/* Expands front end tree to back end RTL for GNU C-Compiler Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file handles the generation of rtl code from tree structure at the level of the function as a whole. It creates the rtl expressions for parameters and auto variables and has full responsibility for allocating stack slots. `expand_function_start' is called at the beginning of a function, before the function body is parsed, and `expand_function_end' is called after parsing the body. Call `assign_stack_local' to allocate a stack slot for a local variable. This is usually done during the RTL generation for the function body, but it can also be done in the reload pass when a pseudo-register does not get a hard register. Call `put_var_into_stack' when you learn, belatedly, that a variable previously given a pseudo-register must in fact go in the stack. This function changes the DECL_RTL to be a stack slot instead of a reg then scans all the RTL instructions so far generated to correct them. */ #include "config.h" #include "system.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "except.h" #include "function.h" #include "insn-flags.h" #include "expr.h" #include "insn-codes.h" #include "regs.h" #include "hard-reg-set.h" #include "insn-config.h" #include "recog.h" #include "output.h" #include "basic-block.h" #include "obstack.h" #include "toplev.h" #include "hash.h" #ifndef TRAMPOLINE_ALIGNMENT #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY #endif #ifndef LOCAL_ALIGNMENT #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT #endif /* Some systems use __main in a way incompatible with its use in gcc, in these cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to give the same symbol without quotes for an alternative entry point. You must define both, or neither. */ #ifndef NAME__MAIN #define NAME__MAIN "__main" #define SYMBOL__MAIN __main #endif /* Round a value to the lowest integer less than it that is a multiple of the required alignment. Avoid using division in case the value is negative. Assume the alignment is a power of two. */ #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) /* Similar, but round to the next highest integer that meets the alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp during rtl generation. If they are different register numbers, this is always true. It may also be true if FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl generation. See fix_lexical_addr for details. */ #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM #define NEED_SEPARATE_AP #endif /* Number of bytes of args popped by function being compiled on its return. Zero if no bytes are to be popped. May affect compilation of return insn or of function epilogue. */ int current_function_pops_args; /* Nonzero if function being compiled needs to be given an address where the value should be stored. */ int current_function_returns_struct; /* Nonzero if function being compiled needs to return the address of where it has put a structure value. */ int current_function_returns_pcc_struct; /* Nonzero if function being compiled needs to be passed a static chain. */ int current_function_needs_context; /* Nonzero if function being compiled can call setjmp. */ int current_function_calls_setjmp; /* Nonzero if function being compiled can call longjmp. */ int current_function_calls_longjmp; /* Nonzero if function being compiled receives nonlocal gotos from nested functions. */ int current_function_has_nonlocal_label; /* Nonzero if function being compiled has nonlocal gotos to parent function. */ int current_function_has_nonlocal_goto; /* Nonzero if function being compiled contains nested functions. */ int current_function_contains_functions; /* Nonzero if function being compiled doesn't contain any calls (ignoring the prologue and epilogue). This is set prior to local register allocation and is valid for the remaining compiler passes. */ int current_function_is_leaf; /* Nonzero if function being compiled doesn't modify the stack pointer (ignoring the prologue and epilogue). This is only valid after life_analysis has run. */ int current_function_sp_is_unchanging; /* Nonzero if the function being compiled is a leaf function which only uses leaf registers. This is valid after reload (specifically after sched2) and is useful only if the port defines LEAF_REGISTERS. */ int current_function_uses_only_leaf_regs; /* Nonzero if the function being compiled issues a computed jump. */ int current_function_has_computed_jump; /* Nonzero if the current function is a thunk (a lightweight function that just adjusts one of its arguments and forwards to another function), so we should try to cut corners where we can. */ int current_function_is_thunk; /* Nonzero if function being compiled can call alloca, either as a subroutine or builtin. */ int current_function_calls_alloca; /* Nonzero if the current function returns a pointer type */ int current_function_returns_pointer; /* If some insns can be deferred to the delay slots of the epilogue, the delay list for them is recorded here. */ rtx current_function_epilogue_delay_list; /* If function's args have a fixed size, this is that size, in bytes. Otherwise, it is -1. May affect compilation of return insn or of function epilogue. */ int current_function_args_size; /* # bytes the prologue should push and pretend that the caller pushed them. The prologue must do this, but only if parms can be passed in registers. */ int current_function_pretend_args_size; /* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is defined, the needed space is pushed by the prologue. */ int current_function_outgoing_args_size; /* This is the offset from the arg pointer to the place where the first anonymous arg can be found, if there is one. */ rtx current_function_arg_offset_rtx; /* Nonzero if current function uses varargs.h or equivalent. Zero for functions that use stdarg.h. */ int current_function_varargs; /* Nonzero if current function uses stdarg.h or equivalent. Zero for functions that use varargs.h. */ int current_function_stdarg; /* Quantities of various kinds of registers used for the current function's args. */ CUMULATIVE_ARGS current_function_args_info; /* Name of function now being compiled. */ char *current_function_name; /* If non-zero, an RTL expression for the location at which the current function returns its result. If the current function returns its result in a register, current_function_return_rtx will always be the hard register containing the result. */ rtx current_function_return_rtx; /* Nonzero if the current function uses the constant pool. */ int current_function_uses_const_pool; /* Nonzero if the current function uses pic_offset_table_rtx. */ int current_function_uses_pic_offset_table; /* The arg pointer hard register, or the pseudo into which it was copied. */ rtx current_function_internal_arg_pointer; /* Language-specific reason why the current function cannot be made inline. */ char *current_function_cannot_inline; /* Nonzero if instrumentation calls for function entry and exit should be generated. */ int current_function_instrument_entry_exit; /* Nonzero if memory access checking be enabled in the current function. */ int current_function_check_memory_usage; /* The FUNCTION_DECL for an inline function currently being expanded. */ tree inline_function_decl; /* Number of function calls seen so far in current function. */ int function_call_count; /* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels (labels to which there can be nonlocal gotos from nested functions) in this function. */ tree nonlocal_labels; /* List (chain of EXPR_LIST) of stack slots that hold the current handlers for nonlocal gotos. There is one for every nonlocal label in the function; this list matches the one in nonlocal_labels. Zero when function does not have nonlocal labels. */ rtx nonlocal_goto_handler_slots; /* List (chain of EXPR_LIST) of labels heading the current handlers for nonlocal gotos. */ rtx nonlocal_goto_handler_labels; /* RTX for stack slot that holds the stack pointer value to restore for a nonlocal goto. Zero when function does not have nonlocal labels. */ rtx nonlocal_goto_stack_level; /* Label that will go on parm cleanup code, if any. Jumping to this label runs cleanup code for parameters, if such code must be run. Following this code is the logical return label. */ rtx cleanup_label; /* Label that will go on function epilogue. Jumping to this label serves as a "return" instruction on machines which require execution of the epilogue on all returns. */ rtx return_label; /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs. So we can mark them all live at the end of the function, if nonopt. */ rtx save_expr_regs; /* List (chain of EXPR_LISTs) of all stack slots in this function. Made for the sake of unshare_all_rtl. */ rtx stack_slot_list; /* Chain of all RTL_EXPRs that have insns in them. */ tree rtl_expr_chain; /* Label to jump back to for tail recursion, or 0 if we have not yet needed one for this function. */ rtx tail_recursion_label; /* Place after which to insert the tail_recursion_label if we need one. */ rtx tail_recursion_reentry; /* Location at which to save the argument pointer if it will need to be referenced. There are two cases where this is done: if nonlocal gotos exist, or if vars stored at an offset from the argument pointer will be needed by inner routines. */ rtx arg_pointer_save_area; /* Offset to end of allocated area of stack frame. If stack grows down, this is the address of the last stack slot allocated. If stack grows up, this is the address for the next slot. */ HOST_WIDE_INT frame_offset; /* List (chain of TREE_LISTs) of static chains for containing functions. Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx in an RTL_EXPR in the TREE_VALUE. */ static tree context_display; /* List (chain of TREE_LISTs) of trampolines for nested functions. The trampoline sets up the static chain and jumps to the function. We supply the trampoline's address when the function's address is requested. Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx in an RTL_EXPR in the TREE_VALUE. */ static tree trampoline_list; /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */ static rtx parm_birth_insn; #if 0 /* Nonzero if a stack slot has been generated whose address is not actually valid. It means that the generated rtl must all be scanned to detect and correct the invalid addresses where they occur. */ static int invalid_stack_slot; #endif /* Last insn of those whose job was to put parms into their nominal homes. */ static rtx last_parm_insn; /* 1 + last pseudo register number possibly used for loading a copy of a parameter of this function. */ int max_parm_reg; /* Vector indexed by REGNO, containing location on stack in which to put the parm which is nominally in pseudo register REGNO, if we discover that that parm must go in the stack. The highest element in this vector is one less than MAX_PARM_REG, above. */ rtx *parm_reg_stack_loc; /* Nonzero once virtual register instantiation has been done. assign_stack_local uses frame_pointer_rtx when this is nonzero. */ static int virtuals_instantiated; /* These variables hold pointers to functions to save and restore machine-specific data, in push_function_context and pop_function_context. */ void (*save_machine_status) PROTO((struct function *)); void (*restore_machine_status) PROTO((struct function *)); /* Nonzero if we need to distinguish between the return value of this function and the return value of a function called by this function. This helps integrate.c */ extern int rtx_equal_function_value_matters; extern tree sequence_rtl_expr; /* In order to evaluate some expressions, such as function calls returning structures in memory, we need to temporarily allocate stack locations. We record each allocated temporary in the following structure. Associated with each temporary slot is a nesting level. When we pop up one level, all temporaries associated with the previous level are freed. Normally, all temporaries are freed after the execution of the statement in which they were created. However, if we are inside a ({...}) grouping, the result may be in a temporary and hence must be preserved. If the result could be in a temporary, we preserve it if we can determine which one it is in. If we cannot determine which temporary may contain the result, all temporaries are preserved. A temporary is preserved by pretending it was allocated at the previous nesting level. Automatic variables are also assigned temporary slots, at the nesting level where they are defined. They are marked a "kept" so that free_temp_slots will not free them. */ struct temp_slot { /* Points to next temporary slot. */ struct temp_slot *next; /* The rtx to used to reference the slot. */ rtx slot; /* The rtx used to represent the address if not the address of the slot above. May be an EXPR_LIST if multiple addresses exist. */ rtx address; /* The alignment (in bits) of the slot. */ int align; /* The size, in units, of the slot. */ HOST_WIDE_INT size; /* The alias set for the slot. If the alias set is zero, we don't know anything about the alias set of the slot. We must only reuse a slot if it is assigned an object of the same alias set. Otherwise, the rest of the compiler may assume that the new use of the slot cannot alias the old use of the slot, which is false. If the slot has alias set zero, then we can't reuse the slot at all, since we have no idea what alias set may have been imposed on the memory. For example, if the stack slot is the call frame for an inline functioned, we have no idea what alias sets will be assigned to various pieces of the call frame. */ int alias_set; /* The value of `sequence_rtl_expr' when this temporary is allocated. */ tree rtl_expr; /* Non-zero if this temporary is currently in use. */ char in_use; /* Non-zero if this temporary has its address taken. */ char addr_taken; /* Nesting level at which this slot is being used. */ int level; /* Non-zero if this should survive a call to free_temp_slots. */ int keep; /* The offset of the slot from the frame_pointer, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT base_offset; /* The size of the slot, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT full_size; }; /* List of all temporaries allocated, both available and in use. */ struct temp_slot *temp_slots; /* Current nesting level for temporaries. */ int temp_slot_level; /* Current nesting level for variables in a block. */ int var_temp_slot_level; /* When temporaries are created by TARGET_EXPRs, they are created at this level of temp_slot_level, so that they can remain allocated until no longer needed. CLEANUP_POINT_EXPRs define the lifetime of TARGET_EXPRs. */ int target_temp_slot_level; /* This structure is used to record MEMs or pseudos used to replace VAR, any SUBREGs of VAR, and any MEMs containing VAR as an address. We need to maintain this list in case two operands of an insn were required to match; in that case we must ensure we use the same replacement. */ struct fixup_replacement { rtx old; rtx new; struct fixup_replacement *next; }; struct insns_for_mem_entry { /* The KEY in HE will be a MEM. */ struct hash_entry he; /* These are the INSNS which reference the MEM. */ rtx insns; }; /* Forward declarations. */ static rtx assign_outer_stack_local PROTO ((enum machine_mode, HOST_WIDE_INT, int, struct function *)); static rtx assign_stack_temp_for_type PROTO ((enum machine_mode, HOST_WIDE_INT, int, tree)); static struct temp_slot *find_temp_slot_from_address PROTO((rtx)); static void put_reg_into_stack PROTO((struct function *, rtx, tree, enum machine_mode, enum machine_mode, int, int, int, struct hash_table *)); static void fixup_var_refs PROTO((rtx, enum machine_mode, int, struct hash_table *)); static struct fixup_replacement *find_fixup_replacement PROTO((struct fixup_replacement **, rtx)); static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int, rtx, int, struct hash_table *)); static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx, struct fixup_replacement **)); static rtx fixup_memory_subreg PROTO((rtx, rtx, int)); static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int)); static rtx fixup_stack_1 PROTO((rtx, rtx)); static void optimize_bit_field PROTO((rtx, rtx, rtx *)); static void instantiate_decls PROTO((tree, int)); static void instantiate_decls_1 PROTO((tree, int)); static void instantiate_decl PROTO((rtx, int, int)); static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int)); static void delete_handlers PROTO((void)); static void pad_to_arg_alignment PROTO((struct args_size *, int)); #ifndef ARGS_GROW_DOWNWARD static void pad_below PROTO((struct args_size *, enum machine_mode, tree)); #endif #ifdef ARGS_GROW_DOWNWARD static tree round_down PROTO((tree, int)); #endif static rtx round_trampoline_addr PROTO((rtx)); static tree blocks_nreverse PROTO((tree)); static int all_blocks PROTO((tree, tree *)); #if defined (HAVE_prologue) || defined (HAVE_epilogue) static int *record_insns PROTO((rtx)); static int contains PROTO((rtx, int *)); #endif /* HAVE_prologue || HAVE_epilogue */ static void put_addressof_into_stack PROTO((rtx, struct hash_table *)); static void purge_addressof_1 PROTO((rtx *, rtx, int, int, struct hash_table *)); static struct hash_entry *insns_for_mem_newfunc PROTO((struct hash_entry *, struct hash_table *, hash_table_key)); static unsigned long insns_for_mem_hash PROTO ((hash_table_key)); static boolean insns_for_mem_comp PROTO ((hash_table_key, hash_table_key)); static int insns_for_mem_walk PROTO ((rtx *, void *)); static void compute_insns_for_mem PROTO ((rtx, rtx, struct hash_table *)); /* Pointer to chain of `struct function' for containing functions. */ struct function *outer_function_chain; /* Given a function decl for a containing function, return the `struct function' for it. */ struct function * find_function_data (decl) tree decl; { struct function *p; for (p = outer_function_chain; p; p = p->next) if (p->decl == decl) return p; abort (); } /* Save the current context for compilation of a nested function. This is called from language-specific code. The caller is responsible for saving any language-specific status, since this function knows only about language-independent variables. */ void push_function_context_to (context) tree context; { struct function *p = (struct function *) xmalloc (sizeof (struct function)); p->next = outer_function_chain; outer_function_chain = p; p->name = current_function_name; p->decl = current_function_decl; p->pops_args = current_function_pops_args; p->returns_struct = current_function_returns_struct; p->returns_pcc_struct = current_function_returns_pcc_struct; p->returns_pointer = current_function_returns_pointer; p->needs_context = current_function_needs_context; p->calls_setjmp = current_function_calls_setjmp; p->calls_longjmp = current_function_calls_longjmp; p->calls_alloca = current_function_calls_alloca; p->has_nonlocal_label = current_function_has_nonlocal_label; p->has_nonlocal_goto = current_function_has_nonlocal_goto; p->contains_functions = current_function_contains_functions; p->has_computed_jump = current_function_has_computed_jump; p->is_thunk = current_function_is_thunk; p->args_size = current_function_args_size; p->pretend_args_size = current_function_pretend_args_size; p->arg_offset_rtx = current_function_arg_offset_rtx; p->varargs = current_function_varargs; p->stdarg = current_function_stdarg; p->uses_const_pool = current_function_uses_const_pool; p->uses_pic_offset_table = current_function_uses_pic_offset_table; p->internal_arg_pointer = current_function_internal_arg_pointer; p->cannot_inline = current_function_cannot_inline; p->max_parm_reg = max_parm_reg; p->parm_reg_stack_loc = parm_reg_stack_loc; p->outgoing_args_size = current_function_outgoing_args_size; p->return_rtx = current_function_return_rtx; p->nonlocal_goto_handler_slots = nonlocal_goto_handler_slots; p->nonlocal_goto_handler_labels = nonlocal_goto_handler_labels; p->nonlocal_goto_stack_level = nonlocal_goto_stack_level; p->nonlocal_labels = nonlocal_labels; p->cleanup_label = cleanup_label; p->return_label = return_label; p->save_expr_regs = save_expr_regs; p->stack_slot_list = stack_slot_list; p->parm_birth_insn = parm_birth_insn; p->frame_offset = frame_offset; p->tail_recursion_label = tail_recursion_label; p->tail_recursion_reentry = tail_recursion_reentry; p->arg_pointer_save_area = arg_pointer_save_area; p->rtl_expr_chain = rtl_expr_chain; p->last_parm_insn = last_parm_insn; p->context_display = context_display; p->trampoline_list = trampoline_list; p->function_call_count = function_call_count; p->temp_slots = temp_slots; p->temp_slot_level = temp_slot_level; p->target_temp_slot_level = target_temp_slot_level; p->var_temp_slot_level = var_temp_slot_level; p->fixup_var_refs_queue = 0; p->epilogue_delay_list = current_function_epilogue_delay_list; p->args_info = current_function_args_info; p->check_memory_usage = current_function_check_memory_usage; p->instrument_entry_exit = current_function_instrument_entry_exit; save_tree_status (p, context); save_storage_status (p); save_emit_status (p); save_expr_status (p); save_stmt_status (p); save_varasm_status (p, context); if (save_machine_status) (*save_machine_status) (p); } void push_function_context () { push_function_context_to (current_function_decl); } /* Restore the last saved context, at the end of a nested function. This function is called from language-specific code. */ void pop_function_context_from (context) tree context; { struct function *p = outer_function_chain; struct var_refs_queue *queue; outer_function_chain = p->next; current_function_contains_functions = p->contains_functions || p->inline_obstacks || context == current_function_decl; current_function_has_computed_jump = p->has_computed_jump; current_function_name = p->name; current_function_decl = p->decl; current_function_pops_args = p->pops_args; current_function_returns_struct = p->returns_struct; current_function_returns_pcc_struct = p->returns_pcc_struct; current_function_returns_pointer = p->returns_pointer; current_function_needs_context = p->needs_context; current_function_calls_setjmp = p->calls_setjmp; current_function_calls_longjmp = p->calls_longjmp; current_function_calls_alloca = p->calls_alloca; current_function_has_nonlocal_label = p->has_nonlocal_label; current_function_has_nonlocal_goto = p->has_nonlocal_goto; current_function_is_thunk = p->is_thunk; current_function_args_size = p->args_size; current_function_pretend_args_size = p->pretend_args_size; current_function_arg_offset_rtx = p->arg_offset_rtx; current_function_varargs = p->varargs; current_function_stdarg = p->stdarg; current_function_uses_const_pool = p->uses_const_pool; current_function_uses_pic_offset_table = p->uses_pic_offset_table; current_function_internal_arg_pointer = p->internal_arg_pointer; current_function_cannot_inline = p->cannot_inline; max_parm_reg = p->max_parm_reg; parm_reg_stack_loc = p->parm_reg_stack_loc; current_function_outgoing_args_size = p->outgoing_args_size; current_function_return_rtx = p->return_rtx; nonlocal_goto_handler_slots = p->nonlocal_goto_handler_slots; nonlocal_goto_handler_labels = p->nonlocal_goto_handler_labels; nonlocal_goto_stack_level = p->nonlocal_goto_stack_level; nonlocal_labels = p->nonlocal_labels; cleanup_label = p->cleanup_label; return_label = p->return_label; save_expr_regs = p->save_expr_regs; stack_slot_list = p->stack_slot_list; parm_birth_insn = p->parm_birth_insn; frame_offset = p->frame_offset; tail_recursion_label = p->tail_recursion_label; tail_recursion_reentry = p->tail_recursion_reentry; arg_pointer_save_area = p->arg_pointer_save_area; rtl_expr_chain = p->rtl_expr_chain; last_parm_insn = p->last_parm_insn; context_display = p->context_display; trampoline_list = p->trampoline_list; function_call_count = p->function_call_count; temp_slots = p->temp_slots; temp_slot_level = p->temp_slot_level; target_temp_slot_level = p->target_temp_slot_level; var_temp_slot_level = p->var_temp_slot_level; current_function_epilogue_delay_list = p->epilogue_delay_list; reg_renumber = 0; current_function_args_info = p->args_info; current_function_check_memory_usage = p->check_memory_usage; current_function_instrument_entry_exit = p->instrument_entry_exit; restore_tree_status (p, context); restore_storage_status (p); restore_expr_status (p); restore_emit_status (p); restore_stmt_status (p); restore_varasm_status (p); if (restore_machine_status) (*restore_machine_status) (p); /* Finish doing put_var_into_stack for any of our variables which became addressable during the nested function. */ for (queue = p->fixup_var_refs_queue; queue; queue = queue->next) fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp, 0); free (p); /* Reset variables that have known state during rtx generation. */ rtx_equal_function_value_matters = 1; virtuals_instantiated = 0; } void pop_function_context () { pop_function_context_from (current_function_decl); } /* Allocate fixed slots in the stack frame of the current function. */ /* Return size needed for stack frame based on slots so far allocated. This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ HOST_WIDE_INT get_frame_size () { #ifdef FRAME_GROWS_DOWNWARD return -frame_offset; #else return frame_offset; #endif } /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it with machine mode MODE. ALIGN controls the amount of alignment for the address of the slot: 0 means according to MODE, -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, positive specifies alignment boundary in bits. We do not round to stack_boundary here. */ rtx assign_stack_local (mode, size, align) enum machine_mode mode; HOST_WIDE_INT size; int align; { register rtx x, addr; int bigend_correction = 0; int alignment; if (align == 0) { tree type; alignment = GET_MODE_ALIGNMENT (mode); if (mode == BLKmode) alignment = BIGGEST_ALIGNMENT; /* Allow the target to (possibly) increase the alignment of this stack slot. */ type = type_for_mode (mode, 0); if (type) alignment = LOCAL_ALIGNMENT (type, alignment); alignment /= BITS_PER_UNIT; } else if (align == -1) { alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; size = CEIL_ROUND (size, alignment); } else alignment = align / BITS_PER_UNIT; /* Round frame offset to that alignment. We must be careful here, since FRAME_OFFSET might be negative and division with a negative dividend isn't as well defined as we might like. So we instead assume that ALIGNMENT is a power of two and use logical operations which are unambiguous. */ #ifdef FRAME_GROWS_DOWNWARD frame_offset = FLOOR_ROUND (frame_offset, alignment); #else frame_offset = CEIL_ROUND (frame_offset, alignment); #endif /* On a big-endian machine, if we are allocating more space than we will use, use the least significant bytes of those that are allocated. */ if (BYTES_BIG_ENDIAN && mode != BLKmode) bigend_correction = size - GET_MODE_SIZE (mode); #ifdef FRAME_GROWS_DOWNWARD frame_offset -= size; #endif /* If we have already instantiated virtual registers, return the actual address relative to the frame pointer. */ if (virtuals_instantiated) addr = plus_constant (frame_pointer_rtx, (frame_offset + bigend_correction + STARTING_FRAME_OFFSET)); else addr = plus_constant (virtual_stack_vars_rtx, frame_offset + bigend_correction); #ifndef FRAME_GROWS_DOWNWARD frame_offset += size; #endif x = gen_rtx_MEM (mode, addr); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list); return x; } /* Assign a stack slot in a containing function. First three arguments are same as in preceding function. The last argument specifies the function to allocate in. */ static rtx assign_outer_stack_local (mode, size, align, function) enum machine_mode mode; HOST_WIDE_INT size; int align; struct function *function; { register rtx x, addr; int bigend_correction = 0; int alignment; /* Allocate in the memory associated with the function in whose frame we are assigning. */ push_obstacks (function->function_obstack, function->function_maybepermanent_obstack); if (align == 0) { tree type; alignment = GET_MODE_ALIGNMENT (mode); if (mode == BLKmode) alignment = BIGGEST_ALIGNMENT; /* Allow the target to (possibly) increase the alignment of this stack slot. */ type = type_for_mode (mode, 0); if (type) alignment = LOCAL_ALIGNMENT (type, alignment); alignment /= BITS_PER_UNIT; } else if (align == -1) { alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; size = CEIL_ROUND (size, alignment); } else alignment = align / BITS_PER_UNIT; /* Round frame offset to that alignment. */ #ifdef FRAME_GROWS_DOWNWARD function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment); #else function->frame_offset = CEIL_ROUND (function->frame_offset, alignment); #endif /* On a big-endian machine, if we are allocating more space than we will use, use the least significant bytes of those that are allocated. */ if (BYTES_BIG_ENDIAN && mode != BLKmode) bigend_correction = size - GET_MODE_SIZE (mode); #ifdef FRAME_GROWS_DOWNWARD function->frame_offset -= size; #endif addr = plus_constant (virtual_stack_vars_rtx, function->frame_offset + bigend_correction); #ifndef FRAME_GROWS_DOWNWARD function->frame_offset += size; #endif x = gen_rtx_MEM (mode, addr); function->stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, function->stack_slot_list); pop_obstacks (); return x; } /* Allocate a temporary stack slot and record it for possible later reuse. MODE is the machine mode to be given to the returned rtx. SIZE is the size in units of the space required. We do no rounding here since assign_stack_local will do any required rounding. KEEP is 1 if this slot is to be retained after a call to free_temp_slots. Automatic variables for a block are allocated with this flag. KEEP is 2 if we allocate a longer term temporary, whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3 if we are to allocate something at an inner level to be treated as a variable in the block (e.g., a SAVE_EXPR). TYPE is the type that will be used for the stack slot. */ static rtx assign_stack_temp_for_type (mode, size, keep, type) enum machine_mode mode; HOST_WIDE_INT size; int keep; tree type; { int align; int alias_set; struct temp_slot *p, *best_p = 0; /* If SIZE is -1 it means that somebody tried to allocate a temporary of a variable size. */ if (size == -1) abort (); /* If we know the alias set for the memory that will be used, use it. If there's no TYPE, then we don't know anything about the alias set for the memory. */ if (type) alias_set = get_alias_set (type); else alias_set = 0; align = GET_MODE_ALIGNMENT (mode); if (mode == BLKmode) align = BIGGEST_ALIGNMENT; if (! type) type = type_for_mode (mode, 0); if (type) align = LOCAL_ALIGNMENT (type, align); /* Try to find an available, already-allocated temporary of the proper mode which meets the size and alignment requirements. Choose the smallest one with the closest alignment. */ for (p = temp_slots; p; p = p->next) if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode && ! p->in_use && (!flag_strict_aliasing || (alias_set && p->alias_set == alias_set)) && (best_p == 0 || best_p->size > p->size || (best_p->size == p->size && best_p->align > p->align))) { if (p->align == align && p->size == size) { best_p = 0; break; } best_p = p; } /* Make our best, if any, the one to use. */ if (best_p) { /* If there are enough aligned bytes left over, make them into a new temp_slot so that the extra bytes don't get wasted. Do this only for BLKmode slots, so that we can be sure of the alignment. */ if (GET_MODE (best_p->slot) == BLKmode /* We can't split slots if -fstrict-aliasing because the information about the alias set for the new slot will be lost. */ && !flag_strict_aliasing) { int alignment = best_p->align / BITS_PER_UNIT; HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment); if (best_p->size - rounded_size >= alignment) { p = (struct temp_slot *) oballoc (sizeof (struct temp_slot)); p->in_use = p->addr_taken = 0; p->size = best_p->size - rounded_size; p->base_offset = best_p->base_offset + rounded_size; p->full_size = best_p->full_size - rounded_size; p->slot = gen_rtx_MEM (BLKmode, plus_constant (XEXP (best_p->slot, 0), rounded_size)); p->align = best_p->align; p->address = 0; p->rtl_expr = 0; p->next = temp_slots; temp_slots = p; stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot, stack_slot_list); best_p->size = rounded_size; best_p->full_size = rounded_size; } } p = best_p; } /* If we still didn't find one, make a new temporary. */ if (p == 0) { HOST_WIDE_INT frame_offset_old = frame_offset; p = (struct temp_slot *) oballoc (sizeof (struct temp_slot)); /* We are passing an explicit alignment request to assign_stack_local. One side effect of that is assign_stack_local will not round SIZE to ensure the frame offset remains suitably aligned. So for requests which depended on the rounding of SIZE, we go ahead and round it now. We also make sure ALIGNMENT is at least BIGGEST_ALIGNMENT. */ if (mode == BLKmode && align < (BIGGEST_ALIGNMENT / BITS_PER_UNIT)) abort(); p->slot = assign_stack_local (mode, mode == BLKmode ? CEIL_ROUND (size, align) : size, align); p->align = align; p->alias_set = alias_set; /* The following slot size computation is necessary because we don't know the actual size of the temporary slot until assign_stack_local has performed all the frame alignment and size rounding for the requested temporary. Note that extra space added for alignment can be either above or below this stack slot depending on which way the frame grows. We include the extra space if and only if it is above this slot. */ #ifdef FRAME_GROWS_DOWNWARD p->size = frame_offset_old - frame_offset; #else p->size = size; #endif /* Now define the fields used by combine_temp_slots. */ #ifdef FRAME_GROWS_DOWNWARD p->base_offset = frame_offset; p->full_size = frame_offset_old - frame_offset; #else p->base_offset = frame_offset_old; p->full_size = frame_offset - frame_offset_old; #endif p->address = 0; p->next = temp_slots; temp_slots = p; } p->in_use = 1; p->addr_taken = 0; p->rtl_expr = sequence_rtl_expr; if (keep == 2) { p->level = target_temp_slot_level; p->keep = 0; } else if (keep == 3) { p->level = var_temp_slot_level; p->keep = 0; } else { p->level = temp_slot_level; p->keep = keep; } /* We may be reusing an old slot, so clear any MEM flags that may have been set from before. */ RTX_UNCHANGING_P (p->slot) = 0; MEM_IN_STRUCT_P (p->slot) = 0; MEM_SCALAR_P (p->slot) = 0; MEM_ALIAS_SET (p->slot) = 0; return p->slot; } /* Allocate a temporary stack slot and record it for possible later reuse. First three arguments are same as in preceding function. */ rtx assign_stack_temp (mode, size, keep) enum machine_mode mode; HOST_WIDE_INT size; int keep; { return assign_stack_temp_for_type (mode, size, keep, NULL_TREE); } /* Assign a temporary of given TYPE. KEEP is as for assign_stack_temp. MEMORY_REQUIRED is 1 if the result must be addressable stack memory; it is 0 if a register is OK. DONT_PROMOTE is 1 if we should not promote values in register to wider modes. */ rtx assign_temp (type, keep, memory_required, dont_promote) tree type; int keep; int memory_required; int dont_promote; { enum machine_mode mode = TYPE_MODE (type); int unsignedp = TREE_UNSIGNED (type); if (mode == BLKmode || memory_required) { HOST_WIDE_INT size = int_size_in_bytes (type); rtx tmp; /* Unfortunately, we don't yet know how to allocate variable-sized temporaries. However, sometimes we have a fixed upper limit on the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that instead. This is the case for Chill variable-sized strings. */ if (size == -1 && TREE_CODE (type) == ARRAY_TYPE && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST) size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type)); tmp = assign_stack_temp_for_type (mode, size, keep, type); MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type)); return tmp; } #ifndef PROMOTE_FOR_CALL_ONLY if (! dont_promote) mode = promote_mode (type, mode, &unsignedp, 0); #endif return gen_reg_rtx (mode); } /* Combine temporary stack slots which are adjacent on the stack. This allows for better use of already allocated stack space. This is only done for BLKmode slots because we can be sure that we won't have alignment problems in this case. */ void combine_temp_slots () { struct temp_slot *p, *q; struct temp_slot *prev_p, *prev_q; int num_slots; /* We can't combine slots, because the information about which slot is in which alias set will be lost. */ if (flag_strict_aliasing) return; /* If there are a lot of temp slots, don't do anything unless high levels of optimizaton. */ if (! flag_expensive_optimizations) for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++) if (num_slots > 100 || (num_slots > 10 && optimize == 0)) return; for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots) { int delete_p = 0; if (! p->in_use && GET_MODE (p->slot) == BLKmode) for (q = p->next, prev_q = p; q; q = prev_q->next) { int delete_q = 0; if (! q->in_use && GET_MODE (q->slot) == BLKmode) { if (p->base_offset + p->full_size == q->base_offset) { /* Q comes after P; combine Q into P. */ p->size += q->size; p->full_size += q->full_size; delete_q = 1; } else if (q->base_offset + q->full_size == p->base_offset) { /* P comes after Q; combine P into Q. */ q->size += p->size; q->full_size += p->full_size; delete_p = 1; break; } } /* Either delete Q or advance past it. */ if (delete_q) prev_q->next = q->next; else prev_q = q; } /* Either delete P or advance past it. */ if (delete_p) { if (prev_p) prev_p->next = p->next; else temp_slots = p->next; } else prev_p = p; } } /* Find the temp slot corresponding to the object at address X. */ static struct temp_slot * find_temp_slot_from_address (x) rtx x; { struct temp_slot *p; rtx next; for (p = temp_slots; p; p = p->next) { if (! p->in_use) continue; else if (XEXP (p->slot, 0) == x || p->address == x || (GET_CODE (x) == PLUS && XEXP (x, 0) == virtual_stack_vars_rtx && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= p->base_offset && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)) return p; else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST) for (next = p->address; next; next = XEXP (next, 1)) if (XEXP (next, 0) == x) return p; } return 0; } /* Indicate that NEW is an alternate way of referring to the temp slot that previously was known by OLD. */ void update_temp_slot_address (old, new) rtx old, new; { struct temp_slot *p = find_temp_slot_from_address (old); /* If none, return. Else add NEW as an alias. */ if (p == 0) return; else if (p->address == 0) p->address = new; else { if (GET_CODE (p->address) != EXPR_LIST) p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX); p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address); } } /* If X could be a reference to a temporary slot, mark the fact that its address was taken. */ void mark_temp_addr_taken (x) rtx x; { struct temp_slot *p; if (x == 0) return; /* If X is not in memory or is at a constant address, it cannot be in a temporary slot. */ if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))) return; p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) p->addr_taken = 1; } /* If X could be a reference to a temporary slot, mark that slot as belonging to the to one level higher than the current level. If X matched one of our slots, just mark that one. Otherwise, we can't easily predict which it is, so upgrade all of them. Kept slots need not be touched. This is called when an ({...}) construct occurs and a statement returns a value in memory. */ void preserve_temp_slots (x) rtx x; { struct temp_slot *p = 0; /* If there is no result, we still might have some objects whose address were taken, so we need to make sure they stay around. */ if (x == 0) { for (p = temp_slots; p; p = p->next) if (p->in_use && p->level == temp_slot_level && p->addr_taken) p->level--; return; } /* If X is a register that is being used as a pointer, see if we have a temporary slot we know it points to. To be consistent with the code below, we really should preserve all non-kept slots if we can't find a match, but that seems to be much too costly. */ if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x))) p = find_temp_slot_from_address (x); /* If X is not in memory or is at a constant address, it cannot be in a temporary slot, but it can contain something whose address was taken. */ if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))) { for (p = temp_slots; p; p = p->next) if (p->in_use && p->level == temp_slot_level && p->addr_taken) p->level--; return; } /* First see if we can find a match. */ if (p == 0) p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) { /* Move everything at our level whose address was taken to our new level in case we used its address. */ struct temp_slot *q; if (p->level == temp_slot_level) { for (q = temp_slots; q; q = q->next) if (q != p && q->addr_taken && q->level == p->level) q->level--; p->level--; p->addr_taken = 0; } return; } /* Otherwise, preserve all non-kept slots at this level. */ for (p = temp_slots; p; p = p->next) if (p->in_use && p->level == temp_slot_level && ! p->keep) p->level--; } /* X is the result of an RTL_EXPR. If it is a temporary slot associated with that RTL_EXPR, promote it into a temporary slot at the present level so it will not be freed when we free slots made in the RTL_EXPR. */ void preserve_rtl_expr_result (x) rtx x; { struct temp_slot *p; /* If X is not in memory or is at a constant address, it cannot be in a temporary slot. */ if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))) return; /* If we can find a match, move it to our level unless it is already at an upper level. */ p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) { p->level = MIN (p->level, temp_slot_level); p->rtl_expr = 0; } return; } /* Free all temporaries used so far. This is normally called at the end of generating code for a statement. Don't free any temporaries currently in use for an RTL_EXPR that hasn't yet been emitted. We could eventually do better than this since it can be reused while generating the same RTL_EXPR, but this is complex and probably not worthwhile. */ void free_temp_slots () { struct temp_slot *p; for (p = temp_slots; p; p = p->next) if (p->in_use && p->level == temp_slot_level && ! p->keep && p->rtl_expr == 0) p->in_use = 0; combine_temp_slots (); } /* Free all temporary slots used in T, an RTL_EXPR node. */ void free_temps_for_rtl_expr (t) tree t; { struct temp_slot *p; for (p = temp_slots; p; p = p->next) if (p->rtl_expr == t) p->in_use = 0; combine_temp_slots (); } /* Mark all temporaries ever allocated in this function as not suitable for reuse until the current level is exited. */ void mark_all_temps_used () { struct temp_slot *p; for (p = temp_slots; p; p = p->next) { p->in_use = p->keep = 1; p->level = MIN (p->level, temp_slot_level); } } /* Push deeper into the nesting level for stack temporaries. */ void push_temp_slots () { temp_slot_level++; } /* Likewise, but save the new level as the place to allocate variables for blocks. */ void push_temp_slots_for_block () { push_temp_slots (); var_temp_slot_level = temp_slot_level; } /* Likewise, but save the new level as the place to allocate temporaries for TARGET_EXPRs. */ void push_temp_slots_for_target () { push_temp_slots (); target_temp_slot_level = temp_slot_level; } /* Set and get the value of target_temp_slot_level. The only permitted use of these functions is to save and restore this value. */ int get_target_temp_slot_level () { return target_temp_slot_level; } void set_target_temp_slot_level (level) int level; { target_temp_slot_level = level; } /* Pop a temporary nesting level. All slots in use in the current level are freed. */ void pop_temp_slots () { struct temp_slot *p; for (p = temp_slots; p; p = p->next) if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0) p->in_use = 0; combine_temp_slots (); temp_slot_level--; } /* Initialize temporary slots. */ void init_temp_slots () { /* We have not allocated any temporaries yet. */ temp_slots = 0; temp_slot_level = 0; var_temp_slot_level = 0; target_temp_slot_level = 0; } /* Retroactively move an auto variable from a register to a stack slot. This is done when an address-reference to the variable is seen. */ void put_var_into_stack (decl) tree decl; { register rtx reg; enum machine_mode promoted_mode, decl_mode; struct function *function = 0; tree context; int can_use_addressof; context = decl_function_context (decl); /* Get the current rtl used for this object and its original mode. */ reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl); /* No need to do anything if decl has no rtx yet since in that case caller is setting TREE_ADDRESSABLE and a stack slot will be assigned when the rtl is made. */ if (reg == 0) return; /* Get the declared mode for this object. */ decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl)) : DECL_MODE (decl)); /* Get the mode it's actually stored in. */ promoted_mode = GET_MODE (reg); /* If this variable comes from an outer function, find that function's saved context. */ if (context != current_function_decl && context != inline_function_decl) for (function = outer_function_chain; function; function = function->next) if (function->decl == context) break; /* If this is a variable-size object with a pseudo to address it, put that pseudo into the stack, if the var is nonlocal. */ if (DECL_NONLOCAL (decl) && GET_CODE (reg) == MEM && GET_CODE (XEXP (reg, 0)) == REG && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER) { reg = XEXP (reg, 0); decl_mode = promoted_mode = GET_MODE (reg); } can_use_addressof = (function == 0 && optimize > 0 /* FIXME make it work for promoted modes too */ && decl_mode == promoted_mode #ifdef NON_SAVING_SETJMP && ! (NON_SAVING_SETJMP && current_function_calls_setjmp) #endif ); /* If we can't use ADDRESSOF, make sure we see through one we already generated. */ if (! can_use_addressof && GET_CODE (reg) == MEM && GET_CODE (XEXP (reg, 0)) == ADDRESSOF) reg = XEXP (XEXP (reg, 0), 0); /* Now we should have a value that resides in one or more pseudo regs. */ if (GET_CODE (reg) == REG) { /* If this variable lives in the current function and we don't need to put things in the stack for the sake of setjmp, try to keep it in a register until we know we actually need the address. */ if (can_use_addressof) gen_mem_addressof (reg, decl); else put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode, decl_mode, TREE_SIDE_EFFECTS (decl), 0, TREE_USED (decl) || DECL_INITIAL (decl) != 0, 0); } else if (GET_CODE (reg) == CONCAT) { /* A CONCAT contains two pseudos; put them both in the stack. We do it so they end up consecutive. */ enum machine_mode part_mode = GET_MODE (XEXP (reg, 0)); tree part_type = TREE_TYPE (TREE_TYPE (decl)); #ifdef FRAME_GROWS_DOWNWARD /* Since part 0 should have a lower address, do it second. */ put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode, part_mode, TREE_SIDE_EFFECTS (decl), 0, TREE_USED (decl) || DECL_INITIAL (decl) != 0, 0); put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode, part_mode, TREE_SIDE_EFFECTS (decl), 0, TREE_USED (decl) || DECL_INITIAL (decl) != 0, 0); #else put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode, part_mode, TREE_SIDE_EFFECTS (decl), 0, TREE_USED (decl) || DECL_INITIAL (decl) != 0, 0); put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode, part_mode, TREE_SIDE_EFFECTS (decl), 0, TREE_USED (decl) || DECL_INITIAL (decl) != 0, 0); #endif /* Change the CONCAT into a combined MEM for both parts. */ PUT_CODE (reg, MEM); MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0)); MEM_ALIAS_SET (reg) = get_alias_set (decl); /* The two parts are in memory order already. Use the lower parts address as ours. */ XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0); /* Prevent sharing of rtl that might lose. */ if (GET_CODE (XEXP (reg, 0)) == PLUS) XEXP (reg, 0) = copy_rtx (XEXP (reg, 0)); } else return; if (current_function_check_memory_usage) emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, XEXP (reg, 0), Pmode, GEN_INT (GET_MODE_SIZE (GET_MODE (reg))), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); } /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG into the stack frame of FUNCTION (0 means the current function). DECL_MODE is the machine mode of the user-level data type. PROMOTED_MODE is the machine mode of the register. VOLATILE_P is nonzero if this is for a "volatile" decl. USED_P is nonzero if this reg might have already been used in an insn. */ static void put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p, original_regno, used_p, ht) struct function *function; rtx reg; tree type; enum machine_mode promoted_mode, decl_mode; int volatile_p; int original_regno; int used_p; struct hash_table *ht; { rtx new = 0; int regno = original_regno; if (regno == 0) regno = REGNO (reg); if (function) { if (regno < function->max_parm_reg) new = function->parm_reg_stack_loc[regno]; if (new == 0) new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0, function); } else { if (regno < max_parm_reg) new = parm_reg_stack_loc[regno]; if (new == 0) new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0); } PUT_MODE (reg, decl_mode); XEXP (reg, 0) = XEXP (new, 0); /* `volatil' bit means one thing for MEMs, another entirely for REGs. */ MEM_VOLATILE_P (reg) = volatile_p; PUT_CODE (reg, MEM); /* If this is a memory ref that contains aggregate components, mark it as such for cse and loop optimize. If we are reusing a previously generated stack slot, then we need to copy the bit in case it was set for other reasons. For instance, it is set for __builtin_va_alist. */ MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new)); MEM_ALIAS_SET (reg) = get_alias_set (type); /* Now make sure that all refs to the variable, previously made when it was a register, are fixed up to be valid again. */ if (used_p && function != 0) { struct var_refs_queue *temp; /* Variable is inherited; fix it up when we get back to its function. */ push_obstacks (function->function_obstack, function->function_maybepermanent_obstack); /* See comment in restore_tree_status in tree.c for why this needs to be on saveable obstack. */ temp = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue)); temp->modified = reg; temp->promoted_mode = promoted_mode; temp->unsignedp = TREE_UNSIGNED (type); temp->next = function->fixup_var_refs_queue; function->fixup_var_refs_queue = temp; pop_obstacks (); } else if (used_p) /* Variable is local; fix it up now. */ fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht); } static void fixup_var_refs (var, promoted_mode, unsignedp, ht) rtx var; enum machine_mode promoted_mode; int unsignedp; struct hash_table *ht; { tree pending; rtx first_insn = get_insns (); struct sequence_stack *stack = sequence_stack; tree rtl_exps = rtl_expr_chain; /* Must scan all insns for stack-refs that exceed the limit. */ fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0, ht); /* If there's a hash table, it must record all uses of VAR. */ if (ht) return; /* Scan all pending sequences too. */ for (; stack; stack = stack->next) { push_to_sequence (stack->first); fixup_var_refs_insns (var, promoted_mode, unsignedp, stack->first, stack->next != 0, 0); /* Update remembered end of sequence in case we added an insn at the end. */ stack->last = get_last_insn (); end_sequence (); } /* Scan all waiting RTL_EXPRs too. */ for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending)) { rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending)); if (seq != const0_rtx && seq != 0) { push_to_sequence (seq); fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0, 0); end_sequence (); } } /* Scan the catch clauses for exception handling too. */ push_to_sequence (catch_clauses); fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses, 0, 0); end_sequence (); } /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is some part of an insn. Return a struct fixup_replacement whose OLD value is equal to X. Allocate a new structure if no such entry exists. */ static struct fixup_replacement * find_fixup_replacement (replacements, x) struct fixup_replacement **replacements; rtx x; { struct fixup_replacement *p; /* See if we have already replaced this. */ for (p = *replacements; p && p->old != x; p = p->next) ; if (p == 0) { p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement)); p->old = x; p->new = 0; p->next = *replacements; *replacements = p; } return p; } /* Scan the insn-chain starting with INSN for refs to VAR and fix them up. TOPLEVEL is nonzero if this chain is the main chain of insns for the current function. */ static void fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht) rtx var; enum machine_mode promoted_mode; int unsignedp; rtx insn; int toplevel; struct hash_table *ht; { rtx call_dest = 0; rtx insn_list = NULL_RTX; /* If we already know which INSNs reference VAR there's no need to walk the entire instruction chain. */ if (ht) { insn_list = ((struct insns_for_mem_entry *) hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns; insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX; insn_list = XEXP (insn_list, 1); } while (insn) { rtx next = NEXT_INSN (insn); rtx set, prev, prev_set; rtx note; if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { /* If this is a CLOBBER of VAR, delete it. If it has a REG_LIBCALL note, delete the REG_LIBCALL and REG_RETVAL notes too. */ if (GET_CODE (PATTERN (insn)) == CLOBBER && (XEXP (PATTERN (insn), 0) == var || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT && (XEXP (XEXP (PATTERN (insn), 0), 0) == var || XEXP (XEXP (PATTERN (insn), 0), 1) == var)))) { if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0) /* The REG_LIBCALL note will go away since we are going to turn INSN into a NOTE, so just delete the corresponding REG_RETVAL note. */ remove_note (XEXP (note, 0), find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX)); /* In unoptimized compilation, we shouldn't call delete_insn except in jump.c doing warnings. */ PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } /* The insn to load VAR from a home in the arglist is now a no-op. When we see it, just delete it. Similarly if this is storing VAR from a register from which it was loaded in the previous insn. This will occur when an ADDRESSOF was made for an arglist slot. */ else if (toplevel && (set = single_set (insn)) != 0 && SET_DEST (set) == var /* If this represents the result of an insn group, don't delete the insn. */ && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0 && (rtx_equal_p (SET_SRC (set), var) || (GET_CODE (SET_SRC (set)) == REG && (prev = prev_nonnote_insn (insn)) != 0 && (prev_set = single_set (prev)) != 0 && SET_DEST (prev_set) == SET_SRC (set) && rtx_equal_p (SET_SRC (prev_set), var)))) { /* In unoptimized compilation, we shouldn't call delete_insn except in jump.c doing warnings. */ PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; if (insn == last_parm_insn) last_parm_insn = PREV_INSN (next); } else { struct fixup_replacement *replacements = 0; rtx next_insn = NEXT_INSN (insn); if (SMALL_REGISTER_CLASSES) { /* If the insn that copies the results of a CALL_INSN into a pseudo now references VAR, we have to use an intermediate pseudo since we want the life of the return value register to be only a single insn. If we don't use an intermediate pseudo, such things as address computations to make the address of VAR valid if it is not can be placed between the CALL_INSN and INSN. To make sure this doesn't happen, we record the destination of the CALL_INSN and see if the next insn uses both that and VAR. */ if (call_dest != 0 && GET_CODE (insn) == INSN && reg_mentioned_p (var, PATTERN (insn)) && reg_mentioned_p (call_dest, PATTERN (insn))) { rtx temp = gen_reg_rtx (GET_MODE (call_dest)); emit_insn_before (gen_move_insn (temp, call_dest), insn); PATTERN (insn) = replace_rtx (PATTERN (insn), call_dest, temp); } if (GET_CODE (insn) == CALL_INSN && GET_CODE (PATTERN (insn)) == SET) call_dest = SET_DEST (PATTERN (insn)); else if (GET_CODE (insn) == CALL_INSN && GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0)); else call_dest = 0; } /* See if we have to do anything to INSN now that VAR is in memory. If it needs to be loaded into a pseudo, use a single pseudo for the entire insn in case there is a MATCH_DUP between two operands. We pass a pointer to the head of a list of struct fixup_replacements. If fixup_var_refs_1 needs to allocate pseudos or replacement MEMs (for SUBREGs), it will record them in this list. If it allocated a pseudo for any replacement, we copy into it here. */ fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn, &replacements); /* If this is last_parm_insn, and any instructions were output after it to fix it up, then we must set last_parm_insn to the last such instruction emitted. */ if (insn == last_parm_insn) last_parm_insn = PREV_INSN (next_insn); while (replacements) { if (GET_CODE (replacements->new) == REG) { rtx insert_before; rtx seq; /* OLD might be a (subreg (mem)). */ if (GET_CODE (replacements->old) == SUBREG) replacements->old = fixup_memory_subreg (replacements->old, insn, 0); else replacements->old = fixup_stack_1 (replacements->old, insn); insert_before = insn; /* If we are changing the mode, do a conversion. This might be wasteful, but combine.c will eliminate much of the waste. */ if (GET_MODE (replacements->new) != GET_MODE (replacements->old)) { start_sequence (); convert_move (replacements->new, replacements->old, unsignedp); seq = gen_sequence (); end_sequence (); } else seq = gen_move_insn (replacements->new, replacements->old); emit_insn_before (seq, insert_before); } replacements = replacements->next; } } /* Also fix up any invalid exprs in the REG_NOTES of this insn. But don't touch other insns referred to by reg-notes; we will get them elsewhere. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (GET_CODE (note) != INSN_LIST) XEXP (note, 0) = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1); } if (!ht) insn = next; else if (insn_list) { insn = XEXP (insn_list, 0); insn_list = XEXP (insn_list, 1); } else insn = NULL_RTX; } } /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE. See if the rtx expression at *LOC in INSN needs to be changed. REPLACEMENTS is a pointer to a list head that starts out zero, but may contain a list of original rtx's and replacements. If we find that we need to modify this insn by replacing a memory reference with a pseudo or by making a new MEM to implement a SUBREG, we consult that list to see if we have already chosen a replacement. If none has already been allocated, we allocate it and update the list. fixup_var_refs_insns will copy VAR or the SUBREG, as appropriate, to the pseudo. */ static void fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements) register rtx var; enum machine_mode promoted_mode; register rtx *loc; rtx insn; struct fixup_replacement **replacements; { register int i; register rtx x = *loc; RTX_CODE code = GET_CODE (x); register char *fmt; register rtx tem, tem1; struct fixup_replacement *replacement; switch (code) { case ADDRESSOF: if (XEXP (x, 0) == var) { /* Prevent sharing of rtl that might lose. */ rtx sub = copy_rtx (XEXP (var, 0)); if (! validate_change (insn, loc, sub, 0)) { rtx y = gen_reg_rtx (GET_MODE (sub)); rtx seq, new_insn; /* We should be able to replace with a register or all is lost. Note that we can't use validate_change to verify this, since we're not caring for replacing all dups simultaneously. */ if (! validate_replace_rtx (*loc, y, insn)) abort (); /* Careful! First try to recognize a direct move of the value, mimicking how things are done in gen_reload wrt PLUS. Consider what happens when insn is a conditional move instruction and addsi3 clobbers flags. */ start_sequence (); new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub)); seq = gen_sequence (); end_sequence (); if (recog_memoized (new_insn) < 0) { /* That failed. Fall back on force_operand and hope. */ start_sequence (); force_operand (sub, y); seq = gen_sequence (); end_sequence (); } #ifdef HAVE_cc0 /* Don't separate setter from user. */ if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn))) insn = PREV_INSN (insn); #endif emit_insn_before (seq, insn); } } return; case MEM: if (var == x) { /* If we already have a replacement, use it. Otherwise, try to fix up this address in case it is invalid. */ replacement = find_fixup_replacement (replacements, var); if (replacement->new) { *loc = replacement->new; return; } *loc = replacement->new = x = fixup_stack_1 (x, insn); /* Unless we are forcing memory to register or we changed the mode, we can leave things the way they are if the insn is valid. */ INSN_CODE (insn) = -1; if (! flag_force_mem && GET_MODE (x) == promoted_mode && recog_memoized (insn) >= 0) return; *loc = replacement->new = gen_reg_rtx (promoted_mode); return; } /* If X contains VAR, we need to unshare it here so that we update each occurrence separately. But all identical MEMs in one insn must be replaced with the same rtx because of the possibility of MATCH_DUPs. */ if (reg_mentioned_p (var, x)) { replacement = find_fixup_replacement (replacements, x); if (replacement->new == 0) replacement->new = copy_most_rtx (x, var); *loc = x = replacement->new; } break; case REG: case CC0: case PC: case CONST_INT: case CONST: case SYMBOL_REF: case LABEL_REF: case CONST_DOUBLE: return; case SIGN_EXTRACT: case ZERO_EXTRACT: /* Note that in some cases those types of expressions are altered by optimize_bit_field, and do not survive to get here. */ if (XEXP (x, 0) == var || (GET_CODE (XEXP (x, 0)) == SUBREG && SUBREG_REG (XEXP (x, 0)) == var)) { /* Get TEM as a valid MEM in the mode presently in the insn. We don't worry about the possibility of MATCH_DUP here; it is highly unlikely and would be tricky to handle. */ tem = XEXP (x, 0); if (GET_CODE (tem) == SUBREG) { if (GET_MODE_BITSIZE (GET_MODE (tem)) > GET_MODE_BITSIZE (GET_MODE (var))) { replacement = find_fixup_replacement (replacements, var); if (replacement->new == 0) replacement->new = gen_reg_rtx (GET_MODE (var)); SUBREG_REG (tem) = replacement->new; } else tem = fixup_memory_subreg (tem, insn, 0); } else tem = fixup_stack_1 (tem, insn); /* Unless we want to load from memory, get TEM into the proper mode for an extract from memory. This can only be done if the extract is at a constant position and length. */ if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT && GET_CODE (XEXP (x, 2)) == CONST_INT && ! mode_dependent_address_p (XEXP (tem, 0)) && ! MEM_VOLATILE_P (tem)) { enum machine_mode wanted_mode = VOIDmode; enum machine_mode is_mode = GET_MODE (tem); HOST_WIDE_INT pos = INTVAL (XEXP (x, 2)); #ifdef HAVE_extzv if (GET_CODE (x) == ZERO_EXTRACT) { wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1]; if (wanted_mode == VOIDmode) wanted_mode = word_mode; } #endif #ifdef HAVE_extv if (GET_CODE (x) == SIGN_EXTRACT) { wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1]; if (wanted_mode == VOIDmode) wanted_mode = word_mode; } #endif /* If we have a narrower mode, we can do something. */ if (wanted_mode != VOIDmode && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) { HOST_WIDE_INT offset = pos / BITS_PER_UNIT; rtx old_pos = XEXP (x, 2); rtx newmem; /* If the bytes and bits are counted differently, we must adjust the offset. */ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) - offset); pos %= GET_MODE_BITSIZE (wanted_mode); newmem = gen_rtx_MEM (wanted_mode, plus_constant (XEXP (tem, 0), offset)); RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem); MEM_COPY_ATTRIBUTES (newmem, tem); /* Make the change and see if the insn remains valid. */ INSN_CODE (insn) = -1; XEXP (x, 0) = newmem; XEXP (x, 2) = GEN_INT (pos); if (recog_memoized (insn) >= 0) return; /* Otherwise, restore old position. XEXP (x, 0) will be restored later. */ XEXP (x, 2) = old_pos; } } /* If we get here, the bitfield extract insn can't accept a memory reference. Copy the input into a register. */ tem1 = gen_reg_rtx (GET_MODE (tem)); emit_insn_before (gen_move_insn (tem1, tem), insn); XEXP (x, 0) = tem1; return; } break; case SUBREG: if (SUBREG_REG (x) == var) { /* If this is a special SUBREG made because VAR was promoted from a wider mode, replace it with VAR and call ourself recursively, this time saying that the object previously had its current mode (by virtue of the SUBREG). */ if (SUBREG_PROMOTED_VAR_P (x)) { *loc = var; fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements); return; } /* If this SUBREG makes VAR wider, it has become a paradoxical SUBREG with VAR in memory, but these aren't allowed at this stage of the compilation. So load VAR into a pseudo and take a SUBREG of that pseudo. */ if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var))) { replacement = find_fixup_replacement (replacements, var); if (replacement->new == 0) replacement->new = gen_reg_rtx (GET_MODE (var)); SUBREG_REG (x) = replacement->new; return; } /* See if we have already found a replacement for this SUBREG. If so, use it. Otherwise, make a MEM and see if the insn is recognized. If not, or if we should force MEM into a register, make a pseudo for this SUBREG. */ replacement = find_fixup_replacement (replacements, x); if (replacement->new) { *loc = replacement->new; return; } replacement->new = *loc = fixup_memory_subreg (x, insn, 0); INSN_CODE (insn) = -1; if (! flag_force_mem && recog_memoized (insn) >= 0) return; *loc = replacement->new = gen_reg_rtx (GET_MODE (x)); return; } break; case SET: /* First do special simplification of bit-field references. */ if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT) optimize_bit_field (x, insn, 0); if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT) optimize_bit_field (x, insn, NULL_PTR); /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object into a register and then store it back out. */ if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0))) > GET_MODE_SIZE (GET_MODE (var)))) { replacement = find_fixup_replacement (replacements, var); if (replacement->new == 0) replacement->new = gen_reg_rtx (GET_MODE (var)); SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new; emit_insn_after (gen_move_insn (var, replacement->new), insn); } /* If SET_DEST is now a paradoxical SUBREG, put the result of this insn into a pseudo and store the low part of the pseudo into VAR. */ if (GET_CODE (SET_DEST (x)) == SUBREG && SUBREG_REG (SET_DEST (x)) == var && (GET_MODE_SIZE (GET_MODE (SET_DEST (x))) > GET_MODE_SIZE (GET_MODE (var)))) { SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x))); emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var), tem)), insn); break; } { rtx dest = SET_DEST (x); rtx src = SET_SRC (x); #ifdef HAVE_insv rtx outerdest = dest; #endif while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT || GET_CODE (dest) == ZERO_EXTRACT) dest = XEXP (dest, 0); if (GET_CODE (src) == SUBREG) src = XEXP (src, 0); /* If VAR does not appear at the top level of the SET just scan the lower levels of the tree. */ if (src != var && dest != var) break; /* We will need to rerecognize this insn. */ INSN_CODE (insn) = -1; #ifdef HAVE_insv if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var) { /* Since this case will return, ensure we fixup all the operands here. */ fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1), insn, replacements); fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2), insn, replacements); fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x), insn, replacements); tem = XEXP (outerdest, 0); /* Clean up (SUBREG:SI (MEM:mode ...) 0) that may appear inside a ZERO_EXTRACT. This was legitimate when the MEM was a REG. */ if (GET_CODE (tem) == SUBREG && SUBREG_REG (tem) == var) tem = fixup_memory_subreg (tem, insn, 0); else tem = fixup_stack_1 (tem, insn); if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT && GET_CODE (XEXP (outerdest, 2)) == CONST_INT && ! mode_dependent_address_p (XEXP (tem, 0)) && ! MEM_VOLATILE_P (tem)) { enum machine_mode wanted_mode; enum machine_mode is_mode = GET_MODE (tem); HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2)); wanted_mode = insn_operand_mode[(int) CODE_FOR_insv][0]; if (wanted_mode == VOIDmode) wanted_mode = word_mode; /* If we have a narrower mode, we can do something. */ if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) { HOST_WIDE_INT offset = pos / BITS_PER_UNIT; rtx old_pos = XEXP (outerdest, 2); rtx newmem; if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) - offset); pos %= GET_MODE_BITSIZE (wanted_mode); newmem = gen_rtx_MEM (wanted_mode, plus_constant (XEXP (tem, 0), offset)); RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem); MEM_COPY_ATTRIBUTES (newmem, tem); /* Make the change and see if the insn remains valid. */ INSN_CODE (insn) = -1; XEXP (outerdest, 0) = newmem; XEXP (outerdest, 2) = GEN_INT (pos); if (recog_memoized (insn) >= 0) return; /* Otherwise, restore old position. XEXP (x, 0) will be restored later. */ XEXP (outerdest, 2) = old_pos; } } /* If we get here, the bit-field store doesn't allow memory or isn't located at a constant position. Load the value into a register, do the store, and put it back into memory. */ tem1 = gen_reg_rtx (GET_MODE (tem)); emit_insn_before (gen_move_insn (tem1, tem), insn); emit_insn_after (gen_move_insn (tem, tem1), insn); XEXP (outerdest, 0) = tem1; return; } #endif /* STRICT_LOW_PART is a no-op on memory references and it can cause combinations to be unrecognizable, so eliminate it. */ if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART) SET_DEST (x) = XEXP (SET_DEST (x), 0); /* A valid insn to copy VAR into or out of a register must be left alone, to avoid an infinite loop here. If the reference to VAR is by a subreg, fix that up, since SUBREG is not valid for a memref. Also fix up the address of the stack slot. Note that we must not try to recognize the insn until after we know that we have valid addresses and no (subreg (mem ...) ...) constructs, since these interfere with determining the validity of the insn. */ if ((SET_SRC (x) == var || (GET_CODE (SET_SRC (x)) == SUBREG && SUBREG_REG (SET_SRC (x)) == var)) && (GET_CODE (SET_DEST (x)) == REG || (GET_CODE (SET_DEST (x)) == SUBREG && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)) && GET_MODE (var) == promoted_mode && x == single_set (insn)) { rtx pat; replacement = find_fixup_replacement (replacements, SET_SRC (x)); if (replacement->new) SET_SRC (x) = replacement->new; else if (GET_CODE (SET_SRC (x)) == SUBREG) SET_SRC (x) = replacement->new = fixup_memory_subreg (SET_SRC (x), insn, 0); else SET_SRC (x) = replacement->new = fixup_stack_1 (SET_SRC (x), insn); if (recog_memoized (insn) >= 0) return; /* INSN is not valid, but we know that we want to copy SET_SRC (x) to SET_DEST (x) in some way. So we generate the move and see whether it requires more than one insn. If it does, we emit those insns and delete INSN. Otherwise, we an just replace the pattern of INSN; we have already verified above that INSN has no other function that to do X. */ pat = gen_move_insn (SET_DEST (x), SET_SRC (x)); if (GET_CODE (pat) == SEQUENCE) { emit_insn_after (pat, insn); PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } else PATTERN (insn) = pat; return; } if ((SET_DEST (x) == var || (GET_CODE (SET_DEST (x)) == SUBREG && SUBREG_REG (SET_DEST (x)) == var)) && (GET_CODE (SET_SRC (x)) == REG || (GET_CODE (SET_SRC (x)) == SUBREG && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG)) && GET_MODE (var) == promoted_mode && x == single_set (insn)) { rtx pat; if (GET_CODE (SET_DEST (x)) == SUBREG) SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0); else SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn); if (recog_memoized (insn) >= 0) return; pat = gen_move_insn (SET_DEST (x), SET_SRC (x)); if (GET_CODE (pat) == SEQUENCE) { emit_insn_after (pat, insn); PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } else PATTERN (insn) = pat; return; } /* Otherwise, storing into VAR must be handled specially by storing into a temporary and copying that into VAR with a new insn after this one. Note that this case will be used when storing into a promoted scalar since the insn will now have different modes on the input and output and hence will be invalid (except for the case of setting it to a constant, which does not need any change if it is valid). We generate extra code in that case, but combine.c will eliminate it. */ if (dest == var) { rtx temp; rtx fixeddest = SET_DEST (x); /* STRICT_LOW_PART can be discarded, around a MEM. */ if (GET_CODE (fixeddest) == STRICT_LOW_PART) fixeddest = XEXP (fixeddest, 0); /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */ if (GET_CODE (fixeddest) == SUBREG) { fixeddest = fixup_memory_subreg (fixeddest, insn, 0); promoted_mode = GET_MODE (fixeddest); } else fixeddest = fixup_stack_1 (fixeddest, insn); temp = gen_reg_rtx (promoted_mode); emit_insn_after (gen_move_insn (fixeddest, gen_lowpart (GET_MODE (fixeddest), temp)), insn); SET_DEST (x) = temp; } } default: break; } /* Nothing special about this RTX; fix its operands. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j), insn, replacements); } } } /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)), return an rtx (MEM:m1 newaddr) which is equivalent. If any insns must be emitted to compute NEWADDR, put them before INSN. UNCRITICAL nonzero means accept paradoxical subregs. This is used for subregs found inside REG_NOTES. */ static rtx fixup_memory_subreg (x, insn, uncritical) rtx x; rtx insn; int uncritical; { int offset = SUBREG_WORD (x) * UNITS_PER_WORD; rtx addr = XEXP (SUBREG_REG (x), 0); enum machine_mode mode = GET_MODE (x); rtx result; /* Paradoxical SUBREGs are usually invalid during RTL generation. */ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) && ! uncritical) abort (); if (BYTES_BIG_ENDIAN) offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))); addr = plus_constant (addr, offset); if (!flag_force_addr && memory_address_p (mode, addr)) /* Shortcut if no insns need be emitted. */ return change_address (SUBREG_REG (x), mode, addr); start_sequence (); result = change_address (SUBREG_REG (x), mode, addr); emit_insn_before (gen_sequence (), insn); end_sequence (); return result; } /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X. Replace subexpressions of X in place. If X itself is a (SUBREG (MEM ...) ...), return the replacement expression. Otherwise return X, with its contents possibly altered. If any insns must be emitted to compute NEWADDR, put them before INSN. UNCRITICAL is as in fixup_memory_subreg. */ static rtx walk_fixup_memory_subreg (x, insn, uncritical) register rtx x; rtx insn; int uncritical; { register enum rtx_code code; register char *fmt; register int i; if (x == 0) return 0; code = GET_CODE (x); if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM) return fixup_memory_subreg (x, insn, uncritical); /* Nothing special about this RTX; fix its operands. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical); } } return x; } /* For each memory ref within X, if it refers to a stack slot with an out of range displacement, put the address in a temp register (emitting new insns before INSN to load these registers) and alter the memory ref to use that register. Replace each such MEM rtx with a copy, to avoid clobberage. */ static rtx fixup_stack_1 (x, insn) rtx x; rtx insn; { register int i; register RTX_CODE code = GET_CODE (x); register char *fmt; if (code == MEM) { register rtx ad = XEXP (x, 0); /* If we have address of a stack slot but it's not valid (displacement is too large), compute the sum in a register. */ if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 0)) == REG && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER) || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM #endif || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM || XEXP (ad, 0) == current_function_internal_arg_pointer) && GET_CODE (XEXP (ad, 1)) == CONST_INT) { rtx temp, seq; if (memory_address_p (GET_MODE (x), ad)) return x; start_sequence (); temp = copy_to_reg (ad); seq = gen_sequence (); end_sequence (); emit_insn_before (seq, insn); return change_address (x, VOIDmode, temp); } return x; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn); } } return x; } /* Optimization: a bit-field instruction whose field happens to be a byte or halfword in memory can be changed to a move instruction. We call here when INSN is an insn to examine or store into a bit-field. BODY is the SET-rtx to be altered. EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0. (Currently this is called only from function.c, and EQUIV_MEM is always 0.) */ static void optimize_bit_field (body, insn, equiv_mem) rtx body; rtx insn; rtx *equiv_mem; { register rtx bitfield; int destflag; rtx seq = 0; enum machine_mode mode; if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT) bitfield = SET_DEST (body), destflag = 1; else bitfield = SET_SRC (body), destflag = 0; /* First check that the field being stored has constant size and position and is in fact a byte or halfword suitably aligned. */ if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT && GET_CODE (XEXP (bitfield, 2)) == CONST_INT && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1)) != BLKmode) && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0) { register rtx memref = 0; /* Now check that the containing word is memory, not a register, and that it is safe to change the machine mode. */ if (GET_CODE (XEXP (bitfield, 0)) == MEM) memref = XEXP (bitfield, 0); else if (GET_CODE (XEXP (bitfield, 0)) == REG && equiv_mem != 0) memref = equiv_mem[REGNO (XEXP (bitfield, 0))]; else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM) memref = SUBREG_REG (XEXP (bitfield, 0)); else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG && equiv_mem != 0 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG) memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))]; if (memref && ! mode_dependent_address_p (XEXP (memref, 0)) && ! MEM_VOLATILE_P (memref)) { /* Now adjust the address, first for any subreg'ing that we are now getting rid of, and then for which byte of the word is wanted. */ HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2)); rtx insns; /* Adjust OFFSET to count bits from low-address byte. */ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0))) - offset - INTVAL (XEXP (bitfield, 1))); /* Adjust OFFSET to count bytes from low-address byte. */ offset /= BITS_PER_UNIT; if (GET_CODE (XEXP (bitfield, 0)) == SUBREG) { offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD; if (BYTES_BIG_ENDIAN) offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0)))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (memref)))); } start_sequence (); memref = change_address (memref, mode, plus_constant (XEXP (memref, 0), offset)); insns = get_insns (); end_sequence (); emit_insns_before (insns, insn); /* Store this memory reference where we found the bit field reference. */ if (destflag) { validate_change (insn, &SET_DEST (body), memref, 1); if (! CONSTANT_ADDRESS_P (SET_SRC (body))) { rtx src = SET_SRC (body); while (GET_CODE (src) == SUBREG && SUBREG_WORD (src) == 0) src = SUBREG_REG (src); if (GET_MODE (src) != GET_MODE (memref)) src = gen_lowpart (GET_MODE (memref), SET_SRC (body)); validate_change (insn, &SET_SRC (body), src, 1); } else if (GET_MODE (SET_SRC (body)) != VOIDmode && GET_MODE (SET_SRC (body)) != GET_MODE (memref)) /* This shouldn't happen because anything that didn't have one of these modes should have got converted explicitly and then referenced through a subreg. This is so because the original bit-field was handled by agg_mode and so its tree structure had the same mode that memref now has. */ abort (); } else { rtx dest = SET_DEST (body); while (GET_CODE (dest) == SUBREG && SUBREG_WORD (dest) == 0 && (GET_MODE_CLASS (GET_MODE (dest)) == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))) && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= UNITS_PER_WORD)) dest = SUBREG_REG (dest); validate_change (insn, &SET_DEST (body), dest, 1); if (GET_MODE (dest) == GET_MODE (memref)) validate_change (insn, &SET_SRC (body), memref, 1); else { /* Convert the mem ref to the destination mode. */ rtx newreg = gen_reg_rtx (GET_MODE (dest)); start_sequence (); convert_move (newreg, memref, GET_CODE (SET_SRC (body)) == ZERO_EXTRACT); seq = get_insns (); end_sequence (); validate_change (insn, &SET_SRC (body), newreg, 1); } } /* See if we can convert this extraction or insertion into a simple move insn. We might not be able to do so if this was, for example, part of a PARALLEL. If we succeed, write out any needed conversions. If we fail, it is hard to guess why we failed, so don't do anything special; just let the optimization be suppressed. */ if (apply_change_group () && seq) emit_insns_before (seq, insn); } } } /* These routines are responsible for converting virtual register references to the actual hard register references once RTL generation is complete. The following four variables are used for communication between the routines. They contain the offsets of the virtual registers from their respective hard registers. */ static int in_arg_offset; static int var_offset; static int dynamic_offset; static int out_arg_offset; static int cfa_offset; /* In most machines, the stack pointer register is equivalent to the bottom of the stack. */ #ifndef STACK_POINTER_OFFSET #define STACK_POINTER_OFFSET 0 #endif /* If not defined, pick an appropriate default for the offset of dynamically allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ #ifndef STACK_DYNAMIC_OFFSET #ifdef ACCUMULATE_OUTGOING_ARGS /* The bottom of the stack points to the actual arguments. If REG_PARM_STACK_SPACE is defined, this includes the space for the register parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, stack space for register parameters is not pushed by the caller, but rather part of the fixed stack areas and hence not included in `current_function_outgoing_args_size'. Nevertheless, we must allow for it when allocating stack dynamic objects. */ #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) #define STACK_DYNAMIC_OFFSET(FNDECL) \ (current_function_outgoing_args_size \ + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET)) #else #define STACK_DYNAMIC_OFFSET(FNDECL) \ (current_function_outgoing_args_size + (STACK_POINTER_OFFSET)) #endif #else #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET #endif #endif /* On a few machines, the CFA coincides with the arg pointer. */ #ifndef ARG_POINTER_CFA_OFFSET #define ARG_POINTER_CFA_OFFSET 0 #endif /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its address taken. DECL is the decl for the object stored in the register, for later use if we do need to force REG into the stack. REG is overwritten by the MEM like in put_reg_into_stack. */ rtx gen_mem_addressof (reg, decl) rtx reg; tree decl; { tree type = TREE_TYPE (decl); rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg)); SET_ADDRESSOF_DECL (r, decl); /* If the original REG was a user-variable, then so is the REG whose address is being taken. */ REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg); XEXP (reg, 0) = r; PUT_CODE (reg, MEM); PUT_MODE (reg, DECL_MODE (decl)); MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl); MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type)); MEM_ALIAS_SET (reg) = get_alias_set (decl); if (TREE_USED (decl) || DECL_INITIAL (decl) != 0) fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0); return reg; } /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */ void flush_addressof (decl) tree decl; { if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL) && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG) put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0); } /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */ static void put_addressof_into_stack (r, ht) rtx r; struct hash_table *ht; { tree decl = ADDRESSOF_DECL (r); rtx reg = XEXP (r, 0); if (GET_CODE (reg) != REG) abort (); put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg), DECL_MODE (decl), TREE_SIDE_EFFECTS (decl), ADDRESSOF_REGNO (r), TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht); } /* List of replacements made below in purge_addressof_1 when creating bitfield insertions. */ static rtx purge_bitfield_addressof_replacements; /* List of replacements made below in purge_addressof_1 for patterns (MEM (ADDRESSOF (REG ...))). The key of the list entry is the corresponding (ADDRESSOF (REG ...)) and value is a substitution for the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not enough in complex cases, e.g. when some field values can be extracted by usage MEM with narrower mode. */ static rtx purge_addressof_replacements; /* Helper function for purge_addressof. See if the rtx expression at *LOC in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into the stack. */ static void purge_addressof_1 (loc, insn, force, store, ht) rtx *loc; rtx insn; int force, store; struct hash_table *ht; { rtx x; RTX_CODE code; int i, j; char *fmt; /* Re-start here to avoid recursion in common cases. */ restart: x = *loc; if (x == 0) return; code = GET_CODE (x); if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM) { rtx insns; /* We must create a copy of the rtx because it was created by overwriting a REG rtx which is always shared. */ rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0)); if (validate_change (insn, loc, sub, 0) || validate_replace_rtx (x, sub, insn)) return; start_sequence (); sub = force_operand (sub, NULL_RTX); if (! validate_change (insn, loc, sub, 0) && ! validate_replace_rtx (x, sub, insn)) abort (); insns = gen_sequence (); end_sequence (); emit_insn_before (insns, insn); return; } else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force) { rtx sub = XEXP (XEXP (x, 0), 0); rtx sub2; if (GET_CODE (sub) == MEM) { sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0))); MEM_COPY_ATTRIBUTES (sub2, sub); RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub); sub = sub2; } if (GET_CODE (sub) == REG && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) { put_addressof_into_stack (XEXP (x, 0), ht); return; } else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub)) { int size_x, size_sub; if (!insn) { /* When processing REG_NOTES look at the list of replacements done on the insn to find the register that X was replaced by. */ rtx tem; for (tem = purge_bitfield_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (x, XEXP (tem, 0))) { *loc = XEXP (XEXP (tem, 1), 0); return; } /* See comment for purge_addressof_replacements. */ for (tem = purge_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) { rtx z = XEXP (XEXP (tem, 1), 0); if (GET_MODE (x) == GET_MODE (z) || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG)) abort (); /* It can happen that the note may speak of things in a wider (or just different) mode than the code did. This is especially true of REG_RETVAL. */ if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0) z = SUBREG_REG (z); if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD && (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (z)))) { /* This can occur as a result in invalid pointer casts, e.g. float f; ... *(long long int *)&f. ??? We could emit a warning here, but without a line number that wouldn't be very helpful. */ z = gen_rtx_SUBREG (GET_MODE (x), z, 0); } else z = gen_lowpart (GET_MODE (x), z); *loc = z; return; } /* There should always be such a replacement. */ abort (); } size_x = GET_MODE_BITSIZE (GET_MODE (x)); size_sub = GET_MODE_BITSIZE (GET_MODE (sub)); /* Don't even consider working with paradoxical subregs, or the moral equivalent seen here. */ if (size_x <= size_sub && int_mode_for_mode (GET_MODE (sub)) != BLKmode) { /* Do a bitfield insertion to mirror what would happen in memory. */ rtx val, seq; if (store) { rtx p = PREV_INSN (insn); start_sequence (); val = gen_reg_rtx (GET_MODE (x)); if (! validate_change (insn, loc, val, 0)) { /* Discard the current sequence and put the ADDRESSOF on stack. */ end_sequence (); goto give_up; } seq = gen_sequence (); end_sequence (); emit_insn_before (seq, insn); compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), insn, ht); start_sequence (); store_bit_field (sub, size_x, 0, GET_MODE (x), val, GET_MODE_SIZE (GET_MODE (sub)), GET_MODE_SIZE (GET_MODE (sub))); /* Make sure to unshare any shared rtl that store_bit_field might have created. */ for (p = get_insns(); p; p = NEXT_INSN (p)) { reset_used_flags (PATTERN (p)); reset_used_flags (REG_NOTES (p)); reset_used_flags (LOG_LINKS (p)); } unshare_all_rtl (get_insns ()); seq = gen_sequence (); end_sequence (); p = emit_insn_after (seq, insn); if (NEXT_INSN (insn)) compute_insns_for_mem (NEXT_INSN (insn), p ? NEXT_INSN (p) : NULL_RTX, ht); } else { rtx p = PREV_INSN (insn); start_sequence (); val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX, GET_MODE (x), GET_MODE (x), GET_MODE_SIZE (GET_MODE (sub)), GET_MODE_SIZE (GET_MODE (sub))); if (! validate_change (insn, loc, val, 0)) { /* Discard the current sequence and put the ADDRESSOF on stack. */ end_sequence (); goto give_up; } seq = gen_sequence (); end_sequence (); emit_insn_before (seq, insn); compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), insn, ht); } /* Remember the replacement so that the same one can be done on the REG_NOTES. */ purge_bitfield_addressof_replacements = gen_rtx_EXPR_LIST (VOIDmode, x, gen_rtx_EXPR_LIST (VOIDmode, val, purge_bitfield_addressof_replacements)); /* We replaced with a reg -- all done. */ return; } } else if (validate_change (insn, loc, sub, 0)) { /* Remember the replacement so that the same one can be done on the REG_NOTES. */ if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG) { rtx tem; for (tem = purge_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) { XEXP (XEXP (tem, 1), 0) = sub; return; } purge_addressof_replacements = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0), gen_rtx_EXPR_LIST (VOIDmode, sub, purge_addressof_replacements)); return; } goto restart; } give_up:; /* else give up and put it into the stack */ } else if (code == ADDRESSOF) { put_addressof_into_stack (x, ht); return; } else if (code == SET) { purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht); purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht); return; } /* Scan all subexpressions. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) { if (*fmt == 'e') purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht); else if (*fmt == 'E') for (j = 0; j < XVECLEN (x, i); j++) purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht); } } /* Return a new hash table entry in HT. */ static struct hash_entry * insns_for_mem_newfunc (he, ht, k) struct hash_entry *he; struct hash_table *ht; hash_table_key k ATTRIBUTE_UNUSED; { struct insns_for_mem_entry *ifmhe; if (he) return he; ifmhe = ((struct insns_for_mem_entry *) hash_allocate (ht, sizeof (struct insns_for_mem_entry))); ifmhe->insns = NULL_RTX; return &ifmhe->he; } /* Return a hash value for K, a REG. */ static unsigned long insns_for_mem_hash (k) hash_table_key k; { /* K is really a RTX. Just use the address as the hash value. */ return (unsigned long) k; } /* Return non-zero if K1 and K2 (two REGs) are the same. */ static boolean insns_for_mem_comp (k1, k2) hash_table_key k1; hash_table_key k2; { return k1 == k2; } struct insns_for_mem_walk_info { /* The hash table that we are using to record which INSNs use which MEMs. */ struct hash_table *ht; /* The INSN we are currently proessing. */ rtx insn; /* Zero if we are walking to find ADDRESSOFs, one if we are walking to find the insns that use the REGs in the ADDRESSOFs. */ int pass; }; /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG that might be used in an ADDRESSOF expression, record this INSN in the hash table given by DATA (which is really a pointer to an insns_for_mem_walk_info structure). */ static int insns_for_mem_walk (r, data) rtx *r; void *data; { struct insns_for_mem_walk_info *ifmwi = (struct insns_for_mem_walk_info *) data; if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF && GET_CODE (XEXP (*r, 0)) == REG) hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0); else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG) { /* Lookup this MEM in the hashtable, creating it if necessary. */ struct insns_for_mem_entry *ifme = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht, *r, /*create=*/0, /*copy=*/0); /* If we have not already recorded this INSN, do so now. Since we process the INSNs in order, we know that if we have recorded it it must be at the front of the list. */ if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn)) { /* We do the allocation on the same obstack as is used for the hash table since this memory will not be used once the hash table is deallocated. */ push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory); ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn, ifme->insns); pop_obstacks (); } } return 0; } /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use which REGs in HT. */ static void compute_insns_for_mem (insns, last_insn, ht) rtx insns; rtx last_insn; struct hash_table *ht; { rtx insn; struct insns_for_mem_walk_info ifmwi; ifmwi.ht = ht; for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass) for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { ifmwi.insn = insn; for_each_rtx (&insn, insns_for_mem_walk, &ifmwi); } } /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining (MEM (ADDRESSOF)) patterns, and force any needed registers into the stack. */ void purge_addressof (insns) rtx insns; { rtx insn; struct hash_table ht; /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That requires a fixup pass over the instruction stream to correct INSNs that depended on the REG being a REG, and not a MEM. But, these fixup passes are slow. Furthermore, more MEMs are not mentioned in very many instructions. So, we speed up the process by pre-calculating which REGs occur in which INSNs; that allows us to perform the fixup passes much more quickly. */ hash_table_init (&ht, insns_for_mem_newfunc, insns_for_mem_hash, insns_for_mem_comp); compute_insns_for_mem (insns, NULL_RTX, &ht); for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) { purge_addressof_1 (&PATTERN (insn), insn, asm_noperands (PATTERN (insn)) > 0, 0, &ht); purge_addressof_1 (®_NOTES (insn), NULL_RTX, 0, 0, &ht); } /* Clean up. */ hash_table_free (&ht); purge_bitfield_addressof_replacements = 0; purge_addressof_replacements = 0; } /* Pass through the INSNS of function FNDECL and convert virtual register references to hard register references. */ void instantiate_virtual_regs (fndecl, insns) tree fndecl; rtx insns; { rtx insn; int i; /* Compute the offsets to use for this function. */ in_arg_offset = FIRST_PARM_OFFSET (fndecl); var_offset = STARTING_FRAME_OFFSET; dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl); out_arg_offset = STACK_POINTER_OFFSET; cfa_offset = ARG_POINTER_CFA_OFFSET; /* Scan all variables and parameters of this function. For each that is in memory, instantiate all virtual registers if the result is a valid address. If not, we do it later. That will handle most uses of virtual regs on many machines. */ instantiate_decls (fndecl, 1); /* Initialize recognition, indicating that volatile is OK. */ init_recog (); /* Scan through all the insns, instantiating every virtual register still present. */ for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) { instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1); instantiate_virtual_regs_1 (®_NOTES (insn), NULL_RTX, 0); } /* Instantiate the stack slots for the parm registers, for later use in addressof elimination. */ for (i = 0; i < max_parm_reg; ++i) if (parm_reg_stack_loc[i]) instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0); /* Now instantiate the remaining register equivalences for debugging info. These will not be valid addresses. */ instantiate_decls (fndecl, 0); /* Indicate that, from now on, assign_stack_local should use frame_pointer_rtx. */ virtuals_instantiated = 1; } /* Scan all decls in FNDECL (both variables and parameters) and instantiate all virtual registers in their DECL_RTL's. If VALID_ONLY, do this only if the resulting address is still valid. Otherwise, always do it. */ static void instantiate_decls (fndecl, valid_only) tree fndecl; int valid_only; { tree decl; if (DECL_SAVED_INSNS (fndecl)) /* When compiling an inline function, the obstack used for rtl allocation is the maybepermanent_obstack. Calling `resume_temporary_allocation' switches us back to that obstack while we process this function's parameters. */ resume_temporary_allocation (); /* Process all parameters of the function. */ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl)) { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl)); instantiate_decl (DECL_RTL (decl), size, valid_only); /* If the parameter was promoted, then the incoming RTL mode may be larger than the declared type size. We must use the larger of the two sizes. */ size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size); instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only); } /* Now process all variables defined in the function or its subblocks. */ instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only); if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl)) { /* Save all rtl allocated for this function by raising the high-water mark on the maybepermanent_obstack. */ preserve_data (); /* All further rtl allocation is now done in the current_obstack. */ rtl_in_current_obstack (); } } /* Subroutine of instantiate_decls: Process all decls in the given BLOCK node and all its subblocks. */ static void instantiate_decls_1 (let, valid_only) tree let; int valid_only; { tree t; for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)), valid_only); /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) instantiate_decls_1 (t, valid_only); } /* Subroutine of the preceding procedures: Given RTL representing a decl and the size of the object, do any instantiation required. If VALID_ONLY is non-zero, it means that the RTL should only be changed if the new address is valid. */ static void instantiate_decl (x, size, valid_only) rtx x; int size; int valid_only; { enum machine_mode mode; rtx addr; /* If this is not a MEM, no need to do anything. Similarly if the address is a constant or a register that is not a virtual register. */ if (x == 0 || GET_CODE (x) != MEM) return; addr = XEXP (x, 0); if (CONSTANT_P (addr) || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG) || (GET_CODE (addr) == REG && (REGNO (addr) < FIRST_VIRTUAL_REGISTER || REGNO (addr) > LAST_VIRTUAL_REGISTER))) return; /* If we should only do this if the address is valid, copy the address. We need to do this so we can undo any changes that might make the address invalid. This copy is unfortunate, but probably can't be avoided. */ if (valid_only) addr = copy_rtx (addr); instantiate_virtual_regs_1 (&addr, NULL_RTX, 0); if (valid_only) { /* Now verify that the resulting address is valid for every integer or floating-point mode up to and including SIZE bytes long. We do this since the object might be accessed in any mode and frame addresses are shared. */ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode && GET_MODE_SIZE (mode) <= size; mode = GET_MODE_WIDER_MODE (mode)) if (! memory_address_p (mode, addr)) return; for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode && GET_MODE_SIZE (mode) <= size; mode = GET_MODE_WIDER_MODE (mode)) if (! memory_address_p (mode, addr)) return; } /* Put back the address now that we have updated it and we either know it is valid or we don't care whether it is valid. */ XEXP (x, 0) = addr; } /* Given a pointer to a piece of rtx and an optional pointer to the containing object, instantiate any virtual registers present in it. If EXTRA_INSNS, we always do the replacement and generate any extra insns before OBJECT. If it zero, we do nothing if replacement is not valid. Return 1 if we either had nothing to do or if we were able to do the needed replacement. Return 0 otherwise; we only return zero if EXTRA_INSNS is zero. We first try some simple transformations to avoid the creation of extra pseudos. */ static int instantiate_virtual_regs_1 (loc, object, extra_insns) rtx *loc; rtx object; int extra_insns; { rtx x; RTX_CODE code; rtx new = 0; HOST_WIDE_INT offset = 0; rtx temp; rtx seq; int i, j; char *fmt; /* Re-start here to avoid recursion in common cases. */ restart: x = *loc; if (x == 0) return 1; code = GET_CODE (x); /* Check for some special cases. */ switch (code) { case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case ASM_INPUT: case ADDR_VEC: case ADDR_DIFF_VEC: case RETURN: return 1; case SET: /* We are allowed to set the virtual registers. This means that the actual register should receive the source minus the appropriate offset. This is used, for example, in the handling of non-local gotos. */ if (SET_DEST (x) == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = - in_arg_offset; else if (SET_DEST (x) == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = - var_offset; else if (SET_DEST (x) == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = - dynamic_offset; else if (SET_DEST (x) == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = - out_arg_offset; else if (SET_DEST (x) == virtual_cfa_rtx) new = arg_pointer_rtx, offset = - cfa_offset; if (new) { /* The only valid sources here are PLUS or REG. Just do the simplest possible thing to handle them. */ if (GET_CODE (SET_SRC (x)) != REG && GET_CODE (SET_SRC (x)) != PLUS) abort (); start_sequence (); if (GET_CODE (SET_SRC (x)) != REG) temp = force_operand (SET_SRC (x), NULL_RTX); else temp = SET_SRC (x); temp = force_operand (plus_constant (temp, offset), NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); SET_DEST (x) = new; if (! validate_change (object, &SET_SRC (x), temp, 0) || ! extra_insns) abort (); return 1; } instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns); loc = &SET_SRC (x); goto restart; case PLUS: /* Handle special case of virtual register plus constant. */ if (CONSTANT_P (XEXP (x, 1))) { rtx old, new_offset; /* Check for (plus (plus VIRT foo) (const_int)) first. */ if (GET_CODE (XEXP (x, 0)) == PLUS) { rtx inner = XEXP (XEXP (x, 0), 0); if (inner == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (inner == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (inner == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (inner == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (inner == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; else { loc = &XEXP (x, 0); goto restart; } instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object, extra_insns); new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1)); } else if (XEXP (x, 0) == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (XEXP (x, 0) == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (XEXP (x, 0) == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (XEXP (x, 0) == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (XEXP (x, 0) == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; else { /* We know the second operand is a constant. Unless the first operand is a REG (which has been already checked), it needs to be checked. */ if (GET_CODE (XEXP (x, 0)) != REG) { loc = &XEXP (x, 0); goto restart; } return 1; } new_offset = plus_constant (XEXP (x, 1), offset); /* If the new constant is zero, try to replace the sum with just the register. */ if (new_offset == const0_rtx && validate_change (object, loc, new, 0)) return 1; /* Next try to replace the register and new offset. There are two changes to validate here and we can't assume that in the case of old offset equals new just changing the register will yield a valid insn. In the interests of a little efficiency, however, we only call validate change once (we don't queue up the changes and then call apply_change_group). */ old = XEXP (x, 0); if (offset == 0 ? ! validate_change (object, &XEXP (x, 0), new, 0) : (XEXP (x, 0) = new, ! validate_change (object, &XEXP (x, 1), new_offset, 0))) { if (! extra_insns) { XEXP (x, 0) = old; return 0; } /* Otherwise copy the new constant into a register and replace constant with that register. */ temp = gen_reg_rtx (Pmode); XEXP (x, 0) = new; if (validate_change (object, &XEXP (x, 1), temp, 0)) emit_insn_before (gen_move_insn (temp, new_offset), object); else { /* If that didn't work, replace this expression with a register containing the sum. */ XEXP (x, 0) = old; new = gen_rtx_PLUS (Pmode, new, new_offset); start_sequence (); temp = force_operand (new, NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); if (! validate_change (object, loc, temp, 0) && ! validate_replace_rtx (x, temp, object)) abort (); } } return 1; } /* Fall through to generic two-operand expression case. */ case EXPR_LIST: case CALL: case COMPARE: case MINUS: case MULT: case DIV: case UDIV: case MOD: case UMOD: case AND: case IOR: case XOR: case ROTATERT: case ROTATE: case ASHIFTRT: case LSHIFTRT: case ASHIFT: case NE: case EQ: case GE: case GT: case GEU: case GTU: case LE: case LT: case LEU: case LTU: if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1))) instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns); loc = &XEXP (x, 0); goto restart; case MEM: /* Most cases of MEM that convert to valid addresses have already been handled by our scan of decls. The only special handling we need here is to make a copy of the rtx to ensure it isn't being shared if we have to change it to a pseudo. If the rtx is a simple reference to an address via a virtual register, it can potentially be shared. In such cases, first try to make it a valid address, which can also be shared. Otherwise, copy it and proceed normally. First check for common cases that need no processing. These are usually due to instantiation already being done on a previous instance of a shared rtx. */ temp = XEXP (x, 0); if (CONSTANT_ADDRESS_P (temp) #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM || temp == arg_pointer_rtx #endif #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM || temp == hard_frame_pointer_rtx #endif || temp == frame_pointer_rtx) return 1; if (GET_CODE (temp) == PLUS && CONSTANT_ADDRESS_P (XEXP (temp, 1)) && (XEXP (temp, 0) == frame_pointer_rtx #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM || XEXP (temp, 0) == hard_frame_pointer_rtx #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM || XEXP (temp, 0) == arg_pointer_rtx #endif )) return 1; if (temp == virtual_stack_vars_rtx || temp == virtual_incoming_args_rtx || (GET_CODE (temp) == PLUS && CONSTANT_ADDRESS_P (XEXP (temp, 1)) && (XEXP (temp, 0) == virtual_stack_vars_rtx || XEXP (temp, 0) == virtual_incoming_args_rtx))) { /* This MEM may be shared. If the substitution can be done without the need to generate new pseudos, we want to do it in place so all copies of the shared rtx benefit. The call below will only make substitutions if the resulting address is still valid. Note that we cannot pass X as the object in the recursive call since the insn being processed may not allow all valid addresses. However, if we were not passed on object, we can only modify X without copying it if X will have a valid address. ??? Also note that this can still lose if OBJECT is an insn that has less restrictions on an address that some other insn. In that case, we will modify the shared address. This case doesn't seem very likely, though. One case where this could happen is in the case of a USE or CLOBBER reference, but we take care of that below. */ if (instantiate_virtual_regs_1 (&XEXP (x, 0), object ? object : x, 0)) return 1; /* Otherwise make a copy and process that copy. We copy the entire RTL expression since it might be a PLUS which could also be shared. */ *loc = x = copy_rtx (x); } /* Fall through to generic unary operation case. */ case SUBREG: case STRICT_LOW_PART: case NEG: case NOT: case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC: case SIGN_EXTEND: case ZERO_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: case FIX: case UNSIGNED_FIX: case UNSIGNED_FLOAT: case ABS: case SQRT: case FFS: /* These case either have just one operand or we know that we need not check the rest of the operands. */ loc = &XEXP (x, 0); goto restart; case USE: case CLOBBER: /* If the operand is a MEM, see if the change is a valid MEM. If not, go ahead and make the invalid one, but do it to a copy. For a REG, just make the recursive call, since there's no chance of a problem. */ if ((GET_CODE (XEXP (x, 0)) == MEM && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0), 0)) || (GET_CODE (XEXP (x, 0)) == REG && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0))) return 1; XEXP (x, 0) = copy_rtx (XEXP (x, 0)); loc = &XEXP (x, 0); goto restart; case REG: /* Try to replace with a PLUS. If that doesn't work, compute the sum in front of this insn and substitute the temporary. */ if (x == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (x == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (x == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (x == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (x == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; if (new) { temp = plus_constant (new, offset); if (!validate_change (object, loc, temp, 0)) { if (! extra_insns) return 0; start_sequence (); temp = force_operand (temp, NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); if (! validate_change (object, loc, temp, 0) && ! validate_replace_rtx (x, temp, object)) abort (); } } return 1; case ADDRESSOF: if (GET_CODE (XEXP (x, 0)) == REG) return 1; else if (GET_CODE (XEXP (x, 0)) == MEM) { /* If we have a (addressof (mem ..)), do any instantiation inside since we know we'll be making the inside valid when we finally remove the ADDRESSOF. */ instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0); return 1; } break; default: break; } /* Scan all subexpressions. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) if (*fmt == 'e') { if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns)) return 0; } else if (*fmt == 'E') for (j = 0; j < XVECLEN (x, i); j++) if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object, extra_insns)) return 0; return 1; } /* Optimization: assuming this function does not receive nonlocal gotos, delete the handlers for such, as well as the insns to establish and disestablish them. */ static void delete_handlers () { rtx insn; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Delete the handler by turning off the flag that would prevent jump_optimize from deleting it. Also permit deletion of the nonlocal labels themselves if nothing local refers to them. */ if (GET_CODE (insn) == CODE_LABEL) { tree t, last_t; LABEL_PRESERVE_P (insn) = 0; /* Remove it from the nonlocal_label list, to avoid confusing flow. */ for (t = nonlocal_labels, last_t = 0; t; last_t = t, t = TREE_CHAIN (t)) if (DECL_RTL (TREE_VALUE (t)) == insn) break; if (t) { if (! last_t) nonlocal_labels = TREE_CHAIN (nonlocal_labels); else TREE_CHAIN (last_t) = TREE_CHAIN (t); } } if (GET_CODE (insn) == INSN) { int can_delete = 0; rtx t; for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1)) if (reg_mentioned_p (t, PATTERN (insn))) { can_delete = 1; break; } if (can_delete || (nonlocal_goto_stack_level != 0 && reg_mentioned_p (nonlocal_goto_stack_level, PATTERN (insn)))) delete_insn (insn); } } } /* Output a USE for any register use in RTL. This is used with -noreg to mark the extent of lifespan of any registers used in a user-visible variable's DECL_RTL. */ void use_variable (rtl) rtx rtl; { if (GET_CODE (rtl) == REG) /* This is a register variable. */ emit_insn (gen_rtx_USE (VOIDmode, rtl)); else if (GET_CODE (rtl) == MEM && GET_CODE (XEXP (rtl, 0)) == REG && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER) && XEXP (rtl, 0) != current_function_internal_arg_pointer) /* This is a variable-sized structure. */ emit_insn (gen_rtx_USE (VOIDmode, XEXP (rtl, 0))); } /* Like use_variable except that it outputs the USEs after INSN instead of at the end of the insn-chain. */ void use_variable_after (rtl, insn) rtx rtl, insn; { if (GET_CODE (rtl) == REG) /* This is a register variable. */ emit_insn_after (gen_rtx_USE (VOIDmode, rtl), insn); else if (GET_CODE (rtl) == MEM && GET_CODE (XEXP (rtl, 0)) == REG && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER) && XEXP (rtl, 0) != current_function_internal_arg_pointer) /* This is a variable-sized structure. */ emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)), insn); } int max_parm_reg_num () { return max_parm_reg; } /* Return the first insn following those generated by `assign_parms'. */ rtx get_first_nonparm_insn () { if (last_parm_insn) return NEXT_INSN (last_parm_insn); return get_insns (); } /* Return the first NOTE_INSN_BLOCK_BEG note in the function. Crash if there is none. */ rtx get_first_block_beg () { register rtx searcher; register rtx insn = get_first_nonparm_insn (); for (searcher = insn; searcher; searcher = NEXT_INSN (searcher)) if (GET_CODE (searcher) == NOTE && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG) return searcher; abort (); /* Invalid call to this function. (See comments above.) */ return NULL_RTX; } /* Return 1 if EXP is an aggregate type (or a value with aggregate type). This means a type for which function calls must pass an address to the function or get an address back from the function. EXP may be a type node or an expression (whose type is tested). */ int aggregate_value_p (exp) tree exp; { int i, regno, nregs; rtx reg; tree type; if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't') type = exp; else type = TREE_TYPE (exp); if (RETURN_IN_MEMORY (type)) return 1; /* Types that are TREE_ADDRESSABLE must be constructed in memory, and thus can't be returned in registers. */ if (TREE_ADDRESSABLE (type)) return 1; if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) return 1; /* Make sure we have suitable call-clobbered regs to return the value in; if not, we must return it in memory. */ reg = hard_function_value (type, 0); /* If we have something other than a REG (e.g. a PARALLEL), then assume it is OK. */ if (GET_CODE (reg) != REG) return 0; regno = REGNO (reg); nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type)); for (i = 0; i < nregs; i++) if (! call_used_regs[regno + i]) return 1; return 0; } /* Assign RTL expressions to the function's parameters. This may involve copying them into registers and using those registers as the RTL for them. If SECOND_TIME is non-zero it means that this function is being called a second time. This is done by integrate.c when a function's compilation is deferred. We need to come back here in case the FUNCTION_ARG macro computes items needed for the rest of the compilation (such as changing which registers are fixed or caller-saved). But suppress writing any insns or setting DECL_RTL of anything in this case. */ void assign_parms (fndecl, second_time) tree fndecl; int second_time; { register tree parm; register rtx entry_parm = 0; register rtx stack_parm = 0; CUMULATIVE_ARGS args_so_far; enum machine_mode promoted_mode, passed_mode; enum machine_mode nominal_mode, promoted_nominal_mode; int unsignedp; /* Total space needed so far for args on the stack, given as a constant and a tree-expression. */ struct args_size stack_args_size; tree fntype = TREE_TYPE (fndecl); tree fnargs = DECL_ARGUMENTS (fndecl); /* This is used for the arg pointer when referring to stack args. */ rtx internal_arg_pointer; /* This is a dummy PARM_DECL that we used for the function result if the function returns a structure. */ tree function_result_decl = 0; #ifdef SETUP_INCOMING_VARARGS int varargs_setup = 0; #endif rtx conversion_insns = 0; /* Nonzero if the last arg is named `__builtin_va_alist', which is used on some machines for old-fashioned non-ANSI varargs.h; this should be stuck onto the stack as if it had arrived there. */ int hide_last_arg = (current_function_varargs && fnargs && (parm = tree_last (fnargs)) != 0 && DECL_NAME (parm) && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)), "__builtin_va_alist"))); /* Nonzero if function takes extra anonymous args. This means the last named arg must be on the stack right before the anonymous ones. */ int stdarg = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); current_function_stdarg = stdarg; /* If the reg that the virtual arg pointer will be translated into is not a fixed reg or is the stack pointer, make a copy of the virtual arg pointer, and address parms via the copy. The frame pointer is considered fixed even though it is not marked as such. The second time through, simply use ap to avoid generating rtx. */ if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM || ! (fixed_regs[ARG_POINTER_REGNUM] || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)) && ! second_time) internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx); else internal_arg_pointer = virtual_incoming_args_rtx; current_function_internal_arg_pointer = internal_arg_pointer; stack_args_size.constant = 0; stack_args_size.var = 0; /* If struct value address is treated as the first argument, make it so. */ if (aggregate_value_p (DECL_RESULT (fndecl)) && ! current_function_returns_pcc_struct && struct_value_incoming_rtx == 0) { tree type = build_pointer_type (TREE_TYPE (fntype)); function_result_decl = build_decl (PARM_DECL, NULL_TREE, type); DECL_ARG_TYPE (function_result_decl) = type; TREE_CHAIN (function_result_decl) = fnargs; fnargs = function_result_decl; } max_parm_reg = LAST_VIRTUAL_REGISTER + 1; parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx)); bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx)); #ifdef INIT_CUMULATIVE_INCOMING_ARGS INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX); #else INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0); #endif /* We haven't yet found an argument that we must push and pretend the caller did. */ current_function_pretend_args_size = 0; for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) { int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm)); struct args_size stack_offset; struct args_size arg_size; int passed_pointer = 0; int did_conversion = 0; tree passed_type = DECL_ARG_TYPE (parm); tree nominal_type = TREE_TYPE (parm); int pretend_named; /* Set LAST_NAMED if this is last named arg before some anonymous args. */ int last_named = ((TREE_CHAIN (parm) == 0 || DECL_NAME (TREE_CHAIN (parm)) == 0) && (stdarg || current_function_varargs)); /* Set NAMED_ARG if this arg should be treated as a named arg. For most machines, if this is a varargs/stdarg function, then we treat the last named arg as if it were anonymous too. */ int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named; if (TREE_TYPE (parm) == error_mark_node /* This can happen after weird syntax errors or if an enum type is defined among the parms. */ || TREE_CODE (parm) != PARM_DECL || passed_type == NULL) { DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx_MEM (BLKmode, const0_rtx); TREE_USED (parm) = 1; continue; } /* For varargs.h function, save info about regs and stack space used by the individual args, not including the va_alist arg. */ if (hide_last_arg && last_named) current_function_args_info = args_so_far; /* Find mode of arg as it is passed, and mode of arg as it should be during execution of this function. */ passed_mode = TYPE_MODE (passed_type); nominal_mode = TYPE_MODE (nominal_type); /* If the parm's mode is VOID, its value doesn't matter, and avoid the usual things like emit_move_insn that could crash. */ if (nominal_mode == VOIDmode) { DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx; continue; } /* If the parm is to be passed as a transparent union, use the type of the first field for the tests below. We have already verified that the modes are the same. */ if (DECL_TRANSPARENT_UNION (parm) || TYPE_TRANSPARENT_UNION (passed_type)) passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); /* See if this arg was passed by invisible reference. It is if it is an object whose size depends on the contents of the object itself or if the machine requires these objects be passed that way. */ if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST && contains_placeholder_p (TYPE_SIZE (passed_type))) || TREE_ADDRESSABLE (passed_type) #ifdef FUNCTION_ARG_PASS_BY_REFERENCE || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode, passed_type, named_arg) #endif ) { passed_type = nominal_type = build_pointer_type (passed_type); passed_pointer = 1; passed_mode = nominal_mode = Pmode; } promoted_mode = passed_mode; #ifdef PROMOTE_FUNCTION_ARGS /* Compute the mode in which the arg is actually extended to. */ unsignedp = TREE_UNSIGNED (passed_type); promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1); #endif /* Let machine desc say which reg (if any) the parm arrives in. 0 means it arrives on the stack. */ #ifdef FUNCTION_INCOMING_ARG entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, passed_type, named_arg); #else entry_parm = FUNCTION_ARG (args_so_far, promoted_mode, passed_type, named_arg); #endif if (entry_parm == 0) promoted_mode = passed_mode; #ifdef SETUP_INCOMING_VARARGS /* If this is the last named parameter, do any required setup for varargs or stdargs. We need to know about the case of this being an addressable type, in which case we skip the registers it would have arrived in. For stdargs, LAST_NAMED will be set for two parameters, the one that is actually the last named, and the dummy parameter. We only want to do this action once. Also, indicate when RTL generation is to be suppressed. */ if (last_named && !varargs_setup) { SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type, current_function_pretend_args_size, second_time); varargs_setup = 1; } #endif /* Determine parm's home in the stack, in case it arrives in the stack or we should pretend it did. Compute the stack position and rtx where the argument arrives and its size. There is one complexity here: If this was a parameter that would have been passed in registers, but wasn't only because it is __builtin_va_alist, we want locate_and_pad_parm to treat it as if it came in a register so that REG_PARM_STACK_SPACE isn't skipped. In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 as it was the previous time. */ pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED; locate_and_pad_parm (promoted_mode, passed_type, #ifdef STACK_PARMS_IN_REG_PARM_AREA 1, #else #ifdef FUNCTION_INCOMING_ARG FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, passed_type, pretend_named) != 0, #else FUNCTION_ARG (args_so_far, promoted_mode, passed_type, pretend_named) != 0, #endif #endif fndecl, &stack_args_size, &stack_offset, &arg_size); if (! second_time) { rtx offset_rtx = ARGS_SIZE_RTX (stack_offset); if (offset_rtx == const0_rtx) stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer); else stack_parm = gen_rtx_MEM (promoted_mode, gen_rtx_PLUS (Pmode, internal_arg_pointer, offset_rtx)); /* If this is a memory ref that contains aggregate components, mark it as such for cse and loop optimize. Likewise if it is readonly. */ MEM_SET_IN_STRUCT_P (stack_parm, aggregate); RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm); MEM_ALIAS_SET (stack_parm) = get_alias_set (parm); } /* If this parameter was passed both in registers and in the stack, use the copy on the stack. */ if (MUST_PASS_IN_STACK (promoted_mode, passed_type)) entry_parm = 0; #ifdef FUNCTION_ARG_PARTIAL_NREGS /* If this parm was passed part in regs and part in memory, pretend it arrived entirely in memory by pushing the register-part onto the stack. In the special case of a DImode or DFmode that is split, we could put it together in a pseudoreg directly, but for now that's not worth bothering with. */ if (entry_parm) { int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode, passed_type, named_arg); if (nregs > 0) { current_function_pretend_args_size = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1) / (PARM_BOUNDARY / BITS_PER_UNIT) * (PARM_BOUNDARY / BITS_PER_UNIT)); if (! second_time) { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (stack_parm), entry_parm, int_size_in_bytes (TREE_TYPE (parm)), (TYPE_ALIGN (TREE_TYPE (parm)) / BITS_PER_UNIT)); else move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), nregs, int_size_in_bytes (TREE_TYPE (parm))); } entry_parm = stack_parm; } } #endif /* If we didn't decide this parm came in a register, by default it came on the stack. */ if (entry_parm == 0) entry_parm = stack_parm; /* Record permanently how this parm was passed. */ if (! second_time) DECL_INCOMING_RTL (parm) = entry_parm; /* If there is actually space on the stack for this parm, count it in stack_args_size; otherwise set stack_parm to 0 to indicate there is no preallocated stack slot for the parm. */ if (entry_parm == stack_parm || (GET_CODE (entry_parm) == PARALLEL && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX) #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE) /* On some machines, even if a parm value arrives in a register there is still an (uninitialized) stack slot allocated for it. ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell whether this parameter already has a stack slot allocated, because an arg block exists only if current_function_args_size is larger than some threshold, and we haven't calculated that yet. So, for now, we just assume that stack slots never exist in this case. */ || REG_PARM_STACK_SPACE (fndecl) > 0 #endif ) { stack_args_size.constant += arg_size.constant; if (arg_size.var) ADD_PARM_SIZE (stack_args_size, arg_size.var); } else /* No stack slot was pushed for this parm. */ stack_parm = 0; /* Update info on where next arg arrives in registers. */ FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode, passed_type, named_arg); /* If this is our second time through, we are done with this parm. */ if (second_time) continue; /* If we can't trust the parm stack slot to be aligned enough for its ultimate type, don't use that slot after entry. We'll make another stack slot, if we need one. */ { int thisparm_boundary = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type); if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary) stack_parm = 0; } /* If parm was passed in memory, and we need to convert it on entry, don't store it back in that same slot. */ if (entry_parm != 0 && nominal_mode != BLKmode && nominal_mode != passed_mode) stack_parm = 0; #if 0 /* Now adjust STACK_PARM to the mode and precise location where this parameter should live during execution, if we discover that it must live in the stack during execution. To make debuggers happier on big-endian machines, we store the value in the last bytes of the space available. */ if (nominal_mode != BLKmode && nominal_mode != passed_mode && stack_parm != 0) { rtx offset_rtx; if (BYTES_BIG_ENDIAN && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD) stack_offset.constant += (GET_MODE_SIZE (passed_mode) - GET_MODE_SIZE (nominal_mode)); offset_rtx = ARGS_SIZE_RTX (stack_offset); if (offset_rtx == const0_rtx) stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer); else stack_parm = gen_rtx_MEM (nominal_mode, gen_rtx_PLUS (Pmode, internal_arg_pointer, offset_rtx)); /* If this is a memory ref that contains aggregate components, mark it as such for cse and loop optimize. */ MEM_SET_IN_STRUCT_P (stack_parm, aggregate); } #endif /* 0 */ #ifdef STACK_REGS /* We need this "use" info, because the gcc-register->stack-register converter in reg-stack.c needs to know which registers are active at the start of the function call. The actual parameter loading instructions are not always available then anymore, since they might have been optimised away. */ if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named)) emit_insn (gen_rtx_USE (GET_MODE (entry_parm), entry_parm)); #endif /* ENTRY_PARM is an RTX for the parameter as it arrives, in the mode in which it arrives. STACK_PARM is an RTX for a stack slot where the parameter can live during the function (in case we want to put it there). STACK_PARM is 0 if no stack slot was pushed for it. Now output code if necessary to convert ENTRY_PARM to the type in which this function declares it, and store that result in an appropriate place, which may be a pseudo reg, may be STACK_PARM, or may be a local stack slot if STACK_PARM is 0. Set DECL_RTL to that place. */ if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL) { /* If a BLKmode arrives in registers, copy it to a stack slot. Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == REG || GET_CODE (entry_parm) == PARALLEL) { int size_stored = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)), UNITS_PER_WORD); /* Note that we will be storing an integral number of words. So we have to be careful to ensure that we allocate an integral number of words. We do this below in the assign_stack_local if space was not allocated in the argument list. If it was, this will not work if PARM_BOUNDARY is not a multiple of BITS_PER_WORD. It isn't clear how to fix this if it becomes a problem. */ if (stack_parm == 0) { stack_parm = assign_stack_local (GET_MODE (entry_parm), size_stored, 0); /* If this is a memory ref that contains aggregate components, mark it as such for cse and loop optimize. */ MEM_SET_IN_STRUCT_P (stack_parm, aggregate); } else if (PARM_BOUNDARY % BITS_PER_WORD != 0) abort (); if (TREE_READONLY (parm)) RTX_UNCHANGING_P (stack_parm) = 1; /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (stack_parm), entry_parm, int_size_in_bytes (TREE_TYPE (parm)), (TYPE_ALIGN (TREE_TYPE (parm)) / BITS_PER_UNIT)); else move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), size_stored / UNITS_PER_WORD, int_size_in_bytes (TREE_TYPE (parm))); } DECL_RTL (parm) = stack_parm; } else if (! ((obey_regdecls && ! DECL_REGISTER (parm) && ! DECL_INLINE (fndecl)) /* layout_decl may set this. */ || TREE_ADDRESSABLE (parm) || TREE_SIDE_EFFECTS (parm) /* If -ffloat-store specified, don't put explicit float variables into registers. */ || (flag_float_store && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)) /* Always assign pseudo to structure return or item passed by invisible reference. */ || passed_pointer || parm == function_result_decl) { /* Store the parm in a pseudoregister during the function, but we may need to do it in a wider mode. */ register rtx parmreg; int regno, regnoi = 0, regnor = 0; unsignedp = TREE_UNSIGNED (TREE_TYPE (parm)); promoted_nominal_mode = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0); parmreg = gen_reg_rtx (promoted_nominal_mode); mark_user_reg (parmreg); /* If this was an item that we received a pointer to, set DECL_RTL appropriately. */ if (passed_pointer) { DECL_RTL (parm) = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg); MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate); } else DECL_RTL (parm) = parmreg; /* Copy the value into the register. */ if (nominal_mode != passed_mode || promoted_nominal_mode != promoted_mode) { int save_tree_used; /* ENTRY_PARM has been converted to PROMOTED_MODE, its mode, by the caller. We now have to convert it to NOMINAL_MODE, if different. However, PARMREG may be in a different mode than NOMINAL_MODE if it is being stored promoted. If ENTRY_PARM is a hard register, it might be in a register not valid for operating in its mode (e.g., an odd-numbered register for a DFmode). In that case, moves are the only thing valid, so we can't do a convert from there. This occurs when the calling sequence allow such misaligned usages. In addition, the conversion may involve a call, which could clobber parameters which haven't been copied to pseudo registers yet. Therefore, we must first copy the parm to a pseudo reg here, and save the conversion until after all parameters have been moved. */ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); emit_move_insn (tempreg, validize_mem (entry_parm)); push_to_sequence (conversion_insns); tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp); /* TREE_USED gets set erroneously during expand_assignment. */ save_tree_used = TREE_USED (parm); expand_assignment (parm, make_tree (nominal_type, tempreg), 0, 0); TREE_USED (parm) = save_tree_used; conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } else emit_move_insn (parmreg, validize_mem (entry_parm)); /* If we were passed a pointer but the actual value can safely live in a register, put it in one. */ if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode && ! ((obey_regdecls && ! DECL_REGISTER (parm) && ! DECL_INLINE (fndecl)) /* layout_decl may set this. */ || TREE_ADDRESSABLE (parm) || TREE_SIDE_EFFECTS (parm) /* If -ffloat-store specified, don't put explicit float variables into registers. */ || (flag_float_store && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))) { /* We can't use nominal_mode, because it will have been set to Pmode above. We must use the actual mode of the parm. */ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); mark_user_reg (parmreg); emit_move_insn (parmreg, DECL_RTL (parm)); DECL_RTL (parm) = parmreg; /* STACK_PARM is the pointer, not the parm, and PARMREG is now the parm. */ stack_parm = 0; } #ifdef FUNCTION_ARG_CALLEE_COPIES /* If we are passed an arg by reference and it is our responsibility to make a copy, do it now. PASSED_TYPE and PASSED mode now refer to the pointer, not the original argument, so we must recreate them in the call to FUNCTION_ARG_CALLEE_COPIES. */ /* ??? Later add code to handle the case that if the argument isn't modified, don't do the copy. */ else if (passed_pointer && FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (DECL_ARG_TYPE (parm)), DECL_ARG_TYPE (parm), named_arg) && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm))) { rtx copy; tree type = DECL_ARG_TYPE (parm); /* This sequence may involve a library call perhaps clobbering registers that haven't been copied to pseudos yet. */ push_to_sequence (conversion_insns); if (TYPE_SIZE (type) == 0 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) /* This is a variable sized object. */ copy = gen_rtx_MEM (BLKmode, allocate_dynamic_stack_space (expr_size (parm), NULL_RTX, TYPE_ALIGN (type))); else copy = assign_stack_temp (TYPE_MODE (type), int_size_in_bytes (type), 1); MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type)); RTX_UNCHANGING_P (copy) = TREE_READONLY (parm); store_expr (parm, copy, 0); emit_move_insn (parmreg, XEXP (copy, 0)); if (current_function_check_memory_usage) emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, XEXP (copy, 0), Pmode, GEN_INT (int_size_in_bytes (type)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } #endif /* FUNCTION_ARG_CALLEE_COPIES */ /* In any case, record the parm's desired stack location in case we later discover it must live in the stack. If it is a COMPLEX value, store the stack location for both halves. */ if (GET_CODE (parmreg) == CONCAT) regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1))); else regno = REGNO (parmreg); if (regno >= max_parm_reg) { rtx *new; int old_max_parm_reg = max_parm_reg; /* It's slow to expand this one register at a time, but it's also rare and we need max_parm_reg to be precisely correct. */ max_parm_reg = regno + 1; new = (rtx *) savealloc (max_parm_reg * sizeof (rtx)); bcopy ((char *) parm_reg_stack_loc, (char *) new, old_max_parm_reg * sizeof (rtx)); bzero ((char *) (new + old_max_parm_reg), (max_parm_reg - old_max_parm_reg) * sizeof (rtx)); parm_reg_stack_loc = new; } if (GET_CODE (parmreg) == CONCAT) { enum machine_mode submode = GET_MODE (XEXP (parmreg, 0)); regnor = REGNO (gen_realpart (submode, parmreg)); regnoi = REGNO (gen_imagpart (submode, parmreg)); if (stack_parm != 0) { parm_reg_stack_loc[regnor] = gen_realpart (submode, stack_parm); parm_reg_stack_loc[regnoi] = gen_imagpart (submode, stack_parm); } else { parm_reg_stack_loc[regnor] = 0; parm_reg_stack_loc[regnoi] = 0; } } else parm_reg_stack_loc[REGNO (parmreg)] = stack_parm; /* Mark the register as eliminable if we did no conversion and it was copied from memory at a fixed offset, and the arg pointer was not copied to a pseudo-reg. If the arg pointer is a pseudo reg or the offset formed an invalid address, such memory-equivalences as we make here would screw up life analysis for it. */ if (nominal_mode == passed_mode && ! did_conversion && stack_parm != 0 && GET_CODE (stack_parm) == MEM && stack_offset.var == 0 && reg_mentioned_p (virtual_incoming_args_rtx, XEXP (stack_parm, 0))) { rtx linsn = get_last_insn (); rtx sinsn, set; /* Mark complex types separately. */ if (GET_CODE (parmreg) == CONCAT) /* Scan backwards for the set of the real and imaginary parts. */ for (sinsn = linsn; sinsn != 0; sinsn = prev_nonnote_insn (sinsn)) { set = single_set (sinsn); if (set != 0 && SET_DEST (set) == regno_reg_rtx [regnoi]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, parm_reg_stack_loc[regnoi], REG_NOTES (sinsn)); else if (set != 0 && SET_DEST (set) == regno_reg_rtx [regnor]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, parm_reg_stack_loc[regnor], REG_NOTES (sinsn)); } else if ((set = single_set (linsn)) != 0 && SET_DEST (set) == parmreg) REG_NOTES (linsn) = gen_rtx_EXPR_LIST (REG_EQUIV, stack_parm, REG_NOTES (linsn)); } /* For pointer data type, suggest pointer register. */ if (POINTER_TYPE_P (TREE_TYPE (parm))) mark_reg_pointer (parmreg, (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))) / BITS_PER_UNIT)); } else { /* Value must be stored in the stack slot STACK_PARM during function execution. */ if (promoted_mode != nominal_mode) { /* Conversion is required. */ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); emit_move_insn (tempreg, validize_mem (entry_parm)); push_to_sequence (conversion_insns); entry_parm = convert_to_mode (nominal_mode, tempreg, TREE_UNSIGNED (TREE_TYPE (parm))); if (stack_parm) { /* ??? This may need a big-endian conversion on sparc64. */ stack_parm = change_address (stack_parm, nominal_mode, NULL_RTX); } conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } if (entry_parm != stack_parm) { if (stack_parm == 0) { stack_parm = assign_stack_local (GET_MODE (entry_parm), GET_MODE_SIZE (GET_MODE (entry_parm)), 0); /* If this is a memory ref that contains aggregate components, mark it as such for cse and loop optimize. */ MEM_SET_IN_STRUCT_P (stack_parm, aggregate); } if (promoted_mode != nominal_mode) { push_to_sequence (conversion_insns); emit_move_insn (validize_mem (stack_parm), validize_mem (entry_parm)); conversion_insns = get_insns (); end_sequence (); } else emit_move_insn (validize_mem (stack_parm), validize_mem (entry_parm)); } if (current_function_check_memory_usage) { push_to_sequence (conversion_insns); emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, XEXP (stack_parm, 0), Pmode, GEN_INT (GET_MODE_SIZE (GET_MODE (entry_parm))), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); conversion_insns = get_insns (); end_sequence (); } DECL_RTL (parm) = stack_parm; } /* If this "parameter" was the place where we are receiving the function's incoming structure pointer, set up the result. */ if (parm == function_result_decl) { tree result = DECL_RESULT (fndecl); tree restype = TREE_TYPE (result); DECL_RTL (result) = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)); MEM_SET_IN_STRUCT_P (DECL_RTL (result), AGGREGATE_TYPE_P (restype)); } if (TREE_THIS_VOLATILE (parm)) MEM_VOLATILE_P (DECL_RTL (parm)) = 1; if (TREE_READONLY (parm)) RTX_UNCHANGING_P (DECL_RTL (parm)) = 1; } /* Output all parameter conversion instructions (possibly including calls) now that all parameters have been copied out of hard registers. */ emit_insns (conversion_insns); last_parm_insn = get_last_insn (); current_function_args_size = stack_args_size.constant; /* Adjust function incoming argument size for alignment and minimum length. */ #ifdef REG_PARM_STACK_SPACE #ifndef MAYBE_REG_PARM_STACK_SPACE current_function_args_size = MAX (current_function_args_size, REG_PARM_STACK_SPACE (fndecl)); #endif #endif #ifdef STACK_BOUNDARY #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) current_function_args_size = ((current_function_args_size + STACK_BYTES - 1) / STACK_BYTES) * STACK_BYTES; #endif #ifdef ARGS_GROW_DOWNWARD current_function_arg_offset_rtx = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant) : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var, size_int (-stack_args_size.constant)), NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD)); #else current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size); #endif /* See how many bytes, if any, of its args a function should try to pop on return. */ current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl), current_function_args_size); /* For stdarg.h function, save info about regs and stack space used by the named args. */ if (!hide_last_arg) current_function_args_info = args_so_far; /* Set the rtx used for the function return value. Put this in its own variable so any optimizers that need this information don't have to include tree.h. Do this here so it gets done when an inlined function gets output. */ current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl)); } /* Indicate whether REGNO is an incoming argument to the current function that was promoted to a wider mode. If so, return the RTX for the register (to get its mode). PMODE and PUNSIGNEDP are set to the mode that REGNO is promoted from and whether the promotion was signed or unsigned. */ #ifdef PROMOTE_FUNCTION_ARGS rtx promoted_input_arg (regno, pmode, punsignedp) int regno; enum machine_mode *pmode; int *punsignedp; { tree arg; for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG && REGNO (DECL_INCOMING_RTL (arg)) == regno && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg))) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg)); int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg)); mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1); if (mode == GET_MODE (DECL_INCOMING_RTL (arg)) && mode != DECL_MODE (arg)) { *pmode = DECL_MODE (arg); *punsignedp = unsignedp; return DECL_INCOMING_RTL (arg); } } return 0; } #endif /* Compute the size and offset from the start of the stacked arguments for a parm passed in mode PASSED_MODE and with type TYPE. INITIAL_OFFSET_PTR points to the current offset into the stacked arguments. The starting offset and size for this parm are returned in *OFFSET_PTR and *ARG_SIZE_PTR, respectively. IN_REGS is non-zero if the argument will be passed in registers. It will never be set if REG_PARM_STACK_SPACE is not defined. FNDECL is the function in which the argument was defined. There are two types of rounding that are done. The first, controlled by FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument list to be aligned to the specific boundary (in bits). This rounding affects the initial and starting offsets, but not the argument size. The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY, optionally rounds the size of the parm to PARM_BOUNDARY. The initial offset is not affected by this rounding, while the size always is and the starting offset may be. */ /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case; initial_offset_ptr is positive because locate_and_pad_parm's callers pass in the total size of args so far as initial_offset_ptr. arg_size_ptr is always positive.*/ void locate_and_pad_parm (passed_mode, type, in_regs, fndecl, initial_offset_ptr, offset_ptr, arg_size_ptr) enum machine_mode passed_mode; tree type; int in_regs; tree fndecl ATTRIBUTE_UNUSED; struct args_size *initial_offset_ptr; struct args_size *offset_ptr; struct args_size *arg_size_ptr; { tree sizetree = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type); int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type); #ifdef REG_PARM_STACK_SPACE /* If we have found a stack parm before we reach the end of the area reserved for registers, skip that area. */ if (! in_regs) { int reg_parm_stack_space = 0; #ifdef MAYBE_REG_PARM_STACK_SPACE reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; #else reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); #endif if (reg_parm_stack_space > 0) { if (initial_offset_ptr->var) { initial_offset_ptr->var = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), size_int (reg_parm_stack_space)); initial_offset_ptr->constant = 0; } else if (initial_offset_ptr->constant < reg_parm_stack_space) initial_offset_ptr->constant = reg_parm_stack_space; } } #endif /* REG_PARM_STACK_SPACE */ arg_size_ptr->var = 0; arg_size_ptr->constant = 0; #ifdef ARGS_GROW_DOWNWARD if (initial_offset_ptr->var) { offset_ptr->constant = 0; offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node, initial_offset_ptr->var); } else { offset_ptr->constant = - initial_offset_ptr->constant; offset_ptr->var = 0; } if (where_pad != none && (TREE_CODE (sizetree) != INTEGER_CST || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY))) sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); SUB_PARM_SIZE (*offset_ptr, sizetree); if (where_pad != downward) pad_to_arg_alignment (offset_ptr, boundary); if (initial_offset_ptr->var) { arg_size_ptr->var = size_binop (MINUS_EXPR, size_binop (MINUS_EXPR, integer_zero_node, initial_offset_ptr->var), offset_ptr->var); } else { arg_size_ptr->constant = (- initial_offset_ptr->constant - offset_ptr->constant); } #else /* !ARGS_GROW_DOWNWARD */ pad_to_arg_alignment (initial_offset_ptr, boundary); *offset_ptr = *initial_offset_ptr; #ifdef PUSH_ROUNDING if (passed_mode != BLKmode) sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); #endif /* Pad_below needs the pre-rounded size to know how much to pad below so this must be done before rounding up. */ if (where_pad == downward /* However, BLKmode args passed in regs have their padding done elsewhere. The stack slot must be able to hold the entire register. */ && !(in_regs && passed_mode == BLKmode)) pad_below (offset_ptr, passed_mode, sizetree); if (where_pad != none && (TREE_CODE (sizetree) != INTEGER_CST || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY))) sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); ADD_PARM_SIZE (*arg_size_ptr, sizetree); #endif /* ARGS_GROW_DOWNWARD */ } /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ static void pad_to_arg_alignment (offset_ptr, boundary) struct args_size *offset_ptr; int boundary; { int boundary_in_bytes = boundary / BITS_PER_UNIT; if (boundary > BITS_PER_UNIT) { if (offset_ptr->var) { offset_ptr->var = #ifdef ARGS_GROW_DOWNWARD round_down #else round_up #endif (ARGS_SIZE_TREE (*offset_ptr), boundary / BITS_PER_UNIT); offset_ptr->constant = 0; /*?*/ } else offset_ptr->constant = #ifdef ARGS_GROW_DOWNWARD FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes); #else CEIL_ROUND (offset_ptr->constant, boundary_in_bytes); #endif } } #ifndef ARGS_GROW_DOWNWARD static void pad_below (offset_ptr, passed_mode, sizetree) struct args_size *offset_ptr; enum machine_mode passed_mode; tree sizetree; { if (passed_mode != BLKmode) { if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY) offset_ptr->constant += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1) / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT) - GET_MODE_SIZE (passed_mode)); } else { if (TREE_CODE (sizetree) != INTEGER_CST || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY) { /* Round the size up to multiple of PARM_BOUNDARY bits. */ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); /* Add it in. */ ADD_PARM_SIZE (*offset_ptr, s2); SUB_PARM_SIZE (*offset_ptr, sizetree); } } } #endif #ifdef ARGS_GROW_DOWNWARD static tree round_down (value, divisor) tree value; int divisor; { return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)), size_int (divisor)); } #endif /* Walk the tree of blocks describing the binding levels within a function and warn about uninitialized variables. This is done after calling flow_analysis and before global_alloc clobbers the pseudo-regs to hard regs. */ void uninitialized_vars_warning (block) tree block; { register tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) { if (TREE_CODE (decl) == VAR_DECL /* These warnings are unreliable for and aggregates because assigning the fields one by one can fail to convince flow.c that the entire aggregate was initialized. Unions are troublesome because members may be shorter. */ && ! AGGREGATE_TYPE_P (TREE_TYPE (decl)) && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG /* Global optimizations can make it difficult to determine if a particular variable has been initialized. However, a VAR_DECL with a nonzero DECL_INITIAL had an initializer, so do not claim it is potentially uninitialized. We do not care about the actual value in DECL_INITIAL, so we do not worry that it may be a dangling pointer. */ && DECL_INITIAL (decl) == NULL_TREE && regno_uninitialized (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "`%s' might be used uninitialized in this function"); if (TREE_CODE (decl) == VAR_DECL && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "variable `%s' might be clobbered by `longjmp' or `vfork'"); } for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) uninitialized_vars_warning (sub); } /* Do the appropriate part of uninitialized_vars_warning but for arguments instead of local variables. */ void setjmp_args_warning () { register tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'"); } /* If this function call setjmp, put all vars into the stack unless they were declared `register'. */ void setjmp_protect (block) tree block; { register tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) && DECL_RTL (decl) != 0 && (GET_CODE (DECL_RTL (decl)) == REG || (GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) /* If this variable came from an inline function, it must be that its life doesn't overlap the setjmp. If there was a setjmp in the function, it would already be in memory. We must exclude such variable because their DECL_RTL might be set to strange things such as virtual_stack_vars_rtx. */ && ! DECL_FROM_INLINE (decl) && ( #ifdef NON_SAVING_SETJMP /* If longjmp doesn't restore the registers, don't put anything in them. */ NON_SAVING_SETJMP || #endif ! DECL_REGISTER (decl))) put_var_into_stack (decl); for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) setjmp_protect (sub); } /* Like the previous function, but for args instead of local variables. */ void setjmp_protect_args () { register tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) && DECL_RTL (decl) != 0 && (GET_CODE (DECL_RTL (decl)) == REG || (GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) && ( /* If longjmp doesn't restore the registers, don't put anything in them. */ #ifdef NON_SAVING_SETJMP NON_SAVING_SETJMP || #endif ! DECL_REGISTER (decl))) put_var_into_stack (decl); } /* Return the context-pointer register corresponding to DECL, or 0 if it does not need one. */ rtx lookup_static_chain (decl) tree decl; { tree context = decl_function_context (decl); tree link; if (context == 0 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl))) return 0; /* We treat inline_function_decl as an alias for the current function because that is the inline function whose vars, types, etc. are being merged into the current function. See expand_inline_function. */ if (context == current_function_decl || context == inline_function_decl) return virtual_stack_vars_rtx; for (link = context_display; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == context) return RTL_EXPR_RTL (TREE_VALUE (link)); abort (); } /* Convert a stack slot address ADDR for variable VAR (from a containing function) into an address valid in this function (using a static chain). */ rtx fix_lexical_addr (addr, var) rtx addr; tree var; { rtx basereg; HOST_WIDE_INT displacement; tree context = decl_function_context (var); struct function *fp; rtx base = 0; /* If this is the present function, we need not do anything. */ if (context == current_function_decl || context == inline_function_decl) return addr; for (fp = outer_function_chain; fp; fp = fp->next) if (fp->decl == context) break; if (fp == 0) abort (); if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM) addr = XEXP (XEXP (addr, 0), 0); /* Decode given address as base reg plus displacement. */ if (GET_CODE (addr) == REG) basereg = addr, displacement = 0; else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT) basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1)); else abort (); /* We accept vars reached via the containing function's incoming arg pointer and via its stack variables pointer. */ if (basereg == fp->internal_arg_pointer) { /* If reached via arg pointer, get the arg pointer value out of that function's stack frame. There are two cases: If a separate ap is needed, allocate a slot in the outer function for it and dereference it that way. This is correct even if the real ap is actually a pseudo. Otherwise, just adjust the offset from the frame pointer to compensate. */ #ifdef NEED_SEPARATE_AP rtx addr; if (fp->arg_pointer_save_area == 0) fp->arg_pointer_save_area = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp); addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var); addr = memory_address (Pmode, addr); base = copy_to_reg (gen_rtx_MEM (Pmode, addr)); #else displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET); base = lookup_static_chain (var); #endif } else if (basereg == virtual_stack_vars_rtx) { /* This is the same code as lookup_static_chain, duplicated here to avoid an extra call to decl_function_context. */ tree link; for (link = context_display; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == context) { base = RTL_EXPR_RTL (TREE_VALUE (link)); break; } } if (base == 0) abort (); /* Use same offset, relative to appropriate static chain or argument pointer. */ return plus_constant (base, displacement); } /* Return the address of the trampoline for entering nested fn FUNCTION. If necessary, allocate a trampoline (in the stack frame) and emit rtl to initialize its contents (at entry to this function). */ rtx trampoline_address (function) tree function; { tree link; tree rtlexp; rtx tramp; struct function *fp; tree fn_context; /* Find an existing trampoline and return it. */ for (link = trampoline_list; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == function) return round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0)); for (fp = outer_function_chain; fp; fp = fp->next) for (link = fp->trampoline_list; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == function) { tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0), function); return round_trampoline_addr (tramp); } /* None exists; we must make one. */ /* Find the `struct function' for the function containing FUNCTION. */ fp = 0; fn_context = decl_function_context (function); if (fn_context != current_function_decl && fn_context != inline_function_decl) for (fp = outer_function_chain; fp; fp = fp->next) if (fp->decl == fn_context) break; /* Allocate run-time space for this trampoline (usually in the defining function's stack frame). */ #ifdef ALLOCATE_TRAMPOLINE tramp = ALLOCATE_TRAMPOLINE (fp); #else /* If rounding needed, allocate extra space to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */ #ifdef TRAMPOLINE_ALIGNMENT #define TRAMPOLINE_REAL_SIZE \ (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1) #else #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE) #endif if (fp != 0) tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp); else tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0); #endif /* Record the trampoline for reuse and note it for later initialization by expand_function_end. */ if (fp != 0) { push_obstacks (fp->function_maybepermanent_obstack, fp->function_maybepermanent_obstack); rtlexp = make_node (RTL_EXPR); RTL_EXPR_RTL (rtlexp) = tramp; fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list); pop_obstacks (); } else { /* Make the RTL_EXPR node temporary, not momentary, so that the trampoline_list doesn't become garbage. */ int momentary = suspend_momentary (); rtlexp = make_node (RTL_EXPR); resume_momentary (momentary); RTL_EXPR_RTL (rtlexp) = tramp; trampoline_list = tree_cons (function, rtlexp, trampoline_list); } tramp = fix_lexical_addr (XEXP (tramp, 0), function); return round_trampoline_addr (tramp); } /* Given a trampoline address, round it to multiple of TRAMPOLINE_ALIGNMENT. */ static rtx round_trampoline_addr (tramp) rtx tramp; { #ifdef TRAMPOLINE_ALIGNMENT /* Round address up to desired boundary. */ rtx temp = gen_reg_rtx (Pmode); temp = expand_binop (Pmode, add_optab, tramp, GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1), temp, 0, OPTAB_LIB_WIDEN); tramp = expand_binop (Pmode, and_optab, temp, GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT), temp, 0, OPTAB_LIB_WIDEN); #endif return tramp; } /* The functions identify_blocks and reorder_blocks provide a way to reorder the tree of BLOCK nodes, for optimizers that reshuffle or duplicate portions of the RTL code. Call identify_blocks before changing the RTL, and call reorder_blocks after. */ /* Put all this function's BLOCK nodes including those that are chained onto the first block into a vector, and return it. Also store in each NOTE for the beginning or end of a block the index of that block in the vector. The arguments are BLOCK, the chain of top-level blocks of the function, and INSNS, the insn chain of the function. */ tree * identify_blocks (block, insns) tree block; rtx insns; { int n_blocks; tree *block_vector; int *block_stack; int depth = 0; int next_block_number = 1; int current_block_number = 1; rtx insn; if (block == 0) return 0; n_blocks = all_blocks (block, 0); block_vector = (tree *) xmalloc (n_blocks * sizeof (tree)); block_stack = (int *) alloca (n_blocks * sizeof (int)); all_blocks (block, block_vector); for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { block_stack[depth++] = current_block_number; current_block_number = next_block_number; NOTE_BLOCK_NUMBER (insn) = next_block_number++; } if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { NOTE_BLOCK_NUMBER (insn) = current_block_number; current_block_number = block_stack[--depth]; } } if (n_blocks != next_block_number) abort (); return block_vector; } /* Given BLOCK_VECTOR which was returned by identify_blocks, and a revised instruction chain, rebuild the tree structure of BLOCK nodes to correspond to the new order of RTL. The new block tree is inserted below TOP_BLOCK. Returns the current top-level block. */ tree reorder_blocks (block_vector, block, insns) tree *block_vector; tree block; rtx insns; { tree current_block = block; rtx insn; if (block_vector == 0) return block; /* Prune the old trees away, so that it doesn't get in the way. */ BLOCK_SUBBLOCKS (current_block) = 0; BLOCK_CHAIN (current_block) = 0; for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { tree block = block_vector[NOTE_BLOCK_NUMBER (insn)]; /* If we have seen this block before, copy it. */ if (TREE_ASM_WRITTEN (block)) block = copy_node (block); BLOCK_SUBBLOCKS (block) = 0; TREE_ASM_WRITTEN (block) = 1; BLOCK_SUPERCONTEXT (block) = current_block; BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = block; current_block = block; NOTE_SOURCE_FILE (insn) = 0; } if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { BLOCK_SUBBLOCKS (current_block) = blocks_nreverse (BLOCK_SUBBLOCKS (current_block)); current_block = BLOCK_SUPERCONTEXT (current_block); NOTE_SOURCE_FILE (insn) = 0; } } BLOCK_SUBBLOCKS (current_block) = blocks_nreverse (BLOCK_SUBBLOCKS (current_block)); return current_block; } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). */ static tree blocks_nreverse (t) tree t; { register tree prev = 0, decl, next; for (decl = t; decl; decl = next) { next = BLOCK_CHAIN (decl); BLOCK_CHAIN (decl) = prev; prev = decl; } return prev; } /* Count the subblocks of the list starting with BLOCK, and list them all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all blocks. */ static int all_blocks (block, vector) tree block; tree *vector; { int n_blocks = 0; while (block) { TREE_ASM_WRITTEN (block) = 0; /* Record this block. */ if (vector) vector[n_blocks] = block; ++n_blocks; /* Record the subblocks, and their subblocks... */ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), vector ? vector + n_blocks : 0); block = BLOCK_CHAIN (block); } return n_blocks; } /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) and initialize static variables for generating RTL for the statements of the function. */ void init_function_start (subr, filename, line) tree subr; char *filename; int line; { init_stmt_for_function (); cse_not_expected = ! optimize; /* Caller save not needed yet. */ caller_save_needed = 0; /* No stack slots have been made yet. */ stack_slot_list = 0; /* There is no stack slot for handling nonlocal gotos. */ nonlocal_goto_handler_slots = 0; nonlocal_goto_stack_level = 0; /* No labels have been declared for nonlocal use. */ nonlocal_labels = 0; nonlocal_goto_handler_labels = 0; /* No function calls so far in this function. */ function_call_count = 0; /* No parm regs have been allocated. (This is important for output_inline_function.) */ max_parm_reg = LAST_VIRTUAL_REGISTER + 1; /* Initialize the RTL mechanism. */ init_emit (); /* Initialize the queue of pending postincrement and postdecrements, and some other info in expr.c. */ init_expr (); /* We haven't done register allocation yet. */ reg_renumber = 0; init_const_rtx_hash_table (); current_function_name = (*decl_printable_name) (subr, 2); /* Nonzero if this is a nested function that uses a static chain. */ current_function_needs_context = (decl_function_context (current_function_decl) != 0 && ! DECL_NO_STATIC_CHAIN (current_function_decl)); /* Set if a call to setjmp is seen. */ current_function_calls_setjmp = 0; /* Set if a call to longjmp is seen. */ current_function_calls_longjmp = 0; current_function_calls_alloca = 0; current_function_has_nonlocal_label = 0; current_function_has_nonlocal_goto = 0; current_function_contains_functions = 0; current_function_is_leaf = 0; current_function_sp_is_unchanging = 0; current_function_uses_only_leaf_regs = 0; current_function_has_computed_jump = 0; current_function_is_thunk = 0; current_function_returns_pcc_struct = 0; current_function_returns_struct = 0; current_function_epilogue_delay_list = 0; current_function_uses_const_pool = 0; current_function_uses_pic_offset_table = 0; current_function_cannot_inline = 0; /* We have not yet needed to make a label to jump to for tail-recursion. */ tail_recursion_label = 0; /* We haven't had a need to make a save area for ap yet. */ arg_pointer_save_area = 0; /* No stack slots allocated yet. */ frame_offset = 0; /* No SAVE_EXPRs in this function yet. */ save_expr_regs = 0; /* No RTL_EXPRs in this function yet. */ rtl_expr_chain = 0; /* Set up to allocate temporaries. */ init_temp_slots (); /* Within function body, compute a type's size as soon it is laid out. */ immediate_size_expand++; /* We haven't made any trampolines for this function yet. */ trampoline_list = 0; init_pending_stack_adjust (); inhibit_defer_pop = 0; current_function_outgoing_args_size = 0; /* Prevent ever trying to delete the first instruction of a function. Also tell final how to output a linenum before the function prologue. Note linenums could be missing, e.g. when compiling a Java .class file. */ if (line > 0) emit_line_note (filename, line); /* Make sure first insn is a note even if we don't want linenums. This makes sure the first insn will never be deleted. Also, final expects a note to appear there. */ emit_note (NULL_PTR, NOTE_INSN_DELETED); /* Set flags used by final.c. */ if (aggregate_value_p (DECL_RESULT (subr))) { #ifdef PCC_STATIC_STRUCT_RETURN current_function_returns_pcc_struct = 1; #endif current_function_returns_struct = 1; } /* Warn if this value is an aggregate type, regardless of which calling convention we are using for it. */ if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) warning ("function returns an aggregate"); current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr))); /* Indicate that we need to distinguish between the return value of the present function and the return value of a function being called. */ rtx_equal_function_value_matters = 1; /* Indicate that we have not instantiated virtual registers yet. */ virtuals_instantiated = 0; /* Indicate we have no need of a frame pointer yet. */ frame_pointer_needed = 0; /* By default assume not varargs or stdarg. */ current_function_varargs = 0; current_function_stdarg = 0; } /* Indicate that the current function uses extra args not explicitly mentioned in the argument list in any fashion. */ void mark_varargs () { current_function_varargs = 1; } /* Expand a call to __main at the beginning of a possible main function. */ #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main) #undef HAS_INIT_SECTION #define HAS_INIT_SECTION #endif void expand_main_function () { #if !defined (HAS_INIT_SECTION) emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0, VOIDmode, 0); #endif /* not HAS_INIT_SECTION */ } extern struct obstack permanent_obstack; /* Start the RTL for a new function, and set variables used for emitting RTL. SUBR is the FUNCTION_DECL node. PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with the function's parameters, which must be run at any return statement. */ void expand_function_start (subr, parms_have_cleanups) tree subr; int parms_have_cleanups; { register int i; tree tem; rtx last_ptr = NULL_RTX; /* Make sure volatile mem refs aren't considered valid operands of arithmetic insns. */ init_recog_no_volatile (); /* Set this before generating any memory accesses. */ current_function_check_memory_usage = (flag_check_memory_usage && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl)); current_function_instrument_entry_exit = (flag_instrument_function_entry_exit && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); /* If function gets a static chain arg, store it in the stack frame. Do this first, so it gets the first stack slot offset. */ if (current_function_needs_context) { last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); /* Delay copying static chain if it is not a register to avoid conflicts with regs used for parameters. */ if (! SMALL_REGISTER_CLASSES || GET_CODE (static_chain_incoming_rtx) == REG) emit_move_insn (last_ptr, static_chain_incoming_rtx); } /* If the parameters of this function need cleaning up, get a label for the beginning of the code which executes those cleanups. This must be done before doing anything with return_label. */ if (parms_have_cleanups) cleanup_label = gen_label_rtx (); else cleanup_label = 0; /* Make the label for return statements to jump to, if this machine does not have a one-instruction return and uses an epilogue, or if it returns a structure, or if it has parm cleanups. */ #ifdef HAVE_return if (cleanup_label == 0 && HAVE_return && ! current_function_instrument_entry_exit && ! current_function_returns_pcc_struct && ! (current_function_returns_struct && ! optimize)) return_label = 0; else return_label = gen_label_rtx (); #else return_label = gen_label_rtx (); #endif /* Initialize rtx used to return the value. */ /* Do this before assign_parms so that we copy the struct value address before any library calls that assign parms might generate. */ /* Decide whether to return the value in memory or in a register. */ if (aggregate_value_p (DECL_RESULT (subr))) { /* Returning something that won't go in a register. */ register rtx value_address = 0; #ifdef PCC_STATIC_STRUCT_RETURN if (current_function_returns_pcc_struct) { int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr))); value_address = assemble_static_space (size); } else #endif { /* Expect to be passed the address of a place to store the value. If it is passed as an argument, assign_parms will take care of it. */ if (struct_value_incoming_rtx) { value_address = gen_reg_rtx (Pmode); emit_move_insn (value_address, struct_value_incoming_rtx); } } if (value_address) { DECL_RTL (DECL_RESULT (subr)) = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address); MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)), AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))); } } else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode) /* If return mode is void, this decl rtl should not be used. */ DECL_RTL (DECL_RESULT (subr)) = 0; else if (parms_have_cleanups || current_function_instrument_entry_exit) { /* If function will end with cleanup code for parms, compute the return values into a pseudo reg, which we will copy into the true return register after the cleanups are done. */ enum machine_mode mode = DECL_MODE (DECL_RESULT (subr)); #ifdef PROMOTE_FUNCTION_RETURN tree type = TREE_TYPE (DECL_RESULT (subr)); int unsignedp = TREE_UNSIGNED (type); mode = promote_mode (type, mode, &unsignedp, 1); #endif DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode); } else /* Scalar, returned in a register. */ { #ifdef FUNCTION_OUTGOING_VALUE DECL_RTL (DECL_RESULT (subr)) = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr); #else DECL_RTL (DECL_RESULT (subr)) = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr); #endif /* Mark this reg as the function's return value. */ if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG) { REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1; /* Needed because we may need to move this to memory in case it's a named return value whose address is taken. */ DECL_REGISTER (DECL_RESULT (subr)) = 1; } } /* Initialize rtx for parameters and local variables. In some cases this requires emitting insns. */ assign_parms (subr, 0); /* Copy the static chain now if it wasn't a register. The delay is to avoid conflicts with the parameter passing registers. */ if (SMALL_REGISTER_CLASSES && current_function_needs_context) if (GET_CODE (static_chain_incoming_rtx) != REG) emit_move_insn (last_ptr, static_chain_incoming_rtx); /* The following was moved from init_function_start. The move is supposed to make sdb output more accurate. */ /* Indicate the beginning of the function body, as opposed to parm setup. */ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG); /* If doing stupid allocation, mark parms as born here. */ if (GET_CODE (get_last_insn ()) != NOTE) emit_note (NULL_PTR, NOTE_INSN_DELETED); parm_birth_insn = get_last_insn (); if (obey_regdecls) { for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++) use_variable (regno_reg_rtx[i]); if (current_function_internal_arg_pointer != virtual_incoming_args_rtx) use_variable (current_function_internal_arg_pointer); } context_display = 0; if (current_function_needs_context) { /* Fetch static chain values for containing functions. */ tem = decl_function_context (current_function_decl); /* If not doing stupid register allocation copy the static chain pointer into a pseudo. If we have small register classes, copy the value from memory if static_chain_incoming_rtx is a REG. If we do stupid register allocation, we use the stack address generated above. */ if (tem && ! obey_regdecls) { /* If the static chain originally came in a register, put it back there, then move it out in the next insn. The reason for this peculiar code is to satisfy function integration. */ if (SMALL_REGISTER_CLASSES && GET_CODE (static_chain_incoming_rtx) == REG) emit_move_insn (static_chain_incoming_rtx, last_ptr); last_ptr = copy_to_reg (static_chain_incoming_rtx); } while (tem) { tree rtlexp = make_node (RTL_EXPR); RTL_EXPR_RTL (rtlexp) = last_ptr; context_display = tree_cons (tem, rtlexp, context_display); tem = decl_function_context (tem); if (tem == 0) break; /* Chain thru stack frames, assuming pointer to next lexical frame is found at the place we always store it. */ #ifdef FRAME_GROWS_DOWNWARD last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode)); #endif last_ptr = copy_to_reg (gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr))); /* If we are not optimizing, ensure that we know that this piece of context is live over the entire function. */ if (! optimize) save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr, save_expr_regs); } } if (current_function_instrument_entry_exit) { rtx fun = DECL_RTL (current_function_decl); if (GET_CODE (fun) == MEM) fun = XEXP (fun, 0); else abort (); emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2, fun, Pmode, expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, 0, hard_frame_pointer_rtx), Pmode); } /* After the display initializations is where the tail-recursion label should go, if we end up needing one. Ensure we have a NOTE here since some things (like trampolines) get placed before this. */ tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED); /* Evaluate now the sizes of any types declared among the arguments. */ for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem)) { expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, EXPAND_MEMORY_USE_BAD); /* Flush the queue in case this parameter declaration has side-effects. */ emit_queue (); } /* Make sure there is a line number after the function entry setup code. */ force_next_line_note (); } /* Generate RTL for the end of the current function. FILENAME and LINE are the current position in the source file. It is up to language-specific callers to do cleanups for parameters-- or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */ void expand_function_end (filename, line, end_bindings) char *filename; int line; int end_bindings; { register int i; tree link; #ifdef TRAMPOLINE_TEMPLATE static rtx initial_trampoline; #endif #ifdef NON_SAVING_SETJMP /* Don't put any variables in registers if we call setjmp on a machine that fails to restore the registers. */ if (NON_SAVING_SETJMP && current_function_calls_setjmp) { if (DECL_INITIAL (current_function_decl) != error_mark_node) setjmp_protect (DECL_INITIAL (current_function_decl)); setjmp_protect_args (); } #endif /* Save the argument pointer if a save area was made for it. */ if (arg_pointer_save_area) { /* arg_pointer_save_area may not be a valid memory address, so we have to check it and fix it if necessary. */ rtx seq; start_sequence (); emit_move_insn (validize_mem (arg_pointer_save_area), virtual_incoming_args_rtx); seq = gen_sequence (); end_sequence (); emit_insn_before (seq, tail_recursion_reentry); } /* Initialize any trampolines required by this function. */ for (link = trampoline_list; link; link = TREE_CHAIN (link)) { tree function = TREE_PURPOSE (link); rtx context = lookup_static_chain (function); rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link)); #ifdef TRAMPOLINE_TEMPLATE rtx blktramp; #endif rtx seq; #ifdef TRAMPOLINE_TEMPLATE /* First make sure this compilation has a template for initializing trampolines. */ if (initial_trampoline == 0) { end_temporary_allocation (); initial_trampoline = gen_rtx_MEM (BLKmode, assemble_trampoline_template ()); resume_temporary_allocation (); } #endif /* Generate insns to initialize the trampoline. */ start_sequence (); tramp = round_trampoline_addr (XEXP (tramp, 0)); #ifdef TRAMPOLINE_TEMPLATE blktramp = change_address (initial_trampoline, BLKmode, tramp); emit_block_move (blktramp, initial_trampoline, GEN_INT (TRAMPOLINE_SIZE), TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT); #endif INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context); seq = get_insns (); end_sequence (); /* Put those insns at entry to the containing function (this one). */ emit_insns_before (seq, tail_recursion_reentry); } /* If we are doing stack checking and this function makes calls, do a stack probe at the start of the function to ensure we have enough space for another stack frame. */ if (flag_stack_check && ! STACK_CHECK_BUILTIN) { rtx insn, seq; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == CALL_INSN) { start_sequence (); probe_stack_range (STACK_CHECK_PROTECT, GEN_INT (STACK_CHECK_MAX_FRAME_SIZE)); seq = get_insns (); end_sequence (); emit_insns_before (seq, tail_recursion_reentry); break; } } /* Warn about unused parms if extra warnings were specified. */ if (warn_unused && extra_warnings) { tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl)) warning_with_decl (decl, "unused parameter `%s'"); } /* Delete handlers for nonlocal gotos if nothing uses them. */ if (nonlocal_goto_handler_slots != 0 && ! current_function_has_nonlocal_label) delete_handlers (); /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); /* Outside function body, can't compute type's actual size until next function's body starts. */ immediate_size_expand--; /* If doing stupid register allocation, mark register parms as dying here. */ if (obey_regdecls) { rtx tem; for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++) use_variable (regno_reg_rtx[i]); /* Likewise for the regs of all the SAVE_EXPRs in the function. */ for (tem = save_expr_regs; tem; tem = XEXP (tem, 1)) { use_variable (XEXP (tem, 0)); use_variable_after (XEXP (tem, 0), parm_birth_insn); } if (current_function_internal_arg_pointer != virtual_incoming_args_rtx) use_variable (current_function_internal_arg_pointer); } clear_pending_stack_adjust (); do_pending_stack_adjust (); /* Mark the end of the function body. If control reaches this insn, the function can drop through without returning a value. */ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END); /* Must mark the last line number note in the function, so that the test coverage code can avoid counting the last line twice. This just tells the code to ignore the immediately following line note, since there already exists a copy of this note somewhere above. This line number note is still needed for debugging though, so we can't delete it. */ if (flag_test_coverage) emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER); /* Output a linenumber for the end of the function. SDB depends on this. */ emit_line_note_force (filename, line); /* Output the label for the actual return from the function, if one is expected. This happens either because a function epilogue is used instead of a return instruction, or because a return was done with a goto in order to run local cleanups, or because of pcc-style structure returning. */ if (return_label) emit_label (return_label); /* C++ uses this. */ if (end_bindings) expand_end_bindings (0, 0, 0); /* Now handle any leftover exception regions that may have been created for the parameters. */ { rtx last = get_last_insn (); rtx label; expand_leftover_cleanups (); /* If the above emitted any code, may sure we jump around it. */ if (last != get_last_insn ()) { label = gen_label_rtx (); last = emit_jump_insn_after (gen_jump (label), last); last = emit_barrier_after (last); emit_label (label); } } if (current_function_instrument_entry_exit) { rtx fun = DECL_RTL (current_function_decl); if (GET_CODE (fun) == MEM) fun = XEXP (fun, 0); else abort (); emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2, fun, Pmode, expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, 0, hard_frame_pointer_rtx), Pmode); } /* If we had calls to alloca, and this machine needs an accurate stack pointer to exit the function, insert some code to save and restore the stack pointer. */ #ifdef EXIT_IGNORE_STACK if (! EXIT_IGNORE_STACK) #endif if (current_function_calls_alloca) { rtx tem = 0; emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn); emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX); } /* If scalar return value was computed in a pseudo-reg, copy that to the hard return register. */ if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl))) >= FIRST_PSEUDO_REGISTER)) { rtx real_decl_result; #ifdef FUNCTION_OUTGOING_VALUE real_decl_result = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)), current_function_decl); #else real_decl_result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)), current_function_decl); #endif REG_FUNCTION_VALUE_P (real_decl_result) = 1; /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. */ if (GET_MODE (real_decl_result) == BLKmode) PUT_MODE (real_decl_result, GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl)))); emit_move_insn (real_decl_result, DECL_RTL (DECL_RESULT (current_function_decl))); emit_insn (gen_rtx_USE (VOIDmode, real_decl_result)); /* The delay slot scheduler assumes that current_function_return_rtx holds the hard register containing the return value, not a temporary pseudo. */ current_function_return_rtx = real_decl_result; } /* If returning a structure, arrange to return the address of the value in a place where debuggers expect to find it. If returning a structure PCC style, the caller also depends on this value. And current_function_returns_pcc_struct is not necessarily set. */ if (current_function_returns_struct || current_function_returns_pcc_struct) { rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0); tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); #ifdef FUNCTION_OUTGOING_VALUE rtx outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type), current_function_decl); #else rtx outgoing = FUNCTION_VALUE (build_pointer_type (type), current_function_decl); #endif /* Mark this as a function return value so integrate will delete the assignment and USE below when inlining this function. */ REG_FUNCTION_VALUE_P (outgoing) = 1; emit_move_insn (outgoing, value_address); use_variable (outgoing); } /* If this is an implementation of __throw, do what's necessary to communicate between __builtin_eh_return and the epilogue. */ expand_eh_return (); /* Output a return insn if we are using one. Otherwise, let the rtl chain end here, to drop through into the epilogue. */ #ifdef HAVE_return if (HAVE_return) { emit_jump_insn (gen_return ()); emit_barrier (); } #endif /* Fix up any gotos that jumped out to the outermost binding level of the function. Must follow emitting RETURN_LABEL. */ /* If you have any cleanups to do at this point, and they need to create temporary variables, then you will lose. */ expand_fixups (get_insns ()); } /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */ static int *prologue; static int *epilogue; /* Create an array that records the INSN_UIDs of INSNS (either a sequence or a single insn). */ #if defined (HAVE_prologue) || defined (HAVE_epilogue) static int * record_insns (insns) rtx insns; { int *vec; if (GET_CODE (insns) == SEQUENCE) { int len = XVECLEN (insns, 0); vec = (int *) oballoc ((len + 1) * sizeof (int)); vec[len] = 0; while (--len >= 0) vec[len] = INSN_UID (XVECEXP (insns, 0, len)); } else { vec = (int *) oballoc (2 * sizeof (int)); vec[0] = INSN_UID (insns); vec[1] = 0; } return vec; } /* Determine how many INSN_UIDs in VEC are part of INSN. */ static int contains (insn, vec) rtx insn; int *vec; { register int i, j; if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) { int count = 0; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) for (j = 0; vec[j]; j++) if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j]) count++; return count; } else { for (j = 0; vec[j]; j++) if (INSN_UID (insn) == vec[j]) return 1; } return 0; } #endif /* HAVE_prologue || HAVE_epilogue */ /* Generate the prologue and epilogue RTL if the machine supports it. Thread this into place with notes indicating where the prologue ends and where the epilogue begins. Update the basic block information when possible. */ void thread_prologue_and_epilogue_insns (f) rtx f ATTRIBUTE_UNUSED; { int insertted = 0; prologue = 0; #ifdef HAVE_prologue if (HAVE_prologue) { rtx seq; start_sequence (); seq = gen_prologue(); emit_insn (seq); /* Retain a map of the prologue insns. */ if (GET_CODE (seq) != SEQUENCE) seq = get_insns (); prologue = record_insns (seq); emit_note (NULL, NOTE_INSN_PROLOGUE_END); seq = gen_sequence (); end_sequence (); /* If optimization is off, and perhaps in an empty function, the entry block will have no successors. */ if (ENTRY_BLOCK_PTR->succ) { /* Can't deal with multiple successsors of the entry block. */ if (ENTRY_BLOCK_PTR->succ->succ_next) abort (); insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ); insertted = 1; } else emit_insn_after (seq, f); } #endif epilogue = 0; #ifdef HAVE_epilogue if (HAVE_epilogue) { edge e; basic_block bb = 0; rtx tail = get_last_insn (); /* ??? This is gastly. If function returns were not done via uses, but via mark_regs_live_at_end, we could use insert_insn_on_edge and all of this uglyness would go away. */ switch (optimize) { default: /* If the exit block has no non-fake predecessors, we don't need an epilogue. Furthermore, only pay attention to the fallthru predecessors; if (conditional) return insns were generated, by definition we do not need to emit epilogue insns. */ for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next) if ((e->flags & EDGE_FAKE) == 0 && (e->flags & EDGE_FALLTHRU) != 0) break; if (e == NULL) break; /* We can't handle multiple epilogues -- if one is needed, we won't be able to place it multiple times. ??? Fix epilogue expanders to not assume they are the last thing done compiling the function. Either that or copy_rtx each insn. ??? Blah, it's not a simple expression to assert that we've exactly one fallthru exit edge. */ bb = e->src; tail = bb->end; /* ??? If the last insn of the basic block is a jump, then we are creating a new basic block. Wimp out and leave these insns outside any block. */ if (GET_CODE (tail) == JUMP_INSN) bb = 0; /* FALLTHRU */ case 0: { rtx prev, seq, first_use; /* Move the USE insns at the end of a function onto a list. */ prev = tail; if (GET_CODE (prev) == BARRIER || GET_CODE (prev) == NOTE) prev = prev_nonnote_insn (prev); first_use = 0; if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE) { /* If the end of the block is the use, grab hold of something else so that we emit barriers etc in the right place. */ if (prev == tail) { do tail = PREV_INSN (tail); while (GET_CODE (tail) == INSN && GET_CODE (PATTERN (tail)) == USE); } do { rtx use = prev; prev = prev_nonnote_insn (prev); remove_insn (use); if (first_use) { NEXT_INSN (use) = first_use; PREV_INSN (first_use) = use; } else NEXT_INSN (use) = NULL_RTX; first_use = use; } while (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE); } /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the epilogue insns, the USE insns at the end of a function, the jump insn that returns, and then a BARRIER. */ if (GET_CODE (tail) != BARRIER) { prev = next_nonnote_insn (tail); if (!prev || GET_CODE (prev) != BARRIER) emit_barrier_after (tail); } seq = gen_epilogue (); prev = tail; tail = emit_jump_insn_after (seq, tail); /* Insert the USE insns immediately before the return insn, which must be the last instruction emitted in the sequence. */ if (first_use) emit_insns_before (first_use, tail); emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev); /* Update the tail of the basic block. */ if (bb) bb->end = tail; /* Retain a map of the epilogue insns. */ epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail); } } } #endif if (insertted) commit_edge_insertions (); } /* Reposition the prologue-end and epilogue-begin notes after instruction scheduling and delayed branch scheduling. */ void reposition_prologue_and_epilogue_notes (f) rtx f ATTRIBUTE_UNUSED; { #if defined (HAVE_prologue) || defined (HAVE_epilogue) /* Reposition the prologue and epilogue notes. */ if (n_basic_blocks) { int len; if (prologue) { register rtx insn, note = 0; /* Scan from the beginning until we reach the last prologue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (len = 0; prologue[len]; len++) ; for (insn = f; len && insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END) note = insn; } else if ((len -= contains (insn, prologue)) == 0) { rtx next; /* Find the prologue-end note if we haven't already, and move it to just after the last prologue insn. */ if (note == 0) { for (note = insn; (note = NEXT_INSN (note));) if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END) break; } next = NEXT_INSN (note); /* Whether or not we can depend on BLOCK_HEAD, attempt to keep it up-to-date. */ if (BLOCK_HEAD (0) == note) BLOCK_HEAD (0) = next; remove_insn (note); add_insn_after (note, insn); } } } if (epilogue) { register rtx insn, note = 0; /* Scan from the end until we reach the first epilogue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (len = 0; epilogue[len]; len++) ; for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) note = insn; } else if ((len -= contains (insn, epilogue)) == 0) { /* Find the epilogue-begin note if we haven't already, and move it to just before the first epilogue insn. */ if (note == 0) { for (note = insn; (note = PREV_INSN (note));) if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG) break; } /* Whether or not we can depend on BLOCK_HEAD, attempt to keep it up-to-date. */ if (n_basic_blocks && BLOCK_HEAD (n_basic_blocks-1) == insn) BLOCK_HEAD (n_basic_blocks-1) = note; remove_insn (note); add_insn_before (note, insn); } } } } #endif /* HAVE_prologue or HAVE_epilogue */ }