// This may look like C code, but it is really -*- C++ -*- /* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of GNU CC. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GNU CC General Public License for full details. Everyone is granted permission to copy, modify and redistribute GNU CC, but only under the conditions described in the GNU CC General Public License. A copy of this license is supposed to have been given to you along with GNU CC so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ #ifdef __GNUG__ #pragma implementation #endif #include #include #include ".AVLSet.h" /* constants & inlines for maintaining balance & thread status in tree nodes */ #define AVLBALANCEMASK 3 #define AVLBALANCED 0 #define AVLLEFTHEAVY 1 #define AVLRIGHTHEAVY 2 #define LTHREADBIT 4 #define RTHREADBIT 8 static inline int bf(AVLNode* t) { return t->stat & AVLBALANCEMASK; } static inline void set_bf(AVLNode* t, int b) { t->stat = (t->stat & ~AVLBALANCEMASK) | (b & AVLBALANCEMASK); } static inline int rthread(AVLNode* t) { return t->stat & RTHREADBIT; } static inline void set_rthread(AVLNode* t, int b) { if (b) t->stat |= RTHREADBIT; else t->stat &= ~RTHREADBIT; } static inline int lthread(AVLNode* t) { return t->stat & LTHREADBIT; } static inline void set_lthread(AVLNode* t, int b) { if (b) t->stat |= LTHREADBIT; else t->stat &= ~LTHREADBIT; } /* traversal primitives */ AVLNode* AVLSet::leftmost() { AVLNode* t = root; if (t != 0) while (t->lt != 0) t = t->lt; return t; } AVLNode* AVLSet::rightmost() { AVLNode* t = root; if (t != 0) while (t->rt != 0) t = t->rt; return t; } AVLNode* AVLSet::succ(AVLNode* t) { AVLNode* r = t->rt; if (!rthread(t)) while (!lthread(r)) r = r->lt; return r; } AVLNode* AVLSet::pred(AVLNode* t) { AVLNode* l = t->lt; if (!lthread(t)) while (!rthread(l)) l = l->rt; return l; } Pix AVLSet::seek( key) { AVLNode* t = root; if (t == 0) return 0; for (;;) { int cmp = CMP(key, t->item); if (cmp == 0) return Pix(t); else if (cmp < 0) { if (lthread(t)) return 0; else t = t->lt; } else if (rthread(t)) return 0; else t = t->rt; } } /* The combination of threads and AVL bits make adding & deleting interesting, but very awkward. We use the following statics to avoid passing them around recursively */ static int _need_rebalancing; // to send back balance info from rec. calls static * _target_item; // add/del_item target static AVLNode* _found_node; // returned added/deleted node static int _already_found; // for deletion subcases static AVLNode** _hold_nodes; // used for rebuilding trees static int _max_hold_index; // # elements-1 in _hold_nodes void AVLSet:: _add(AVLNode*& t) { int cmp = CMP(*_target_item, t->item); if (cmp == 0) { _found_node = t; return; } else if (cmp < 0) { if (lthread(t)) { ++count; _found_node = new AVLNode(*_target_item); set_lthread(_found_node, 1); set_rthread(_found_node, 1); _found_node->lt = t->lt; _found_node->rt = t; t->lt = _found_node; set_lthread(t, 0); _need_rebalancing = 1; } else _add(t->lt); if (_need_rebalancing) { switch(bf(t)) { case AVLRIGHTHEAVY: set_bf(t, AVLBALANCED); _need_rebalancing = 0; return; case AVLBALANCED: set_bf(t, AVLLEFTHEAVY); return; case AVLLEFTHEAVY: AVLNode* l = t->lt; if (bf(l) == AVLLEFTHEAVY) { if (rthread(l)) t->lt = l; else t->lt = l->rt; set_lthread(t, rthread(l)); l->rt = t; set_rthread(l, 0); set_bf(t, AVLBALANCED); set_bf(l, AVLBALANCED); t = l; _need_rebalancing = 0; } else { AVLNode* r = l->rt; set_rthread(l, lthread(r)); if (lthread(r)) l->rt = r; else l->rt = r->lt; r->lt = l; set_lthread(r, 0); set_lthread(t, rthread(r)); if (rthread(r)) t->lt = r; else t->lt = r->rt; r->rt = t; set_rthread(r, 0); if (bf(r) == AVLLEFTHEAVY) set_bf(t, AVLRIGHTHEAVY); else set_bf(t, AVLBALANCED); if (bf(r) == AVLRIGHTHEAVY) set_bf(l, AVLLEFTHEAVY); else set_bf(l, AVLBALANCED); set_bf(r, AVLBALANCED); t = r; _need_rebalancing = 0; return; } } } } else { if (rthread(t)) { ++count; _found_node = new AVLNode(*_target_item); set_rthread(t, 0); set_lthread(_found_node, 1); set_rthread(_found_node, 1); _found_node->lt = t; _found_node->rt = t->rt; t->rt = _found_node; _need_rebalancing = 1; } else _add(t->rt); if (_need_rebalancing) { switch(bf(t)) { case AVLLEFTHEAVY: set_bf(t, AVLBALANCED); _need_rebalancing = 0; return; case AVLBALANCED: set_bf(t, AVLRIGHTHEAVY); return; case AVLRIGHTHEAVY: AVLNode* r = t->rt; if (bf(r) == AVLRIGHTHEAVY) { if (lthread(r)) t->rt = r; else t->rt = r->lt; set_rthread(t, lthread(r)); r->lt = t; set_lthread(r, 0); set_bf(t, AVLBALANCED); set_bf(r, AVLBALANCED); t = r; _need_rebalancing = 0; } else { AVLNode* l = r->lt; set_lthread(r, rthread(l)); if (rthread(l)) r->lt = l; else r->lt = l->rt; l->rt = r; set_rthread(l, 0); set_rthread(t, lthread(l)); if (lthread(l)) t->rt = l; else t->rt = l->lt; l->lt = t; set_lthread(l, 0); if (bf(l) == AVLRIGHTHEAVY) set_bf(t, AVLLEFTHEAVY); else set_bf(t, AVLBALANCED); if (bf(l) == AVLLEFTHEAVY) set_bf(r, AVLRIGHTHEAVY); else set_bf(r, AVLBALANCED); set_bf(l, AVLBALANCED); t = l; _need_rebalancing = 0; return; } } } } } Pix AVLSet::add( item) { if (root == 0) { ++count; root = new AVLNode(item); set_rthread(root, 1); set_lthread(root, 1); return Pix(root); } else { _target_item = &item; _need_rebalancing = 0; _add(root); return Pix(_found_node); } } void AVLSet::_del(AVLNode* par, AVLNode*& t) { int comp; if (_already_found) { if (rthread(t)) comp = 0; else comp = 1; } else comp = CMP(*_target_item, t->item); if (comp == 0) { if (lthread(t) && rthread(t)) { _found_node = t; if (t == par->lt) { set_lthread(par, 1); par->lt = t->lt; } else { set_rthread(par, 1); par->rt = t->rt; } _need_rebalancing = 1; return; } else if (lthread(t)) { _found_node = t; AVLNode* s = succ(t); if (s != 0 && lthread(s)) s->lt = t->lt; t = t->rt; _need_rebalancing = 1; return; } else if (rthread(t)) { _found_node = t; AVLNode* p = pred(t); if (p != 0 && rthread(p)) p->rt = t->rt; t = t->lt; _need_rebalancing = 1; return; } else // replace item & find someone deletable { AVLNode* p = pred(t); t->item = p->item; _already_found = 1; comp = -1; // fall through below to left } } if (comp < 0) { if (lthread(t)) return; _del(t, t->lt); if (!_need_rebalancing) return; switch (bf(t)) { case AVLLEFTHEAVY: set_bf(t, AVLBALANCED); return; case AVLBALANCED: set_bf(t, AVLRIGHTHEAVY); _need_rebalancing = 0; return; case AVLRIGHTHEAVY: AVLNode* r = t->rt; switch (bf(r)) { case AVLBALANCED: if (lthread(r)) t->rt = r; else t->rt = r->lt; set_rthread(t, lthread(r)); r->lt = t; set_lthread(r, 0); set_bf(t, AVLRIGHTHEAVY); set_bf(r, AVLLEFTHEAVY); _need_rebalancing = 0; t = r; return; case AVLRIGHTHEAVY: if (lthread(r)) t->rt = r; else t->rt = r->lt; set_rthread(t, lthread(r)); r->lt = t; set_lthread(r, 0); set_bf(t, AVLBALANCED); set_bf(r, AVLBALANCED); t = r; return; case AVLLEFTHEAVY: AVLNode* l = r->lt; set_lthread(r, rthread(l)); if (rthread(l)) r->lt = l; else r->lt = l->rt; l->rt = r; set_rthread(l, 0); set_rthread(t, lthread(l)); if (lthread(l)) t->rt = l; else t->rt = l->lt; l->lt = t; set_lthread(l, 0); if (bf(l) == AVLRIGHTHEAVY) set_bf(t, AVLLEFTHEAVY); else set_bf(t, AVLBALANCED); if (bf(l) == AVLLEFTHEAVY) set_bf(r, AVLRIGHTHEAVY); else set_bf(r, AVLBALANCED); set_bf(l, AVLBALANCED); t = l; return; } } } else { if (rthread(t)) return; _del(t, t->rt); if (!_need_rebalancing) return; switch (bf(t)) { case AVLRIGHTHEAVY: set_bf(t, AVLBALANCED); return; case AVLBALANCED: set_bf(t, AVLLEFTHEAVY); _need_rebalancing = 0; return; case AVLLEFTHEAVY: AVLNode* l = t->lt; switch (bf(l)) { case AVLBALANCED: if (rthread(l)) t->lt = l; else t->lt = l->rt; set_lthread(t, rthread(l)); l->rt = t; set_rthread(l, 0); set_bf(t, AVLLEFTHEAVY); set_bf(l, AVLRIGHTHEAVY); _need_rebalancing = 0; t = l; return; case AVLLEFTHEAVY: if (rthread(l)) t->lt = l; else t->lt = l->rt; set_lthread(t, rthread(l)); l->rt = t; set_rthread(l, 0); set_bf(t, AVLBALANCED); set_bf(l, AVLBALANCED); t = l; return; case AVLRIGHTHEAVY: AVLNode* r = l->rt; set_rthread(l, lthread(r)); if (lthread(r)) l->rt = r; else l->rt = r->lt; r->lt = l; set_lthread(r, 0); set_lthread(t, rthread(r)); if (rthread(r)) t->lt = r; else t->lt = r->rt; r->rt = t; set_rthread(r, 0); if (bf(r) == AVLLEFTHEAVY) set_bf(t, AVLRIGHTHEAVY); else set_bf(t, AVLBALANCED); if (bf(r) == AVLRIGHTHEAVY) set_bf(l, AVLLEFTHEAVY); else set_bf(l, AVLBALANCED); set_bf(r, AVLBALANCED); t = r; return; } } } } void AVLSet::del( item) { if (root == 0) return; _need_rebalancing = 0; _already_found = 0; _found_node = 0; _target_item = &item; _del(root, root); if (_found_node) { delete(_found_node); if (--count == 0) root = 0; } } // build an ordered array of pointers to tree nodes back into a tree // we know that at least one element exists static AVLNode* _do_treeify(int lo, int hi, int& h) { int lh, rh; int mid = (lo + hi) / 2; AVLNode* t = _hold_nodes[mid]; if (lo > mid - 1) { set_lthread(t, 1); if (mid == 0) t->lt = 0; else t->lt = _hold_nodes[mid-1]; lh = 0; } else { set_lthread(t, 0); t->lt = _do_treeify(lo, mid-1, lh); } if (hi < mid + 1) { set_rthread(t, 1); if (mid == _max_hold_index) t->rt = 0; else t->rt = _hold_nodes[mid+1]; rh = 0; } else { set_rthread(t, 0); t->rt = _do_treeify(mid+1, hi, rh); } if (lh == rh) { set_bf(t, AVLBALANCED); h = lh + 1; } else if (lh == rh - 1) { set_bf(t, AVLRIGHTHEAVY); h = rh + 1; } else if (rh == lh - 1) { set_bf(t, AVLLEFTHEAVY); h = lh + 1; } else // can't happen abort(); return t; } static AVLNode* _treeify(int n) { AVLNode* t; if (n == 0) t = 0; else { int b; _max_hold_index = n-1; t = _do_treeify(0, _max_hold_index, b); } delete _hold_nodes; return t; } void AVLSet::_kill(AVLNode* t) { if (t != 0) { if (!lthread(t)) _kill(t->lt); if (!rthread(t)) _kill(t->rt); delete t; } } AVLSet::AVLSet(AVLSet& b) { if ((count = b.count) == 0) { root = 0; } else { _hold_nodes = new AVLNodePtr [count]; AVLNode* t = b.leftmost(); int i = 0; while (t != 0) { _hold_nodes[i++] = new AVLNode(t->item); t = b.succ(t); } root = _treeify(count); } } int AVLSet::operator == (AVLSet& y) { if (count != y.count) return 0; else { AVLNode* t = leftmost(); AVLNode* u = y.leftmost(); for (;;) { if (t == 0) return 1; else if (!(EQ(t->item, u->item))) return 0; else { t = succ(t); u = y.succ(u); } } } } int AVLSet::operator <= (AVLSet& y) { if (count > y.count) return 0; else { AVLNode* t = leftmost(); AVLNode* u = y.leftmost(); for (;;) { if (t == 0) return 1; else if (u == 0) return 0; int cmp = CMP(t->item, u->item); if (cmp == 0) { t = succ(t); u = y.succ(u); } else if (cmp < 0) return 0; else u = y.succ(u); } } } void AVLSet::operator |=(AVLSet& y) { AVLNode* t = leftmost(); AVLNode* u = y.leftmost(); int rsize = count + y.count; _hold_nodes = new AVLNodePtr [rsize]; int k = 0; for (;;) { if (t == 0) { while (u != 0) { _hold_nodes[k++] = new AVLNode(u->item); u = y.succ(u); } break; } else if (u == 0) { while (t != 0) { _hold_nodes[k++] = t; t = succ(t); } break; } int cmp = CMP(t->item, u->item); if (cmp == 0) { _hold_nodes[k++] = t; t = succ(t); u = y.succ(u); } else if (cmp < 0) { _hold_nodes[k++] = t; t = succ(t); } else { _hold_nodes[k++] = new AVLNode(u->item); u = y.succ(u); } } root = _treeify(k); count = k; } void AVLSet::operator &= (AVLSet& y) { AVLNode* t = leftmost(); AVLNode* u = y.leftmost(); int rsize = (count < y.count)? count : y.count; _hold_nodes = new AVLNodePtr [rsize]; int k = 0; for (;;) { if (t == 0) break; if (u == 0) { while (t != 0) { AVLNode* tmp = succ(t); delete t; t = tmp; } break; } int cmp = CMP(t->item, u->item); if (cmp == 0) { _hold_nodes[k++] = t; t = succ(t); u = y.succ(u); } else if (cmp < 0) { AVLNode* tmp = succ(t); delete t; t = tmp; } else u = y.succ(u); } root = _treeify(k); count = k; } void AVLSet::operator -=(AVLSet& y) { AVLNode* t = leftmost(); AVLNode* u = y.leftmost(); int rsize = count; _hold_nodes = new AVLNodePtr [rsize]; int k = 0; for (;;) { if (t == 0) break; else if (u == 0) { while (t != 0) { _hold_nodes[k++] = t; t = succ(t); } break; } int cmp = CMP(t->item, u->item); if (cmp == 0) { AVLNode* tmp = succ(t); delete t; t = tmp; u = y.succ(u); } else if (cmp < 0) { _hold_nodes[k++] = t; t = succ(t); } else u = y.succ(u); } root = _treeify(k); count = k; } int AVLSet::owns(Pix i) { if (i == 0) return 0; for (AVLNode* t = leftmost(); t != 0; t = succ(t)) if (Pix(t) == i) return 1; return 0; } int AVLSet::OK() { int v = 1; if (root == 0) v = count == 0; else { int n = 1; AVLNode* trail = leftmost(); AVLNode* t = succ(trail); while (t != 0) { ++n; v &= CMP(trail->item, t->item) < 0; trail = t; t = succ(t); } v &= n == count; } if (!v) error("invariant failure"); return v; }