//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #define DEBUG_TYPE "cgscc" using namespace llvm; // Explicit template instantiations and specialization definitions for core // template typedefs. namespace llvm { // Explicit instantiations for the core proxy templates. template class AllAnalysesOn; template class AnalysisManager; template class PassManager; template class InnerAnalysisManagerProxy; template class OuterAnalysisManagerProxy; template class OuterAnalysisManagerProxy; /// Explicitly specialize the pass manager run method to handle call graph /// updates. template <> PreservedAnalyses PassManager::run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM, LazyCallGraph &G, CGSCCUpdateResult &UR) { // Request PassInstrumentation from analysis manager, will use it to run // instrumenting callbacks for the passes later. PassInstrumentation PI = AM.getResult(InitialC, G); PreservedAnalyses PA = PreservedAnalyses::all(); if (DebugLogging) dbgs() << "Starting CGSCC pass manager run.\n"; // The SCC may be refined while we are running passes over it, so set up // a pointer that we can update. LazyCallGraph::SCC *C = &InitialC; for (auto &Pass : Passes) { if (DebugLogging) dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; // Check the PassInstrumentation's BeforePass callbacks before running the // pass, skip its execution completely if asked to (callback returns false). if (!PI.runBeforePass(*Pass, *C)) continue; PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); if (UR.InvalidatedSCCs.count(C)) PI.runAfterPassInvalidated(*Pass); else PI.runAfterPass(*Pass, *C); // Update the SCC if necessary. C = UR.UpdatedC ? UR.UpdatedC : C; // If the CGSCC pass wasn't able to provide a valid updated SCC, the // current SCC may simply need to be skipped if invalid. if (UR.InvalidatedSCCs.count(C)) { LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); break; } // Check that we didn't miss any update scenario. assert(C->begin() != C->end() && "Cannot have an empty SCC!"); // Update the analysis manager as each pass runs and potentially // invalidates analyses. AM.invalidate(*C, PassPA); // Finally, we intersect the final preserved analyses to compute the // aggregate preserved set for this pass manager. PA.intersect(std::move(PassPA)); // FIXME: Historically, the pass managers all called the LLVM context's // yield function here. We don't have a generic way to acquire the // context and it isn't yet clear what the right pattern is for yielding // in the new pass manager so it is currently omitted. // ...getContext().yield(); } // Invalidation was handled after each pass in the above loop for the current // SCC. Therefore, the remaining analysis results in the AnalysisManager are // preserved. We mark this with a set so that we don't need to inspect each // one individually. PA.preserveSet>(); if (DebugLogging) dbgs() << "Finished CGSCC pass manager run.\n"; return PA; } bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( Module &M, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &Inv) { // If literally everything is preserved, we're done. if (PA.areAllPreserved()) return false; // This is still a valid proxy. // If this proxy or the call graph is going to be invalidated, we also need // to clear all the keys coming from that analysis. // // We also directly invalidate the FAM's module proxy if necessary, and if // that proxy isn't preserved we can't preserve this proxy either. We rely on // it to handle module -> function analysis invalidation in the face of // structural changes and so if it's unavailable we conservatively clear the // entire SCC layer as well rather than trying to do invalidation ourselves. auto PAC = PA.getChecker(); if (!(PAC.preserved() || PAC.preservedSet>()) || Inv.invalidate(M, PA) || Inv.invalidate(M, PA)) { InnerAM->clear(); // And the proxy itself should be marked as invalid so that we can observe // the new call graph. This isn't strictly necessary because we cheat // above, but is still useful. return true; } // Directly check if the relevant set is preserved so we can short circuit // invalidating SCCs below. bool AreSCCAnalysesPreserved = PA.allAnalysesInSetPreserved>(); // Ok, we have a graph, so we can propagate the invalidation down into it. G->buildRefSCCs(); for (auto &RC : G->postorder_ref_sccs()) for (auto &C : RC) { Optional InnerPA; // Check to see whether the preserved set needs to be adjusted based on // module-level analysis invalidation triggering deferred invalidation // for this SCC. if (auto *OuterProxy = InnerAM->getCachedResult(C)) for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; const auto &InnerAnalysisIDs = OuterInvalidationPair.second; if (Inv.invalidate(OuterAnalysisID, M, PA)) { if (!InnerPA) InnerPA = PA; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) InnerPA->abandon(InnerAnalysisID); } } // Check if we needed a custom PA set. If so we'll need to run the inner // invalidation. if (InnerPA) { InnerAM->invalidate(C, *InnerPA); continue; } // Otherwise we only need to do invalidation if the original PA set didn't // preserve all SCC analyses. if (!AreSCCAnalysesPreserved) InnerAM->invalidate(C, PA); } // Return false to indicate that this result is still a valid proxy. return false; } template <> CGSCCAnalysisManagerModuleProxy::Result CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { // Force the Function analysis manager to also be available so that it can // be accessed in an SCC analysis and proxied onward to function passes. // FIXME: It is pretty awkward to just drop the result here and assert that // we can find it again later. (void)AM.getResult(M); return Result(*InnerAM, AM.getResult(M)); } AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; FunctionAnalysisManagerCGSCCProxy::Result FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG) { // Collect the FunctionAnalysisManager from the Module layer and use that to // build the proxy result. // // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to // invalidate the function analyses. auto &MAM = AM.getResult(C, CG).getManager(); Module &M = *C.begin()->getFunction().getParent(); auto *FAMProxy = MAM.getCachedResult(M); assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " "proxy is run on the module prior to entering the CGSCC " "walk."); // Note that we special-case invalidation handling of this proxy in the CGSCC // analysis manager's Module proxy. This avoids the need to do anything // special here to recompute all of this if ever the FAM's module proxy goes // away. return Result(FAMProxy->getManager()); } bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( LazyCallGraph::SCC &C, const PreservedAnalyses &PA, CGSCCAnalysisManager::Invalidator &Inv) { // If literally everything is preserved, we're done. if (PA.areAllPreserved()) return false; // This is still a valid proxy. // If this proxy isn't marked as preserved, then even if the result remains // valid, the key itself may no longer be valid, so we clear everything. // // Note that in order to preserve this proxy, a module pass must ensure that // the FAM has been completely updated to handle the deletion of functions. // Specifically, any FAM-cached results for those functions need to have been // forcibly cleared. When preserved, this proxy will only invalidate results // cached on functions *still in the module* at the end of the module pass. auto PAC = PA.getChecker(); if (!PAC.preserved() && !PAC.preservedSet>()) { for (LazyCallGraph::Node &N : C) FAM->clear(N.getFunction(), N.getFunction().getName()); return true; } // Directly check if the relevant set is preserved. bool AreFunctionAnalysesPreserved = PA.allAnalysesInSetPreserved>(); // Now walk all the functions to see if any inner analysis invalidation is // necessary. for (LazyCallGraph::Node &N : C) { Function &F = N.getFunction(); Optional FunctionPA; // Check to see whether the preserved set needs to be pruned based on // SCC-level analysis invalidation that triggers deferred invalidation // registered with the outer analysis manager proxy for this function. if (auto *OuterProxy = FAM->getCachedResult(F)) for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; const auto &InnerAnalysisIDs = OuterInvalidationPair.second; if (Inv.invalidate(OuterAnalysisID, C, PA)) { if (!FunctionPA) FunctionPA = PA; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) FunctionPA->abandon(InnerAnalysisID); } } // Check if we needed a custom PA set, and if so we'll need to run the // inner invalidation. if (FunctionPA) { FAM->invalidate(F, *FunctionPA); continue; } // Otherwise we only need to do invalidation if the original PA set didn't // preserve all function analyses. if (!AreFunctionAnalysesPreserved) FAM->invalidate(F, PA); } // Return false to indicate that this result is still a valid proxy. return false; } } // end namespace llvm /// When a new SCC is created for the graph and there might be function /// analysis results cached for the functions now in that SCC two forms of /// updates are required. /// /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be /// created so that any subsequent invalidation events to the SCC are /// propagated to the function analysis results cached for functions within it. /// /// Second, if any of the functions within the SCC have analysis results with /// outer analysis dependencies, then those dependencies would point to the /// *wrong* SCC's analysis result. We forcibly invalidate the necessary /// function analyses so that they don't retain stale handles. static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, LazyCallGraph &G, CGSCCAnalysisManager &AM) { // Get the relevant function analysis manager. auto &FAM = AM.getResult(C, G).getManager(); // Now walk the functions in this SCC and invalidate any function analysis // results that might have outer dependencies on an SCC analysis. for (LazyCallGraph::Node &N : C) { Function &F = N.getFunction(); auto *OuterProxy = FAM.getCachedResult(F); if (!OuterProxy) // No outer analyses were queried, nothing to do. continue; // Forcibly abandon all the inner analyses with dependencies, but // invalidate nothing else. auto PA = PreservedAnalyses::all(); for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { const auto &InnerAnalysisIDs = OuterInvalidationPair.second; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) PA.abandon(InnerAnalysisID); } // Now invalidate anything we found. FAM.invalidate(F, PA); } } /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly /// added SCCs. /// /// The range of new SCCs must be in postorder already. The SCC they were split /// out of must be provided as \p C. The current node being mutated and /// triggering updates must be passed as \p N. /// /// This function returns the SCC containing \p N. This will be either \p C if /// no new SCCs have been split out, or it will be the new SCC containing \p N. template static LazyCallGraph::SCC * incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, LazyCallGraph::Node &N, LazyCallGraph::SCC *C, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { using SCC = LazyCallGraph::SCC; if (NewSCCRange.begin() == NewSCCRange.end()) return C; // Add the current SCC to the worklist as its shape has changed. UR.CWorklist.insert(C); LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"); SCC *OldC = C; // Update the current SCC. Note that if we have new SCCs, this must actually // change the SCC. assert(C != &*NewSCCRange.begin() && "Cannot insert new SCCs without changing current SCC!"); C = &*NewSCCRange.begin(); assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); // If we had a cached FAM proxy originally, we will want to create more of // them for each SCC that was split off. bool NeedFAMProxy = AM.getCachedResult(*OldC) != nullptr; // We need to propagate an invalidation call to all but the newly current SCC // because the outer pass manager won't do that for us after splitting them. // FIXME: We should accept a PreservedAnalysis from the CG updater so that if // there are preserved analysis we can avoid invalidating them here for // split-off SCCs. // We know however that this will preserve any FAM proxy so go ahead and mark // that. PreservedAnalyses PA; PA.preserve(); AM.invalidate(*OldC, PA); // Ensure the now-current SCC's function analyses are updated. if (NeedFAMProxy) updateNewSCCFunctionAnalyses(*C, G, AM); for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { assert(C != &NewC && "No need to re-visit the current SCC!"); assert(OldC != &NewC && "Already handled the original SCC!"); UR.CWorklist.insert(&NewC); LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); // Ensure new SCCs' function analyses are updated. if (NeedFAMProxy) updateNewSCCFunctionAnalyses(NewC, G, AM); // Also propagate a normal invalidation to the new SCC as only the current // will get one from the pass manager infrastructure. AM.invalidate(NewC, PA); } return C; } LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { using Node = LazyCallGraph::Node; using Edge = LazyCallGraph::Edge; using SCC = LazyCallGraph::SCC; using RefSCC = LazyCallGraph::RefSCC; RefSCC &InitialRC = InitialC.getOuterRefSCC(); SCC *C = &InitialC; RefSCC *RC = &InitialRC; Function &F = N.getFunction(); // Walk the function body and build up the set of retained, promoted, and // demoted edges. SmallVector Worklist; SmallPtrSet Visited; SmallPtrSet RetainedEdges; SmallSetVector PromotedRefTargets; SmallSetVector DemotedCallTargets; // First walk the function and handle all called functions. We do this first // because if there is a single call edge, whether there are ref edges is // irrelevant. for (Instruction &I : instructions(F)) if (auto CS = CallSite(&I)) if (Function *Callee = CS.getCalledFunction()) if (Visited.insert(Callee).second && !Callee->isDeclaration()) { Node &CalleeN = *G.lookup(*Callee); Edge *E = N->lookup(CalleeN); // FIXME: We should really handle adding new calls. While it will // make downstream usage more complex, there is no fundamental // limitation and it will allow passes within the CGSCC to be a bit // more flexible in what transforms they can do. Until then, we // verify that new calls haven't been introduced. assert(E && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!"); bool Inserted = RetainedEdges.insert(&CalleeN).second; (void)Inserted; assert(Inserted && "We should never visit a function twice."); if (!E->isCall()) PromotedRefTargets.insert(&CalleeN); } // Now walk all references. for (Instruction &I : instructions(F)) for (Value *Op : I.operand_values()) if (auto *C = dyn_cast(Op)) if (Visited.insert(C).second) Worklist.push_back(C); auto VisitRef = [&](Function &Referee) { Node &RefereeN = *G.lookup(Referee); Edge *E = N->lookup(RefereeN); // FIXME: Similarly to new calls, we also currently preclude // introducing new references. See above for details. assert(E && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!"); bool Inserted = RetainedEdges.insert(&RefereeN).second; (void)Inserted; assert(Inserted && "We should never visit a function twice."); if (E->isCall()) DemotedCallTargets.insert(&RefereeN); }; LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); // Include synthetic reference edges to known, defined lib functions. for (auto *F : G.getLibFunctions()) // While the list of lib functions doesn't have repeats, don't re-visit // anything handled above. if (!Visited.count(F)) VisitRef(*F); // First remove all of the edges that are no longer present in this function. // The first step makes these edges uniformly ref edges and accumulates them // into a separate data structure so removal doesn't invalidate anything. SmallVector DeadTargets; for (Edge &E : *N) { if (RetainedEdges.count(&E.getNode())) continue; SCC &TargetC = *G.lookupSCC(E.getNode()); RefSCC &TargetRC = TargetC.getOuterRefSCC(); if (&TargetRC == RC && E.isCall()) { if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, E.getNode()); } else { // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), G, N, C, AM, UR); } } // Now that this is ready for actual removal, put it into our list. DeadTargets.push_back(&E.getNode()); } // Remove the easy cases quickly and actually pull them out of our list. DeadTargets.erase( llvm::remove_if(DeadTargets, [&](Node *TargetN) { SCC &TargetC = *G.lookupSCC(*TargetN); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // We can't trivially remove internal targets, so skip // those. if (&TargetRC == RC) return false; RC->removeOutgoingEdge(N, *TargetN); LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN << "'\n"); return true; }), DeadTargets.end()); // Now do a batch removal of the internal ref edges left. auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); if (!NewRefSCCs.empty()) { // The old RefSCC is dead, mark it as such. UR.InvalidatedRefSCCs.insert(RC); // Note that we don't bother to invalidate analyses as ref-edge // connectivity is not really observable in any way and is intended // exclusively to be used for ordering of transforms rather than for // analysis conclusions. // Update RC to the "bottom". assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); RC = &C->getOuterRefSCC(); assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); // The RC worklist is in reverse postorder, so we enqueue the new ones in // RPO except for the one which contains the source node as that is the // "bottom" we will continue processing in the bottom-up walk. assert(NewRefSCCs.front() == RC && "New current RefSCC not first in the returned list!"); for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) { assert(NewRC != RC && "Should not encounter the current RefSCC further " "in the postorder list of new RefSCCs."); UR.RCWorklist.insert(NewRC); LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC << "\n"); } } // Next demote all the call edges that are now ref edges. This helps make // the SCCs small which should minimize the work below as we don't want to // form cycles that this would break. for (Node *RefTarget : DemotedCallTargets) { SCC &TargetC = *G.lookupSCC(*RefTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); RC->switchOutgoingEdgeToRef(N, *RefTarget); LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N << "' to '" << *RefTarget << "'\n"); continue; } // We are switching an internal call edge to a ref edge. This may split up // some SCCs. if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, *RefTarget); continue; } // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, C, AM, UR); } // Now promote ref edges into call edges. for (Node *CallTarget : PromotedRefTargets) { SCC &TargetC = *G.lookupSCC(*CallTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); RC->switchOutgoingEdgeToCall(N, *CallTarget); LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n"); continue; } LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n"); // Otherwise we are switching an internal ref edge to a call edge. This // may merge away some SCCs, and we add those to the UpdateResult. We also // need to make sure to update the worklist in the event SCCs have moved // before the current one in the post-order sequence bool HasFunctionAnalysisProxy = false; auto InitialSCCIndex = RC->find(*C) - RC->begin(); bool FormedCycle = RC->switchInternalEdgeToCall( N, *CallTarget, [&](ArrayRef MergedSCCs) { for (SCC *MergedC : MergedSCCs) { assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); HasFunctionAnalysisProxy |= AM.getCachedResult( *MergedC) != nullptr; // Mark that this SCC will no longer be valid. UR.InvalidatedSCCs.insert(MergedC); // FIXME: We should really do a 'clear' here to forcibly release // memory, but we don't have a good way of doing that and // preserving the function analyses. auto PA = PreservedAnalyses::allInSet>(); PA.preserve(); AM.invalidate(*MergedC, PA); } }); // If we formed a cycle by creating this call, we need to update more data // structures. if (FormedCycle) { C = &TargetC; assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); // If one of the invalidated SCCs had a cached proxy to a function // analysis manager, we need to create a proxy in the new current SCC as // the invalidated SCCs had their functions moved. if (HasFunctionAnalysisProxy) AM.getResult(*C, G); // Any analyses cached for this SCC are no longer precise as the shape // has changed by introducing this cycle. However, we have taken care to // update the proxies so it remains valide. auto PA = PreservedAnalyses::allInSet>(); PA.preserve(); AM.invalidate(*C, PA); } auto NewSCCIndex = RC->find(*C) - RC->begin(); // If we have actually moved an SCC to be topologically "below" the current // one due to merging, we will need to revisit the current SCC after // visiting those moved SCCs. // // It is critical that we *do not* revisit the current SCC unless we // actually move SCCs in the process of merging because otherwise we may // form a cycle where an SCC is split apart, merged, split, merged and so // on infinitely. if (InitialSCCIndex < NewSCCIndex) { // Put our current SCC back onto the worklist as we'll visit other SCCs // that are now definitively ordered prior to the current one in the // post-order sequence, and may end up observing more precise context to // optimize the current SCC. UR.CWorklist.insert(C); LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"); // Enqueue in reverse order as we pop off the back of the worklist. for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, RC->begin() + NewSCCIndex))) { UR.CWorklist.insert(&MovedC); LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC << "\n"); } } } assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); // Record the current RefSCC and SCC for higher layers of the CGSCC pass // manager now that all the updates have been applied. if (RC != &InitialRC) UR.UpdatedRC = RC; if (C != &InitialC) UR.UpdatedC = C; return *C; }