP (x, 0), 0), 0); else abort (); if (ZDA_NAME_P (name)) fprintf (file, "r0"); else if (SDA_NAME_P (name)) fprintf (file, "gp"); else if (TDA_NAME_P (name)) fprintf (file, "ep"); else abort (); } else abort (); break; case 'R': /* 2nd word of a double. */ switch (GET_CODE (x)) { case REG: fprintf (file, reg_names[REGNO (x) + 1]); break; case MEM: print_operand_address (file, XEXP (adj_offsettable_operand (x, 4), 0)); break; default: break; } break; case 'S': { /* if it's a reference to a TDA variable, use sst/sld vs. st/ld */ if (GET_CODE (x) == MEM && ep_memory_operand (x, GET_MODE (x), FALSE)) fputs ("s", file); break; } case 'T': { /* Like an 'S' operand above, but for unsigned loads only. */ if (GET_CODE (x) == MEM && ep_memory_operand (x, GET_MODE (x), TRUE)) fputs ("s", file); break; } case 'W': /* print the instruction suffix */ switch (GET_MODE (x)) { default: abort (); case QImode: fputs (".b", file); break; case HImode: fputs (".h", file); break; case SImode: fputs (".w", file); break; case SFmode: fputs (".w", file); break; } break; case '.': /* register r0 */ fputs (reg_names[0], file); break; case 'z': /* reg or zero */ if (x == const0_rtx) fputs (reg_names[0], file); else if (GET_CODE (x) == REG) fputs (reg_names[REGNO (x)], file); else abort (); break; default: switch (GET_CODE (x)) { case MEM: if (GET_CODE (XEXP (x, 0)) == CONST_INT) output_address (gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 0), XEXP (x, 0))); else output_address (XEXP (x, 0)); break; case REG: fputs (reg_names[REGNO (x)], file); break; case SUBREG: fputs (reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)], file); break; case CONST_INT: case SYMBOL_REF: case CONST: case LABEL_REF: case CODE_LABEL: print_operand_address (file, x); break; default: abort (); } break; } } /* Output assembly language output for the address ADDR to FILE. */ void print_operand_address (file, addr) FILE *file; rtx addr; { switch (GET_CODE (addr)) { case REG: fprintf (file, "0["); print_operand (file, addr, 0); fprintf (file, "]"); break; case LO_SUM: if (GET_CODE (XEXP (addr, 0)) == REG) { /* reg,foo */ fprintf (file, "lo("); print_operand (file, XEXP (addr, 1), 0); fprintf (file, ")["); print_operand (file, XEXP (addr, 0), 0); fprintf (file, "]"); } break; case PLUS: if (GET_CODE (XEXP (addr, 0)) == REG || GET_CODE (XEXP (addr, 0)) == SUBREG) { /* reg,foo */ print_operand (file, XEXP (addr, 1), 0); fprintf (file, "["); print_operand (file, XEXP (addr, 0), 0); fprintf (file, "]"); } else { print_operand (file, XEXP (addr, 0), 0); fprintf (file, "+"); print_operand (file, XEXP (addr, 1), 0); } break; case SYMBOL_REF: if (ENCODED_NAME_P (XSTR (addr, 0))) { char* name = XSTR (addr, 0); char* off_name; char* reg_name; if (ZDA_NAME_P (name)) { off_name = "zdaoff"; reg_name = "r0"; } else if (SDA_NAME_P (name)) { off_name = "sdaoff"; reg_name = "gp"; } else if (TDA_NAME_P (name)) { off_name = "tdaoff"; reg_name = "ep"; } else abort (); fprintf (file, "%s(", off_name); output_addr_const (file, addr); fprintf (file, ")[%s]", reg_name); } else output_addr_const (file, addr); break; case CONST: if (special_symbolref_operand (addr, VOIDmode)) { char* name = XSTR (XEXP (XEXP (addr, 0), 0), 0); char* off_name; char* reg_name; if (ZDA_NAME_P (name)) { off_name = "zdaoff"; reg_name = "r0"; } else if (SDA_NAME_P (name)) { off_name = "sdaoff"; reg_name = "gp"; } else if (TDA_NAME_P (name)) { off_name = "tdaoff"; reg_name = "ep"; } else abort (); fprintf (file, "%s(", off_name); output_addr_const (file, addr); fprintf (file, ")[%s]", reg_name); } else output_addr_const (file, addr); break; default: output_addr_const (file, addr); break; } } /* Return appropriate code to load up a 1, 2, or 4 integer/floating point value. */ char * output_move_single (operands) rtx *operands; { rtx dst = operands[0]; rtx src = operands[1]; if (REG_P (dst)) { if (REG_P (src)) return "mov %1,%0"; else if (GET_CODE (src) == CONST_INT) { HOST_WIDE_INT value = INTVAL (src); if (CONST_OK_FOR_J (value)) /* signed 5 bit immediate */ return "mov %1,%0"; else if (CONST_OK_FOR_K (value)) /* signed 16 bit immediate */ return "movea lo(%1),%.,%0"; else if (CONST_OK_FOR_L (value)) /* upper 16 bits were set */ return "movhi hi(%1),%.,%0"; else /* random constant */ return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0"; } else if (GET_CODE (src) == CONST_DOUBLE && GET_MODE (src) == SFmode) { HOST_WIDE_INT high, low; const_double_split (src, &high, &low); if (CONST_OK_FOR_J (high)) /* signed 5 bit immediate */ return "mov %F1,%0"; else if (CONST_OK_FOR_K (high)) /* signed 16 bit immediate */ return "movea lo(%F1),%.,%0"; else if (CONST_OK_FOR_L (high)) /* upper 16 bits were set */ return "movhi hi(%F1),%.,%0"; else /* random constant */ return "movhi hi(%F1),%.,%0\n\tmovea lo(%F1),%0,%0"; } else if (GET_CODE (src) == MEM) return "%S1ld%W1 %1,%0"; else if (special_symbolref_operand (src, VOIDmode)) return "movea %O1(%P1),%Q1,%0"; else if (GET_CODE (src) == LABEL_REF || GET_CODE (src) == SYMBOL_REF || GET_CODE (src) == CONST) { return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0"; } else if (GET_CODE (src) == HIGH) return "movhi hi(%1),%.,%0"; else if (GET_CODE (src) == LO_SUM) { operands[2] = XEXP (src, 0); operands[3] = XEXP (src, 1); return "movea lo(%3),%2,%0"; } } else if (GET_CODE (dst) == MEM) { if (REG_P (src)) return "%S0st%W0 %1,%0"; else if (GET_CODE (src) == CONST_INT && INTVAL (src) == 0) return "%S0st%W0 %.,%0"; else if (GET_CODE (src) == CONST_DOUBLE && CONST0_RTX (GET_MODE (dst)) == src) return "%S0st%W0 %.,%0"; } fatal_insn ("output_move_single:", gen_rtx (SET, VOIDmode, dst, src)); return ""; } /* Return appropriate code to load up an 8 byte integer or floating point value */ char * output_move_double (operands) rtx *operands; { enum machine_mode mode = GET_MODE (operands[0]); rtx dst = operands[0]; rtx src = operands[1]; if (register_operand (dst, mode) && register_operand (src, mode)) { if (REGNO (src) + 1 == REGNO (dst)) return "mov %R1,%R0\n\tmov %1,%0"; else return "mov %1,%0\n\tmov %R1,%R0"; } /* Storing 0 */ if (GET_CODE (dst) == MEM && ((GET_CODE (src) == CONST_INT && INTVAL (src) == 0) || (GET_CODE (src) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (src)))) return "st.w %.,%0\n\tst.w %.,%R0"; if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE) { HOST_WIDE_INT high_low[2]; int i; rtx xop[10]; if (GET_CODE (src) == CONST_DOUBLE) const_double_split (src, &high_low[1], &high_low[0]); else { high_low[0] = INTVAL (src); high_low[1] = (INTVAL (src) >= 0) ? 0 : -1; } for (i = 0; i < 2; i++) { xop[0] = gen_rtx (REG, SImode, REGNO (dst)+i); xop[1] = GEN_INT (high_low[i]); output_asm_insn (output_move_single (xop), xop); } return ""; } if (GET_CODE (src) == MEM) { int ptrreg = -1; int dreg = REGNO (dst); rtx inside = XEXP (src, 0); if (GET_CODE (inside) == REG) ptrreg = REGNO (inside); else if (GET_CODE (inside) == SUBREG) ptrreg = REGNO (SUBREG_REG (inside)) + SUBREG_WORD (inside); else if (GET_CODE (inside) == PLUS) ptrreg = REGNO (XEXP (inside, 0)); else if (GET_CODE (inside) == LO_SUM) ptrreg = REGNO (XEXP (inside, 0)); if (dreg == ptrreg) return "ld.w %R1,%R0\n\tld.w %1,%0"; } if (GET_CODE (src) == MEM) return "ld.w %1,%0\n\tld.w %R1,%R0"; if (GET_CODE (dst) == MEM) return "st.w %1,%0\n\tst.w %R1,%R0"; return "mov %1,%0\n\tmov %R1,%R0"; } /* Return maximum offset supported for a short EP memory reference of mode MODE and signedness UNSIGNEDP. */ static int ep_memory_offset (mode, unsignedp) enum machine_mode mode; int ATTRIBUTE_UNUSED unsignedp; { int max_offset = 0; switch (mode) { case QImode: max_offset = (1 << 7); break; case HImode: max_offset = (1 << 8); break; case SImode: case SFmode: max_offset = (1 << 8); break; default: break; } return max_offset; } /* Return true if OP is a valid short EP memory reference */ int ep_memory_operand (op, mode, unsigned_load) rtx op; enum machine_mode mode; int unsigned_load; { rtx addr, op0, op1; int max_offset; int mask; if (GET_CODE (op) != MEM) return FALSE; max_offset = ep_memory_offset (mode, unsigned_load); mask = GET_MODE_SIZE (mode) - 1; addr = XEXP (op, 0); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); switch (GET_CODE (addr)) { default: break; case SYMBOL_REF: return TDA_NAME_P (XSTR (addr, 0)); case REG: return REGNO (addr) == EP_REGNUM; case PLUS: op0 = XEXP (addr, 0); op1 = XEXP (addr, 1); if (GET_CODE (op1) == CONST_INT && INTVAL (op1) < max_offset && INTVAL (op1) >= 0 && (INTVAL (op1) & mask) == 0) { if (GET_CODE (op0) == REG && REGNO (op0) == EP_REGNUM) return TRUE; if (GET_CODE (op0) == SYMBOL_REF && TDA_NAME_P (XSTR (op0, 0))) return TRUE; } break; } return FALSE; } /* Return true if OP is either a register or 0 */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return INTVAL (op) == 0; else if (GET_CODE (op) == CONST_DOUBLE) return CONST_DOUBLE_OK_FOR_G (op); else return register_operand (op, mode); } /* Return true if OP is either a register or a signed five bit integer */ int reg_or_int5_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return CONST_OK_FOR_J (INTVAL (op)); else return register_operand (op, mode); } /* Return true if OP is a valid call operand. */ int call_address_operand (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { /* Only registers are valid call operands if TARGET_LONG_CALLS. */ if (TARGET_LONG_CALLS) return GET_CODE (op) == REG; return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG); } int special_symbolref_operand (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { if (GET_CODE (op) == SYMBOL_REF) return ENCODED_NAME_P (XSTR (op, 0)); else if (GET_CODE (op) == CONST) return (GET_CODE (XEXP (op, 0)) == PLUS && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF && ENCODED_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0)) && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT && CONST_OK_FOR_K (INTVAL (XEXP (XEXP (op, 0), 1)))); return FALSE; } int movsi_source_operand (op, mode) rtx op; enum machine_mode mode; { /* Some constants, as well as symbolic operands must be done with HIGH & LO_SUM patterns. */ if (CONSTANT_P (op) && GET_CODE (op) != HIGH && GET_CODE (op) != CONSTANT_P_RTX && !(GET_CODE (op) == CONST_INT && (CONST_OK_FOR_J (INTVAL (op)) || CONST_OK_FOR_K (INTVAL (op)) || CONST_OK_FOR_L (INTVAL (op))))) return special_symbolref_operand (op, mode); else return general_operand (op, mode); } int power_of_two_operand (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { if (GET_CODE (op) != CONST_INT) return 0; if (exact_log2 (INTVAL (op)) == -1) return 0; return 1; } int not_power_of_two_operand (op, mode) rtx op; enum machine_mode mode; { unsigned int mask; if (mode == QImode) mask = 0xff; else if (mode == HImode) mask = 0xffff; else if (mode == SImode) mask = 0xffffffff; else return 0; if (GET_CODE (op) != CONST_INT) return 0; if (exact_log2 (~INTVAL (op) & mask) == -1) return 0; return 1; } /* Substitute memory references involving a pointer, to use the ep pointer, taking care to save and preserve the ep. */ static void substitute_ep_register (first_insn, last_insn, uses, regno, p_r1, p_ep) rtx first_insn; rtx last_insn; int uses; int regno; rtx *p_r1; rtx *p_ep; { rtx reg = gen_rtx (REG, Pmode, regno); rtx insn; if (!*p_r1) { regs_ever_live[1] = 1; *p_r1 = gen_rtx (REG, Pmode, 1); *p_ep = gen_rtx (REG, Pmode, 30); } if (TARGET_DEBUG) fprintf (stderr, "\ Saved %d bytes (%d uses of register %s) in function %s, starting as insn %d, ending at %d\n", 2 * (uses - 3), uses, reg_names[regno], IDENTIFIER_POINTER (DECL_NAME (current_function_decl)), INSN_UID (first_insn), INSN_UID (last_insn)); if (GET_CODE (first_insn) == NOTE) first_insn = next_nonnote_insn (first_insn); last_insn = next_nonnote_insn (last_insn); for (insn = first_insn; insn && insn != last_insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == INSN) { rtx pattern = single_set (insn); /* Replace the memory references. */ if (pattern) { rtx *p_mem; /* Memory operands are signed by default. */ int unsignedp = FALSE; if (GET_CODE (SET_DEST (pattern)) == MEM && GET_CODE (SET_SRC (pattern)) == MEM) p_mem = (rtx *)0; else if (GET_CODE (SET_DEST (pattern)) == MEM) p_mem = &SET_DEST (pattern); else if (GET_CODE (SET_SRC (pattern)) == MEM) p_mem = &SET_SRC (pattern); else p_mem = (rtx *)0; if (p_mem) { rtx addr = XEXP (*p_mem, 0); if (GET_CODE (addr) == REG && REGNO (addr) == regno) *p_mem = change_address (*p_mem, VOIDmode, *p_ep); else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == REG && REGNO (XEXP (addr, 0)) == regno && GET_CODE (XEXP (addr, 1)) == CONST_INT && ((INTVAL (XEXP (addr, 1))) < ep_memory_offset (GET_MODE (*p_mem), unsignedp)) && ((INTVAL (XEXP (addr, 1))) >= 0)) *p_mem = change_address (*p_mem, VOIDmode, gen_rtx (PLUS, Pmode, *p_ep, XEXP (addr, 1))); } } } } /* Optimize back to back cases of ep <- r1 & r1 <- ep. */ insn = prev_nonnote_insn (first_insn); if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && SET_DEST (PATTERN (insn)) == *p_ep && SET_SRC (PATTERN (insn)) == *p_r1) delete_insn (insn); else emit_insn_before (gen_rtx (SET, Pmode, *p_r1, *p_ep), first_insn); emit_insn_before (gen_rtx (SET, Pmode, *p_ep, reg), first_insn); emit_insn_before (gen_rtx (SET, Pmode, *p_ep, *p_r1), last_insn); } /* In rare cases, correct code generation requires extra machine dependent processing between the second jump optimization pass and delayed branch scheduling. On those machines, define this macro as a C statement to act on the code starting at INSN. On the 850, we use it to implement the -mep mode to copy heavily used pointers to ep to use the implicit addressing */ void v850_reorg (start_insn) rtx start_insn; { struct { int uses; rtx first_insn; rtx last_insn; } regs[FIRST_PSEUDO_REGISTER]; int i; int use_ep = FALSE; rtx r1 = NULL_RTX; rtx ep = NULL_RTX; rtx insn; rtx pattern; /* If not ep mode, just return now */ if (!TARGET_EP) return; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { regs[i].uses = 0; regs[i].first_insn = NULL_RTX; regs[i].last_insn = NULL_RTX; } for (insn = start_insn; insn != NULL_RTX; insn = NEXT_INSN (insn)) { switch (GET_CODE (insn)) { /* End of basic block */ default: if (!use_ep) { int max_uses = -1; int max_regno = -1; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (max_uses < regs[i].uses) { max_uses = regs[i].uses; max_regno = i; } } if (max_uses > 3) substitute_ep_register (regs[max_regno].first_insn, regs[max_regno].last_insn, max_uses, max_regno, &r1, &ep); } use_ep = FALSE; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { regs[i].uses = 0; regs[i].first_insn = NULL_RTX; regs[i].last_insn = NULL_RTX; } break; case NOTE: break; case INSN: pattern = single_set (insn); /* See if there are any memory references we can shorten */ if (pattern) { rtx src = SET_SRC (pattern); rtx dest = SET_DEST (pattern); rtx mem; /* Memory operands are signed by default. */ int unsignedp = FALSE; /* We might have (SUBREG (MEM)) here, so just get rid of the subregs to make this code simpler. It is safe to call alter_subreg any time after reload. */ if (GET_CODE (dest) == SUBREG) dest = alter_subreg (dest); if (GET_CODE (src) == SUBREG) src = alter_subreg (src); if (GET_CODE (dest) == MEM && GET_CODE (src) == MEM) mem = NULL_RTX; else if (GET_CODE (dest) == MEM) mem = dest; else if (GET_CODE (src) == MEM) mem = src; else mem = NULL_RTX; if (mem && ep_memory_operand (mem, GET_MODE (mem), unsignedp)) use_ep = TRUE; else if (!use_ep && mem && GET_MODE_SIZE (GET_MODE (mem)) <= UNITS_PER_WORD) { rtx addr = XEXP (mem, 0); int regno = -1; int short_p; if (GET_CODE (addr) == REG) { short_p = TRUE; regno = REGNO (addr); } else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == REG && GET_CODE (XEXP (addr, 1)) == CONST_INT && ((INTVAL (XEXP (addr, 1))) < ep_memory_offset (GET_MODE (mem), unsignedp)) && ((INTVAL (XEXP (addr, 1))) >= 0)) { short_p = TRUE; regno = REGNO (XEXP (addr, 0)); } else short_p = FALSE; if (short_p) { regs[regno].uses++; regs[regno].last_insn = insn; if (!regs[regno].first_insn) regs[regno].first_insn = insn; } } /* Loading up a register in the basic block zaps any savings for the register */ if (GET_CODE (dest) == REG) { enum machine_mode mode = GET_MODE (dest); int regno; int endregno; regno = REGNO (dest); endregno = regno + HARD_REGNO_NREGS (regno, mode); if (!use_ep) { /* See if we can use the pointer before this modification. */ int max_uses = -1; int max_regno = -1; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (max_uses < regs[i].uses) { max_uses = regs[i].uses; max_regno = i; } } if (max_uses > 3 && max_regno >= regno && max_regno < endregno) { substitute_ep_register (regs[max_regno].first_insn, regs[max_regno].last_insn, max_uses, max_regno, &r1, &ep); /* Since we made a substitution, zap all remembered registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { regs[i].uses = 0; regs[i].first_insn = NULL_RTX; regs[i].last_insn = NULL_RTX; } } } for (i = regno; i < endregno; i++) { regs[i].uses = 0; regs[i].first_insn = NULL_RTX; regs[i].last_insn = NULL_RTX; } } } } } } /* # of registers saved by the interrupt handler. */ #define INTERRUPT_FIXED_NUM 4 /* # of bytes for registers saved by the interrupt handler. */ #define INTERRUPT_FIXED_SAVE_SIZE (4 * INTERRUPT_FIXED_NUM) /* # of registers saved in register parameter area. */ #define INTERRUPT_REGPARM_NUM 4 /* # of words saved for other registers. */ #define INTERRUPT_ALL_SAVE_NUM \ (30 - INTERRUPT_FIXED_NUM + INTERRUPT_REGPARM_NUM) #define INTERRUPT_ALL_SAVE_SIZE (4 * INTERRUPT_ALL_SAVE_NUM) int compute_register_save_size (p_reg_saved) long *p_reg_saved; { int size = 0; int i; int interrupt_handler = v850_interrupt_function_p (current_function_decl); int call_p = regs_ever_live [LINK_POINTER_REGNUM]; long reg_saved = 0; /* Count the return pointer if we need to save it. */ if (profile_flag && !call_p) regs_ever_live [LINK_POINTER_REGNUM] = call_p = 1; /* Count space for the register saves. */ if (interrupt_handler) { for (i = 0; i <= 31; i++) switch (i) { default: if (regs_ever_live[i] || call_p) { size += 4; reg_saved |= 1L << i; } break; /* We don't save/restore r0 or the stack pointer */ case 0: case STACK_POINTER_REGNUM: break; /* For registers with fixed use, we save them, set them to the appropriate value, and then restore them. These registers are handled specially, so don't list them on the list of registers to save in the prologue. */ case 1: /* temp used to hold ep */ case 4: /* gp */ case 10: /* temp used to call interrupt save/restore */ case EP_REGNUM: /* ep */ size += 4; break; } } else { /* Find the first register that needs to be saved. */ for (i = 0; i <= 31; i++) if (regs_ever_live[i] && ((! call_used_regs[i]) || i == LINK_POINTER_REGNUM)) break; /* If it is possible that an out-of-line helper function might be used to generate the prologue for the current function, then we need to cover the possibility that such a helper function will be used, despite the fact that there might be gaps in the list of registers that need to be saved. To detect this we note that the helper functions always push at least register r29 if the link register is not used, and at least registers r27 - r31 if the link register is used (and provided that the function is not an interrupt handler). */ if (TARGET_PROLOG_FUNCTION && (i == 2 || i >= 20) && regs_ever_live[LINK_POINTER_REGNUM] ? (i < 28) : (i < 30)) { if (i == 2) { size += 4; reg_saved |= 1L << i; i = 20; } /* Helper functions save all registers between the starting register and the last register, regardless of whether they are actually used by the function or not. */ for (; i <= 29; i++) { size += 4; reg_saved |= 1L << i; } if (regs_ever_live [LINK_POINTER_REGNUM]) { size += 4; reg_saved |= 1L << LINK_POINTER_REGNUM; } } else { for (; i <= 31; i++) if (regs_ever_live[i] && ((! call_used_regs[i]) || i == LINK_POINTER_REGNUM)) { size += 4; reg_saved |= 1L << i; } } } if (p_reg_saved) *p_reg_saved = reg_saved; return size; } int compute_frame_size (size, p_reg_saved) int size; long *p_reg_saved; { extern int current_function_outgoing_args_size; return (size + compute_register_save_size (p_reg_saved) + current_function_outgoing_args_size); } void expand_prologue () { unsigned int i; int offset; unsigned int size = get_frame_size (); unsigned int actual_fsize; unsigned int init_stack_alloc = 0; rtx save_regs[32]; rtx save_all; unsigned int num_save; unsigned int default_stack; int code; int interrupt_handler = v850_interrupt_function_p (current_function_decl); long reg_saved = 0; actual_fsize = compute_frame_size (size, ®_saved); /* Save/setup global registers for interrupt functions right now */ if (interrupt_handler) { emit_insn (gen_save_interrupt ()); actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE; if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) actual_fsize -= INTERRUPT_ALL_SAVE_SIZE; } /* Save arg registers to the stack if necessary. */ else if (current_function_anonymous_args) { if (TARGET_PROLOG_FUNCTION) { emit_insn (gen_save_r6_r9 ()); } else { offset = 0; for (i = 6; i < 10; i++) { emit_move_insn (gen_rtx (MEM, SImode, plus_constant (stack_pointer_rtx, offset)), gen_rtx (REG, SImode, i)); offset += 4; } } } /* Identify all of the saved registers */ num_save = 0; default_stack = 0; for (i = 1; i < 31; i++) { if (((1L << i) & reg_saved) != 0) save_regs[num_save++] = gen_rtx (REG, Pmode, i); } /* If the return pointer is saved, the helper functions also allocate 16 bytes of stack for arguments to be saved in. */ if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) { save_regs[num_save++] = gen_rtx (REG, Pmode, LINK_POINTER_REGNUM); default_stack = 16; } /* See if we have an insn that allocates stack space and saves the particular registers we want to. */ save_all = NULL_RTX; if (TARGET_PROLOG_FUNCTION && num_save > 0 && actual_fsize >= default_stack) { int alloc_stack = (4 * num_save) + default_stack; int unalloc_stack = actual_fsize - alloc_stack; int save_func_len = 4; int save_normal_len; if (unalloc_stack) save_func_len += CONST_OK_FOR_J (unalloc_stack) ? 2 : 4; /* see if we would have used ep to save the stack */ if (TARGET_EP && num_save > 3 && (unsigned)actual_fsize < 255) save_normal_len = (3 * 2) + (2 * num_save); else save_normal_len = 4 * num_save; save_normal_len += CONST_OK_FOR_J (actual_fsize) ? 2 : 4; /* Don't bother checking if we don't actually save any space. This happens for instance if one register is saved and additional stack space is allocated. */ if (save_func_len < save_normal_len) { save_all = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num_save + (TARGET_V850 ? 2 : 1))); XVECEXP (save_all, 0, 0) = gen_rtx (SET, VOIDmode, stack_pointer_rtx, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-alloc_stack))); if (TARGET_V850) { XVECEXP (save_all, 0, num_save + 1) = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, Pmode, 10)); } offset = - default_stack; for (i = 0; i < num_save; i++) { XVECEXP (save_all, 0, i + 1) = gen_rtx (SET, VOIDmode, gen_rtx (MEM, Pmode, plus_constant (stack_pointer_rtx, offset)), save_regs[i]); offset -= 4; } code = recog (save_all, NULL_RTX, NULL_PTR); if (code >= 0) { rtx insn = emit_insn (save_all); INSN_CODE (insn) = code; actual_fsize -= alloc_stack; if (TARGET_DEBUG) fprintf (stderr, "\ Saved %d bytes via prologue function (%d vs. %d) for function %s\n", save_normal_len - save_func_len, save_normal_len, save_func_len, IDENTIFIER_POINTER (DECL_NAME (current_function_decl))); } else save_all = NULL_RTX; } } /* If no prolog save function is available, store the registers the old fashioned way (one by one). */ if (!save_all) { /* Special case interrupt functions that save all registers for a call. */ if (interrupt_handler && ((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) { emit_insn (gen_save_all_interrupt ()); } else { /* If the stack is too big, allocate it in chunks so we can do the register saves. We use the register save size so we use the ep register. */ if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize)) init_stack_alloc = compute_register_save_size (NULL); else init_stack_alloc = actual_fsize; /* Save registers at the beginning of the stack frame */ offset = init_stack_alloc - 4; if (init_stack_alloc) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-init_stack_alloc))); /* Save the return pointer first. */ if (num_save > 0 && REGNO (save_regs[num_save-1]) == LINK_POINTER_REGNUM) { emit_move_insn (gen_rtx (MEM, SImode, plus_constant (stack_pointer_rtx, offset)), save_regs[--num_save]); offset -= 4; } for (i = 0; i < num_save; i++) { emit_move_insn (gen_rtx (MEM, SImode, plus_constant (stack_pointer_rtx, offset)), save_regs[i]); offset -= 4; } } } /* Allocate the rest of the stack that was not allocated above (either it is > 32K or we just called a function to save the registers and needed more stack. */ if (actual_fsize > init_stack_alloc) { int diff = actual_fsize - init_stack_alloc; if (CONST_OK_FOR_K (diff)) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-diff))); else { rtx reg = gen_rtx (REG, Pmode, 12); emit_move_insn (reg, GEN_INT (-diff)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg)); } } /* If we need a frame pointer, set it up now. */ if (frame_pointer_needed) emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); } void expand_epilogue () { unsigned int i; int offset; unsigned int size = get_frame_size (); long reg_saved = 0; unsigned int actual_fsize = compute_frame_size (size, ®_saved); unsigned int init_stack_free = 0; rtx restore_regs[32]; rtx restore_all; unsigned int num_restore; unsigned int default_stack; int code; int interrupt_handler = v850_interrupt_function_p (current_function_decl); /* Eliminate the initial stack stored by interrupt functions. */ if (interrupt_handler) { actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE; if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) actual_fsize -= INTERRUPT_ALL_SAVE_SIZE; } /* Cut off any dynamic stack created. */ if (frame_pointer_needed) emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx); /* Identify all of the saved registers */ num_restore = 0; default_stack = 0; for (i = 1; i < 31; i++) { if (((1L << i) & reg_saved) != 0) restore_regs[num_restore++] = gen_rtx (REG, Pmode, i); } /* If the return pointer is saved, the helper functions also allocate 16 bytes of stack for arguments to be saved in. */ if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) { restore_regs[num_restore++] = gen_rtx (REG, Pmode, LINK_POINTER_REGNUM); default_stack = 16; } /* See if we have an insn that restores the particular registers we want to. */ restore_all = NULL_RTX; if (TARGET_PROLOG_FUNCTION && num_restore > 0 && actual_fsize >= default_stack && !interrupt_handler) { int alloc_stack = (4 * num_restore) + default_stack; int unalloc_stack = actual_fsize - alloc_stack; int restore_func_len = 4; int restore_normal_len; if (unalloc_stack) restore_func_len += CONST_OK_FOR_J (unalloc_stack) ? 2 : 4; /* see if we would have used ep to restore the registers */ if (TARGET_EP && num_restore > 3 && (unsigned)actual_fsize < 255) restore_normal_len = (3 * 2) + (2 * num_restore); else restore_normal_len = 4 * num_restore; restore_normal_len += (CONST_OK_FOR_J (actual_fsize) ? 2 : 4) + 2; /* Don't bother checking if we don't actually save any space. */ if (restore_func_len < restore_normal_len) { restore_all = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num_restore + 2)); XVECEXP (restore_all, 0, 0) = gen_rtx (RETURN, VOIDmode); XVECEXP (restore_all, 0, 1) = gen_rtx (SET, VOIDmode, stack_pointer_rtx, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (alloc_stack))); offset = alloc_stack - 4; for (i = 0; i < num_restore; i++) { XVECEXP (restore_all, 0, i+2) = gen_rtx (SET, VOIDmode, restore_regs[i], gen_rtx (MEM, Pmode, plus_constant (stack_pointer_rtx, offset))); offset -= 4; } code = recog (restore_all, NULL_RTX, NULL_PTR); if (code >= 0) { rtx insn; actual_fsize -= alloc_stack; if (actual_fsize) { if (CONST_OK_FOR_K (actual_fsize)) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (actual_fsize))); else { rtx reg = gen_rtx (REG, Pmode, 12); emit_move_insn (reg, GEN_INT (actual_fsize)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg)); } } insn = emit_jump_insn (restore_all); INSN_CODE (insn) = code; if (TARGET_DEBUG) fprintf (stderr, "\ Saved %d bytes via epilogue function (%d vs. %d) in function %s\n", restore_normal_len - restore_func_len, restore_normal_len, restore_func_len, IDENTIFIER_POINTER (DECL_NAME (current_function_decl))); } else restore_all = NULL_RTX; } } /* If no epilog save function is available, restore the registers the old fashioned way (one by one). */ if (!restore_all) { /* If the stack is large, we need to cut it down in 2 pieces. */ if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize)) init_stack_free = 4 * num_restore; else init_stack_free = actual_fsize; /* Deallocate the rest of the stack if it is > 32K. */ if (actual_fsize > init_stack_free) { int diff; diff = actual_fsize - ((interrupt_handler) ? 0 : init_stack_free); if (CONST_OK_FOR_K (diff)) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (diff))); else { rtx reg = gen_rtx (REG, Pmode, 12); emit_move_insn (reg, GEN_INT (diff)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg)); } } /* Special case interrupt functions that save all registers for a call. */ if (interrupt_handler && ((1L << LINK_POINTER_REGNUM) & reg_saved) != 0) { emit_insn (gen_restore_all_interrupt ()); } else { /* Restore registers from the beginning of the stack frame */ offset = init_stack_free - 4; /* Restore the return pointer first. */ if (num_restore > 0 && REGNO (restore_regs [num_restore - 1]) == LINK_POINTER_REGNUM) { emit_move_insn (restore_regs[--num_restore], gen_rtx (MEM, SImode, plus_constant (stack_pointer_rtx, offset))); offset -= 4; } for (i = 0; i < num_restore; i++) { emit_move_insn (restore_regs[i], gen_rtx (MEM, SImode, plus_constant (stack_pointer_rtx, offset))); offset -= 4; } /* Cut back the remainder of the stack. */ if (init_stack_free) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (init_stack_free))); } /* And return or use reti for interrupt handlers. */ if (interrupt_handler) emit_jump_insn (gen_restore_interrupt ()); else if (actual_fsize) emit_jump_insn (gen_return_internal ()); else emit_jump_insn (gen_return ()); } current_function_anonymous_args = 0; v850_interrupt_cache_p = FALSE; v850_interrupt_p = FALSE; } /* Update the condition code from the insn. */ void notice_update_cc (body, insn) rtx body; rtx insn; { switch (get_attr_cc (insn)) { case CC_NONE: /* Insn does not affect CC at all. */ break; case CC_NONE_0HIT: /* Insn does not change CC, but the 0'th operand has been changed. */ if (cc_status.value1 != 0 && reg_overlap_mentioned_p (recog_operand[0], cc_status.value1)) cc_status.value1 = 0; break; case CC_SET_ZN: /* Insn sets the Z,N flags of CC to recog_operand[0]. V,C is in an unusable state. */ CC_STATUS_INIT; cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY; cc_status.value1 = recog_operand[0]; break; case CC_SET_ZNV: /* Insn sets the Z,N,V flags of CC to recog_operand[0]. C is in an unusable state. */ CC_STATUS_INIT; cc_status.flags |= CC_NO_CARRY; cc_status.value1 = recog_operand[0]; break; case CC_COMPARE: /* The insn is a compare instruction. */ CC_STATUS_INIT; cc_status.value1 = SET_SRC (body); break; case CC_CLOBBER: /* Insn doesn't leave CC in a usable state. */ CC_STATUS_INIT; break; } } /* Retrieve the data area that has been chosen for the given decl. */ v850_data_area v850_get_data_area (decl) tree decl; { if (lookup_attribute ("sda", DECL_MACHINE_ATTRIBUTES (decl)) != NULL_TREE) return DATA_AREA_SDA; if (lookup_attribute ("tda", DECL_MACHINE_ATTRIBUTES (decl)) != NULL_TREE) return DATA_AREA_TDA; if (lookup_attribute ("zda", DECL_MACHINE_ATTRIBUTES (decl)) != NULL_TREE) return DATA_AREA_ZDA; return DATA_AREA_NORMAL; } /* Store the indicated data area in the decl's attributes. */ static void v850_set_data_area (decl, data_area) tree decl; v850_data_area data_area; { tree name; switch (data_area) { case DATA_AREA_SDA: name = get_identifier ("sda"); break; case DATA_AREA_TDA: name = get_identifier ("tda"); break; case DATA_AREA_ZDA: name = get_identifier ("zda"); break; default: return; } DECL_MACHINE_ATTRIBUTES (decl) = tree_cons (name, NULL, DECL_MACHINE_ATTRIBUTES (decl)); } /* Return nonzero if ATTR is a valid attribute for DECL. ARGS are the arguments supplied with ATTR. */ int v850_valid_machine_decl_attribute (decl, attr, args) tree decl; tree attr; tree args; { v850_data_area data_area; v850_data_area area; if (args != NULL_TREE) return 0; if (is_attribute_p ("interrupt_handler", attr) || is_attribute_p ("interrupt", attr)) return TREE_CODE (decl) == FUNCTION_DECL; /* Implement data area attribute. */ if (is_attribute_p ("sda", attr)) data_area = DATA_AREA_SDA; else if (is_attribute_p ("tda", attr)) data_area = DATA_AREA_TDA; else if (is_attribute_p ("zda", attr)) data_area = DATA_AREA_ZDA; else return 0; switch (TREE_CODE (decl)) { case VAR_DECL: if (current_function_decl != NULL_TREE) error_with_decl (decl, "\ a data area attribute cannot be specified for local variables"); /* Drop through. */ case FUNCTION_DECL: area = v850_get_data_area (decl); if (area != DATA_AREA_NORMAL && data_area != area) error_with_decl (decl, "\ data area of '%s' conflicts with previous declaration"); return 1; default: break; } return 0; } /* Return nonzero if FUNC is an interrupt function as specified by the "interrupt" attribute. */ int v850_interrupt_function_p (func) tree func; { tree a; int ret = 0; if (v850_interrupt_cache_p) return v850_interrupt_p; if (TREE_CODE (func) != FUNCTION_DECL) return 0; a = lookup_attribute ("interrupt_handler", DECL_MACHINE_ATTRIBUTES (func)); if (a != NULL_TREE) ret = 1; else { a = lookup_attribute ("interrupt", DECL_MACHINE_ATTRIBUTES (func)); ret = a != NULL_TREE; } /* Its not safe to trust global variables until after function inlining has been done. */ if (reload_completed | reload_in_progress) v850_interrupt_p = ret; return ret; } extern struct obstack * saveable_obstack; void v850_encode_data_area (decl) tree decl; { char * str = XSTR (XEXP (DECL_RTL (decl), 0), 0); int len = strlen (str); char * newstr; /* Map explict sections into the appropriate attribute */ if (v850_get_data_area (decl) == DATA_AREA_NORMAL) { if (DECL_SECTION_NAME (decl)) { char * name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); if (streq (name, ".zdata") || streq (name, ".zbss")) v850_set_data_area (decl, DATA_AREA_ZDA); else if (streq (name, ".sdata") || streq (name, ".sbss")) v850_set_data_area (decl, DATA_AREA_SDA); else if (streq (name, ".tdata")) v850_set_data_area (decl, DATA_AREA_TDA); } /* If no attribute, support -m{zda,sda,tda}=n */ else { int size = int_size_in_bytes (TREE_TYPE (decl)); if (size <= 0) ; else if (size <= small_memory [(int) SMALL_MEMORY_TDA].max) v850_set_data_area (decl, DATA_AREA_TDA); else if (size <= small_memory [(int) SMALL_MEMORY_SDA].max) v850_set_data_area (decl, DATA_AREA_SDA); else if (size <= small_memory [(int) SMALL_MEMORY_ZDA].max) v850_set_data_area (decl, DATA_AREA_ZDA); } if (v850_get_data_area (decl) == DATA_AREA_NORMAL) return; } newstr = obstack_alloc (saveable_obstack, len + 2); strcpy (newstr + 1, str); switch (v850_get_data_area (decl)) { case DATA_AREA_ZDA: *newstr = ZDA_NAME_FLAG_CHAR; break; case DATA_AREA_TDA: *newstr = TDA_NAME_FLAG_CHAR; break; case DATA_AREA_SDA: *newstr = SDA_NAME_FLAG_CHAR; break; default: abort (); } XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr; } /* Return true if the given RTX is a register which can be restored by a function epilogue. */ int register_is_ok_for_epilogue (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { /* The save/restore routines can only cope with registers 2, and 20 - 31 */ return (GET_CODE (op) == REG) && (((REGNO (op) >= 20) && REGNO (op) <= 31) || REGNO (op) == 2); } /* Return non-zero if the given RTX is suitable for collapsing into jump to a function epilogue. */ int pattern_is_ok_for_epilogue (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { int count = XVECLEN (op, 0); int i; /* If there are no registers to restore then the function epilogue is not suitable. */ if (count <= 2) return 0; /* The pattern matching has already established that we are performing a function epilogue and that we are popping at least one register. We must now check the remaining entries in the vector to make sure that they are also register pops. There is no good reason why there should ever be anything else in this vector, but being paranoid always helps... The test below performs the C equivalent of this machine description pattern match: (set (match_operand:SI n "register_is_ok_for_epilogue" "r") (mem:SI (plus:SI (reg:SI 3) (match_operand:SI n "immediate_operand" "i")))) */ for (i = 3; i < count; i++) { rtx vector_element = XVECEXP (op, 0, i); rtx dest; rtx src; rtx plus; if (GET_CODE (vector_element) != SET) return 0; dest = SET_DEST (vector_element); src = SET_SRC (vector_element); if (GET_CODE (dest) != REG || GET_MODE (dest) != SImode || ! register_is_ok_for_epilogue (dest, SImode) || GET_CODE (src) != MEM || GET_MODE (src) != SImode) return 0; plus = XEXP (src, 0); if (GET_CODE (plus) != PLUS || GET_CODE (XEXP (plus, 0)) != REG || GET_MODE (XEXP (plus, 0)) != SImode || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM || GET_CODE (XEXP (plus, 1)) != CONST_INT) return 0; } return 1; } /* Construct a JR instruction to a routine that will perform the equivalent of the RTL passed in as an argument. This RTL is a function epilogue that pops registers off the stack and possibly releases some extra stack space as well. The code has already verified that the RTL matches these requirements. */ char * construct_restore_jr (op) rtx op; { int count = XVECLEN (op, 0); int stack_bytes; unsigned long int mask; unsigned long int first; unsigned long int last; int i; static char buff [100]; /* XXX */ if (count <= 2) { error ("Bogus JR construction: %d\n", count); return NULL; } /* Work out how many bytes to pop off the stack before retrieving registers. */ if (GET_CODE (XVECEXP (op, 0, 1)) != SET) abort (); if (GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) != PLUS) abort (); if (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1)) != CONST_INT) abort (); stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1)); /* Each pop will remove 4 bytes from the stack... */ stack_bytes -= (count - 2) * 4; /* Make sure that the amount we are popping either 0 or 16 bytes. */ if (stack_bytes != 0 && stack_bytes != 16) { error ("Bad amount of stack space removal: %d", stack_bytes); return NULL; } /* Now compute the bit mask of registers to push. */ mask = 0; for (i = 2; i < count; i++) { rtx vector_element = XVECEXP (op, 0, i); if (GET_CODE (vector_element) != SET) abort (); if (GET_CODE (SET_DEST (vector_element)) != REG) abort (); if (! register_is_ok_for_epilogue (SET_DEST (vector_element), SImode)) abort (); mask |= 1 << REGNO (SET_DEST (vector_element)); } /* Scan for the first register to pop. */ for (first = 0; first < 32; first++) { if (mask & (1 << first)) break; } if (first >= 32) abort (); /* Discover the last register to pop. */ if (mask & (1 << LINK_POINTER_REGNUM)) { if (stack_bytes != 16) abort (); last = LINK_POINTER_REGNUM; } else { if (stack_bytes != 0) abort (); if ((mask & (1 << 29)) == 0) abort (); last = 29; } /* Note, it is possible to have gaps in the register mask. We ignore this here, and generate a JR anyway. We will be popping more registers than is strictly necessary, but it does save code space. */ if (TARGET_LONG_CALLS) { char name[40]; if (first == last) sprintf (name, "__return_%s", reg_names [first]); else sprintf (name, "__return_%s_%s", reg_names [first], reg_names [last]); sprintf (buff, "movhi hi(%s), r0, r6\n\tmovea lo(%s), r6, r6\n\tjmp r6", name, name); } else { if (first == last) sprintf (buff, "jr __return_%s", reg_names [first]); else sprintf (buff, "jr __return_%s_%s", reg_names [first], reg_names [last]); } return buff; } /* Return non-zero if the given RTX is suitable for collapsing into a jump to a function prologue. */ int pattern_is_ok_for_prologue (op, mode) rtx op; enum machine_mode ATTRIBUTE_UNUSED mode; { int count = XVECLEN (op, 0); int i; rtx vector_element; /* If there are no registers to save then the function prologue is not suitable. */ if (count <= 2) return 0; /* The pattern matching has already established that we are adjusting the stack and pushing at least one register. We must now check that the remaining entries in the vector to make sure that they are also register pushes, except for the last entry which should be a CLOBBER of r10. The test below performs the C equivalent of this machine description pattern match: (set (mem:SI (plus:SI (reg:SI 3) (match_operand:SI 2 "immediate_operand" "i"))) (match_operand:SI 3 "register_is_ok_for_epilogue" "r")) */ for (i = 2; i < count - 1; i++) { rtx dest; rtx src; rtx plus; vector_element = XVECEXP (op, 0, i); if (GET_CODE (vector_element) != SET) return 0; dest = SET_DEST (vector_element); src = SET_SRC (vector_element); if (GET_CODE (dest) != MEM || GET_MODE (dest) != SImode || GET_CODE (src) != REG || GET_MODE (src) != SImode || ! register_is_ok_for_epilogue (src, SImode)) return 0; plus = XEXP (dest, 0); if ( GET_CODE (plus) != PLUS || GET_CODE (XEXP (plus, 0)) != REG || GET_MODE (XEXP (plus, 0)) != SImode || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM || GET_CODE (XEXP (plus, 1)) != CONST_INT) return 0; /* If the register is being pushed somewhere other than the stack space just acquired by the first operand then abandon this quest. Note: the test is <= because both values are negative. */ if (INTVAL (XEXP (plus, 1)) <= INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1))) { return 0; } } /* Make sure that the last entry in the vector is a clobber. */ vector_element = XVECEXP (op, 0, i); if (GET_CODE (vector_element) != CLOBBER || GET_CODE (XEXP (vector_element, 0)) != REG || REGNO (XEXP (vector_element, 0)) != 10) return 0; return 1; } /* Construct a JARL instruction to a routine that will perform the equivalent of the RTL passed as a parameter. This RTL is a function prologue that saves some of the registers r20 - r31 onto the stack, and possibly acquires some stack space as well. The code has already verified that the RTL matches these requirements. */ char * construct_save_jarl (op) rtx op; { int count = XVECLEN (op, 0); int stack_bytes; unsigned long int mask; unsigned long int first; unsigned long int last; int i; static char buff [100]; /* XXX */ if (count <= 2) { error ("Bogus JARL construction: %d\n", count); return NULL; } /* Paranoia. */ if (GET_CODE (XVECEXP (op, 0, 0)) != SET) abort (); if (GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != PLUS) abort (); if (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0)) != REG) abort (); if (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)) != CONST_INT) abort (); /* Work out how many bytes to push onto the stack after storing the registers. */ stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)); /* Each push will put 4 bytes from the stack... */ stack_bytes += (count - 2) * 4; /* Make sure that the amount we are popping either 0 or 16 bytes. */ if (stack_bytes != 0 && stack_bytes != -16) { error ("Bad amount of stack space removal: %d", stack_bytes); return NULL; } /* Now compute the bit mask of registers to push. */ mask = 0; for (i = 1; i < count - 1; i++) { rtx vector_element = XVECEXP (op, 0, i); if (GET_CODE (vector_element) != SET) abort (); if (GET_CODE (SET_SRC (vector_element)) != REG) abort (); if (! register_is_ok_for_epilogue (SET_SRC (vector_element), SImode)) abort (); mask |= 1 << REGNO (SET_SRC (vector_element)); } /* Scan for the first register to push. */ for (first = 0; first < 32; first++) { if (mask & (1 << first)) break; } if (first >= 32) abort (); /* Discover the last register to push. */ if (mask & (1 << LINK_POINTER_REGNUM)) { if (stack_bytes != -16) abort (); last = LINK_POINTER_REGNUM; } else { if (stack_bytes != 0) abort (); if ((mask & (1 << 29)) == 0) abort (); last = 29; } /* Note, it is possible to have gaps in the register mask. We ignore this here, and generate a JARL anyway. We will be pushing more registers than is strictly necessary, but it does save code space. */ if (TARGET_LONG_CALLS) { char name[40]; if (first == last) sprintf (name, "__save_%s", reg_names [first]); else sprintf (name, "__save_%s_%s", reg_names [first], reg_names [last]); sprintf (buff, "movhi hi(%s), r0, r11\n\tmovea lo(%s), r11, r11\n\tjarl .+4, r10\n\tadd 4, r10\n\tjmp r11", name, name); } else { if (first == last) sprintf (buff, "jarl __save_%s, r10", reg_names [first]); else sprintf (buff, "jarl __save_%s_%s, r10", reg_names [first], reg_names [last]); } return buff; } extern tree last_assemble_variable_decl; extern int size_directive_output; /* A version of asm_output_aligned_bss() that copes with the special data areas of the v850. */ void v850_output_aligned_bss (file, decl, name, size, align) FILE * file; tree decl; char * name; int size; int align; { ASM_GLOBALIZE_LABEL (file, name); switch (v850_get_data_area (decl)) { case DATA_AREA_ZDA: zbss_section (); break; case DATA_AREA_SDA: sbss_section (); break; case DATA_AREA_TDA: tdata_section (); default: bss_section (); break; } ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ ASM_OUTPUT_SKIP (file, size ? size : 1); } /* Called via the macro ASM_OUTPUT_DECL_COMMON */ void v850_output_common (file, decl, name, size, align) FILE * file; tree decl; char * name; int size; int align; { if (decl == NULL_TREE) { fprintf (file, "\t%s\t", COMMON_ASM_OP); } else { switch (v850_get_data_area (decl)) { case DATA_AREA_ZDA: fprintf (file, "\t%s\t", ZCOMMON_ASM_OP); break; case DATA_AREA_SDA: fprintf (file, "\t%s\t", SCOMMON_ASM_OP); break; case DATA_AREA_TDA: fprintf (file, "\t%s\t", TCOMMON_ASM_OP); break; default: fprintf (file, "\t%s\t", COMMON_ASM_OP); break; } } assemble_name (file, name); fprintf (file, ",%u,%u\n", size, align / BITS_PER_UNIT); } /* Called via the macro ASM_OUTPUT_DECL_LOCAL */ void v850_output_local (file, decl, name, size, align) FILE * file; tree decl; char * name; int size; int align; { fprintf (file, "\t%s\t", LOCAL_ASM_OP); assemble_name (file, name); fprintf (file, "\n"); ASM_OUTPUT_ALIGNED_DECL_COMMON (file, decl, name, size, align); } /* The following code is for handling pragmas supported by the v850 compiler produced by Green Hills Software. This is at the specific request of a customer. */ /* Track the current data area set by the data area pragma (which can be nested). Tested by check_default_data_area. */ typedef struct data_area_stack_element { struct data_area_stack_element * prev; v850_data_area data_area; /* current default data area. */ } data_area_stack_element; static data_area_stack_element * data_area_stack = NULL; /* Names of the various data areas used on the v850. */ static tree GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; static tree GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; /* Push a data area onto the stack. */ static int push_data_area (data_area) v850_data_area data_area; { data_area_stack_element * elem; elem = (data_area_stack_element *) xmalloc (sizeof (* elem)); if (elem == NULL) return 0; elem->prev = data_area_stack; elem->data_area = data_area; data_area_stack = elem; return 1; } /* Remove a data area from the stack. */ static int pop_data_area (data_area) v850_data_area data_area; { if (data_area_stack == NULL) warning ("#pragma GHS endXXXX found without previous startXXX"); else if (data_area != data_area_stack->data_area) warning ("#pragma GHS endXXX does not match previous startXXX"); else { data_area_stack_element * elem; elem = data_area_stack; data_area_stack = data_area_stack->prev; free (elem); return 1; } return 0; } /* Set the machine specific 'interrupt' attribute on the current function. */ static int mark_current_function_as_interrupt () { tree name; if (current_function_decl == NULL_TREE) { warning ("Cannot set interrupt attribute: no current function"); return 0; } name = get_identifier ("interrupt"); if (name == NULL_TREE || TREE_CODE (name) != IDENTIFIER_NODE) { warning ("Cannot set interrupt attribute: no such identifier"); return 0; } return valid_machine_attribute (name, NULL_TREE, current_function_decl, NULL_TREE); } /* Parse STRING as part of a GHS pragma. Returns 0 if the pragma has been parsed and there was a problem, non-zero in all other cases. */ static int parse_ghs_pragma_token (string) char * string; { static enum v850_pragma_state state = V850_PS_START; static enum v850_pragma_type type = V850_PT_UNKNOWN; static v850_data_area data_area = DATA_AREA_NORMAL; static char * data_area_name; static enum GHS_section_kind GHS_section_kind = GHS_SECTION_KIND_DEFAULT; /* If the string is NULL then we have reached the end of the #pragma construct. Make sure that we are in an end state, and then implement the pragma's directive. */ if (string == NULL) { int ret_val = 1; if (state != V850_PS_SHOULD_BE_DONE && state != V850_PS_MAYBE_COMMA && state != V850_PS_MAYBE_SECTION_NAME) { if (state != V850_PS_BAD) warning ("Incomplete #pragma ghs"); ret_val = 0; } else switch (type) { case V850_PT_UNKNOWN: warning ("Nothing follows #pragma ghs"); ret_val = 0; break; case V850_PT_INTERRUPT: ret_val = mark_current_function_as_interrupt (); break; case V850_PT_SECTION: /* If a section kind has not been specified, then reset all section names back to their defaults. */ if (GHS_section_kind == GHS_SECTION_KIND_DEFAULT) { int i; for (i = COUNT_OF_GHS_SECTION_KINDS; i--;) GHS_current_section_names [i] = NULL; } /* If a section has been specified, then this will be handled by check_default_section_name (). */ break; case V850_PT_START_SECTION: ret_val = push_data_area (data_area); break; case V850_PT_END_SECTION: ret_val = pop_data_area (data_area); break; } state = V850_PS_START; type = V850_PT_UNKNOWN; return ret_val; } switch (state) { case V850_PS_START: data_area = DATA_AREA_NORMAL; data_area_name = NULL; if (streq (string, "interrupt")) { type = V850_PT_INTERRUPT; state = V850_PS_SHOULD_BE_DONE; } else if (streq (string, "section")) { type = V850_PT_SECTION; state = V850_PS_MAYBE_SECTION_NAME; GHS_section_kind = GHS_SECTION_KIND_DEFAULT; } else if (streq (string, "starttda")) { type = V850_PT_START_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_TDA; } else if (streq (string, "endtda")) { type = V850_PT_END_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_TDA; } else if (streq (string, "startsda")) { type = V850_PT_START_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_SDA; } else if (streq (string, "endsda")) { type = V850_PT_END_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_SDA; } else if (streq (string, "startzda")) { type = V850_PT_START_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_ZDA; } else if (streq (string, "endzda")) { type = V850_PT_END_SECTION; state = V850_PS_SHOULD_BE_DONE; data_area = DATA_AREA_ZDA; } else { warning ("Unrecognised GHS pragma: '%s'\n", string); state = V850_PS_BAD; } break; case V850_PS_SHOULD_BE_DONE: warning ("Extra text after valid #pragma: '%s'", string); state = V850_PS_BAD; break; case V850_PS_BAD: /* Ignore tokens in a pragma that has been diagnosed as being corrupt. */ break; case V850_PS_MAYBE_SECTION_NAME: state = V850_PS_EXPECTING_EQUALS; if (streq (string, "data")) GHS_section_kind = GHS_SECTION_KIND_DATA; else if (streq (string, "text")) GHS_section_kind = GHS_SECTION_KIND_TEXT; else if (streq (string, "rodata")) GHS_section_kind = GHS_SECTION_KIND_RODATA; else if (streq (string, "const")) GHS_section_kind = GHS_SECTION_KIND_RODATA; else if (streq (string, "rosdata")) GHS_section_kind = GHS_SECTION_KIND_ROSDATA; else if (streq (string, "rozdata")) GHS_section_kind = GHS_SECTION_KIND_ROZDATA; else if (streq (string, "sdata")) GHS_section_kind = GHS_SECTION_KIND_SDATA; else if (streq (string, "tdata")) GHS_section_kind = GHS_SECTION_KIND_TDATA; else if (streq (string, "zdata")) GHS_section_kind = GHS_SECTION_KIND_ZDATA; /* According to GHS beta documentation, the following should not be allowed! */ else if (streq (string, "bss")) GHS_section_kind = GHS_SECTION_KIND_BSS; else if (streq (string, "zbss")) GHS_section_kind = GHS_SECTION_KIND_ZDATA; else { warning ("Unrecognised section name '%s' in GHS section pragma", string); state = V850_PS_BAD; } break; case V850_PS_EXPECTING_EQUALS: if (streq (string, "=")) state = V850_PS_EXPECTING_SECTION_ALIAS; else { warning ("Missing '=' in GHS section pragma"); state = V850_PS_BAD; } break; case V850_PS_EXPECTING_SECTION_ALIAS: if (streq (string, "default")) GHS_current_section_names [GHS_section_kind] = NULL; else GHS_current_section_names [GHS_section_kind] = build_string (strlen (string) + 1, string); state = V850_PS_MAYBE_COMMA; break; case V850_PS_MAYBE_COMMA: if (streq (string, ",")) state = V850_PS_MAYBE_SECTION_NAME; else { warning ("Malformed GHS section pragma: found '%s' instead of a comma", string); state = V850_PS_BAD; } break; } return 1; } /* Handle the parsing of an entire GHS pragma. */ int v850_handle_pragma (p_getc, p_ungetc, name) int (* p_getc) PROTO ((void)); void (* p_ungetc) PROTO ((int)); char * name; { /* Parse characters in the input stream until: * end of line * end of file * a complete GHS pragma has been parsed * a corrupted GHS pragma has been parsed * an unknown pragma is encountered. If an unknown pragma is encountered, we must return with the input stream in the same state as upon entry to this function. The first token in the input stream has already been parsed for us, and is passed as 'name'. */ if (! streq (name, "ghs")) return 0; /* We now know that we are parsing a GHS pragma, so we do not need to preserve the original input stream state. */ for (;;) { static char buffer [128]; int c; char * buff; /* Skip white space. */ do c = p_getc (); while (c == ' ' || c == '\t'); p_ungetc (c); if (c == '\n' || c == EOF || c == '\r') return parse_ghs_pragma_token (NULL); /* Read next word. We have to do the parsing ourselves, rather than calling yylex() because we can be built with front ends that do not provide such functions. */ buff = buffer; * buff ++ = (c = p_getc ()); switch (c) { case ',': case '=': * buff ++ = (c = p_getc ()); break; case '"': /* Skip opening double parenthesis. */ -- buff; /* Read string. */ do * buff ++ = (c = p_getc ()); while (c != EOF && isascii (c) && (isalnum (c) || c == '_' || c == '.' || c == ' ') && (buff < buffer + 126)); if (c != '"') warning ("Missing trailing \" in #pragma ghs"); else c = p_getc (); break; default: while (c != EOF && isascii (c) && (isalnum (c) || c == '_' || c == '.') && (buff < buffer + 126)) * buff ++ = (c = p_getc ()); break; } p_ungetc (c); /* If nothing was read then terminate the parsing. */ if (buff == buffer + 1) return parse_ghs_pragma_token (NULL); /* Parse and continue. */ * -- buff = 0; parse_ghs_pragma_token (buffer); } } /* Add data area to the given declaration if a ghs data area pragma is currently in effect (#pragma ghs startXXX/endXXX). */ void v850_set_default_decl_attr (decl) tree decl; { if (data_area_stack && data_area_stack->data_area && current_function_decl == NULL_TREE && (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == CONST_DECL) && v850_get_data_area (decl) == DATA_AREA_NORMAL) v850_set_data_area (decl, data_area_stack->data_area); /* Initialise the default names of the v850 specific sections, if this has not been done before. */ if (GHS_default_section_names [(int) GHS_SECTION_KIND_SDATA] == NULL) { GHS_default_section_names [(int) GHS_SECTION_KIND_SDATA] = build_string (sizeof (".sdata")-1, ".sdata"); GHS_default_section_names [(int) GHS_SECTION_KIND_ROSDATA] = build_string (sizeof (".rosdata")-1, ".rosdata"); GHS_default_section_names [(int) GHS_SECTION_KIND_TDATA] = build_string (sizeof (".tdata")-1, ".tdata"); GHS_default_section_names [(int) GHS_SECTION_KIND_ZDATA] = build_string (sizeof (".zdata")-1, ".zdata"); GHS_default_section_names [(int) GHS_SECTION_KIND_ROZDATA] = build_string (sizeof (".rozdata")-1, ".rozdata"); } if (current_function_decl == NULL_TREE && (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == CONST_DECL || TREE_CODE (decl) == FUNCTION_DECL) && (!DECL_EXTERNAL (decl) || DECL_INITIAL (decl)) && !DECL_SECTION_NAME (decl)) { enum GHS_section_kind kind = GHS_SECTION_KIND_DEFAULT; tree chosen_section; if (TREE_CODE (decl) == FUNCTION_DECL) kind = GHS_SECTION_KIND_TEXT; else { /* First choose a section kind based on the data area of the decl. */ switch (v850_get_data_area (decl)) { default: abort (); case DATA_AREA_SDA: kind = ((TREE_READONLY (decl)) ? GHS_SECTION_KIND_ROSDATA : GHS_SECTION_KIND_SDATA); break; case DATA_AREA_TDA: kind = GHS_SECTION_KIND_TDATA; break; case DATA_AREA_ZDA: kind = ((TREE_READONLY (decl)) ? GHS_SECTION_KIND_ROZDATA : GHS_SECTION_KIND_ZDATA); break; case DATA_AREA_NORMAL: /* default data area */ if (TREE_READONLY (decl)) kind = GHS_SECTION_KIND_RODATA; else if (DECL_INITIAL (decl)) kind = GHS_SECTION_KIND_DATA; else kind = GHS_SECTION_KIND_BSS; } } /* Now, if the section kind has been explicitly renamed, then attach a section attribute. */ chosen_section = GHS_current_section_names [(int) kind]; /* Otherwise, if this kind of section needs an explicit section attribute, then also attach one. */ if (chosen_section == NULL) chosen_section = GHS_default_section_names [(int) kind]; if (chosen_section) { /* Only set the section name if specified by a pragma, because otherwise it will force those variables to get allocated storage in this module, rather than by the linker. */ DECL_SECTION_NAME (decl) = chosen_section; } } }