//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "InstPrinter/AMDGPUInstPrinter.h" #include "MCTargetDesc/AMDGPUTargetStreamer.h" #include "R600Defines.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFile.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/AMDGPUMetadata.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; using namespace llvm::AMDGPU; // TODO: This should get the default rounding mode from the kernel. We just set // the default here, but this could change if the OpenCL rounding mode pragmas // are used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(const MachineFunction &F) { const SISubtarget& ST = F.getSubtarget(); // TODO: Is there any real use for the flush in only / flush out only modes? uint32_t FP32Denormals = ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; uint32_t FP64Denormals = ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(FP32Denormals) | FP_DENORM_MODE_DP(FP64Denormals); } static AsmPrinter * createAMDGPUAsmPrinterPass(TargetMachine &tm, std::unique_ptr &&Streamer) { return new AMDGPUAsmPrinter(tm, std::move(Streamer)); } extern "C" void LLVMInitializeAMDGPUAsmPrinter() { TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), createAMDGPUAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)) { AMDGPUASI = static_cast(&TM)->getAMDGPUAS(); } StringRef AMDGPUAsmPrinter::getPassName() const { return "AMDGPU Assembly Printer"; } const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { return TM.getMCSubtargetInfo(); } AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { if (!OutStreamer) return nullptr; return static_cast(OutStreamer->getTargetStreamer()); } void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { if (TM.getTargetTriple().getArch() != Triple::amdgcn) return; if (TM.getTargetTriple().getOS() != Triple::AMDHSA && TM.getTargetTriple().getOS() != Triple::AMDPAL) return; if (TM.getTargetTriple().getOS() == Triple::AMDHSA) HSAMetadataStream.begin(M); if (TM.getTargetTriple().getOS() == Triple::AMDPAL) readPALMetadata(M); // Deprecated notes are not emitted for code object v3. if (IsaInfo::hasCodeObjectV3(getSTI()->getFeatureBits())) return; // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. if (TM.getTargetTriple().getOS() == Triple::AMDHSA) getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits()); getTargetStreamer()->EmitDirectiveHSACodeObjectISA( ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU"); } void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { if (TM.getTargetTriple().getArch() != Triple::amdgcn) return; // Following code requires TargetStreamer to be present. if (!getTargetStreamer()) return; // Emit ISA Version (NT_AMD_AMDGPU_ISA). std::string ISAVersionString; raw_string_ostream ISAVersionStream(ISAVersionString); IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { HSAMetadataStream.end(); getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); } // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { // Copy the PAL metadata from the map where we collected it into a vector, // then write it as a .note. PALMD::Metadata PALMetadataVector; for (auto i : PALMetadataMap) { PALMetadataVector.push_back(i.first); PALMetadataVector.push_back(i.second); } getTargetStreamer()->EmitPALMetadata(PALMetadataVector); } } bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( const MachineBasicBlock *MBB) const { if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) return false; if (MBB->empty()) return true; // If this is a block implementing a long branch, an expression relative to // the start of the block is needed. to the start of the block. // XXX - Is there a smarter way to check this? return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); } void AMDGPUAsmPrinter::EmitFunctionBodyStart() { const AMDGPUMachineFunction *MFI = MF->getInfo(); if (!MFI->isEntryFunction()) return; const AMDGPUSubtarget &STM = MF->getSubtarget(); amd_kernel_code_t KernelCode; if (STM.isAmdCodeObjectV2(*MF)) { getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); } if (TM.getTargetTriple().getOS() != Triple::AMDHSA) return; HSAMetadataStream.emitKernel(MF->getFunction(), getHSACodeProps(*MF, CurrentProgramInfo), getHSADebugProps(*MF, CurrentProgramInfo)); } void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { const SIMachineFunctionInfo *MFI = MF->getInfo(); const AMDGPUSubtarget &STM = MF->getSubtarget(); if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(*MF)) { SmallString<128> SymbolName; getNameWithPrefix(SymbolName, &MF->getFunction()), getTargetStreamer()->EmitAMDGPUSymbolType( SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); } const AMDGPUSubtarget &STI = MF->getSubtarget(); if (STI.dumpCode()) { // Disassemble function name label to text. DisasmLines.push_back(MF->getName().str() + ":"); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.push_back(""); } AsmPrinter::EmitFunctionEntryLabel(); } void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { const AMDGPUSubtarget &STI = MBB.getParent()->getSubtarget(); if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { // Write a line for the basic block label if it is not only fallthrough. DisasmLines.push_back( (Twine("BB") + Twine(getFunctionNumber()) + "_" + Twine(MBB.getNumber()) + ":").str()); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.push_back(""); } AsmPrinter::EmitBasicBlockStart(MBB); } void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { // Group segment variables aren't emitted in HSA. if (AMDGPU::isGroupSegment(GV)) return; AsmPrinter::EmitGlobalVariable(GV); } bool AMDGPUAsmPrinter::doFinalization(Module &M) { CallGraphResourceInfo.clear(); return AsmPrinter::doFinalization(M); } // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the // frontend into our PALMetadataMap, ready for per-function modification. It // is a NamedMD containing an MDTuple containing a number of MDNodes each of // which is an integer value, and each two integer values forms a key=value // pair that we store as PALMetadataMap[key]=value in the map. void AMDGPUAsmPrinter::readPALMetadata(Module &M) { auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); if (!NamedMD || !NamedMD->getNumOperands()) return; auto Tuple = dyn_cast(NamedMD->getOperand(0)); if (!Tuple) return; for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { auto Key = mdconst::dyn_extract(Tuple->getOperand(I)); auto Val = mdconst::dyn_extract(Tuple->getOperand(I + 1)); if (!Key || !Val) continue; PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); } } // Print comments that apply to both callable functions and entry points. void AMDGPUAsmPrinter::emitCommonFunctionComments( uint32_t NumVGPR, uint32_t NumSGPR, uint64_t ScratchSize, uint64_t CodeSize) { OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { CurrentProgramInfo = SIProgramInfo(); const AMDGPUMachineFunction *MFI = MF.getInfo(); // The starting address of all shader programs must be 256 bytes aligned. // Regular functions just need the basic required instruction alignment. MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); SetupMachineFunction(MF); const AMDGPUSubtarget &STM = MF.getSubtarget(); MCContext &Context = getObjFileLowering().getContext(); if (!STM.isAmdHsaOS()) { MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(ConfigSection); } if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { if (MFI->isEntryFunction()) { getSIProgramInfo(CurrentProgramInfo, MF); } else { auto I = CallGraphResourceInfo.insert( std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); SIFunctionResourceInfo &Info = I.first->second; assert(I.second && "should only be called once per function"); Info = analyzeResourceUsage(MF); } if (STM.isAmdPalOS()) EmitPALMetadata(MF, CurrentProgramInfo); if (!STM.isAmdHsaOS()) { EmitProgramInfoSI(MF, CurrentProgramInfo); } } else { EmitProgramInfoR600(MF); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; EmitFunctionBody(); if (isVerbose()) { MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(CommentSection); if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { if (!MFI->isEntryFunction()) { OutStreamer->emitRawComment(" Function info:", false); SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; emitCommonFunctionComments( Info.NumVGPR, Info.getTotalNumSGPRs(MF.getSubtarget()), Info.PrivateSegmentSize, getFunctionCodeSize(MF)); return false; } OutStreamer->emitRawComment(" Kernel info:", false); emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, CurrentProgramInfo.NumSGPR, CurrentProgramInfo.ScratchSize, getFunctionCodeSize(MF)); OutStreamer->emitRawComment( " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); OutStreamer->emitRawComment( " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); OutStreamer->emitRawComment( " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + " bytes/workgroup (compile time only)", false); OutStreamer->emitRawComment( " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); OutStreamer->emitRawComment( " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); OutStreamer->emitRawComment( " NumSGPRsForWavesPerEU: " + Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); OutStreamer->emitRawComment( " NumVGPRsForWavesPerEU: " + Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); OutStreamer->emitRawComment( " ReservedVGPRFirst: " + Twine(CurrentProgramInfo.ReservedVGPRFirst), false); OutStreamer->emitRawComment( " ReservedVGPRCount: " + Twine(CurrentProgramInfo.ReservedVGPRCount), false); if (MF.getSubtarget().debuggerEmitPrologue()) { OutStreamer->emitRawComment( " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); OutStreamer->emitRawComment( " DebuggerPrivateSegmentBufferSGPR: s" + Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); } OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:USER_SGPR: " + Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_X_EN: " + Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), false); } else { R600MachineFunctionInfo *MFI = MF.getInfo(); OutStreamer->emitRawComment( Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize))); } } if (STM.dumpCode()) { OutStreamer->SwitchSection( Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment = "\n"; if (!HexLines[i].empty()) { Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; } OutStreamer->EmitBytes(StringRef(DisasmLines[i])); OutStreamer->EmitBytes(StringRef(Comment)); } } return false; } void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) { unsigned MaxGPR = 0; bool killPixel = false; const R600Subtarget &STM = MF.getSubtarget(); const R600RegisterInfo *RI = STM.getRegisterInfo(); const R600MachineFunctionInfo *MFI = MF.getInfo(); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { if (MI.getOpcode() == AMDGPU::KILLGT) killPixel = true; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); if (!MO.isReg()) continue; unsigned HWReg = RI->getHWRegIndex(MO.getReg()); // Register with value > 127 aren't GPR if (HWReg > 127) continue; MaxGPR = std::max(MaxGPR, HWReg); } } } unsigned RsrcReg; if (STM.getGeneration() >= R600Subtarget::EVERGREEN) { // Evergreen / Northern Islands switch (MF.getFunction().getCallingConv()) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break; case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break; case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break; case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break; } } else { // R600 / R700 switch (MF.getFunction().getCallingConv()) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break; case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break; } } OutStreamer->EmitIntValue(RsrcReg, 4); OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) | S_STACK_SIZE(MFI->CFStackSize), 4); OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4); OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4); if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4); OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4); } } uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { const SISubtarget &STM = MF.getSubtarget(); const SIInstrInfo *TII = STM.getInstrInfo(); uint64_t CodeSize = 0; for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. // TODO: Should we count size of debug info? if (MI.isDebugValue()) continue; CodeSize += TII->getInstSizeInBytes(MI); } } return CodeSize; } static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, const SIInstrInfo &TII, unsigned Reg) { for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) return true; } return false; } static unsigned getNumExtraSGPRs(const SISubtarget &ST, bool VCCUsed, bool FlatScrUsed) { unsigned ExtraSGPRs = 0; if (VCCUsed) ExtraSGPRs = 2; if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) { if (FlatScrUsed) ExtraSGPRs = 4; } else { if (ST.isXNACKEnabled()) ExtraSGPRs = 4; if (FlatScrUsed) ExtraSGPRs = 6; } return ExtraSGPRs; } int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( const SISubtarget &ST) const { return NumExplicitSGPR + getNumExtraSGPRs(ST, UsesVCC, UsesFlatScratch); } AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( const MachineFunction &MF) const { SIFunctionResourceInfo Info; const SIMachineFunctionInfo *MFI = MF.getInfo(); const SISubtarget &ST = MF.getSubtarget(); const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat // instructions aren't used to access the scratch buffer. Inline assembly may // need it though. // // If we only have implicit uses of flat_scr on flat instructions, it is not // really needed. if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { Info.UsesFlatScratch = false; } Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); Info.PrivateSegmentSize = FrameInfo.getStackSize(); Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || MRI.isPhysRegUsed(AMDGPU::VCC_HI); // If there are no calls, MachineRegisterInfo can tell us the used register // count easily. // A tail call isn't considered a call for MachineFrameInfo's purposes. if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { if (MRI.isPhysRegUsed(Reg)) { HighestVGPRReg = Reg; break; } } MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { if (MRI.isPhysRegUsed(Reg)) { HighestSGPRReg = Reg; break; } } // We found the maximum register index. They start at 0, so add one to get the // number of registers. Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : TRI.getHWRegIndex(HighestVGPRReg) + 1; Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : TRI.getHWRegIndex(HighestSGPRReg) + 1; return Info; } int32_t MaxVGPR = -1; int32_t MaxSGPR = -1; uint64_t CalleeFrameSize = 0; for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: Check regmasks? Do they occur anywhere except calls? for (const MachineOperand &MO : MI.operands()) { unsigned Width = 0; bool IsSGPR = false; if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); switch (Reg) { case AMDGPU::EXEC: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::SCC: case AMDGPU::M0: case AMDGPU::SRC_SHARED_BASE: case AMDGPU::SRC_SHARED_LIMIT: case AMDGPU::SRC_PRIVATE_BASE: case AMDGPU::SRC_PRIVATE_LIMIT: continue; case AMDGPU::NoRegister: assert(MI.isDebugValue()); continue; case AMDGPU::VCC: case AMDGPU::VCC_LO: case AMDGPU::VCC_HI: Info.UsesVCC = true; continue; case AMDGPU::FLAT_SCR: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: continue; case AMDGPU::TBA: case AMDGPU::TBA_LO: case AMDGPU::TBA_HI: case AMDGPU::TMA: case AMDGPU::TMA_LO: case AMDGPU::TMA_HI: llvm_unreachable("trap handler registers should not be used"); default: break; } if (AMDGPU::SReg_32RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 1; } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { IsSGPR = false; Width = 1; } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 2; } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { IsSGPR = false; Width = 2; } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { IsSGPR = false; Width = 3; } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 4; } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { IsSGPR = false; Width = 4; } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 8; } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { IsSGPR = false; Width = 8; } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 16; } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { IsSGPR = false; Width = 16; } else { llvm_unreachable("Unknown register class"); } unsigned HWReg = TRI.getHWRegIndex(Reg); int MaxUsed = HWReg + Width - 1; if (IsSGPR) { MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; } else { MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; } } if (MI.isCall()) { // Pseudo used just to encode the underlying global. Is there a better // way to track this? const MachineOperand *CalleeOp = TII->getNamedOperand(MI, AMDGPU::OpName::callee); const Function *Callee = cast(CalleeOp->getGlobal()); if (Callee->isDeclaration()) { // If this is a call to an external function, we can't do much. Make // conservative guesses. // 48 SGPRs - vcc, - flat_scr, -xnack int MaxSGPRGuess = 47 - getNumExtraSGPRs(ST, true, ST.hasFlatAddressSpace()); MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); MaxVGPR = std::max(MaxVGPR, 23); CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); Info.UsesVCC = true; Info.UsesFlatScratch = ST.hasFlatAddressSpace(); Info.HasDynamicallySizedStack = true; } else { // We force CodeGen to run in SCC order, so the callee's register // usage etc. should be the cumulative usage of all callees. auto I = CallGraphResourceInfo.find(Callee); assert(I != CallGraphResourceInfo.end() && "callee should have been handled before caller"); MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); CalleeFrameSize = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); Info.UsesVCC |= I->second.UsesVCC; Info.UsesFlatScratch |= I->second.UsesFlatScratch; Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; Info.HasRecursion |= I->second.HasRecursion; } if (!Callee->doesNotRecurse()) Info.HasRecursion = true; } } } Info.NumExplicitSGPR = MaxSGPR + 1; Info.NumVGPR = MaxVGPR + 1; Info.PrivateSegmentSize += CalleeFrameSize; return Info; } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) { SIFunctionResourceInfo Info = analyzeResourceUsage(MF); ProgInfo.NumVGPR = Info.NumVGPR; ProgInfo.NumSGPR = Info.NumExplicitSGPR; ProgInfo.ScratchSize = Info.PrivateSegmentSize; ProgInfo.VCCUsed = Info.UsesVCC; ProgInfo.FlatUsed = Info.UsesFlatScratch; ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; if (!isUInt<32>(ProgInfo.ScratchSize)) { DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), ProgInfo.ScratchSize, DS_Error); MF.getFunction().getContext().diagnose(DiagStackSize); } const SISubtarget &STM = MF.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); const SIInstrInfo *TII = STM.getInstrInfo(); const SIRegisterInfo *RI = &TII->getRegisterInfo(); unsigned ExtraSGPRs = getNumExtraSGPRs(STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed); unsigned ExtraVGPRs = STM.getReservedNumVGPRs(MF); // Check the addressable register limit before we add ExtraSGPRs. if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && !STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "addressable scalar registers", ProgInfo.NumSGPR, DS_Error, DK_ResourceLimit, MaxAddressableNumSGPRs); Ctx.diagnose(Diag); ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; } } // Account for extra SGPRs and VGPRs reserved for debugger use. ProgInfo.NumSGPR += ExtraSGPRs; ProgInfo.NumVGPR += ExtraVGPRs; // Adjust number of registers used to meet default/requested minimum/maximum // number of waves per execution unit request. ProgInfo.NumSGPRsForWavesPerEU = std::max( std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); ProgInfo.NumVGPRsForWavesPerEU = std::max( std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm to use // the registers which are usually reserved for vcc etc. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "scalar registers", ProgInfo.NumSGPR, DS_Error, DK_ResourceLimit, MaxAddressableNumSGPRs); Ctx.diagnose(Diag); ProgInfo.NumSGPR = MaxAddressableNumSGPRs; ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; } } if (STM.hasSGPRInitBug()) { ProgInfo.NumSGPR = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; ProgInfo.NumSGPRsForWavesPerEU = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; } if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", MFI->getNumUserSGPRs(), DS_Error); Ctx.diagnose(Diag); } if (MFI->getLDSSize() > static_cast(STM.getLocalMemorySize())) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", MFI->getLDSSize(), DS_Error); Ctx.diagnose(Diag); } // SGPRBlocks is actual number of SGPR blocks minus 1. ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU, STM.getSGPREncodingGranule()); ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / STM.getSGPREncodingGranule() - 1; // VGPRBlocks is actual number of VGPR blocks minus 1. ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU, STM.getVGPREncodingGranule()); ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / STM.getVGPREncodingGranule() - 1; // Record first reserved VGPR and number of reserved VGPRs. ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? ProgInfo.NumVGPR : 0; ProgInfo.ReservedVGPRCount = STM.getReservedNumVGPRs(MF); // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" // attribute was requested. if (STM.debuggerEmitPrologue()) { ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); ProgInfo.DebuggerPrivateSegmentBufferSGPR = RI->getHWRegIndex(MFI->getScratchRSrcReg()); } // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(MF); ProgInfo.IEEEMode = STM.enableIEEEBit(MF); // Make clamp modifier on NaN input returns 0. ProgInfo.DX10Clamp = STM.enableDX10Clamp(); unsigned LDSAlignShift; if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } unsigned LDSSpillSize = MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; ProgInfo.LDSBlocks = alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; // Scratch is allocated in 256 dword blocks. unsigned ScratchAlignShift = 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. ProgInfo.ScratchSize is the amount of // scratch memory used per thread. ProgInfo.ScratchBlocks = alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1ULL << ScratchAlignShift) >> ScratchAlignShift; ProgInfo.ComputePGMRSrc1 = S_00B848_VGPRS(ProgInfo.VGPRBlocks) | S_00B848_SGPRS(ProgInfo.SGPRBlocks) | S_00B848_PRIORITY(ProgInfo.Priority) | S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | S_00B848_PRIV(ProgInfo.Priv) | S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | S_00B848_IEEE_MODE(ProgInfo.IEEEMode); // 0 = X, 1 = XY, 2 = XYZ unsigned TIDIGCompCnt = 0; if (MFI->hasWorkItemIDZ()) TIDIGCompCnt = 2; else if (MFI->hasWorkItemIDY()) TIDIGCompCnt = 1; ProgInfo.ComputePGMRSrc2 = S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | S_00B84C_TRAP_HANDLER(STM.isTrapHandlerEnabled()) | S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | S_00B84C_EXCP_EN_MSB(0) | // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | S_00B84C_EXCP_EN(0); } static unsigned getRsrcReg(CallingConv::ID CallConv) { switch (CallConv) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; } } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SISubtarget &STM = MF.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = // 0" comment but I don't see a corresponding field in the register spec. } else { OutStreamer->EmitIntValue(RsrcReg, 4); OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); unsigned Rsrc2Val = 0; if (STM.isVGPRSpillingEnabled(MF.getFunction())) { OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); if (TM.getTargetTriple().getOS() == Triple::AMDPAL) Rsrc2Val = S_00B84C_SCRATCH_EN(CurrentProgramInfo.ScratchBlocks > 0); } if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); Rsrc2Val |= S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); } if (Rsrc2Val) { OutStreamer->EmitIntValue(RsrcReg + 4 /*rsrc2*/, 4); OutStreamer->EmitIntValue(Rsrc2Val, 4); } } OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); } // This is the equivalent of EmitProgramInfoSI above, but for when the OS type // is AMDPAL. It stores each compute/SPI register setting and other PAL // metadata items into the PALMetadataMap, combining with any provided by the // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is // then written as a single block in the .note section. void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SIMachineFunctionInfo *MFI = MF.getInfo(); // Given the calling convention, calculate the register number for rsrc1. In // principle the register number could change in future hardware, but we know // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so // we can use the same fixed value that .AMDGPU.config has for Mesa. Note // that we use a register number rather than a byte offset, so we need to // divide by 4. unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; unsigned Rsrc2Reg = Rsrc1Reg + 1; // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used // with a constant offset to access any non-register shader-specific PAL // metadata key. unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; switch (MF.getFunction().getCallingConv()) { case CallingConv::AMDGPU_PS: ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; break; case CallingConv::AMDGPU_VS: ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; break; case CallingConv::AMDGPU_GS: ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; break; case CallingConv::AMDGPU_ES: ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; break; case CallingConv::AMDGPU_HS: ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; break; case CallingConv::AMDGPU_LS: ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; break; } unsigned NumUsedVgprsKey = ScratchSizeKey + PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; unsigned NumUsedSgprsKey = ScratchSizeKey + PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; // ScratchSize is in bytes, 16 aligned. PALMetadataMap[ScratchSizeKey] |= alignTo(CurrentProgramInfo.ScratchSize, 16); } else { PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); if (CurrentProgramInfo.ScratchBlocks > 0) PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); // ScratchSize is in bytes, 16 aligned. PALMetadataMap[ScratchSizeKey] |= alignTo(CurrentProgramInfo.ScratchSize, 16); } if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { PALMetadataMap[Rsrc2Reg] |= S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); } } // This is supposed to be log2(Size) static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { switch (Size) { case 4: return AMD_ELEMENT_4_BYTES; case 8: return AMD_ELEMENT_8_BYTES; case 16: return AMD_ELEMENT_16_BYTES; default: llvm_unreachable("invalid private_element_size"); } } void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, const SIProgramInfo &CurrentProgramInfo, const MachineFunction &MF) const { const SIMachineFunctionInfo *MFI = MF.getInfo(); const SISubtarget &STM = MF.getSubtarget(); AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits()); Out.compute_pgm_resource_registers = CurrentProgramInfo.ComputePGMRSrc1 | (CurrentProgramInfo.ComputePGMRSrc2 << 32); Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; if (CurrentProgramInfo.DynamicCallStack) Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; AMD_HSA_BITS_SET(Out.code_properties, AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, getElementByteSizeValue(STM.getMaxPrivateElementSize())); if (MFI->hasPrivateSegmentBuffer()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (MFI->hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (MFI->hasQueuePtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; if (MFI->hasKernargSegmentPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; if (MFI->hasDispatchID()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; if (MFI->hasFlatScratchInit()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; if (MFI->hasGridWorkgroupCountX()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X; } if (MFI->hasGridWorkgroupCountY()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y; } if (MFI->hasGridWorkgroupCountZ()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z; } if (MFI->hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (STM.debuggerSupported()) Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; if (STM.isXNACKEnabled()) Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; // FIXME: Should use getKernArgSize Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(MF, MFI->getABIArgOffset()); Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; Out.reserved_vgpr_first = CurrentProgramInfo.ReservedVGPRFirst; Out.reserved_vgpr_count = CurrentProgramInfo.ReservedVGPRCount; // These alignment values are specified in powers of two, so alignment = // 2^n. The minimum alignment is 2^4 = 16. Out.kernarg_segment_alignment = std::max((size_t)4, countTrailingZeros(MFI->getMaxKernArgAlign())); if (STM.debuggerEmitPrologue()) { Out.debug_wavefront_private_segment_offset_sgpr = CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; Out.debug_private_segment_buffer_sgpr = CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; } } AMDGPU::HSAMD::Kernel::CodeProps::Metadata AMDGPUAsmPrinter::getHSACodeProps( const MachineFunction &MF, const SIProgramInfo &ProgramInfo) const { const SISubtarget &STM = MF.getSubtarget(); const SIMachineFunctionInfo &MFI = *MF.getInfo(); HSAMD::Kernel::CodeProps::Metadata HSACodeProps; HSACodeProps.mKernargSegmentSize = STM.getKernArgSegmentSize(MF, MFI.getABIArgOffset()); HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize; HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize; HSACodeProps.mKernargSegmentAlign = std::max(uint32_t(4), MFI.getMaxKernArgAlign()); HSACodeProps.mWavefrontSize = STM.getWavefrontSize(); HSACodeProps.mNumSGPRs = CurrentProgramInfo.NumSGPR; HSACodeProps.mNumVGPRs = CurrentProgramInfo.NumVGPR; HSACodeProps.mMaxFlatWorkGroupSize = MFI.getMaxFlatWorkGroupSize(); HSACodeProps.mIsDynamicCallStack = ProgramInfo.DynamicCallStack; HSACodeProps.mIsXNACKEnabled = STM.isXNACKEnabled(); HSACodeProps.mNumSpilledSGPRs = MFI.getNumSpilledSGPRs(); HSACodeProps.mNumSpilledVGPRs = MFI.getNumSpilledVGPRs(); return HSACodeProps; } AMDGPU::HSAMD::Kernel::DebugProps::Metadata AMDGPUAsmPrinter::getHSADebugProps( const MachineFunction &MF, const SIProgramInfo &ProgramInfo) const { const SISubtarget &STM = MF.getSubtarget(); HSAMD::Kernel::DebugProps::Metadata HSADebugProps; if (!STM.debuggerSupported()) return HSADebugProps; HSADebugProps.mDebuggerABIVersion.push_back(1); HSADebugProps.mDebuggerABIVersion.push_back(0); HSADebugProps.mReservedNumVGPRs = ProgramInfo.ReservedVGPRCount; HSADebugProps.mReservedFirstVGPR = ProgramInfo.ReservedVGPRFirst; if (STM.debuggerEmitPrologue()) { HSADebugProps.mPrivateSegmentBufferSGPR = ProgramInfo.DebuggerPrivateSegmentBufferSGPR; HSADebugProps.mWavefrontPrivateSegmentOffsetSGPR = ProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; } return HSADebugProps; } bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // First try the generic code, which knows about modifiers like 'c' and 'n'. if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) return false; if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'r': break; default: return true; } } // TODO: Should be able to support other operand types like globals. const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isReg()) { AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, *MF->getSubtarget().getRegisterInfo()); return false; } return true; }