//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/Support/Host.h" #include "llvm/Support/TargetParser.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #endif #ifdef _WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include #endif #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) #include #include #include #include #endif #define DEBUG_TYPE "host-detection" //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; static std::unique_ptr LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { llvm::ErrorOr> Text = llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); if (std::error_code EC = Text.getError()) { llvm::errs() << "Can't read " << "/proc/cpuinfo: " << EC.message() << "\n"; return nullptr; } return std::move(*Text); } StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { // Access to the Processor Version Register (PVR) on PowerPC is privileged, // and so we must use an operating-system interface to determine the current // processor type. On Linux, this is exposed through the /proc/cpuinfo file. const char *generic = "generic"; // The cpu line is second (after the 'processor: 0' line), so if this // buffer is too small then something has changed (or is wrong). StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); StringRef::const_iterator CIP = CPUInfoStart; StringRef::const_iterator CPUStart = 0; size_t CPULen = 0; // We need to find the first line which starts with cpu, spaces, and a colon. // After the colon, there may be some additional spaces and then the cpu type. while (CIP < CPUInfoEnd && CPUStart == 0) { if (CIP < CPUInfoEnd && *CIP == '\n') ++CIP; if (CIP < CPUInfoEnd && *CIP == 'c') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'p') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'u') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd && *CIP == ':') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd) { CPUStart = CIP; while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && *CIP != ',' && *CIP != '\n')) ++CIP; CPULen = CIP - CPUStart; } } } } } if (CPUStart == 0) while (CIP < CPUInfoEnd && *CIP != '\n') ++CIP; } if (CPUStart == 0) return generic; return StringSwitch(StringRef(CPUStart, CPULen)) .Case("604e", "604e") .Case("604", "604") .Case("7400", "7400") .Case("7410", "7400") .Case("7447", "7400") .Case("7455", "7450") .Case("G4", "g4") .Case("POWER4", "970") .Case("PPC970FX", "970") .Case("PPC970MP", "970") .Case("G5", "g5") .Case("POWER5", "g5") .Case("A2", "a2") .Case("POWER6", "pwr6") .Case("POWER7", "pwr7") .Case("POWER8", "pwr8") .Case("POWER8E", "pwr8") .Case("POWER8NVL", "pwr8") .Case("POWER9", "pwr9") .Default(generic); } StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { // The cpuid register on arm is not accessible from user space. On Linux, // it is exposed through the /proc/cpuinfo file. // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line // in all cases. SmallVector Lines; ProcCpuinfoContent.split(Lines, "\n"); // Look for the CPU implementer line. StringRef Implementer; StringRef Hardware; for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU implementer")) Implementer = Lines[I].substr(15).ltrim("\t :"); if (Lines[I].startswith("Hardware")) Hardware = Lines[I].substr(8).ltrim("\t :"); } if (Implementer == "0x41") { // ARM Ltd. // MSM8992/8994 may give cpu part for the core that the kernel is running on, // which is undeterministic and wrong. Always return cortex-a53 for these SoC. if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) return "cortex-a53"; // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x926", "arm926ej-s") .Case("0xb02", "mpcore") .Case("0xb36", "arm1136j-s") .Case("0xb56", "arm1156t2-s") .Case("0xb76", "arm1176jz-s") .Case("0xc08", "cortex-a8") .Case("0xc09", "cortex-a9") .Case("0xc0f", "cortex-a15") .Case("0xc20", "cortex-m0") .Case("0xc23", "cortex-m3") .Case("0xc24", "cortex-m4") .Case("0xd04", "cortex-a35") .Case("0xd03", "cortex-a53") .Case("0xd07", "cortex-a57") .Case("0xd08", "cortex-a72") .Case("0xd09", "cortex-a73") .Default("generic"); } if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU part")) { return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x516", "thunderx2t99") .Case("0x0516", "thunderx2t99") .Case("0xaf", "thunderx2t99") .Case("0x0af", "thunderx2t99") .Case("0xa1", "thunderxt88") .Case("0x0a1", "thunderxt88") .Default("generic"); } } } if (Implementer == "0x48") // HiSilicon Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0xd01", "tsv110") .Default("generic"); if (Implementer == "0x51") // Qualcomm Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x06f", "krait") // APQ8064 .Case("0x201", "kryo") .Case("0x205", "kryo") .Case("0x211", "kryo") .Case("0x800", "cortex-a73") .Case("0x801", "cortex-a73") .Case("0xc00", "falkor") .Case("0xc01", "saphira") .Default("generic"); if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. // The Exynos chips have a convoluted ID scheme that doesn't seem to follow // any predictive pattern across variants and parts. unsigned Variant = 0, Part = 0; // Look for the CPU variant line, whose value is a 1 digit hexadecimal // number, corresponding to the Variant bits in the CP15/C0 register. for (auto I : Lines) if (I.consume_front("CPU variant")) I.ltrim("\t :").getAsInteger(0, Variant); // Look for the CPU part line, whose value is a 3 digit hexadecimal // number, corresponding to the PartNum bits in the CP15/C0 register. for (auto I : Lines) if (I.consume_front("CPU part")) I.ltrim("\t :").getAsInteger(0, Part); unsigned Exynos = (Variant << 12) | Part; switch (Exynos) { default: // Default by falling through to Exynos M1. LLVM_FALLTHROUGH; case 0x1001: return "exynos-m1"; case 0x4001: return "exynos-m2"; } } return "generic"; } StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { // STIDP is a privileged operation, so use /proc/cpuinfo instead. // The "processor 0:" line comes after a fair amount of other information, // including a cache breakdown, but this should be plenty. SmallVector Lines; ProcCpuinfoContent.split(Lines, "\n"); // Look for the CPU features. SmallVector CPUFeatures; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("features")) { size_t Pos = Lines[I].find(":"); if (Pos != StringRef::npos) { Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); break; } } // We need to check for the presence of vector support independently of // the machine type, since we may only use the vector register set when // supported by the kernel (and hypervisor). bool HaveVectorSupport = false; for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { if (CPUFeatures[I] == "vx") HaveVectorSupport = true; } // Now check the processor machine type. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("processor ")) { size_t Pos = Lines[I].find("machine = "); if (Pos != StringRef::npos) { Pos += sizeof("machine = ") - 1; unsigned int Id; if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { if (Id >= 3906 && HaveVectorSupport) return "z14"; if (Id >= 2964 && HaveVectorSupport) return "z13"; if (Id >= 2827) return "zEC12"; if (Id >= 2817) return "z196"; } } break; } } return "generic"; } StringRef sys::detail::getHostCPUNameForBPF() { #if !defined(__linux__) || !defined(__x86_64__) return "generic"; #else uint8_t insns[40] __attribute__ ((aligned (8))) = /* BPF_MOV64_IMM(BPF_REG_0, 0) */ { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_2, 1) */ 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_0, 1) */ 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_EXIT_INSN() */ 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; struct bpf_prog_load_attr { uint32_t prog_type; uint32_t insn_cnt; uint64_t insns; uint64_t license; uint32_t log_level; uint32_t log_size; uint64_t log_buf; uint32_t kern_version; uint32_t prog_flags; } attr = {}; attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ attr.insn_cnt = 5; attr.insns = (uint64_t)insns; attr.license = (uint64_t)"DUMMY"; int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); if (fd >= 0) { close(fd); return "v2"; } return "v1"; #endif } #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) enum VendorSignatures { SIG_INTEL = 0x756e6547 /* Genu */, SIG_AMD = 0x68747541 /* Auth */ }; // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID // support. Consequently, for i386, the presence of CPUID is checked first // via the corresponding eflags bit. // Removal of cpuid.h header motivated by PR30384 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp // or test-suite, but are used in external projects e.g. libstdcxx static bool isCpuIdSupported() { #if defined(__GNUC__) || defined(__clang__) #if defined(__i386__) int __cpuid_supported; __asm__(" pushfl\n" " popl %%eax\n" " movl %%eax,%%ecx\n" " xorl $0x00200000,%%eax\n" " pushl %%eax\n" " popfl\n" " pushfl\n" " popl %%eax\n" " movl $0,%0\n" " cmpl %%eax,%%ecx\n" " je 1f\n" " movl $1,%0\n" "1:" : "=r"(__cpuid_supported) : : "eax", "ecx"); if (!__cpuid_supported) return false; #endif return true; #endif return true; } /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in /// the specified arguments. If we can't run cpuid on the host, return true. static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); return false; #elif defined(__i386__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); return false; #else return true; #endif #elif defined(_MSC_VER) // The MSVC intrinsic is portable across x86 and x64. int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif } /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return /// the 4 values in the specified arguments. If we can't run cpuid on the host, /// return true. static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); return false; #elif defined(__i386__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); return false; #else return true; #endif #elif defined(_MSC_VER) int registers[4]; __cpuidex(registers, value, subleaf); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif } // Read control register 0 (XCR0). Used to detect features such as AVX. static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); return false; #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); *rEAX = Result; *rEDX = Result >> 32; return false; #else return true; #endif } static void detectX86FamilyModel(unsigned EAX, unsigned *Family, unsigned *Model) { *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (*Family == 6 || *Family == 0xf) { if (*Family == 0xf) // Examine extended family ID if family ID is F. *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } static void getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, unsigned Brand_id, unsigned Features, unsigned Features2, unsigned Features3, unsigned *Type, unsigned *Subtype) { if (Brand_id != 0) return; switch (Family) { case 3: *Type = X86::INTEL_i386; break; case 4: *Type = X86::INTEL_i486; break; case 5: if (Features & (1 << X86::FEATURE_MMX)) { *Type = X86::INTEL_PENTIUM_MMX; break; } *Type = X86::INTEL_PENTIUM; break; case 6: switch (Model) { case 0x01: // Pentium Pro processor *Type = X86::INTEL_PENTIUM_PRO; break; case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 0x06: // Celeron processor, model 06 *Type = X86::INTEL_PENTIUM_II; break; case 0x07: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 0x0a: // Pentium III Xeon processor, model 0Ah case 0x0b: // Pentium III processor, model 0Bh *Type = X86::INTEL_PENTIUM_III; break; case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology *Type = X86::INTEL_PENTIUM_M; break; case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. *Type = X86::INTEL_CORE_DUO; break; // yonah case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 0x16: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; break; case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) case 0x1d: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. *Type = X86::INTEL_CORE2; // "penryn" *Subtype = X86::INTEL_CORE2_45; break; case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 0x1f: case 0x2e: // Nehalem EX *Type = X86::INTEL_COREI7; // "nehalem" *Subtype = X86::INTEL_COREI7_NEHALEM; break; case 0x25: // Intel Core i7, laptop version. case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. case 0x2f: // Westmere EX *Type = X86::INTEL_COREI7; // "westmere" *Subtype = X86::INTEL_COREI7_WESTMERE; break; case 0x2a: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 0x2d: *Type = X86::INTEL_COREI7; //"sandybridge" *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; break; case 0x3a: case 0x3e: // Ivy Bridge EP *Type = X86::INTEL_COREI7; // "ivybridge" *Subtype = X86::INTEL_COREI7_IVYBRIDGE; break; // Haswell: case 0x3c: case 0x3f: case 0x45: case 0x46: *Type = X86::INTEL_COREI7; // "haswell" *Subtype = X86::INTEL_COREI7_HASWELL; break; // Broadwell: case 0x3d: case 0x47: case 0x4f: case 0x56: *Type = X86::INTEL_COREI7; // "broadwell" *Subtype = X86::INTEL_COREI7_BROADWELL; break; // Skylake: case 0x4e: // Skylake mobile case 0x5e: // Skylake desktop case 0x8e: // Kaby Lake mobile case 0x9e: // Kaby Lake desktop *Type = X86::INTEL_COREI7; // "skylake" *Subtype = X86::INTEL_COREI7_SKYLAKE; break; // Skylake Xeon: case 0x55: *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" break; // Cannonlake: case 0x66: *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake" break; case 0x1c: // Most 45 nm Intel Atom processors case 0x26: // 45 nm Atom Lincroft case 0x27: // 32 nm Atom Medfield case 0x35: // 32 nm Atom Midview case 0x36: // 32 nm Atom Midview *Type = X86::INTEL_BONNELL; break; // "bonnell" // Atom Silvermont codes from the Intel software optimization guide. case 0x37: case 0x4a: case 0x4d: case 0x5a: case 0x5d: case 0x4c: // really airmont *Type = X86::INTEL_SILVERMONT; break; // "silvermont" // Goldmont: case 0x5c: // Apollo Lake case 0x5f: // Denverton *Type = X86::INTEL_GOLDMONT; break; // "goldmont" case 0x7a: *Type = X86::INTEL_GOLDMONT_PLUS; break; case 0x57: *Type = X86::INTEL_KNL; // knl break; case 0x85: *Type = X86::INTEL_KNM; // knm break; default: // Unknown family 6 CPU, try to guess. if (Features & (1 << X86::FEATURE_AVX512VBMI2)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; break; } if (Features & (1 << X86::FEATURE_AVX512VBMI)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CANNONLAKE; break; } if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CASCADELAKE; break; } if (Features & (1 << X86::FEATURE_AVX512VL)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; break; } if (Features & (1 << X86::FEATURE_AVX512ER)) { *Type = X86::INTEL_KNL; // knl break; } if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) { if (Features3 & (1 << (X86::FEATURE_SHA - 64))) { *Type = X86::INTEL_GOLDMONT; } else { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SKYLAKE; } break; } if (Features3 & (1 << (X86::FEATURE_ADX - 64))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_BROADWELL; break; } if (Features & (1 << X86::FEATURE_AVX2)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_HASWELL; break; } if (Features & (1 << X86::FEATURE_AVX)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; break; } if (Features & (1 << X86::FEATURE_SSE4_2)) { if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { *Type = X86::INTEL_SILVERMONT; } else { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_NEHALEM; } break; } if (Features & (1 << X86::FEATURE_SSE4_1)) { *Type = X86::INTEL_CORE2; // "penryn" *Subtype = X86::INTEL_CORE2_45; break; } if (Features & (1 << X86::FEATURE_SSSE3)) { if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { *Type = X86::INTEL_BONNELL; // "bonnell" } else { *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; } break; } if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; break; } if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::INTEL_CORE_DUO; break; } if (Features & (1 << X86::FEATURE_SSE2)) { *Type = X86::INTEL_PENTIUM_M; break; } if (Features & (1 << X86::FEATURE_SSE)) { *Type = X86::INTEL_PENTIUM_III; break; } if (Features & (1 << X86::FEATURE_MMX)) { *Type = X86::INTEL_PENTIUM_II; break; } *Type = X86::INTEL_PENTIUM_PRO; break; } break; case 15: { if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { *Type = X86::INTEL_NOCONA; break; } if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::INTEL_PRESCOTT; break; } *Type = X86::INTEL_PENTIUM_IV; break; } default: break; /*"generic"*/ } } static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, unsigned Features, unsigned *Type, unsigned *Subtype) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: *Type = X86::AMD_i486; break; case 5: *Type = X86::AMDPENTIUM; switch (Model) { case 6: case 7: *Subtype = X86::AMDPENTIUM_K6; break; // "k6" case 8: *Subtype = X86::AMDPENTIUM_K62; break; // "k6-2" case 9: case 13: *Subtype = X86::AMDPENTIUM_K63; break; // "k6-3" case 10: *Subtype = X86::AMDPENTIUM_GEODE; break; // "geode" } break; case 6: if (Features & (1 << X86::FEATURE_SSE)) { *Type = X86::AMD_ATHLON_XP; break; // "athlon-xp" } *Type = X86::AMD_ATHLON; break; // "athlon" case 15: if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::AMD_K8SSE3; break; // "k8-sse3" } *Type = X86::AMD_K8; break; // "k8" case 16: *Type = X86::AMDFAM10H; // "amdfam10" switch (Model) { case 2: *Subtype = X86::AMDFAM10H_BARCELONA; break; case 4: *Subtype = X86::AMDFAM10H_SHANGHAI; break; case 8: *Subtype = X86::AMDFAM10H_ISTANBUL; break; } break; case 20: *Type = X86::AMD_BTVER1; break; // "btver1"; case 21: *Type = X86::AMDFAM15H; if (Model >= 0x60 && Model <= 0x7f) { *Subtype = X86::AMDFAM15H_BDVER4; break; // "bdver4"; 60h-7Fh: Excavator } if (Model >= 0x30 && Model <= 0x3f) { *Subtype = X86::AMDFAM15H_BDVER3; break; // "bdver3"; 30h-3Fh: Steamroller } if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { *Subtype = X86::AMDFAM15H_BDVER2; break; // "bdver2"; 02h, 10h-1Fh: Piledriver } if (Model <= 0x0f) { *Subtype = X86::AMDFAM15H_BDVER1; break; // "bdver1"; 00h-0Fh: Bulldozer } break; case 22: *Type = X86::AMD_BTVER2; break; // "btver2" case 23: *Type = X86::AMDFAM17H; *Subtype = X86::AMDFAM17H_ZNVER1; break; default: break; // "generic" } } static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, unsigned *FeaturesOut, unsigned *Features2Out, unsigned *Features3Out) { unsigned Features = 0; unsigned Features2 = 0; unsigned Features3 = 0; unsigned EAX, EBX; auto setFeature = [&](unsigned F) { if (F < 32) Features |= 1U << (F & 0x1f); else if (F < 64) Features2 |= 1U << ((F - 32) & 0x1f); else if (F < 96) Features3 |= 1U << ((F - 64) & 0x1f); else llvm_unreachable("Unexpected FeatureBit"); }; if ((EDX >> 15) & 1) setFeature(X86::FEATURE_CMOV); if ((EDX >> 23) & 1) setFeature(X86::FEATURE_MMX); if ((EDX >> 25) & 1) setFeature(X86::FEATURE_SSE); if ((EDX >> 26) & 1) setFeature(X86::FEATURE_SSE2); if ((ECX >> 0) & 1) setFeature(X86::FEATURE_SSE3); if ((ECX >> 1) & 1) setFeature(X86::FEATURE_PCLMUL); if ((ECX >> 9) & 1) setFeature(X86::FEATURE_SSSE3); if ((ECX >> 12) & 1) setFeature(X86::FEATURE_FMA); if ((ECX >> 19) & 1) setFeature(X86::FEATURE_SSE4_1); if ((ECX >> 20) & 1) setFeature(X86::FEATURE_SSE4_2); if ((ECX >> 23) & 1) setFeature(X86::FEATURE_POPCNT); if ((ECX >> 25) & 1) setFeature(X86::FEATURE_AES); if ((ECX >> 22) & 1) setFeature(X86::FEATURE_MOVBE); // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. const unsigned AVXBits = (1 << 27) | (1 << 28); bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); if (HasAVX) setFeature(X86::FEATURE_AVX); bool HasLeaf7 = MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); if (HasLeaf7 && ((EBX >> 3) & 1)) setFeature(X86::FEATURE_BMI); if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) setFeature(X86::FEATURE_AVX2); if (HasLeaf7 && ((EBX >> 9) & 1)) setFeature(X86::FEATURE_BMI2); if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512F); if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512DQ); if (HasLeaf7 && ((EBX >> 19) & 1)) setFeature(X86::FEATURE_ADX); if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512IFMA); if (HasLeaf7 && ((EBX >> 23) & 1)) setFeature(X86::FEATURE_CLFLUSHOPT); if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512PF); if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512ER); if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512CD); if (HasLeaf7 && ((EBX >> 29) & 1)) setFeature(X86::FEATURE_SHA); if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512BW); if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VL); if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VBMI); if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VBMI2); if (HasLeaf7 && ((ECX >> 8) & 1)) setFeature(X86::FEATURE_GFNI); if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX) setFeature(X86::FEATURE_VPCLMULQDQ); if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VNNI); if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512BITALG); if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VPOPCNTDQ); if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX5124VNNIW); if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX5124FMAPS); unsigned MaxExtLevel; getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); if (HasExtLeaf1 && ((ECX >> 6) & 1)) setFeature(X86::FEATURE_SSE4_A); if (HasExtLeaf1 && ((ECX >> 11) & 1)) setFeature(X86::FEATURE_XOP); if (HasExtLeaf1 && ((ECX >> 16) & 1)) setFeature(X86::FEATURE_FMA4); if (HasExtLeaf1 && ((EDX >> 29) & 1)) setFeature(X86::FEATURE_EM64T); *FeaturesOut = Features; *Features2Out = Features2; *Features3Out = Features3; } StringRef sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLeaf, Vendor; #if defined(__GNUC__) || defined(__clang__) //FIXME: include cpuid.h from clang or copy __get_cpuid_max here // and simplify it to not invoke __cpuid (like cpu_model.c in // compiler-rt/lib/builtins/cpu_model.c? // Opting for the second option. if(!isCpuIdSupported()) return "generic"; #endif if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) return "generic"; getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); unsigned Brand_id = EBX & 0xff; unsigned Family = 0, Model = 0; unsigned Features = 0, Features2 = 0, Features3 = 0; detectX86FamilyModel(EAX, &Family, &Model); getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3); unsigned Type = 0; unsigned Subtype = 0; if (Vendor == SIG_INTEL) { getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, Features2, Features3, &Type, &Subtype); } else if (Vendor == SIG_AMD) { getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); } // Check subtypes first since those are more specific. #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \ if (Subtype == X86::ENUM) \ return ARCHNAME; #include "llvm/Support/X86TargetParser.def" // Now check types. #define X86_CPU_TYPE(ARCHNAME, ENUM) \ if (Type == X86::ENUM) \ return ARCHNAME; #include "llvm/Support/X86TargetParser.def" return "generic"; } #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; mach_port_t hostPort = mach_host_self(); host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); mach_port_deallocate(mach_task_self(), hostPort); if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; switch (hostInfo.cpu_subtype) { case CPU_SUBTYPE_POWERPC_601: return "601"; case CPU_SUBTYPE_POWERPC_602: return "602"; case CPU_SUBTYPE_POWERPC_603: return "603"; case CPU_SUBTYPE_POWERPC_603e: return "603e"; case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; case CPU_SUBTYPE_POWERPC_604: return "604"; case CPU_SUBTYPE_POWERPC_604e: return "604e"; case CPU_SUBTYPE_POWERPC_620: return "620"; case CPU_SUBTYPE_POWERPC_750: return "750"; case CPU_SUBTYPE_POWERPC_7400: return "7400"; case CPU_SUBTYPE_POWERPC_7450: return "7450"; case CPU_SUBTYPE_POWERPC_970: return "970"; default:; } return "generic"; } #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { std::unique_ptr P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForPowerPC(Content); } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) StringRef sys::getHostCPUName() { std::unique_ptr P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForARM(Content); } #elif defined(__linux__) && defined(__s390x__) StringRef sys::getHostCPUName() { std::unique_ptr P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForS390x(Content); } #else StringRef sys::getHostCPUName() { return "generic"; } #endif #if defined(__linux__) && defined(__x86_64__) // On Linux, the number of physical cores can be computed from /proc/cpuinfo, // using the number of unique physical/core id pairs. The following // implementation reads the /proc/cpuinfo format on an x86_64 system. static int computeHostNumPhysicalCores() { // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be // mmapped because it appears to have 0 size. llvm::ErrorOr> Text = llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); if (std::error_code EC = Text.getError()) { llvm::errs() << "Can't read " << "/proc/cpuinfo: " << EC.message() << "\n"; return -1; } SmallVector strs; (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); int CurPhysicalId = -1; int CurCoreId = -1; SmallSet, 32> UniqueItems; for (auto &Line : strs) { Line = Line.trim(); if (!Line.startswith("physical id") && !Line.startswith("core id")) continue; std::pair Data = Line.split(':'); auto Name = Data.first.trim(); auto Val = Data.second.trim(); if (Name == "physical id") { assert(CurPhysicalId == -1 && "Expected a core id before seeing another physical id"); Val.getAsInteger(10, CurPhysicalId); } if (Name == "core id") { assert(CurCoreId == -1 && "Expected a physical id before seeing another core id"); Val.getAsInteger(10, CurCoreId); } if (CurPhysicalId != -1 && CurCoreId != -1) { UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); CurPhysicalId = -1; CurCoreId = -1; } } return UniqueItems.size(); } #elif defined(__APPLE__) && defined(__x86_64__) #include #include // Gets the number of *physical cores* on the machine. static int computeHostNumPhysicalCores() { uint32_t count; size_t len = sizeof(count); sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); if (count < 1) { int nm[2]; nm[0] = CTL_HW; nm[1] = HW_AVAILCPU; sysctl(nm, 2, &count, &len, NULL, 0); if (count < 1) return -1; } return count; } #else // On other systems, return -1 to indicate unknown. static int computeHostNumPhysicalCores() { return -1; } #endif int sys::getHostNumPhysicalCores() { static int NumCores = computeHostNumPhysicalCores(); return NumCores; } #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) bool sys::getHostCPUFeatures(StringMap &Features) { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLevel; union { unsigned u[3]; char c[12]; } text; if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || MaxLevel < 1) return false; getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); Features["cmov"] = (EDX >> 15) & 1; Features["mmx"] = (EDX >> 23) & 1; Features["sse"] = (EDX >> 25) & 1; Features["sse2"] = (EDX >> 26) & 1; Features["sse3"] = (ECX >> 0) & 1; Features["pclmul"] = (ECX >> 1) & 1; Features["ssse3"] = (ECX >> 9) & 1; Features["cx16"] = (ECX >> 13) & 1; Features["sse4.1"] = (ECX >> 19) & 1; Features["sse4.2"] = (ECX >> 20) & 1; Features["movbe"] = (ECX >> 22) & 1; Features["popcnt"] = (ECX >> 23) & 1; Features["aes"] = (ECX >> 25) & 1; Features["rdrnd"] = (ECX >> 30) & 1; // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); // AVX512 requires additional context to be saved by the OS. bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); Features["avx"] = HasAVXSave; Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave; // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave; unsigned MaxExtLevel; getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1); Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1); Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1); // Miscellaneous memory related features, detected by // using the 0x80000008 leaf of the CPUID instruction bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); bool HasLeaf7 = MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); // AVX2 is only supported if we have the OS save support from AVX. Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave; Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); // AVX512 is only supported if the OS supports the context save for it. Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1); Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1); Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save; Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1); Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1); Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave; Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1); Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1); Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1); Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1); // There are two CPUID leafs which information associated with the pconfig // instruction: // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th // bit of EDX), while the EAX=0x1b leaf returns information on the // availability of specific pconfig leafs. // The target feature here only refers to the the first of these two. // Users might need to check for the availability of specific pconfig // leaves using cpuid, since that information is ignored while // detecting features using the "-march=native" flag. // For more info, see X86 ISA docs. Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); bool HasLeafD = MaxLevel >= 0xd && !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; bool HasLeaf14 = MaxLevel >= 0x14 && !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); return true; } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) bool sys::getHostCPUFeatures(StringMap &Features) { std::unique_ptr P = getProcCpuinfoContent(); if (!P) return false; SmallVector Lines; P->getBuffer().split(Lines, "\n"); SmallVector CPUFeatures; // Look for the CPU features. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("Features")) { Lines[I].split(CPUFeatures, ' '); break; } #if defined(__aarch64__) // Keep track of which crypto features we have seen enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; uint32_t crypto = 0; #endif for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { StringRef LLVMFeatureStr = StringSwitch(CPUFeatures[I]) #if defined(__aarch64__) .Case("asimd", "neon") .Case("fp", "fp-armv8") .Case("crc32", "crc") #else .Case("half", "fp16") .Case("neon", "neon") .Case("vfpv3", "vfp3") .Case("vfpv3d16", "d16") .Case("vfpv4", "vfp4") .Case("idiva", "hwdiv-arm") .Case("idivt", "hwdiv") #endif .Default(""); #if defined(__aarch64__) // We need to check crypto separately since we need all of the crypto // extensions to enable the subtarget feature if (CPUFeatures[I] == "aes") crypto |= CAP_AES; else if (CPUFeatures[I] == "pmull") crypto |= CAP_PMULL; else if (CPUFeatures[I] == "sha1") crypto |= CAP_SHA1; else if (CPUFeatures[I] == "sha2") crypto |= CAP_SHA2; #endif if (LLVMFeatureStr != "") Features[LLVMFeatureStr] = true; } #if defined(__aarch64__) // If we have all crypto bits we can add the feature if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) Features["crypto"] = true; #endif return true; } #else bool sys::getHostCPUFeatures(StringMap &Features) { return false; } #endif std::string sys::getProcessTriple() { std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); Triple PT(Triple::normalize(TargetTripleString)); if (sizeof(void *) == 8 && PT.isArch32Bit()) PT = PT.get64BitArchVariant(); if (sizeof(void *) == 4 && PT.isArch64Bit()) PT = PT.get32BitArchVariant(); return PT.str(); }