/* Procedure integration for GNU CC. Copyright (C) 1988, 91, 93-98, 1999 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "rtl.h" #include "tree.h" #include "regs.h" #include "flags.h" #include "insn-config.h" #include "insn-flags.h" #include "expr.h" #include "output.h" #include "recog.h" #include "integrate.h" #include "real.h" #include "except.h" #include "function.h" #include "toplev.h" #include "intl.h" #include "obstack.h" #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free extern struct obstack *function_maybepermanent_obstack; /* Similar, but round to the next highest integer that meets the alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) /* Default max number of insns a function can have and still be inline. This is overridden on RISC machines. */ #ifndef INTEGRATE_THRESHOLD /* Inlining small functions might save more space then not inlining at all. Assume 2 instruction for the call/ret and 1.5 insns per argument. */ #define INTEGRATE_THRESHOLD(DECL) \ (optimize_size \ ? (2 + (1 + 3 * list_length (DECL_ARGUMENTS (DECL))) / 2) \ : (8 * (8 + list_length (DECL_ARGUMENTS (DECL))))) #endif static rtx initialize_for_inline PROTO((tree, int, int, int, int)); static void finish_inline PROTO((tree, rtx)); static void adjust_copied_decl_tree PROTO((tree)); static tree copy_decl_list PROTO((tree)); static tree copy_decl_tree PROTO((tree)); static void copy_decl_rtls PROTO((tree)); static void save_constants PROTO((rtx *)); static void note_modified_parmregs PROTO((rtx, rtx)); static rtx copy_for_inline PROTO((rtx)); static void integrate_parm_decls PROTO((tree, struct inline_remap *, rtvec)); static void integrate_decl_tree PROTO((tree, int, struct inline_remap *)); static void save_constants_in_decl_trees PROTO ((tree)); static void subst_constants PROTO((rtx *, rtx, struct inline_remap *)); static void restore_constants PROTO((rtx *)); static void set_block_origin_self PROTO((tree)); static void set_decl_origin_self PROTO((tree)); static void set_block_abstract_flags PROTO((tree, int)); static void process_reg_param PROTO((struct inline_remap *, rtx, rtx)); void set_decl_abstract_flags PROTO((tree, int)); static tree copy_and_set_decl_abstract_origin PROTO((tree)); /* The maximum number of instructions accepted for inlining a function. Increasing values mean more agressive inlining. This affects currently only functions explicitly marked as inline (or methods defined within the class definition for C++). The default value of 240 is much lower than before and matches better with the 3.0.1 numbers. We allow double the size for leaf functions. */ int inline_max_insns = 240; /* Returns the Ith entry in the label_map contained in MAP. If the Ith entry has not yet been set, return a fresh label. This function performs a lazy initialization of label_map, thereby avoiding huge memory explosions when the label_map gets very large. */ rtx get_label_from_map (map, i) struct inline_remap *map; int i; { rtx x = map->label_map[i]; if (x == NULL_RTX) x = map->label_map[i] = gen_label_rtx(); return x; } /* Zero if the current function (whose FUNCTION_DECL is FNDECL) is safe and reasonable to integrate into other functions. Nonzero means value is a warning msgid with a single %s for the function's name. */ const char * function_cannot_inline_p (fndecl) register tree fndecl; { register rtx insn; tree last = tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); /* For functions marked as inline increase the maximum size to inline_max_insns (-finline-limit-). For regular functions use the limit given by INTEGRATE_THRESHOLD. */ int max_insns = (DECL_INLINE (fndecl)) ? (inline_max_insns + 8 * list_length (DECL_ARGUMENTS (fndecl))) : INTEGRATE_THRESHOLD (fndecl); register int ninsns = 0; register tree parms; rtx result; /* No inlines with varargs. */ if ((last && TREE_VALUE (last) != void_type_node) || current_function_varargs) return N_("varargs function cannot be inline"); if (current_function_calls_alloca) return N_("function using alloca cannot be inline"); if (current_function_contains_functions) return N_("function with nested functions cannot be inline"); if (forced_labels) return N_("function with label addresses used in initializers cannot inline"); if (current_function_cannot_inline) return current_function_cannot_inline; /* Prefer leaf functions */ if (current_function_is_leaf) max_insns *= 2; /* If its not even close, don't even look. */ if (get_max_uid () > 3 * max_insns) return N_("function too large to be inline"); #if 0 /* Don't inline functions which do not specify a function prototype and have BLKmode argument or take the address of a parameter. */ for (parms = DECL_ARGUMENTS (fndecl); parms; parms = TREE_CHAIN (parms)) { if (TYPE_MODE (TREE_TYPE (parms)) == BLKmode) TREE_ADDRESSABLE (parms) = 1; if (last == NULL_TREE && TREE_ADDRESSABLE (parms)) return N_("no prototype, and parameter address used; cannot be inline"); } #endif /* We can't inline functions that return structures the old-fashioned PCC way, copying into a static block. */ if (current_function_returns_pcc_struct) return N_("inline functions not supported for this return value type"); /* We can't inline functions that return structures of varying size. */ if (int_size_in_bytes (TREE_TYPE (TREE_TYPE (fndecl))) < 0) return N_("function with varying-size return value cannot be inline"); /* Cannot inline a function with a varying size argument or one that receives a transparent union. */ for (parms = DECL_ARGUMENTS (fndecl); parms; parms = TREE_CHAIN (parms)) { if (int_size_in_bytes (TREE_TYPE (parms)) < 0) return N_("function with varying-size parameter cannot be inline"); else if (TYPE_TRANSPARENT_UNION (TREE_TYPE (parms))) return N_("function with transparent unit parameter cannot be inline"); } if (get_max_uid () > max_insns) { for (ninsns = 0, insn = get_first_nonparm_insn (); insn && ninsns < max_insns; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') ninsns++; if (ninsns >= max_insns) return N_("function too large to be inline"); } /* We will not inline a function which uses computed goto. The addresses of its local labels, which may be tucked into global storage, are of course not constant across instantiations, which causes unexpected behaviour. */ if (current_function_has_computed_jump) return N_("function with computed jump cannot inline"); /* We cannot inline a nested function that jumps to a nonlocal label. */ if (current_function_has_nonlocal_goto) return N_("function with nonlocal goto cannot be inline"); /* This is a hack, until the inliner is taught about eh regions at the start of the function. */ for (insn = get_insns (); insn && ! (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG); insn = NEXT_INSN (insn)) { if (insn && GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) return N_("function with complex parameters cannot be inline"); } /* We can't inline functions that return a PARALLEL rtx. */ result = DECL_RTL (DECL_RESULT (fndecl)); if (result && GET_CODE (result) == PARALLEL) return N_("inline functions not supported for this return value type"); return 0; } /* Variables used within save_for_inline. */ /* Mapping from old pseudo-register to new pseudo-registers. The first element of this map is reg_map[FIRST_PSEUDO_REGISTER]. It is allocated in `save_for_inline' and `expand_inline_function', and deallocated on exit from each of those routines. */ static rtx *reg_map; /* Mapping from old code-labels to new code-labels. The first element of this map is label_map[min_labelno]. It is allocated in `save_for_inline' and `expand_inline_function', and deallocated on exit from each of those routines. */ static rtx *label_map; /* Mapping from old insn uid's to copied insns. It is allocated in `save_for_inline' and `expand_inline_function', and deallocated on exit from each of those routines. */ static rtx *insn_map; /* Map pseudo reg number into the PARM_DECL for the parm living in the reg. Zero for a reg that isn't a parm's home. Only reg numbers less than max_parm_reg are mapped here. */ static tree *parmdecl_map; /* Keep track of first pseudo-register beyond those that are parms. */ extern int max_parm_reg; extern rtx *parm_reg_stack_loc; /* When an insn is being copied by copy_for_inline, this is nonzero if we have copied an ASM_OPERANDS. In that case, it is the original input-operand vector. */ static rtvec orig_asm_operands_vector; /* When an insn is being copied by copy_for_inline, this is nonzero if we have copied an ASM_OPERANDS. In that case, it is the copied input-operand vector. */ static rtvec copy_asm_operands_vector; /* Likewise, this is the copied constraints vector. */ static rtvec copy_asm_constraints_vector; /* In save_for_inline, nonzero if past the parm-initialization insns. */ static int in_nonparm_insns; /* subroutines passed to duplicate_eh_handlers to map exception labels */ static rtx save_for_inline_eh_labelmap (label) rtx label; { int index = CODE_LABEL_NUMBER (label); return label_map[index]; } /* Subroutine for `save_for_inline{copying,nocopy}'. Performs initialization needed to save FNDECL's insns and info for future inline expansion. */ static rtx initialize_for_inline (fndecl, min_labelno, max_labelno, max_reg, copy) tree fndecl; int min_labelno; int max_labelno; int max_reg; int copy; { int function_flags, i; rtvec arg_vector; tree parms; /* Compute the values of any flags we must restore when inlining this. */ function_flags = (current_function_calls_alloca * FUNCTION_FLAGS_CALLS_ALLOCA + current_function_calls_setjmp * FUNCTION_FLAGS_CALLS_SETJMP + current_function_calls_longjmp * FUNCTION_FLAGS_CALLS_LONGJMP + current_function_returns_struct * FUNCTION_FLAGS_RETURNS_STRUCT + (current_function_returns_pcc_struct * FUNCTION_FLAGS_RETURNS_PCC_STRUCT) + current_function_needs_context * FUNCTION_FLAGS_NEEDS_CONTEXT + (current_function_has_nonlocal_label * FUNCTION_FLAGS_HAS_NONLOCAL_LABEL) + current_function_returns_pointer * FUNCTION_FLAGS_RETURNS_POINTER + current_function_uses_const_pool * FUNCTION_FLAGS_USES_CONST_POOL + (current_function_uses_pic_offset_table * FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE) + current_function_has_computed_jump * FUNCTION_FLAGS_HAS_COMPUTED_JUMP); /* Clear out PARMDECL_MAP. It was allocated in the caller's frame. */ bzero ((char *) parmdecl_map, max_parm_reg * sizeof (tree)); arg_vector = rtvec_alloc (list_length (DECL_ARGUMENTS (fndecl))); for (parms = DECL_ARGUMENTS (fndecl), i = 0; parms; parms = TREE_CHAIN (parms), i++) { rtx p = DECL_RTL (parms); int copied_incoming = 0; /* If we have (mem (addressof (mem ...))), use the inner MEM since otherwise the copy_rtx call below will not unshare the MEM since it shares ADDRESSOF. */ if (GET_CODE (p) == MEM && GET_CODE (XEXP (p, 0)) == ADDRESSOF && GET_CODE (XEXP (XEXP (p, 0), 0)) == MEM) p = XEXP (XEXP (p, 0), 0); if (GET_CODE (p) == MEM && copy) { /* Copy the rtl so that modifications of the addresses later in compilation won't affect this arg_vector. Virtual register instantiation can screw the address of the rtl. */ rtx new = copy_rtx (p); /* Don't leave the old copy anywhere in this decl. */ if (DECL_RTL (parms) == DECL_INCOMING_RTL (parms) || (GET_CODE (DECL_RTL (parms)) == MEM && GET_CODE (DECL_INCOMING_RTL (parms)) == MEM && (XEXP (DECL_RTL (parms), 0) == XEXP (DECL_INCOMING_RTL (parms), 0)))) DECL_INCOMING_RTL (parms) = new, copied_incoming = 1; DECL_RTL (parms) = new; } RTVEC_ELT (arg_vector, i) = p; if (GET_CODE (p) == REG) parmdecl_map[REGNO (p)] = parms; else if (GET_CODE (p) == CONCAT) { rtx preal = gen_realpart (GET_MODE (XEXP (p, 0)), p); rtx pimag = gen_imagpart (GET_MODE (preal), p); if (GET_CODE (preal) == REG) parmdecl_map[REGNO (preal)] = parms; if (GET_CODE (pimag) == REG) parmdecl_map[REGNO (pimag)] = parms; } /* This flag is cleared later if the function ever modifies the value of the parm. */ TREE_READONLY (parms) = 1; /* Copy DECL_INCOMING_RTL if not done already. This can happen if DECL_RTL is a reg. */ if (copy && ! copied_incoming) { p = DECL_INCOMING_RTL (parms); /* If we have (mem (addressof (mem ...))), use the inner MEM since otherwise the copy_rtx call below will not unshare the MEM since it shares ADDRESSOF. */ if (GET_CODE (p) == MEM && GET_CODE (XEXP (p, 0)) == ADDRESSOF && GET_CODE (XEXP (XEXP (p, 0), 0)) == MEM) p = XEXP (XEXP (p, 0), 0); if (GET_CODE (p) == MEM) DECL_INCOMING_RTL (parms) = copy_rtx (p); } } /* Assume we start out in the insns that set up the parameters. */ in_nonparm_insns = 0; /* The list of DECL_SAVED_INSNS, starts off with a header which contains the following information: the first insn of the function (not including the insns that copy parameters into registers). the first parameter insn of the function, the first label used by that function, the last label used by that function, the highest register number used for parameters, the total number of registers used, the size of the incoming stack area for parameters, the number of bytes popped on return, the stack slot list, the labels that are forced to exist, some flags that are used to restore compiler globals, the value of current_function_outgoing_args_size, the original argument vector, the original DECL_INITIAL, and pointers to the table of pseudo regs, pointer flags, and alignment. */ return gen_inline_header_rtx (NULL_RTX, NULL_RTX, min_labelno, max_labelno, max_parm_reg, max_reg, current_function_args_size, current_function_pops_args, stack_slot_list, forced_labels, function_flags, current_function_outgoing_args_size, arg_vector, (rtx) DECL_INITIAL (fndecl), (rtvec) regno_reg_rtx, regno_pointer_flag, regno_pointer_align, (rtvec) parm_reg_stack_loc, nonlocal_goto_handler_labels); } /* Subroutine for `save_for_inline{copying,nocopy}'. Finishes up the things that must be done to make FNDECL expandable as an inline function. HEAD contains the chain of insns to which FNDECL will expand. */ static void finish_inline (fndecl, head) tree fndecl; rtx head; { FIRST_FUNCTION_INSN (head) = get_first_nonparm_insn (); FIRST_PARM_INSN (head) = get_insns (); DECL_SAVED_INSNS (fndecl) = head; DECL_FRAME_SIZE (fndecl) = get_frame_size (); } /* Adjust the BLOCK_END_NOTE pointers in a given copied DECL tree so that they all point to the new (copied) rtxs. */ static void adjust_copied_decl_tree (block) register tree block; { register tree subblock; register rtx original_end; original_end = BLOCK_END_NOTE (block); if (original_end) { BLOCK_END_NOTE (block) = (rtx) NOTE_SOURCE_FILE (original_end); NOTE_SOURCE_FILE (original_end) = 0; } /* Process all subblocks. */ for (subblock = BLOCK_SUBBLOCKS (block); subblock; subblock = TREE_CHAIN (subblock)) adjust_copied_decl_tree (subblock); } /* Make the insns and PARM_DECLs of the current function permanent and record other information in DECL_SAVED_INSNS to allow inlining of this function in subsequent calls. This function is called when we are going to immediately compile the insns for FNDECL. The insns in maybepermanent_obstack cannot be modified by the compilation process, so we copy all of them to new storage and consider the new insns to be the insn chain to be compiled. Our caller (rest_of_compilation) saves the original DECL_INITIAL and DECL_ARGUMENTS; here we copy them. */ /* ??? The nonlocal_label list should be adjusted also. However, since a function that contains a nested function never gets inlined currently, the nonlocal_label list will always be empty, so we don't worry about it for now. */ void save_for_inline_copying (fndecl) tree fndecl; { rtx first_insn, last_insn, insn; rtx head, copy; int max_labelno, min_labelno, i, len; int max_reg; int max_uid; rtx first_nonparm_insn; char *new, *new1; rtx *new_parm_reg_stack_loc; rtx *new2; /* Make and emit a return-label if we have not already done so. Do this before recording the bounds on label numbers. */ if (return_label == 0) { return_label = gen_label_rtx (); emit_label (return_label); } /* Get some bounds on the labels and registers used. */ max_labelno = max_label_num (); min_labelno = get_first_label_num (); max_reg = max_reg_num (); /* Set up PARMDECL_MAP which maps pseudo-reg number to its PARM_DECL. Later we set TREE_READONLY to 0 if the parm is modified inside the fn. Also set up ARG_VECTOR, which holds the unmodified DECL_RTX values for the parms, prior to elimination of virtual registers. These values are needed for substituting parms properly. */ parmdecl_map = (tree *) alloca (max_parm_reg * sizeof (tree)); head = initialize_for_inline (fndecl, min_labelno, max_labelno, max_reg, 1); if (current_function_uses_const_pool) { /* Replace any constant pool references with the actual constant. We will put the constants back in the copy made below. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { save_constants (&PATTERN (insn)); if (REG_NOTES (insn)) save_constants (®_NOTES (insn)); } /* Also scan all decls, and replace any constant pool references with the actual constant. */ save_constants_in_decl_trees (DECL_INITIAL (fndecl)); /* Clear out the constant pool so that we can recreate it with the copied constants below. */ init_const_rtx_hash_table (); clear_const_double_mem (); } max_uid = INSN_UID (head); /* We have now allocated all that needs to be allocated permanently on the rtx obstack. Set our high-water mark, so that we can free the rest of this when the time comes. */ preserve_data (); /* Copy the chain insns of this function. Install the copied chain as the insns of this function, for continued compilation; the original chain is recorded as the DECL_SAVED_INSNS for inlining future calls. */ /* If there are insns that copy parms from the stack into pseudo registers, those insns are not copied. `expand_inline_function' must emit the correct code to handle such things. */ insn = get_insns (); if (GET_CODE (insn) != NOTE) abort (); first_insn = rtx_alloc (NOTE); NOTE_SOURCE_FILE (first_insn) = NOTE_SOURCE_FILE (insn); NOTE_LINE_NUMBER (first_insn) = NOTE_LINE_NUMBER (insn); INSN_UID (first_insn) = INSN_UID (insn); PREV_INSN (first_insn) = NULL; NEXT_INSN (first_insn) = NULL; last_insn = first_insn; /* Each pseudo-reg in the old insn chain must have a unique rtx in the copy. Make these new rtx's now, and install them in regno_reg_rtx, so they will be the official pseudo-reg rtx's for the rest of compilation. */ reg_map = (rtx *) savealloc (regno_pointer_flag_length * sizeof (rtx)); len = sizeof (struct rtx_def) + (GET_RTX_LENGTH (REG) - 1) * sizeof (rtunion); for (i = max_reg - 1; i > LAST_VIRTUAL_REGISTER; i--) reg_map[i] = (rtx)obstack_copy (function_maybepermanent_obstack, regno_reg_rtx[i], len); regno_reg_rtx = reg_map; /* Put copies of all the virtual register rtx into the new regno_reg_rtx. */ init_virtual_regs (); /* Likewise each label rtx must have a unique rtx as its copy. */ /* We used to use alloca here, but the size of what it would try to allocate would occasionally cause it to exceed the stack limit and cause unpredictable core dumps. Some examples were > 2Mb in size. */ label_map = (rtx *) xmalloc ((max_labelno) * sizeof (rtx)); for (i = min_labelno; i < max_labelno; i++) label_map[i] = gen_label_rtx (); /* Likewise for parm_reg_stack_slot. */ new_parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx)); for (i = 0; i < max_parm_reg; i++) new_parm_reg_stack_loc[i] = copy_for_inline (parm_reg_stack_loc[i]); parm_reg_stack_loc = new_parm_reg_stack_loc; /* Record the mapping of old insns to copied insns. */ insn_map = (rtx *) alloca (max_uid * sizeof (rtx)); bzero ((char *) insn_map, max_uid * sizeof (rtx)); /* Get the insn which signals the end of parameter setup code. */ first_nonparm_insn = get_first_nonparm_insn (); /* Copy any entries in regno_reg_rtx or DECL_RTLs that reference MEM (the former occurs when a variable has its address taken) since these may be shared and can be changed by virtual register instantiation. DECL_RTL values for our arguments have already been copied by initialize_for_inline. */ for (i = LAST_VIRTUAL_REGISTER + 1; i < max_reg; i++) if (GET_CODE (regno_reg_rtx[i]) == MEM) XEXP (regno_reg_rtx[i], 0) = copy_for_inline (XEXP (regno_reg_rtx[i], 0)); /* Copy the parm_reg_stack_loc array, and substitute for all of the rtx contained in it. */ new2 = (rtx *) savealloc (max_parm_reg * sizeof (rtx)); bcopy ((char *) parm_reg_stack_loc, (char *) new2, max_parm_reg * sizeof (rtx)); parm_reg_stack_loc = new2; for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; ++i) if (parm_reg_stack_loc[i]) parm_reg_stack_loc[i] = copy_for_inline (parm_reg_stack_loc[i]); /* Copy the tree of subblocks of the function, and the decls in them. We will use the copy for compiling this function, then restore the original subblocks and decls for use when inlining this function. Several parts of the compiler modify BLOCK trees. In particular, instantiate_virtual_regs will instantiate any virtual regs mentioned in the DECL_RTLs of the decls, and loop unrolling will replicate any BLOCK trees inside an unrolled loop. The modified subblocks or DECL_RTLs would be incorrect for the original rtl which we will use for inlining. The rtl might even contain pseudoregs whose space has been freed. */ DECL_INITIAL (fndecl) = copy_decl_tree (DECL_INITIAL (fndecl)); DECL_ARGUMENTS (fndecl) = copy_decl_list (DECL_ARGUMENTS (fndecl)); /* Now copy each DECL_RTL which is a MEM, so it is safe to modify their addresses. */ copy_decl_rtls (DECL_INITIAL (fndecl)); /* The fndecl node acts as its own progenitor, so mark it as such. */ DECL_ABSTRACT_ORIGIN (fndecl) = fndecl; /* Now copy the chain of insns. Do this twice. The first copy the insn itself and its body. The second time copy of REG_NOTES. This is because a REG_NOTE may have a forward pointer to another insn. */ for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn)) { orig_asm_operands_vector = 0; if (insn == first_nonparm_insn) in_nonparm_insns = 1; switch (GET_CODE (insn)) { case NOTE: /* No need to keep these. */ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED) continue; copy = rtx_alloc (NOTE); NOTE_LINE_NUMBER (copy) = NOTE_LINE_NUMBER (insn); if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END) NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn); else { NOTE_SOURCE_FILE (insn) = (char *) copy; NOTE_SOURCE_FILE (copy) = 0; } if (NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_END) { int new_region = CODE_LABEL_NUMBER (label_map[NOTE_BLOCK_NUMBER (copy)]); /* we have to duplicate the handlers for the original */ if (NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_BEG) duplicate_eh_handlers (NOTE_BLOCK_NUMBER (copy), new_region, save_for_inline_eh_labelmap); /* We have to forward these both to match the new exception region. */ NOTE_BLOCK_NUMBER (copy) = new_region; } RTX_INTEGRATED_P (copy) = RTX_INTEGRATED_P (insn); break; case INSN: case JUMP_INSN: case CALL_INSN: copy = rtx_alloc (GET_CODE (insn)); if (GET_CODE (insn) == CALL_INSN) CALL_INSN_FUNCTION_USAGE (copy) = copy_for_inline (CALL_INSN_FUNCTION_USAGE (insn)); PATTERN (copy) = copy_for_inline (PATTERN (insn)); INSN_CODE (copy) = -1; LOG_LINKS (copy) = NULL_RTX; RTX_INTEGRATED_P (copy) = RTX_INTEGRATED_P (insn); break; case CODE_LABEL: copy = label_map[CODE_LABEL_NUMBER (insn)]; LABEL_NAME (copy) = LABEL_NAME (insn); break; case BARRIER: copy = rtx_alloc (BARRIER); break; default: abort (); } INSN_UID (copy) = INSN_UID (insn); insn_map[INSN_UID (insn)] = copy; NEXT_INSN (last_insn) = copy; PREV_INSN (copy) = last_insn; last_insn = copy; } adjust_copied_decl_tree (DECL_INITIAL (fndecl)); /* Now copy the REG_NOTES. */ for (insn = NEXT_INSN (get_insns ()); insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i' && insn_map[INSN_UID(insn)]) REG_NOTES (insn_map[INSN_UID (insn)]) = copy_for_inline (REG_NOTES (insn)); /* Now adjust nonlocal_goto_handler_labels list */ copy = NULL_RTX; for (insn = nonlocal_goto_handler_labels; insn ; insn = XEXP (insn, 1)) if (label_map[CODE_LABEL_NUMBER (XEXP (insn,0))] != NULL_RTX) copy = gen_rtx_EXPR_LIST (VOIDmode, label_map[CODE_LABEL_NUMBER (XEXP (insn,0))], copy); NONLOCAL_GOTO_LABELS_TRAN(head) = copy; NEXT_INSN (last_insn) = NULL; finish_inline (fndecl, head); /* Make new versions of the register tables. */ new = (char *) savealloc (regno_pointer_flag_length); bcopy (regno_pointer_flag, new, regno_pointer_flag_length); new1 = (char *) savealloc (regno_pointer_flag_length); bcopy (regno_pointer_align, new1, regno_pointer_flag_length); regno_pointer_flag = new; regno_pointer_align = new1; set_new_first_and_last_insn (first_insn, last_insn); if (label_map) free (label_map); } /* Copy NODE (as with copy_node). NODE must be a DECL. Set the DECL_ABSTRACT_ORIGIN for the new accordinly. */ static tree copy_and_set_decl_abstract_origin (node) tree node; { tree copy = copy_node (node); if (DECL_ABSTRACT_ORIGIN (copy) != NULL_TREE) /* That means that NODE already had a DECL_ABSTRACT_ORIGIN. (This situation occurs if we inline a function which itself made calls to inline functions.) Since DECL_ABSTRACT_ORIGIN is the most distant ancestor, we don't have to do anything here. */ ; else /* The most distant ancestor must be NODE. */ DECL_ABSTRACT_ORIGIN (copy) = node; return copy; } /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field. For example, this can copy a list made of TREE_LIST nodes. While copying, set DECL_ABSTRACT_ORIGIN appropriately. */ static tree copy_decl_list (list) tree list; { tree head; register tree prev, next; if (list == 0) return 0; head = prev = copy_and_set_decl_abstract_origin (list); next = TREE_CHAIN (list); while (next) { register tree copy; copy = copy_and_set_decl_abstract_origin (next); TREE_CHAIN (prev) = copy; prev = copy; next = TREE_CHAIN (next); } return head; } /* Make a copy of the entire tree of blocks BLOCK, and return it. */ static tree copy_decl_tree (block) tree block; { tree t, vars, subblocks; vars = copy_decl_list (BLOCK_VARS (block)); subblocks = 0; /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) { tree copy = copy_decl_tree (t); TREE_CHAIN (copy) = subblocks; subblocks = copy; } t = copy_node (block); BLOCK_VARS (t) = vars; BLOCK_SUBBLOCKS (t) = nreverse (subblocks); /* If the BLOCK being cloned is already marked as having been instantiated from something else, then leave that `origin' marking alone. Otherwise, mark the clone as having originated from the BLOCK we are cloning. */ if (BLOCK_ABSTRACT_ORIGIN (t) == NULL_TREE) BLOCK_ABSTRACT_ORIGIN (t) = block; return t; } /* Copy DECL_RTLs in all decls in the given BLOCK node. */ static void copy_decl_rtls (block) tree block; { tree t; for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) if (DECL_RTL (t) && GET_CODE (DECL_RTL (t)) == MEM) DECL_RTL (t) = copy_for_inline (DECL_RTL (t)); /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) copy_decl_rtls (t); } /* Make the insns and PARM_DECLs of the current function permanent and record other information in DECL_SAVED_INSNS to allow inlining of this function in subsequent calls. This routine need not copy any insns because we are not going to immediately compile the insns in the insn chain. There are two cases when we would compile the insns for FNDECL: (1) when FNDECL is expanded inline, and (2) when FNDECL needs to be output at the end of other compilation, because somebody took its address. In the first case, the insns of FNDECL are copied as it is expanded inline, so FNDECL's saved insns are not modified. In the second case, FNDECL is used for the last time, so modifying the rtl is not a problem. We don't have to worry about FNDECL being inline expanded by other functions which are written at the end of compilation because flag_no_inline is turned on when we begin writing functions at the end of compilation. */ void save_for_inline_nocopy (fndecl) tree fndecl; { rtx insn; rtx head; rtx first_nonparm_insn; /* Set up PARMDECL_MAP which maps pseudo-reg number to its PARM_DECL. Later we set TREE_READONLY to 0 if the parm is modified inside the fn. Also set up ARG_VECTOR, which holds the unmodified DECL_RTX values for the parms, prior to elimination of virtual registers. These values are needed for substituting parms properly. */ parmdecl_map = (tree *) alloca (max_parm_reg * sizeof (tree)); /* Make and emit a return-label if we have not already done so. */ if (return_label == 0) { return_label = gen_label_rtx (); emit_label (return_label); } head = initialize_for_inline (fndecl, get_first_label_num (), max_label_num (), max_reg_num (), 0); /* If there are insns that copy parms from the stack into pseudo registers, those insns are not copied. `expand_inline_function' must emit the correct code to handle such things. */ insn = get_insns (); if (GET_CODE (insn) != NOTE) abort (); /* Get the insn which signals the end of parameter setup code. */ first_nonparm_insn = get_first_nonparm_insn (); /* Now just scan the chain of insns to see what happens to our PARM_DECLs. If a PARM_DECL is used but never modified, we can substitute its rtl directly when expanding inline (and perform constant folding when its incoming value is constant). Otherwise, we have to copy its value into a new register and track the new register's life. */ for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn)) { if (insn == first_nonparm_insn) in_nonparm_insns = 1; if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { if (current_function_uses_const_pool) { /* Replace any constant pool references with the actual constant. We will put the constant back if we need to write the function out after all. */ save_constants (&PATTERN (insn)); if (REG_NOTES (insn)) save_constants (®_NOTES (insn)); } /* Record what interesting things happen to our parameters. */ note_stores (PATTERN (insn), note_modified_parmregs); } } /* Also scan all decls, and replace any constant pool references with the actual constant. */ save_constants_in_decl_trees (DECL_INITIAL (fndecl)); /* We have now allocated all that needs to be allocated permanently on the rtx obstack. Set our high-water mark, so that we can free the rest of this when the time comes. */ preserve_data (); finish_inline (fndecl, head); } /* Given PX, a pointer into an insn, search for references to the constant pool. Replace each with a CONST that has the mode of the original constant, contains the constant, and has RTX_INTEGRATED_P set. Similarly, constant pool addresses not enclosed in a MEM are replaced with an ADDRESS and CONST rtx which also gives the constant, its mode, the mode of the address, and has RTX_INTEGRATED_P set. */ static void save_constants (px) rtx *px; { rtx x; int i, j; again: x = *px; /* If this is a CONST_DOUBLE, don't try to fix things up in CONST_DOUBLE_MEM, because this is an infinite recursion. */ if (GET_CODE (x) == CONST_DOUBLE) return; else if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (x,0))) { enum machine_mode const_mode = get_pool_mode (XEXP (x, 0)); rtx new = gen_rtx_CONST (const_mode, get_pool_constant (XEXP (x, 0))); RTX_INTEGRATED_P (new) = 1; /* If the MEM was in a different mode than the constant (perhaps we were only looking at the low-order part), surround it with a SUBREG so we can save both modes. */ if (GET_MODE (x) != const_mode) { new = gen_rtx_SUBREG (GET_MODE (x), new, 0); RTX_INTEGRATED_P (new) = 1; } *px = new; save_constants (&XEXP (*px, 0)); } else if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) { *px = gen_rtx_ADDRESS (GET_MODE (x), gen_rtx_CONST (get_pool_mode (x), get_pool_constant (x))); save_constants (&XEXP (*px, 0)); RTX_INTEGRATED_P (*px) = 1; } else { char *fmt = GET_RTX_FORMAT (GET_CODE (x)); int len = GET_RTX_LENGTH (GET_CODE (x)); for (i = len-1; i >= 0; i--) { switch (fmt[i]) { case 'E': for (j = 0; j < XVECLEN (x, i); j++) save_constants (&XVECEXP (x, i, j)); break; case 'e': if (XEXP (x, i) == 0) continue; if (i == 0) { /* Hack tail-recursion here. */ px = &XEXP (x, 0); goto again; } save_constants (&XEXP (x, i)); break; } } } } /* Note whether a parameter is modified or not. */ static void note_modified_parmregs (reg, x) rtx reg; rtx x ATTRIBUTE_UNUSED; { if (GET_CODE (reg) == REG && in_nonparm_insns && REGNO (reg) < max_parm_reg && REGNO (reg) >= FIRST_PSEUDO_REGISTER && parmdecl_map[REGNO (reg)] != 0) TREE_READONLY (parmdecl_map[REGNO (reg)]) = 0; } /* Copy the rtx ORIG recursively, replacing pseudo-regs and labels according to `reg_map' and `label_map'. The original rtl insns will be saved for inlining; this is used to make a copy which is used to finish compiling the inline function itself. If we find a "saved" constant pool entry, one which was replaced with the value of the constant, convert it back to a constant pool entry. Since the pool wasn't touched, this should simply restore the old address. All other kinds of rtx are copied except those that can never be changed during compilation. */ static rtx copy_for_inline (orig) rtx orig; { register rtx x = orig; register rtx new; register int i; register enum rtx_code code; register char *format_ptr; if (x == 0) return x; code = GET_CODE (x); /* These types may be freely shared. */ switch (code) { case QUEUED: case CONST_INT: case PC: case CC0: return x; case SYMBOL_REF: if (! SYMBOL_REF_NEED_ADJUST (x)) return x; return rethrow_symbol_map (x, save_for_inline_eh_labelmap); case CONST_DOUBLE: /* We have to make a new CONST_DOUBLE to ensure that we account for it correctly. Using the old CONST_DOUBLE_MEM data is wrong. */ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { REAL_VALUE_TYPE d; REAL_VALUE_FROM_CONST_DOUBLE (d, x); return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x)); } else return immed_double_const (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x), VOIDmode); case CONST: /* Get constant pool entry for constant in the pool. */ if (RTX_INTEGRATED_P (x)) return validize_mem (force_const_mem (GET_MODE (x), copy_for_inline (XEXP (x, 0)))); break; case SUBREG: /* Get constant pool entry, but access in different mode. */ if (RTX_INTEGRATED_P (x)) { new = force_const_mem (GET_MODE (SUBREG_REG (x)), copy_for_inline (XEXP (SUBREG_REG (x), 0))); PUT_MODE (new, GET_MODE (x)); return validize_mem (new); } break; case ADDRESS: /* If not special for constant pool error. Else get constant pool address. */ if (! RTX_INTEGRATED_P (x)) abort (); new = force_const_mem (GET_MODE (XEXP (x, 0)), copy_for_inline (XEXP (XEXP (x, 0), 0))); new = XEXP (new, 0); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (new) != GET_MODE (x)) new = convert_memory_address (GET_MODE (x), new); #endif return new; case ASM_OPERANDS: /* If a single asm insn contains multiple output operands then it contains multiple ASM_OPERANDS rtx's that share operand 3. We must make sure that the copied insn continues to share it. */ if (orig_asm_operands_vector == XVEC (orig, 3)) { x = rtx_alloc (ASM_OPERANDS); x->volatil = orig->volatil; XSTR (x, 0) = XSTR (orig, 0); XSTR (x, 1) = XSTR (orig, 1); XINT (x, 2) = XINT (orig, 2); XVEC (x, 3) = copy_asm_operands_vector; XVEC (x, 4) = copy_asm_constraints_vector; XSTR (x, 5) = XSTR (orig, 5); XINT (x, 6) = XINT (orig, 6); return x; } break; case MEM: /* A MEM is usually allowed to be shared if its address is constant or is a constant plus one of the special registers. We do not allow sharing of addresses that are either a special register or the sum of a constant and a special register because it is possible for unshare_all_rtl to copy the address, into memory that won't be saved. Although the MEM can safely be shared, and won't be copied there, the address itself cannot be shared, and may need to be copied. There are also two exceptions with constants: The first is if the constant is a LABEL_REF or the sum of the LABEL_REF and an integer. This case can happen if we have an inline function that supplies a constant operand to the call of another inline function that uses it in a switch statement. In this case, we will be replacing the LABEL_REF, so we have to replace this MEM as well. The second case is if we have a (const (plus (address ..) ...)). In that case we need to put back the address of the constant pool entry. */ if (CONSTANT_ADDRESS_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 0)) != LABEL_REF && ! (GET_CODE (XEXP (x, 0)) == CONST && (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == LABEL_REF) || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ADDRESS))))) return x; break; case LABEL_REF: /* If this is a non-local label, just make a new LABEL_REF. Otherwise, use the new label as well. */ x = gen_rtx_LABEL_REF (GET_MODE (orig), LABEL_REF_NONLOCAL_P (orig) ? XEXP (orig, 0) : label_map[CODE_LABEL_NUMBER (XEXP (orig, 0))]); LABEL_REF_NONLOCAL_P (x) = LABEL_REF_NONLOCAL_P (orig); LABEL_OUTSIDE_LOOP_P (x) = LABEL_OUTSIDE_LOOP_P (orig); return x; case REG: if (REGNO (x) > LAST_VIRTUAL_REGISTER) return reg_map [REGNO (x)]; else return x; case SET: /* If a parm that gets modified lives in a pseudo-reg, clear its TREE_READONLY to prevent certain optimizations. */ { rtx dest = SET_DEST (x); while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG) dest = XEXP (dest, 0); if (GET_CODE (dest) == REG && REGNO (dest) < max_parm_reg && REGNO (dest) >= FIRST_PSEUDO_REGISTER && parmdecl_map[REGNO (dest)] != 0 /* The insn to load an arg pseudo from a stack slot does not count as modifying it. */ && in_nonparm_insns) TREE_READONLY (parmdecl_map[REGNO (dest)]) = 0; } break; #if 0 /* This is a good idea, but here is the wrong place for it. */ /* Arrange that CONST_INTs always appear as the second operand if they appear, and that `frame_pointer_rtx' or `arg_pointer_rtx' always appear as the first. */ case PLUS: if (GET_CODE (XEXP (x, 0)) == CONST_INT || (XEXP (x, 1) == frame_pointer_rtx || (ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM && XEXP (x, 1) == arg_pointer_rtx))) { rtx t = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1); XEXP (x, 1) = t; } break; #endif default: break; } /* Replace this rtx with a copy of itself. */ x = rtx_alloc (code); bcopy ((char *) orig, (char *) x, (sizeof (*x) - sizeof (x->fld) + sizeof (x->fld[0]) * GET_RTX_LENGTH (code))); /* Now scan the subexpressions recursively. We can store any replaced subexpressions directly into X since we know X is not shared! Any vectors in X must be copied if X was copied. */ format_ptr = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': XEXP (x, i) = copy_for_inline (XEXP (x, i)); break; case 'u': /* Change any references to old-insns to point to the corresponding copied insns. */ XEXP (x, i) = insn_map[INSN_UID (XEXP (x, i))]; break; case 'E': if (XVEC (x, i) != NULL && XVECLEN (x, i) != 0) { register int j; XVEC (x, i) = gen_rtvec_vv (XVECLEN (x, i), XVEC (x, i)->elem); for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = copy_for_inline (XVECEXP (x, i, j)); } break; } } if (code == ASM_OPERANDS && orig_asm_operands_vector == 0) { orig_asm_operands_vector = XVEC (orig, 3); copy_asm_operands_vector = XVEC (x, 3); copy_asm_constraints_vector = XVEC (x, 4); } return x; } /* Unfortunately, we need a global copy of const_equiv map for communication with a function called from note_stores. Be *very* careful that this is used properly in the presence of recursion. */ varray_type global_const_equiv_varray; #define FIXED_BASE_PLUS_P(X) \ (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \ && GET_CODE (XEXP (X, 0)) == REG \ && REGNO (XEXP (X, 0)) >= FIRST_VIRTUAL_REGISTER \ && REGNO (XEXP (X, 0)) <= LAST_VIRTUAL_REGISTER) /* Called to set up a mapping for the case where a parameter is in a register. If it is read-only and our argument is a constant, set up the constant equivalence. If LOC is REG_USERVAR_P, the usual case, COPY must also have that flag set if it is a register. Also, don't allow hard registers here; they might not be valid when substituted into insns. */ static void process_reg_param (map, loc, copy) struct inline_remap *map; rtx loc, copy; { if ((GET_CODE (copy) != REG && GET_CODE (copy) != SUBREG) || (GET_CODE (copy) == REG && REG_USERVAR_P (loc) && ! REG_USERVAR_P (copy)) || (GET_CODE (copy) == REG && REGNO (copy) < FIRST_PSEUDO_REGISTER)) { rtx temp = copy_to_mode_reg (GET_MODE (loc), copy); REG_USERVAR_P (temp) = REG_USERVAR_P (loc); if (CONSTANT_P (copy) || FIXED_BASE_PLUS_P (copy)) SET_CONST_EQUIV_DATA (map, temp, copy, CONST_AGE_PARM); copy = temp; } map->reg_map[REGNO (loc)] = copy; } /* Used by duplicate_eh_handlers to map labels for the exception table */ static struct inline_remap *eif_eh_map; static rtx expand_inline_function_eh_labelmap (label) rtx label; { int index = CODE_LABEL_NUMBER (label); return get_label_from_map (eif_eh_map, index); } /* Integrate the procedure defined by FNDECL. Note that this function may wind up calling itself. Since the static variables are not reentrant, we do not assign them until after the possibility of recursion is eliminated. If IGNORE is nonzero, do not produce a value. Otherwise store the value in TARGET if it is nonzero and that is convenient. Value is: (rtx)-1 if we could not substitute the function 0 if we substituted it and it does not produce a value else an rtx for where the value is stored. */ rtx expand_inline_function (fndecl, parms, target, ignore, type, structure_value_addr) tree fndecl, parms; rtx target; int ignore; tree type; rtx structure_value_addr; { tree formal, actual, block; rtx header = DECL_SAVED_INSNS (fndecl); rtx insns = FIRST_FUNCTION_INSN (header); rtx parm_insns = FIRST_PARM_INSN (header); tree *arg_trees; rtx *arg_vals; rtx insn; int max_regno; register int i; int min_labelno = FIRST_LABELNO (header); int max_labelno = LAST_LABELNO (header); int nargs; rtx local_return_label = 0; rtx loc; rtx stack_save = 0; rtx temp; struct inline_remap *map = 0; #ifdef HAVE_cc0 rtx cc0_insn = 0; #endif rtvec arg_vector = ORIGINAL_ARG_VECTOR (header); rtx static_chain_value = 0; /* The pointer used to track the true location of the memory used for MAP->LABEL_MAP. */ rtx *real_label_map = 0; /* Allow for equivalences of the pseudos we make for virtual fp and ap. */ max_regno = MAX_REGNUM (header) + 3; if (max_regno < FIRST_PSEUDO_REGISTER) abort (); nargs = list_length (DECL_ARGUMENTS (fndecl)); /* Check that the parms type match and that sufficient arguments were passed. Since the appropriate conversions or default promotions have already been applied, the machine modes should match exactly. */ for (formal = DECL_ARGUMENTS (fndecl), actual = parms; formal; formal = TREE_CHAIN (formal), actual = TREE_CHAIN (actual)) { tree arg; enum machine_mode mode; if (actual == 0) return (rtx) (HOST_WIDE_INT) -1; arg = TREE_VALUE (actual); mode = TYPE_MODE (DECL_ARG_TYPE (formal)); if (mode != TYPE_MODE (TREE_TYPE (arg)) /* If they are block mode, the types should match exactly. They don't match exactly if TREE_TYPE (FORMAL) == ERROR_MARK_NODE, which could happen if the parameter has incomplete type. */ || (mode == BLKmode && (TYPE_MAIN_VARIANT (TREE_TYPE (arg)) != TYPE_MAIN_VARIANT (TREE_TYPE (formal))))) return (rtx) (HOST_WIDE_INT) -1; } /* Extra arguments are valid, but will be ignored below, so we must evaluate them here for side-effects. */ for (; actual; actual = TREE_CHAIN (actual)) expand_expr (TREE_VALUE (actual), const0_rtx, TYPE_MODE (TREE_TYPE (TREE_VALUE (actual))), 0); /* Make a binding contour to keep inline cleanups called at outer function-scope level from looking like they are shadowing parameter declarations. */ pushlevel (0); /* Expand the function arguments. Do this first so that any new registers get created before we allocate the maps. */ arg_vals = (rtx *) alloca (nargs * sizeof (rtx)); arg_trees = (tree *) alloca (nargs * sizeof (tree)); for (formal = DECL_ARGUMENTS (fndecl), actual = parms, i = 0; formal; formal = TREE_CHAIN (formal), actual = TREE_CHAIN (actual), i++) { /* Actual parameter, converted to the type of the argument within the function. */ tree arg = convert (TREE_TYPE (formal), TREE_VALUE (actual)); /* Mode of the variable used within the function. */ enum machine_mode mode = TYPE_MODE (TREE_TYPE (formal)); int invisiref = 0; arg_trees[i] = arg; loc = RTVEC_ELT (arg_vector, i); /* If this is an object passed by invisible reference, we copy the object into a stack slot and save its address. If this will go into memory, we do nothing now. Otherwise, we just expand the argument. */ if (GET_CODE (loc) == MEM && GET_CODE (XEXP (loc, 0)) == REG && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER) { rtx stack_slot = assign_stack_temp (TYPE_MODE (TREE_TYPE (arg)), int_size_in_bytes (TREE_TYPE (arg)), 1); MEM_SET_IN_STRUCT_P (stack_slot, AGGREGATE_TYPE_P (TREE_TYPE (arg))); store_expr (arg, stack_slot, 0); arg_vals[i] = XEXP (stack_slot, 0); invisiref = 1; } else if (GET_CODE (loc) != MEM) { if (GET_MODE (loc) != TYPE_MODE (TREE_TYPE (arg))) /* The mode if LOC and ARG can differ if LOC was a variable that had its mode promoted via PROMOTED_MODE. */ arg_vals[i] = convert_modes (GET_MODE (loc), TYPE_MODE (TREE_TYPE (arg)), expand_expr (arg, NULL_RTX, mode, EXPAND_SUM), TREE_UNSIGNED (TREE_TYPE (formal))); else arg_vals[i] = expand_expr (arg, NULL_RTX, mode, EXPAND_SUM); } else arg_vals[i] = 0; if (arg_vals[i] != 0 && (! TREE_READONLY (formal) /* If the parameter is not read-only, copy our argument through a register. Also, we cannot use ARG_VALS[I] if it overlaps TARGET in any way. In the inline function, they will likely be two different pseudos, and `safe_from_p' will make all sorts of smart assumptions about their not conflicting. But if ARG_VALS[I] overlaps TARGET, these assumptions are wrong, so put ARG_VALS[I] into a fresh register. Don't worry about invisible references, since their stack temps will never overlap the target. */ || (target != 0 && ! invisiref && (GET_CODE (arg_vals[i]) == REG || GET_CODE (arg_vals[i]) == SUBREG || GET_CODE (arg_vals[i]) == MEM) && reg_overlap_mentioned_p (arg_vals[i], target)) /* ??? We must always copy a SUBREG into a REG, because it might get substituted into an address, and not all ports correctly handle SUBREGs in addresses. */ || (GET_CODE (arg_vals[i]) == SUBREG))) arg_vals[i] = copy_to_mode_reg (GET_MODE (loc), arg_vals[i]); if (arg_vals[i] != 0 && GET_CODE (arg_vals[i]) == REG && POINTER_TYPE_P (TREE_TYPE (formal))) mark_reg_pointer (arg_vals[i], (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (formal))) / BITS_PER_UNIT)); } /* Allocate the structures we use to remap things. */ map = (struct inline_remap *) alloca (sizeof (struct inline_remap)); map->fndecl = fndecl; map->reg_map = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) map->reg_map, max_regno * sizeof (rtx)); /* We used to use alloca here, but the size of what it would try to allocate would occasionally cause it to exceed the stack limit and cause unpredictable core dumps. */ real_label_map = (rtx *) xmalloc ((max_labelno) * sizeof (rtx)); map->label_map = real_label_map; map->insn_map = (rtx *) alloca (INSN_UID (header) * sizeof (rtx)); bzero ((char *) map->insn_map, INSN_UID (header) * sizeof (rtx)); map->min_insnno = 0; map->max_insnno = INSN_UID (header); map->integrating = 1; /* const_equiv_varray maps pseudos in our routine to constants, so it needs to be large enough for all our pseudos. This is the number we are currently using plus the number in the called routine, plus 15 for each arg, five to compute the virtual frame pointer, and five for the return value. This should be enough for most cases. We do not reference entries outside the range of the map. ??? These numbers are quite arbitrary and were obtained by experimentation. At some point, we should try to allocate the table after all the parameters are set up so we an more accurately estimate the number of pseudos we will need. */ VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, (max_reg_num () + (max_regno - FIRST_PSEUDO_REGISTER) + 15 * nargs + 10), "expand_inline_function"); map->const_age = 0; /* Record the current insn in case we have to set up pointers to frame and argument memory blocks. If there are no insns yet, add a dummy insn that can be used as an insertion point. */ map->insns_at_start = get_last_insn (); if (map->insns_at_start == 0) map->insns_at_start = emit_note (NULL_PTR, NOTE_INSN_DELETED); map->regno_pointer_flag = INLINE_REGNO_POINTER_FLAG (header); map->regno_pointer_align = INLINE_REGNO_POINTER_ALIGN (header); /* Update the outgoing argument size to allow for those in the inlined function. */ if (OUTGOING_ARGS_SIZE (header) > current_function_outgoing_args_size) current_function_outgoing_args_size = OUTGOING_ARGS_SIZE (header); /* If the inline function needs to make PIC references, that means that this function's PIC offset table must be used. */ if (FUNCTION_FLAGS (header) & FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE) current_function_uses_pic_offset_table = 1; /* If this function needs a context, set it up. */ if (FUNCTION_FLAGS (header) & FUNCTION_FLAGS_NEEDS_CONTEXT) static_chain_value = lookup_static_chain (fndecl); if (GET_CODE (parm_insns) == NOTE && NOTE_LINE_NUMBER (parm_insns) > 0) { rtx note = emit_note (NOTE_SOURCE_FILE (parm_insns), NOTE_LINE_NUMBER (parm_insns)); if (note) RTX_INTEGRATED_P (note) = 1; } /* Process each argument. For each, set up things so that the function's reference to the argument will refer to the argument being passed. We only replace REG with REG here. Any simplifications are done via const_equiv_map. We make two passes: In the first, we deal with parameters that will be placed into registers, since we need to ensure that the allocated register number fits in const_equiv_map. Then we store all non-register parameters into their memory location. */ /* Don't try to free temp stack slots here, because we may put one of the parameters into a temp stack slot. */ for (i = 0; i < nargs; i++) { rtx copy = arg_vals[i]; loc = RTVEC_ELT (arg_vector, i); /* There are three cases, each handled separately. */ if (GET_CODE (loc) == MEM && GET_CODE (XEXP (loc, 0)) == REG && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER) { /* This must be an object passed by invisible reference (it could also be a variable-sized object, but we forbid inlining functions with variable-sized arguments). COPY is the address of the actual value (this computation will cause it to be copied). We map that address for the register, noting the actual address as an equivalent in case it can be substituted into the insns. */ if (GET_CODE (copy) != REG) { temp = copy_addr_to_reg (copy); if (CONSTANT_P (copy) || FIXED_BASE_PLUS_P (copy)) SET_CONST_EQUIV_DATA (map, temp, copy, CONST_AGE_PARM); copy = temp; } map->reg_map[REGNO (XEXP (loc, 0))] = copy; } else if (GET_CODE (loc) == MEM) { /* This is the case of a parameter that lives in memory. It will live in the block we allocate in the called routine's frame that simulates the incoming argument area. Do nothing now; we will call store_expr later. */ ; } else if (GET_CODE (loc) == REG) process_reg_param (map, loc, copy); else if (GET_CODE (loc) == CONCAT) { rtx locreal = gen_realpart (GET_MODE (XEXP (loc, 0)), loc); rtx locimag = gen_imagpart (GET_MODE (XEXP (loc, 0)), loc); rtx copyreal = gen_realpart (GET_MODE (locreal), copy); rtx copyimag = gen_imagpart (GET_MODE (locimag), copy); process_reg_param (map, locreal, copyreal); process_reg_param (map, locimag, copyimag); } else abort (); } /* Now do the parameters that will be placed in memory. */ for (formal = DECL_ARGUMENTS (fndecl), i = 0; formal; formal = TREE_CHAIN (formal), i++) { loc = RTVEC_ELT (arg_vector, i); if (GET_CODE (loc) == MEM /* Exclude case handled above. */ && ! (GET_CODE (XEXP (loc, 0)) == REG && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER)) { rtx note = emit_note (DECL_SOURCE_FILE (formal), DECL_SOURCE_LINE (formal)); if (note) RTX_INTEGRATED_P (note) = 1; /* Compute the address in the area we reserved and store the value there. */ temp = copy_rtx_and_substitute (loc, map); subst_constants (&temp, NULL_RTX, map); apply_change_group (); if (! memory_address_p (GET_MODE (temp), XEXP (temp, 0))) temp = change_address (temp, VOIDmode, XEXP (temp, 0)); store_expr (arg_trees[i], temp, 0); } } /* Deal with the places that the function puts its result. We are driven by what is placed into DECL_RESULT. Initially, we assume that we don't have anything special handling for REG_FUNCTION_RETURN_VALUE_P. */ map->inline_target = 0; loc = DECL_RTL (DECL_RESULT (fndecl)); if (TYPE_MODE (type) == VOIDmode) /* There is no return value to worry about. */ ; else if (GET_CODE (loc) == MEM) { if (GET_CODE (XEXP (loc, 0)) == ADDRESSOF) { temp = copy_rtx_and_substitute (loc, map); subst_constants (&temp, NULL_RTX, map); apply_change_group (); target = temp; } else { if (! structure_value_addr || ! aggregate_value_p (DECL_RESULT (fndecl))) abort (); /* Pass the function the address in which to return a structure value. Note that a constructor can cause someone to call us with STRUCTURE_VALUE_ADDR, but the initialization takes place via the first parameter, rather than the struct return address. We have two cases: If the address is a simple register indirect, use the mapping mechanism to point that register to our structure return address. Otherwise, store the structure return value into the place that it will be referenced from. */ if (GET_CODE (XEXP (loc, 0)) == REG) { temp = force_operand (structure_value_addr, NULL_RTX); temp = force_reg (Pmode, temp); map->reg_map[REGNO (XEXP (loc, 0))] = temp; if (CONSTANT_P (structure_value_addr) || GET_CODE (structure_value_addr) == ADDRESSOF || (GET_CODE (structure_value_addr) == PLUS && (XEXP (structure_value_addr, 0) == virtual_stack_vars_rtx) && (GET_CODE (XEXP (structure_value_addr, 1)) == CONST_INT))) { SET_CONST_EQUIV_DATA (map, temp, structure_value_addr, CONST_AGE_PARM); } } else { temp = copy_rtx_and_substitute (loc, map); subst_constants (&temp, NULL_RTX, map); apply_change_group (); emit_move_insn (temp, structure_value_addr); } } } else if (ignore) /* We will ignore the result value, so don't look at its structure. Note that preparations for an aggregate return value do need to be made (above) even if it will be ignored. */ ; else if (GET_CODE (loc) == REG) { /* The function returns an object in a register and we use the return value. Set up our target for remapping. */ /* Machine mode function was declared to return. */ enum machine_mode departing_mode = TYPE_MODE (type); /* (Possibly wider) machine mode it actually computes (for the sake of callers that fail to declare it right). We have to use the mode of the result's RTL, rather than its type, since expand_function_start may have promoted it. */ enum machine_mode arriving_mode = GET_MODE (DECL_RTL (DECL_RESULT (fndecl))); rtx reg_to_map; /* Don't use MEMs as direct targets because on some machines substituting a MEM for a REG makes invalid insns. Let the combiner substitute the MEM if that is valid. */ if (target == 0 || GET_CODE (target) != REG || GET_MODE (target) != departing_mode) { /* Don't make BLKmode registers. If this looks like a BLKmode object being returned in a register, get the mode from that, otherwise abort. */ if (departing_mode == BLKmode) { if (REG == GET_CODE (DECL_RTL (DECL_RESULT (fndecl)))) { departing_mode = GET_MODE (DECL_RTL (DECL_RESULT (fndecl))); arriving_mode = departing_mode; } else abort(); } target = gen_reg_rtx (departing_mode); } /* If function's value was promoted before return, avoid machine mode mismatch when we substitute INLINE_TARGET. But TARGET is what we will return to the caller. */ if (arriving_mode != departing_mode) { /* Avoid creating a paradoxical subreg wider than BITS_PER_WORD, since that is illegal. */ if (GET_MODE_BITSIZE (arriving_mode) > BITS_PER_WORD) { if (!TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (departing_mode), GET_MODE_BITSIZE (arriving_mode))) /* Maybe could be handled by using convert_move () ? */ abort (); reg_to_map = gen_reg_rtx (arriving_mode); target = gen_lowpart (departing_mode, reg_to_map); } else reg_to_map = gen_rtx_SUBREG (arriving_mode, target, 0); } else reg_to_map = target; /* Usually, the result value is the machine's return register. Sometimes it may be a pseudo. Handle both cases. */ if (REG_FUNCTION_VALUE_P (loc)) map->inline_target = reg_to_map; else map->reg_map[REGNO (loc)] = reg_to_map; } else abort (); /* Make a fresh binding contour that we can easily remove. Do this after expanding our arguments so cleanups are properly scoped. */ pushlevel (0); expand_start_bindings (0); /* Initialize label_map. get_label_from_map will actually make the labels. */ bzero ((char *) &map->label_map [min_labelno], (max_labelno - min_labelno) * sizeof (rtx)); /* Perform postincrements before actually calling the function. */ emit_queue (); /* Clean up stack so that variables might have smaller offsets. */ do_pending_stack_adjust (); /* Save a copy of the location of const_equiv_varray for mark_stores, called via note_stores. */ global_const_equiv_varray = map->const_equiv_varray; /* If the called function does an alloca, save and restore the stack pointer around the call. This saves stack space, but also is required if this inline is being done between two pushes. */ if (FUNCTION_FLAGS (header) & FUNCTION_FLAGS_CALLS_ALLOCA) emit_stack_save (SAVE_BLOCK, &stack_save, NULL_RTX); /* Now copy the insns one by one. Do this in two passes, first the insns and then their REG_NOTES, just like save_for_inline. */ /* This loop is very similar to the loop in copy_loop_body in unroll.c. */ for (insn = insns; insn; insn = NEXT_INSN (insn)) { rtx copy, pattern, set; map->orig_asm_operands_vector = 0; switch (GET_CODE (insn)) { case INSN: pattern = PATTERN (insn); set = single_set (insn); copy = 0; if (GET_CODE (pattern) == USE && GET_CODE (XEXP (pattern, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (pattern, 0))) /* The (USE (REG n)) at return from the function should be ignored since we are changing (REG n) into inline_target. */ break; /* If the inline fn needs eh context, make sure that the current fn has one. */ if (GET_CODE (pattern) == USE && find_reg_note (insn, REG_EH_CONTEXT, 0) != 0) get_eh_context (); /* Ignore setting a function value that we don't want to use. */ if (map->inline_target == 0 && set != 0 && GET_CODE (SET_DEST (set)) == REG && REG_FUNCTION_VALUE_P (SET_DEST (set))) { if (volatile_refs_p (SET_SRC (set))) { rtx new_set; /* If we must not delete the source, load it into a new temporary. */ copy = emit_insn (copy_rtx_and_substitute (pattern, map)); new_set = single_set (copy); if (new_set == 0) abort (); SET_DEST (new_set) = gen_reg_rtx (GET_MODE (SET_DEST (new_set))); } /* If the source and destination are the same and it has a note on it, keep the insn. */ else if (rtx_equal_p (SET_DEST (set), SET_SRC (set)) && REG_NOTES (insn) != 0) copy = emit_insn (copy_rtx_and_substitute (pattern, map)); else break; } /* If this is setting the static chain rtx, omit it. */ else if (static_chain_value != 0 && set != 0 && GET_CODE (SET_DEST (set)) == REG && rtx_equal_p (SET_DEST (set), static_chain_incoming_rtx)) break; /* If this is setting the static chain pseudo, set it from the value we want to give it instead. */ else if (static_chain_value != 0 && set != 0 && rtx_equal_p (SET_SRC (set), static_chain_incoming_rtx)) { rtx newdest = copy_rtx_and_substitute (SET_DEST (set), map); copy = emit_move_insn (newdest, static_chain_value); static_chain_value = 0; } else copy = emit_insn (copy_rtx_and_substitute (pattern, map)); /* REG_NOTES will be copied later. */ #ifdef HAVE_cc0 /* If this insn is setting CC0, it may need to look at the insn that uses CC0 to see what type of insn it is. In that case, the call to recog via validate_change will fail. So don't substitute constants here. Instead, do it when we emit the following insn. For example, see the pyr.md file. That machine has signed and unsigned compares. The compare patterns must check the following branch insn to see which what kind of compare to emit. If the previous insn set CC0, substitute constants on it as well. */ if (sets_cc0_p (PATTERN (copy)) != 0) cc0_insn = copy; else { if (cc0_insn) try_constants (cc0_insn, map); cc0_insn = 0; try_constants (copy, map); } #else try_constants (copy, map); #endif break; case JUMP_INSN: if (GET_CODE (PATTERN (insn)) == RETURN || (GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN)) { if (local_return_label == 0) local_return_label = gen_label_rtx (); pattern = gen_jump (local_return_label); } else pattern = copy_rtx_and_substitute (PATTERN (insn), map); copy = emit_jump_insn (pattern); #ifdef HAVE_cc0 if (cc0_insn) try_constants (cc0_insn, map); cc0_insn = 0; #endif try_constants (copy, map); /* If this used to be a conditional jump insn but whose branch direction is now know, we must do something special. */ if (condjump_p (insn) && ! simplejump_p (insn) && map->last_pc_value) { #ifdef HAVE_cc0 /* The previous insn set cc0 for us. So delete it. */ delete_insn (PREV_INSN (copy)); #endif /* If this is now a no-op, delete it. */ if (map->last_pc_value == pc_rtx) { delete_insn (copy); copy = 0; } else /* Otherwise, this is unconditional jump so we must put a BARRIER after it. We could do some dead code elimination here, but jump.c will do it just as well. */ emit_barrier (); } break; case CALL_INSN: pattern = copy_rtx_and_substitute (PATTERN (insn), map); copy = emit_call_insn (pattern); /* Because the USAGE information potentially contains objects other than hard registers, we need to copy it. */ CALL_INSN_FUNCTION_USAGE (copy) = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map); #ifdef HAVE_cc0 if (cc0_insn) try_constants (cc0_insn, map); cc0_insn = 0; #endif try_constants (copy, map); /* Be lazy and assume CALL_INSNs clobber all hard registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0; break; case CODE_LABEL: copy = emit_label (get_label_from_map (map, CODE_LABEL_NUMBER (insn))); LABEL_NAME (copy) = LABEL_NAME (insn); map->const_age++; break; case BARRIER: copy = emit_barrier (); break; case NOTE: /* It is important to discard function-end and function-beg notes, so we have only one of each in the current function. Also, NOTE_INSN_DELETED notes aren't useful (save_for_inline deleted these in the copy used for continuing compilation, not the copy used for inlining). */ if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_BEG && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED) { copy = emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn)); if (copy && (NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_END)) { rtx label = get_label_from_map (map, NOTE_BLOCK_NUMBER (copy)); /* we have to duplicate the handlers for the original */ if (NOTE_LINE_NUMBER (copy) == NOTE_INSN_EH_REGION_BEG) { /* We need to duplicate the handlers for the EH region and we need to indicate where the label map is */ eif_eh_map = map; duplicate_eh_handlers (NOTE_BLOCK_NUMBER (copy), CODE_LABEL_NUMBER (label), expand_inline_function_eh_labelmap); } /* We have to forward these both to match the new exception region. */ NOTE_BLOCK_NUMBER (copy) = CODE_LABEL_NUMBER (label); } } else copy = 0; break; default: abort (); break; } if (copy) RTX_INTEGRATED_P (copy) = 1; map->insn_map[INSN_UID (insn)] = copy; } /* Now copy the REG_NOTES. Increment const_age, so that only constants from parameters can be substituted in. These are the only ones that are valid across the entire function. */ map->const_age++; for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i' && map->insn_map[INSN_UID (insn)] && REG_NOTES (insn)) { rtx tem = copy_rtx_and_substitute (REG_NOTES (insn), map); /* We must also do subst_constants, in case one of our parameters has const type and constant value. */ subst_constants (&tem, NULL_RTX, map); apply_change_group (); REG_NOTES (map->insn_map[INSN_UID (insn)]) = tem; } /* Now copy nonlocal_goto_handler_list from the function being inlined into the current list. */ for (insn = NONLOCAL_GOTO_LABELS_TRAN(header); insn ; insn = XEXP (insn, 1)) if ( map->label_map[CODE_LABEL_NUMBER (XEXP (insn,0))] != NULL_RTX) nonlocal_goto_handler_labels = gen_rtx_EXPR_LIST (VOIDmode, map->label_map[CODE_LABEL_NUMBER (XEXP (insn,0))], nonlocal_goto_handler_labels); if (local_return_label) emit_label (local_return_label); /* Restore the stack pointer if we saved it above. */ if (FUNCTION_FLAGS (header) & FUNCTION_FLAGS_CALLS_ALLOCA) emit_stack_restore (SAVE_BLOCK, stack_save, NULL_RTX); /* Make copies of the decls of the symbols in the inline function, so that the copies of the variables get declared in the current function. Set up things so that lookup_static_chain knows that to interpret registers in SAVE_EXPRs for TYPE_SIZEs as local. */ inline_function_decl = fndecl; integrate_parm_decls (DECL_ARGUMENTS (fndecl), map, arg_vector); integrate_decl_tree ((tree) ORIGINAL_DECL_INITIAL (header), 0, map); inline_function_decl = 0; /* End the scope containing the copied formal parameter variables and copied LABEL_DECLs. */ expand_end_bindings (getdecls (), 1, 1); block = poplevel (1, 1, 0); BLOCK_ABSTRACT_ORIGIN (block) = (DECL_ABSTRACT_ORIGIN (fndecl) == NULL ? fndecl : DECL_ABSTRACT_ORIGIN (fndecl)); poplevel (0, 0, 0); /* Must mark the line number note after inlined functions as a repeat, so that the test coverage code can avoid counting the call twice. This just tells the code to ignore the immediately following line note, since there already exists a copy of this note before the expanded inline call. This line number note is still needed for debugging though, so we can't delete it. */ if (flag_test_coverage) emit_note (0, NOTE_REPEATED_LINE_NUMBER); emit_line_note (input_filename, lineno); /* If the function returns a BLKmode object in a register, copy it out of the temp register into a BLKmode memory object. */ if (TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl))) == BLKmode && ! aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl)))) target = copy_blkmode_from_reg (0, target, TREE_TYPE (TREE_TYPE (fndecl))); if (structure_value_addr) { target = gen_rtx_MEM (TYPE_MODE (type), memory_address (TYPE_MODE (type), structure_value_addr)); MEM_SET_IN_STRUCT_P (target, 1); } /* Make sure we free the things we explicitly allocated with xmalloc. */ if (real_label_map) free (real_label_map); if (map) VARRAY_FREE (map->const_equiv_varray); return target; } /* Given a chain of PARM_DECLs, ARGS, copy each decl into a VAR_DECL, push all of those decls and give each one the corresponding home. */ static void integrate_parm_decls (args, map, arg_vector) tree args; struct inline_remap *map; rtvec arg_vector; { register tree tail; register int i; for (tail = args, i = 0; tail; tail = TREE_CHAIN (tail), i++) { register tree decl = build_decl (VAR_DECL, DECL_NAME (tail), TREE_TYPE (tail)); rtx new_decl_rtl = copy_rtx_and_substitute (RTVEC_ELT (arg_vector, i), map); DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (tail); /* We really should be setting DECL_INCOMING_RTL to something reasonable here, but that's going to require some more work. */ /* DECL_INCOMING_RTL (decl) = ?; */ /* These args would always appear unused, if not for this. */ TREE_USED (decl) = 1; /* Prevent warning for shadowing with these. */ DECL_ABSTRACT_ORIGIN (decl) = DECL_ORIGIN (tail); pushdecl (decl); /* Fully instantiate the address with the equivalent form so that the debugging information contains the actual register, instead of the virtual register. Do this by not passing an insn to subst_constants. */ subst_constants (&new_decl_rtl, NULL_RTX, map); apply_change_group (); DECL_RTL (decl) = new_decl_rtl; } } /* Given a BLOCK node LET, push decls and levels so as to construct in the current function a tree of contexts isomorphic to the one that is given. LEVEL indicates how far down into the BLOCK tree is the node we are currently traversing. It is always zero except for recursive calls. MAP, if nonzero, is a pointer to an inline_remap map which indicates how registers used in the DECL_RTL field should be remapped. If it is zero, no mapping is necessary. */ static void integrate_decl_tree (let, level, map) tree let; int level; struct inline_remap *map; { tree t, node; if (level > 0) pushlevel (0); for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) { tree d; push_obstacks_nochange (); saveable_allocation (); d = copy_and_set_decl_abstract_origin (t); pop_obstacks (); if (DECL_RTL (t) != 0) { DECL_RTL (d) = copy_rtx_and_substitute (DECL_RTL (t), map); /* Fully instantiate the address with the equivalent form so that the debugging information contains the actual register, instead of the virtual register. Do this by not passing an insn to subst_constants. */ subst_constants (&DECL_RTL (d), NULL_RTX, map); apply_change_group (); } /* These args would always appear unused, if not for this. */ TREE_USED (d) = 1; if (DECL_LANG_SPECIFIC (d)) copy_lang_decl (d); pushdecl (d); } for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) integrate_decl_tree (t, level + 1, map); if (level > 0) { node = poplevel (1, 0, 0); if (node) { TREE_USED (node) = TREE_USED (let); BLOCK_ABSTRACT_ORIGIN (node) = let; } } } /* Given a BLOCK node LET, search for all DECL_RTL fields, and pass them through save_constants. */ static void save_constants_in_decl_trees (let) tree let; { tree t; for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) if (DECL_RTL (t) != 0) save_constants (&DECL_RTL (t)); for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) save_constants_in_decl_trees (t); } /* Create a new copy of an rtx. Recursively copies the operands of the rtx, except for those few rtx codes that are sharable. We always return an rtx that is similar to that incoming rtx, with the exception of possibly changing a REG to a SUBREG or vice versa. No rtl is ever emitted. Handle constants that need to be placed in the constant pool by calling `force_const_mem'. */ rtx copy_rtx_and_substitute (orig, map) register rtx orig; struct inline_remap *map; { register rtx copy, temp; register int i, j; register RTX_CODE code; register enum machine_mode mode; register char *format_ptr; int regno; if (orig == 0) return 0; code = GET_CODE (orig); mode = GET_MODE (orig); switch (code) { case REG: /* If the stack pointer register shows up, it must be part of stack-adjustments (*not* because we eliminated the frame pointer!). Small hard registers are returned as-is. Pseudo-registers go through their `reg_map'. */ regno = REGNO (orig); if (regno <= LAST_VIRTUAL_REGISTER) { /* Some hard registers are also mapped, but others are not translated. */ if (map->reg_map[regno] != 0) return map->reg_map[regno]; /* If this is the virtual frame pointer, make space in current function's stack frame for the stack frame of the inline function. Copy the address of this area into a pseudo. Map virtual_stack_vars_rtx to this pseudo and set up a constant equivalence for it to be the address. This will substitute the address into insns where it can be substituted and use the new pseudo where it can't. */ if (regno == VIRTUAL_STACK_VARS_REGNUM) { rtx loc, seq; int size = DECL_FRAME_SIZE (map->fndecl); #ifdef FRAME_GROWS_DOWNWARD /* In this case, virtual_stack_vars_rtx points to one byte higher than the top of the frame area. So make sure we allocate a big enough chunk to keep the frame pointer aligned like a real one. */ size = CEIL_ROUND (size, BIGGEST_ALIGNMENT / BITS_PER_UNIT); #endif start_sequence (); loc = assign_stack_temp (BLKmode, size, 1); loc = XEXP (loc, 0); #ifdef FRAME_GROWS_DOWNWARD /* In this case, virtual_stack_vars_rtx points to one byte higher than the top of the frame area. So compute the offset to one byte higher than our substitute frame. */ loc = plus_constant (loc, size); #endif map->reg_map[regno] = temp = force_reg (Pmode, force_operand (loc, NULL_RTX)); #ifdef STACK_BOUNDARY mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY / BITS_PER_UNIT); #endif SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM); seq = gen_sequence (); end_sequence (); emit_insn_after (seq, map->insns_at_start); return temp; } else if (regno == VIRTUAL_INCOMING_ARGS_REGNUM) { /* Do the same for a block to contain any arguments referenced in memory. */ rtx loc, seq; int size = FUNCTION_ARGS_SIZE (DECL_SAVED_INSNS (map->fndecl)); start_sequence (); loc = assign_stack_temp (BLKmode, size, 1); loc = XEXP (loc, 0); /* When arguments grow downward, the virtual incoming args pointer points to the top of the argument block, so the remapped location better do the same. */ #ifdef ARGS_GROW_DOWNWARD loc = plus_constant (loc, size); #endif map->reg_map[regno] = temp = force_reg (Pmode, force_operand (loc, NULL_RTX)); #ifdef STACK_BOUNDARY mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY / BITS_PER_UNIT); #endif SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM); seq = gen_sequence (); end_sequence (); emit_insn_after (seq, map->insns_at_start); return temp; } else if (REG_FUNCTION_VALUE_P (orig)) { /* This is a reference to the function return value. If the function doesn't have a return value, error. If the mode doesn't agree, and it ain't BLKmode, make a SUBREG. */ if (map->inline_target == 0) /* Must be unrolling loops or replicating code if we reach here, so return the register unchanged. */ return orig; else if (GET_MODE (map->inline_target) != BLKmode && mode != GET_MODE (map->inline_target)) return gen_lowpart (mode, map->inline_target); else return map->inline_target; } return orig; } if (map->reg_map[regno] == NULL) { map->reg_map[regno] = gen_reg_rtx (mode); REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (orig); REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (orig); RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (orig); /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */ if (map->regno_pointer_flag[regno]) mark_reg_pointer (map->reg_map[regno], map->regno_pointer_align[regno]); } return map->reg_map[regno]; case SUBREG: copy = copy_rtx_and_substitute (SUBREG_REG (orig), map); /* SUBREG is ordinary, but don't make nested SUBREGs. */ if (GET_CODE (copy) == SUBREG) return gen_rtx_SUBREG (GET_MODE (orig), SUBREG_REG (copy), SUBREG_WORD (orig) + SUBREG_WORD (copy)); else if (GET_CODE (copy) == CONCAT) { rtx retval = subreg_realpart_p (orig) ? XEXP (copy, 0) : XEXP (copy, 1); if (GET_MODE (retval) == GET_MODE (orig)) return retval; else return gen_rtx_SUBREG (GET_MODE (orig), retval, (SUBREG_WORD (orig) % (GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (orig))) / (unsigned) UNITS_PER_WORD))); } else return gen_rtx_SUBREG (GET_MODE (orig), copy, SUBREG_WORD (orig)); case ADDRESSOF: copy = gen_rtx_ADDRESSOF (mode, copy_rtx_and_substitute (XEXP (orig, 0), map), 0); SET_ADDRESSOF_DECL (copy, ADDRESSOF_DECL (orig)); regno = ADDRESSOF_REGNO (orig); if (map->reg_map[regno]) regno = REGNO (map->reg_map[regno]); else if (regno > LAST_VIRTUAL_REGISTER) { temp = XEXP (orig, 0); map->reg_map[regno] = gen_reg_rtx (GET_MODE (temp)); REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (temp); REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (temp); RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (temp); /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */ if (map->regno_pointer_flag[regno]) mark_reg_pointer (map->reg_map[regno], map->regno_pointer_align[regno]); regno = REGNO (map->reg_map[regno]); } ADDRESSOF_REGNO (copy) = regno; return copy; case USE: case CLOBBER: /* USE and CLOBBER are ordinary, but we convert (use (subreg foo)) to (use foo) if the original insn didn't have a subreg. Removing the subreg distorts the VAX movstrhi pattern by changing the mode of an operand. */ copy = copy_rtx_and_substitute (XEXP (orig, 0), map); if (GET_CODE (copy) == SUBREG && GET_CODE (XEXP (orig, 0)) != SUBREG) copy = SUBREG_REG (copy); return gen_rtx_fmt_e (code, VOIDmode, copy); case CODE_LABEL: LABEL_PRESERVE_P (get_label_from_map (map, CODE_LABEL_NUMBER (orig))) = LABEL_PRESERVE_P (orig); return get_label_from_map (map, CODE_LABEL_NUMBER (orig)); case LABEL_REF: copy = gen_rtx_LABEL_REF (mode, LABEL_REF_NONLOCAL_P (orig) ? XEXP (orig, 0) : get_label_from_map (map, CODE_LABEL_NUMBER (XEXP (orig, 0)))); LABEL_OUTSIDE_LOOP_P (copy) = LABEL_OUTSIDE_LOOP_P (orig); /* The fact that this label was previously nonlocal does not mean it still is, so we must check if it is within the range of this function's labels. */ LABEL_REF_NONLOCAL_P (copy) = (LABEL_REF_NONLOCAL_P (orig) && ! (CODE_LABEL_NUMBER (XEXP (copy, 0)) >= get_first_label_num () && CODE_LABEL_NUMBER (XEXP (copy, 0)) < max_label_num ())); /* If we have made a nonlocal label local, it means that this inlined call will be referring to our nonlocal goto handler. So make sure we create one for this block; we normally would not since this is not otherwise considered a "call". */ if (LABEL_REF_NONLOCAL_P (orig) && ! LABEL_REF_NONLOCAL_P (copy)) function_call_count++; return copy; case PC: case CC0: case CONST_INT: return orig; case SYMBOL_REF: /* Symbols which represent the address of a label stored in the constant pool must be modified to point to a constant pool entry for the remapped label. Otherwise, symbols are returned unchanged. */ if (CONSTANT_POOL_ADDRESS_P (orig)) { rtx constant = get_pool_constant (orig); if (GET_CODE (constant) == LABEL_REF) return XEXP (force_const_mem (GET_MODE (orig), copy_rtx_and_substitute (constant, map)), 0); } else if (SYMBOL_REF_NEED_ADJUST (orig)) { eif_eh_map = map; return rethrow_symbol_map (orig, expand_inline_function_eh_labelmap); } return orig; case CONST_DOUBLE: /* We have to make a new copy of this CONST_DOUBLE because don't want to use the old value of CONST_DOUBLE_MEM. Also, this may be a duplicate of a CONST_DOUBLE we have already seen. */ if (GET_MODE_CLASS (GET_MODE (orig)) == MODE_FLOAT) { REAL_VALUE_TYPE d; REAL_VALUE_FROM_CONST_DOUBLE (d, orig); return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (orig)); } else return immed_double_const (CONST_DOUBLE_LOW (orig), CONST_DOUBLE_HIGH (orig), VOIDmode); case CONST: /* Make new constant pool entry for a constant that was in the pool of the inline function. */ if (RTX_INTEGRATED_P (orig)) { /* If this was an address of a constant pool entry that itself had to be placed in the constant pool, it might not be a valid address. So the recursive call below might turn it into a register. In that case, it isn't a constant any more, so return it. This has the potential of changing a MEM into a REG, but we'll assume that it safe. */ temp = copy_rtx_and_substitute (XEXP (orig, 0), map); if (! CONSTANT_P (temp)) return temp; return validize_mem (force_const_mem (GET_MODE (orig), temp)); } break; case ADDRESS: /* If from constant pool address, make new constant pool entry and return its address. */ if (! RTX_INTEGRATED_P (orig)) abort (); temp = force_const_mem (GET_MODE (XEXP (orig, 0)), copy_rtx_and_substitute (XEXP (XEXP (orig, 0), 0), map)); #if 0 /* Legitimizing the address here is incorrect. The only ADDRESS rtx's that can reach here are ones created by save_constants. Hence the operand of the ADDRESS is always valid in this position of the instruction, since the original rtx without the ADDRESS was valid. The reason we don't legitimize the address here is that on the Sparc, the caller may have a (high ...) surrounding this ADDRESS. This code forces the operand of the address to a register, which fails because we can not take the HIGH part of a register. Also, change_address may create new registers. These registers will not have valid reg_map entries. This can cause try_constants() to fail because assumes that all registers in the rtx have valid reg_map entries, and it may end up replacing one of these new registers with junk. */ if (! memory_address_p (GET_MODE (temp), XEXP (temp, 0))) temp = change_address (temp, GET_MODE (temp), XEXP (temp, 0)); #endif temp = XEXP (temp, 0); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (temp) != GET_MODE (orig)) temp = convert_memory_address (GET_MODE (orig), temp); #endif return temp; case ASM_OPERANDS: /* If a single asm insn contains multiple output operands then it contains multiple ASM_OPERANDS rtx's that share operand 3. We must make sure that the copied insn continues to share it. */ if (map->orig_asm_operands_vector == XVEC (orig, 3)) { copy = rtx_alloc (ASM_OPERANDS); copy->volatil = orig->volatil; XSTR (copy, 0) = XSTR (orig, 0); XSTR (copy, 1) = XSTR (orig, 1); XINT (copy, 2) = XINT (orig, 2); XVEC (copy, 3) = map->copy_asm_operands_vector; XVEC (copy, 4) = map->copy_asm_constraints_vector; XSTR (copy, 5) = XSTR (orig, 5); XINT (copy, 6) = XINT (orig, 6); return copy; } break; case CALL: /* This is given special treatment because the first operand of a CALL is a (MEM ...) which may get forced into a register for cse. This is undesirable if function-address cse isn't wanted or if we won't do cse. */ #ifndef NO_FUNCTION_CSE if (! (optimize && ! flag_no_function_cse)) #endif return gen_rtx_CALL (GET_MODE (orig), gen_rtx_MEM (GET_MODE (XEXP (orig, 0)), copy_rtx_and_substitute (XEXP (XEXP (orig, 0), 0), map)), copy_rtx_and_substitute (XEXP (orig, 1), map)); break; #if 0 /* Must be ifdefed out for loop unrolling to work. */ case RETURN: abort (); #endif case SET: /* If this is setting fp or ap, it means that we have a nonlocal goto. Adjust the setting by the offset of the area we made. If the nonlocal goto is into the current function, this will result in unnecessarily bad code, but should work. */ if (SET_DEST (orig) == virtual_stack_vars_rtx || SET_DEST (orig) == virtual_incoming_args_rtx) { /* In case a translation hasn't occurred already, make one now. */ rtx equiv_reg; rtx equiv_loc; HOST_WIDE_INT loc_offset; copy_rtx_and_substitute (SET_DEST (orig), map); equiv_reg = map->reg_map[REGNO (SET_DEST (orig))]; equiv_loc = VARRAY_CONST_EQUIV (map->const_equiv_varray, REGNO (equiv_reg)).rtx; loc_offset = GET_CODE (equiv_loc) == REG ? 0 : INTVAL (XEXP (equiv_loc, 1)); return gen_rtx_SET (VOIDmode, SET_DEST (orig), force_operand (plus_constant (copy_rtx_and_substitute (SET_SRC (orig), map), - loc_offset), NULL_RTX)); } break; case MEM: copy = rtx_alloc (MEM); PUT_MODE (copy, mode); XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (orig, 0), map); MEM_COPY_ATTRIBUTES (copy, orig); MEM_ALIAS_SET (copy) = MEM_ALIAS_SET (orig); /* If doing function inlining, this MEM might not be const in the function that it is being inlined into, and thus may not be unchanging after function inlining. Constant pool references are handled elsewhere, so this doesn't lose RTX_UNCHANGING_P bits for them. */ if (! map->integrating) RTX_UNCHANGING_P (copy) = RTX_UNCHANGING_P (orig); return copy; default: break; } copy = rtx_alloc (code); PUT_MODE (copy, mode); copy->in_struct = orig->in_struct; copy->volatil = orig->volatil; copy->unchanging = orig->unchanging; format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) { switch (*format_ptr++) { case '0': XEXP (copy, i) = XEXP (orig, i); break; case 'e': XEXP (copy, i) = copy_rtx_and_substitute (XEXP (orig, i), map); break; case 'u': /* Change any references to old-insns to point to the corresponding copied insns. */ XEXP (copy, i) = map->insn_map[INSN_UID (XEXP (orig, i))]; break; case 'E': XVEC (copy, i) = XVEC (orig, i); if (XVEC (orig, i) != NULL && XVECLEN (orig, i) != 0) { XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); for (j = 0; j < XVECLEN (copy, i); j++) XVECEXP (copy, i, j) = copy_rtx_and_substitute (XVECEXP (orig, i, j), map); } break; case 'w': XWINT (copy, i) = XWINT (orig, i); break; case 'i': XINT (copy, i) = XINT (orig, i); break; case 's': XSTR (copy, i) = XSTR (orig, i); break; default: abort (); } } if (code == ASM_OPERANDS && map->orig_asm_operands_vector == 0) { map->orig_asm_operands_vector = XVEC (orig, 3); map->copy_asm_operands_vector = XVEC (copy, 3); map->copy_asm_constraints_vector = XVEC (copy, 4); } return copy; } /* Substitute known constant values into INSN, if that is valid. */ void try_constants (insn, map) rtx insn; struct inline_remap *map; { int i; map->num_sets = 0; subst_constants (&PATTERN (insn), insn, map); /* Apply the changes if they are valid; otherwise discard them. */ apply_change_group (); /* Show we don't know the value of anything stored or clobbered. */ note_stores (PATTERN (insn), mark_stores); map->last_pc_value = 0; #ifdef HAVE_cc0 map->last_cc0_value = 0; #endif /* Set up any constant equivalences made in this insn. */ for (i = 0; i < map->num_sets; i++) { if (GET_CODE (map->equiv_sets[i].dest) == REG) { int regno = REGNO (map->equiv_sets[i].dest); MAYBE_EXTEND_CONST_EQUIV_VARRAY (map, regno); if (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).rtx == 0 /* Following clause is a hack to make case work where GNU C++ reassigns a variable to make cse work right. */ || ! rtx_equal_p (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).rtx, map->equiv_sets[i].equiv)) SET_CONST_EQUIV_DATA (map, map->equiv_sets[i].dest, map->equiv_sets[i].equiv, map->const_age); } else if (map->equiv_sets[i].dest == pc_rtx) map->last_pc_value = map->equiv_sets[i].equiv; #ifdef HAVE_cc0 else if (map->equiv_sets[i].dest == cc0_rtx) map->last_cc0_value = map->equiv_sets[i].equiv; #endif } } /* Substitute known constants for pseudo regs in the contents of LOC, which are part of INSN. If INSN is zero, the substitution should always be done (this is used to update DECL_RTL). These changes are taken out by try_constants if the result is not valid. Note that we are more concerned with determining when the result of a SET is a constant, for further propagation, than actually inserting constants into insns; cse will do the latter task better. This function is also used to adjust address of items previously addressed via the virtual stack variable or virtual incoming arguments registers. */ static void subst_constants (loc, insn, map) rtx *loc; rtx insn; struct inline_remap *map; { rtx x = *loc; register int i; register enum rtx_code code; register char *format_ptr; int num_changes = num_validated_changes (); rtx new = 0; enum machine_mode op0_mode = MAX_MACHINE_MODE; code = GET_CODE (x); switch (code) { case PC: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case CONST: case LABEL_REF: case ADDRESS: return; #ifdef HAVE_cc0 case CC0: validate_change (insn, loc, map->last_cc0_value, 1); return; #endif case USE: case CLOBBER: /* The only thing we can do with a USE or CLOBBER is possibly do some substitutions in a MEM within it. */ if (GET_CODE (XEXP (x, 0)) == MEM) subst_constants (&XEXP (XEXP (x, 0), 0), insn, map); return; case REG: /* Substitute for parms and known constants. Don't replace hard regs used as user variables with constants. */ { int regno = REGNO (x); struct const_equiv_data *p; if (! (regno < FIRST_PSEUDO_REGISTER && REG_USERVAR_P (x)) && regno < VARRAY_SIZE (map->const_equiv_varray) && (p = &VARRAY_CONST_EQUIV (map->const_equiv_varray, regno), p->rtx != 0) && p->age >= map->const_age) validate_change (insn, loc, p->rtx, 1); return; } case SUBREG: /* SUBREG applied to something other than a reg should be treated as ordinary, since that must be a special hack and we don't know how to treat it specially. Consider for example mulsidi3 in m68k.md. Ordinary SUBREG of a REG needs this special treatment. */ if (GET_CODE (SUBREG_REG (x)) == REG) { rtx inner = SUBREG_REG (x); rtx new = 0; /* We can't call subst_constants on &SUBREG_REG (x) because any constant or SUBREG wouldn't be valid inside our SUBEG. Instead, see what is inside, try to form the new SUBREG and see if that is valid. We handle two cases: extracting a full word in an integral mode and extracting the low part. */ subst_constants (&inner, NULL_RTX, map); if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT && GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD && GET_MODE (SUBREG_REG (x)) != VOIDmode) new = operand_subword (inner, SUBREG_WORD (x), 0, GET_MODE (SUBREG_REG (x))); cancel_changes (num_changes); if (new == 0 && subreg_lowpart_p (x)) new = gen_lowpart_common (GET_MODE (x), inner); if (new) validate_change (insn, loc, new, 1); return; } break; case MEM: subst_constants (&XEXP (x, 0), insn, map); /* If a memory address got spoiled, change it back. */ if (insn != 0 && num_validated_changes () != num_changes && !memory_address_p (GET_MODE (x), XEXP (x, 0))) cancel_changes (num_changes); return; case SET: { /* Substitute constants in our source, and in any arguments to a complex (e..g, ZERO_EXTRACT) destination, but not in the destination itself. */ rtx *dest_loc = &SET_DEST (x); rtx dest = *dest_loc; rtx src, tem; subst_constants (&SET_SRC (x), insn, map); src = SET_SRC (x); while (GET_CODE (*dest_loc) == ZERO_EXTRACT || GET_CODE (*dest_loc) == SUBREG || GET_CODE (*dest_loc) == STRICT_LOW_PART) { if (GET_CODE (*dest_loc) == ZERO_EXTRACT) { subst_constants (&XEXP (*dest_loc, 1), insn, map); subst_constants (&XEXP (*dest_loc, 2), insn, map); } dest_loc = &XEXP (*dest_loc, 0); } /* Do substitute in the address of a destination in memory. */ if (GET_CODE (*dest_loc) == MEM) subst_constants (&XEXP (*dest_loc, 0), insn, map); /* Check for the case of DEST a SUBREG, both it and the underlying register are less than one word, and the SUBREG has the wider mode. In the case, we are really setting the underlying register to the source converted to the mode of DEST. So indicate that. */ if (GET_CODE (dest) == SUBREG && GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD && GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= UNITS_PER_WORD && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= GET_MODE_SIZE (GET_MODE (dest))) && (tem = gen_lowpart_if_possible (GET_MODE (SUBREG_REG (dest)), src))) src = tem, dest = SUBREG_REG (dest); /* If storing a recognizable value save it for later recording. */ if ((map->num_sets < MAX_RECOG_OPERANDS) && (CONSTANT_P (src) || (GET_CODE (src) == REG && (REGNO (src) == VIRTUAL_INCOMING_ARGS_REGNUM || REGNO (src) == VIRTUAL_STACK_VARS_REGNUM)) || (GET_CODE (src) == PLUS && GET_CODE (XEXP (src, 0)) == REG && (REGNO (XEXP (src, 0)) == VIRTUAL_INCOMING_ARGS_REGNUM || REGNO (XEXP (src, 0)) == VIRTUAL_STACK_VARS_REGNUM) && CONSTANT_P (XEXP (src, 1))) || GET_CODE (src) == COMPARE #ifdef HAVE_cc0 || dest == cc0_rtx #endif || (dest == pc_rtx && (src == pc_rtx || GET_CODE (src) == RETURN || GET_CODE (src) == LABEL_REF)))) { /* Normally, this copy won't do anything. But, if SRC is a COMPARE it will cause us to save the COMPARE with any constants substituted, which is what we want for later. */ map->equiv_sets[map->num_sets].equiv = copy_rtx (src); map->equiv_sets[map->num_sets++].dest = dest; } } return; default: break; } format_ptr = GET_RTX_FORMAT (code); /* If the first operand is an expression, save its mode for later. */ if (*format_ptr == 'e') op0_mode = GET_MODE (XEXP (x, 0)); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case '0': break; case 'e': if (XEXP (x, i)) subst_constants (&XEXP (x, i), insn, map); break; case 'u': case 'i': case 's': case 'w': break; case 'E': if (XVEC (x, i) != NULL && XVECLEN (x, i) != 0) { int j; for (j = 0; j < XVECLEN (x, i); j++) subst_constants (&XVECEXP (x, i, j), insn, map); } break; default: abort (); } } /* If this is a commutative operation, move a constant to the second operand unless the second operand is already a CONST_INT. */ if ((GET_RTX_CLASS (code) == 'c' || code == NE || code == EQ) && CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT) { rtx tem = XEXP (x, 0); validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1); validate_change (insn, &XEXP (x, 1), tem, 1); } /* Simplify the expression in case we put in some constants. */ switch (GET_RTX_CLASS (code)) { case '1': if (op0_mode == MAX_MACHINE_MODE) abort (); new = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0), op0_mode); break; case '<': { enum machine_mode op_mode = GET_MODE (XEXP (x, 0)); if (op_mode == VOIDmode) op_mode = GET_MODE (XEXP (x, 1)); new = simplify_relational_operation (code, op_mode, XEXP (x, 0), XEXP (x, 1)); #ifdef FLOAT_STORE_FLAG_VALUE if (new != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) new = ((new == const0_rtx) ? CONST0_RTX (GET_MODE (x)) : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, GET_MODE (x))); #endif break; } case '2': case 'c': new = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)); break; case 'b': case '3': if (op0_mode == MAX_MACHINE_MODE) abort (); new = simplify_ternary_operation (code, GET_MODE (x), op0_mode, XEXP (x, 0), XEXP (x, 1), XEXP (x, 2)); break; } if (new) validate_change (insn, loc, new, 1); } /* Show that register modified no longer contain known constants. We are called from note_stores with parts of the new insn. */ void mark_stores (dest, x) rtx dest; rtx x ATTRIBUTE_UNUSED; { int regno = -1; enum machine_mode mode; /* DEST is always the innermost thing set, except in the case of SUBREGs of hard registers. */ if (GET_CODE (dest) == REG) regno = REGNO (dest), mode = GET_MODE (dest); else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG) { regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest); mode = GET_MODE (SUBREG_REG (dest)); } if (regno >= 0) { int last_reg = (regno >= FIRST_PSEUDO_REGISTER ? regno : regno + HARD_REGNO_NREGS (regno, mode) - 1); int i; /* Ignore virtual stack var or virtual arg register since those are handled separately. */ if (regno != VIRTUAL_INCOMING_ARGS_REGNUM && regno != VIRTUAL_STACK_VARS_REGNUM) for (i = regno; i <= last_reg; i++) if (i < VARRAY_SIZE (global_const_equiv_varray)) VARRAY_CONST_EQUIV (global_const_equiv_varray, i).rtx = 0; } } /* If any CONST expressions with RTX_INTEGRATED_P are present in the rtx pointed to by PX, they represent constants in the constant pool. Replace these with a new memory reference obtained from force_const_mem. Similarly, ADDRESS expressions with RTX_INTEGRATED_P represent the address of a constant pool entry. Replace them with the address of a new constant pool entry obtained from force_const_mem. */ static void restore_constants (px) rtx *px; { rtx x = *px; int i, j; char *fmt; if (x == 0) return; if (GET_CODE (x) == CONST_DOUBLE) { /* We have to make a new CONST_DOUBLE to ensure that we account for it correctly. Using the old CONST_DOUBLE_MEM data is wrong. */ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { REAL_VALUE_TYPE d; REAL_VALUE_FROM_CONST_DOUBLE (d, x); *px = CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x)); } else *px = immed_double_const (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x), VOIDmode); } else if (RTX_INTEGRATED_P (x) && GET_CODE (x) == CONST) { restore_constants (&XEXP (x, 0)); *px = validize_mem (force_const_mem (GET_MODE (x), XEXP (x, 0))); } else if (RTX_INTEGRATED_P (x) && GET_CODE (x) == SUBREG) { /* This must be (subreg/i:M1 (const/i:M2 ...) 0). */ rtx new = XEXP (SUBREG_REG (x), 0); restore_constants (&new); new = force_const_mem (GET_MODE (SUBREG_REG (x)), new); PUT_MODE (new, GET_MODE (x)); *px = validize_mem (new); } else if (RTX_INTEGRATED_P (x) && GET_CODE (x) == ADDRESS) { rtx new = XEXP (force_const_mem (GET_MODE (XEXP (x, 0)), XEXP (XEXP (x, 0), 0)), 0); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (new) != GET_MODE (x)) new = convert_memory_address (GET_MODE (x), new); #endif *px = new; } else { fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++) { switch (*fmt++) { case 'E': for (j = 0; j < XVECLEN (x, i); j++) restore_constants (&XVECEXP (x, i, j)); break; case 'e': restore_constants (&XEXP (x, i)); break; } } } } /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so that it points to the node itself, thus indicating that the node is its own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for the given node is NULL, recursively descend the decl/block tree which it is the root of, and for each other ..._DECL or BLOCK node contained therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to point to themselves. */ static void set_block_origin_self (stmt) register tree stmt; { if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE) { BLOCK_ABSTRACT_ORIGIN (stmt) = stmt; { register tree local_decl; for (local_decl = BLOCK_VARS (stmt); local_decl != NULL_TREE; local_decl = TREE_CHAIN (local_decl)) set_decl_origin_self (local_decl); /* Potential recursion. */ } { register tree subblock; for (subblock = BLOCK_SUBBLOCKS (stmt); subblock != NULL_TREE; subblock = BLOCK_CHAIN (subblock)) set_block_origin_self (subblock); /* Recurse. */ } } } /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the node to so that it points to the node itself, thus indicating that the node represents its own (abstract) origin. Additionally, if the DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend the decl/block tree of which the given node is the root of, and for each other ..._DECL or BLOCK node contained therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to point to themselves. */ static void set_decl_origin_self (decl) register tree decl; { if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE) { DECL_ABSTRACT_ORIGIN (decl) = decl; if (TREE_CODE (decl) == FUNCTION_DECL) { register tree arg; for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg)) DECL_ABSTRACT_ORIGIN (arg) = arg; if (DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node) set_block_origin_self (DECL_INITIAL (decl)); } } } /* Given a pointer to some BLOCK node, and a boolean value to set the "abstract" flags to, set that value into the BLOCK_ABSTRACT flag for the given block, and for all local decls and all local sub-blocks (recursively) which are contained therein. */ static void set_block_abstract_flags (stmt, setting) register tree stmt; register int setting; { register tree local_decl; register tree subblock; BLOCK_ABSTRACT (stmt) = setting; for (local_decl = BLOCK_VARS (stmt); local_decl != NULL_TREE; local_decl = TREE_CHAIN (local_decl)) set_decl_abstract_flags (local_decl, setting); for (subblock = BLOCK_SUBBLOCKS (stmt); subblock != NULL_TREE; subblock = BLOCK_CHAIN (subblock)) set_block_abstract_flags (subblock, setting); } /* Given a pointer to some ..._DECL node, and a boolean value to set the "abstract" flags to, set that value into the DECL_ABSTRACT flag for the given decl, and (in the case where the decl is a FUNCTION_DECL) also set the abstract flags for all of the parameters, local vars, local blocks and sub-blocks (recursively) to the same setting. */ void set_decl_abstract_flags (decl, setting) register tree decl; register int setting; { DECL_ABSTRACT (decl) = setting; if (TREE_CODE (decl) == FUNCTION_DECL) { register tree arg; for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg)) DECL_ABSTRACT (arg) = setting; if (DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node) set_block_abstract_flags (DECL_INITIAL (decl), setting); } } /* Output the assembly language code for the function FNDECL from its DECL_SAVED_INSNS. Used for inline functions that are output at end of compilation instead of where they came in the source. */ void output_inline_function (fndecl) tree fndecl; { rtx head; rtx last; /* Things we allocate from here on are part of this function, not permanent. */ temporary_allocation (); head = DECL_SAVED_INSNS (fndecl); current_function_decl = fndecl; /* This call is only used to initialize global variables. */ init_function_start (fndecl, "lossage", 1); /* Redo parameter determinations in case the FUNCTION_... macros took machine-specific actions that need to be redone. */ assign_parms (fndecl, 1); /* Set stack frame size. */ assign_stack_local (BLKmode, DECL_FRAME_SIZE (fndecl), 0); /* The first is a bit of a lie (the array may be larger), but doesn't matter too much and it isn't worth saving the actual bound. */ reg_rtx_no = regno_pointer_flag_length = MAX_REGNUM (head); regno_reg_rtx = (rtx *) INLINE_REGNO_REG_RTX (head); regno_pointer_flag = INLINE_REGNO_POINTER_FLAG (head); regno_pointer_align = INLINE_REGNO_POINTER_ALIGN (head); max_parm_reg = MAX_PARMREG (head); parm_reg_stack_loc = (rtx *) PARMREG_STACK_LOC (head); stack_slot_list = STACK_SLOT_LIST (head); forced_labels = FORCED_LABELS (head); nonlocal_goto_handler_labels = NONLOCAL_GOTO_LABELS (head); if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_HAS_COMPUTED_JUMP) current_function_has_computed_jump = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_CALLS_ALLOCA) current_function_calls_alloca = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_CALLS_SETJMP) current_function_calls_setjmp = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_CALLS_LONGJMP) current_function_calls_longjmp = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_RETURNS_STRUCT) current_function_returns_struct = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_RETURNS_PCC_STRUCT) current_function_returns_pcc_struct = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_NEEDS_CONTEXT) current_function_needs_context = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_HAS_NONLOCAL_LABEL) current_function_has_nonlocal_label = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_RETURNS_POINTER) current_function_returns_pointer = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_USES_CONST_POOL) current_function_uses_const_pool = 1; if (FUNCTION_FLAGS (head) & FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE) current_function_uses_pic_offset_table = 1; current_function_outgoing_args_size = OUTGOING_ARGS_SIZE (head); current_function_pops_args = POPS_ARGS (head); /* This is the only thing the expand_function_end call that uses to be here actually does and that call can cause problems. */ immediate_size_expand--; /* Find last insn and rebuild the constant pool. */ for (last = FIRST_PARM_INSN (head); NEXT_INSN (last); last = NEXT_INSN (last)) { if (GET_RTX_CLASS (GET_CODE (last)) == 'i') { restore_constants (&PATTERN (last)); restore_constants (®_NOTES (last)); } } set_new_first_and_last_insn (FIRST_PARM_INSN (head), last); set_new_first_and_last_label_num (FIRST_LABELNO (head), LAST_LABELNO (head)); /* We must have already output DWARF debugging information for the original (abstract) inline function declaration/definition, so we want to make sure that the debugging information we generate for this special instance of the inline function refers back to the information we already generated. To make sure that happens, we simply have to set the DECL_ABSTRACT_ORIGIN for the function node (and for all of the local ..._DECL nodes which are its children) so that they all point to themselves. */ set_decl_origin_self (fndecl); /* We're not deferring this any longer. */ DECL_DEFER_OUTPUT (fndecl) = 0; /* We can't inline this anymore. */ DECL_INLINE (fndecl) = 0; /* Compile this function all the way down to assembly code. */ rest_of_compilation (fndecl); current_function_decl = 0; }