//===- Symbols.h ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines various types of Symbols. // //===----------------------------------------------------------------------===// #ifndef LLD_ELF_SYMBOLS_H #define LLD_ELF_SYMBOLS_H #include "InputFiles.h" #include "InputSection.h" #include "lld/Common/LLVM.h" #include "lld/Common/Strings.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ELF.h" namespace lld { // Returns a string representation for a symbol for diagnostics. std::string toString(const elf::Symbol &); // There are two different ways to convert an Archive::Symbol to a string: // One for Microsoft name mangling and one for Itanium name mangling. // Call the functions toCOFFString and toELFString, not just toString. std::string toELFString(const llvm::object::Archive::Symbol &); namespace elf { class CommonSymbol; class Defined; class InputFile; class LazyArchive; class LazyObject; class SharedSymbol; class Symbol; class Undefined; // This is a StringRef-like container that doesn't run strlen(). // // ELF string tables contain a lot of null-terminated strings. Most of them // are not necessary for the linker because they are names of local symbols, // and the linker doesn't use local symbol names for name resolution. So, we // use this class to represents strings read from string tables. struct StringRefZ { StringRefZ(const char *s) : data(s), size(-1) {} StringRefZ(StringRef s) : data(s.data()), size(s.size()) {} const char *data; const uint32_t size; }; // The base class for real symbol classes. class Symbol { public: enum Kind { PlaceholderKind, DefinedKind, CommonKind, SharedKind, UndefinedKind, LazyArchiveKind, LazyObjectKind, }; Kind kind() const { return static_cast(symbolKind); } // The file from which this symbol was created. InputFile *file; protected: const char *nameData; mutable uint32_t nameSize; public: uint32_t dynsymIndex = 0; uint32_t gotIndex = -1; uint32_t pltIndex = -1; uint32_t globalDynIndex = -1; // This field is a index to the symbol's version definition. uint32_t verdefIndex = -1; // Version definition index. uint16_t versionId; // Symbol binding. This is not overwritten by replace() to track // changes during resolution. In particular: // - An undefined weak is still weak when it resolves to a shared library. // - An undefined weak will not fetch archive members, but we have to // remember it is weak. uint8_t binding; // The following fields have the same meaning as the ELF symbol attributes. uint8_t type; // symbol type uint8_t stOther; // st_other field value uint8_t symbolKind; // Symbol visibility. This is the computed minimum visibility of all // observed non-DSO symbols. uint8_t visibility : 2; // True if the symbol was used for linking and thus need to be added to the // output file's symbol table. This is true for all symbols except for // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that // are unreferenced except by other bitcode objects. uint8_t isUsedInRegularObj : 1; // Used by a Defined symbol with protected or default visibility, to record // whether it is required to be exported into .dynsym. This is set when any of // the following conditions hold: // // - If there is an interposable symbol from a DSO. // - If -shared or --export-dynamic is specified, any symbol in an object // file/bitcode sets this property, unless suppressed by LTO // canBeOmittedFromSymbolTable(). uint8_t exportDynamic : 1; // True if the symbol is in the --dynamic-list file. A Defined symbol with // protected or default visibility with this property is required to be // exported into .dynsym. uint8_t inDynamicList : 1; // False if LTO shouldn't inline whatever this symbol points to. If a symbol // is overwritten after LTO, LTO shouldn't inline the symbol because it // doesn't know the final contents of the symbol. uint8_t canInline : 1; // Used to track if there has been at least one undefined reference to the // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK // if the first undefined reference from a non-shared object is weak. // // This is also used to retain __wrap_foo when foo is referenced. uint8_t referenced : 1; // True if this symbol is specified by --trace-symbol option. uint8_t traced : 1; // True if the .gnu.warning.SYMBOL is set for the symbol uint8_t gwarn : 1; inline void replace(const Symbol &newSym); bool includeInDynsym() const; uint8_t computeBinding() const; bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } bool isUndefined() const { return symbolKind == UndefinedKind; } bool isCommon() const { return symbolKind == CommonKind; } bool isDefined() const { return symbolKind == DefinedKind; } bool isShared() const { return symbolKind == SharedKind; } bool isPlaceholder() const { return symbolKind == PlaceholderKind; } bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } bool isLazy() const { return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind; } // True if this is an undefined weak symbol. This only works once // all input files have been added. bool isUndefWeak() const { // See comment on lazy symbols for details. return isWeak() && (isUndefined() || isLazy()); } StringRef getName() const { if (nameSize == (uint32_t)-1) nameSize = strlen(nameData); return {nameData, nameSize}; } void setName(StringRef s) { nameData = s.data(); nameSize = s.size(); } void parseSymbolVersion(); // Get the NUL-terminated version suffix ("", "@...", or "@@..."). // // For @@, the name has been truncated by insert(). For @, the name has been // truncated by Symbol::parseSymbolVersion(). const char *getVersionSuffix() const { (void)getName(); return nameData + nameSize; } bool isInGot() const { return gotIndex != -1U; } bool isInPlt() const { return pltIndex != -1U; } uint64_t getVA(int64_t addend = 0) const; uint64_t getGotOffset() const; uint64_t getGotVA() const; uint64_t getGotPltOffset() const; uint64_t getGotPltVA() const; uint64_t getPltVA() const; uint64_t getSize() const; OutputSection *getOutputSection() const; // The following two functions are used for symbol resolution. // // You are expected to call mergeProperties for all symbols in input // files so that attributes that are attached to names rather than // indivisual symbol (such as visibility) are merged together. // // Every time you read a new symbol from an input, you are supposed // to call resolve() with the new symbol. That function replaces // "this" object as a result of name resolution if the new symbol is // more appropriate to be included in the output. // // For example, if "this" is an undefined symbol and a new symbol is // a defined symbol, "this" is replaced with the new symbol. void mergeProperties(const Symbol &other); void resolve(const Symbol &other); // If this is a lazy symbol, fetch an input file and add the symbol // in the file to the symbol table. Calling this function on // non-lazy object causes a runtime error. void fetch() const; static bool isExportDynamic(Kind k, uint8_t visibility) { if (k == SharedKind) return visibility == llvm::ELF::STV_DEFAULT; return config->shared || config->exportDynamic; } private: void resolveUndefined(const Undefined &other); void resolveCommon(const CommonSymbol &other); void resolveDefined(const Defined &other); template void resolveLazy(const LazyT &other); void resolveShared(const SharedSymbol &other); int compare(const Symbol *other) const; inline size_t getSymbolSize() const; protected: Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, uint8_t type) : file(file), nameData(name.data), nameSize(name.size), binding(binding), type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3), isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind), exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false), canInline(false), referenced(false), traced(false), gwarn(false), needsPltAddr(false), isInIplt(false), gotInIgot(false), isPreemptible(false), used(!config->gcSections), needsTocRestore(false), scriptDefined(false) {} public: // True the symbol should point to its PLT entry. // For SharedSymbol only. uint8_t needsPltAddr : 1; // True if this symbol is in the Iplt sub-section of the Plt and the Igot // sub-section of the .got.plt or .got. uint8_t isInIplt : 1; // True if this symbol needs a GOT entry and its GOT entry is actually in // Igot. This will be true only for certain non-preemptible ifuncs. uint8_t gotInIgot : 1; // True if this symbol is preemptible at load time. uint8_t isPreemptible : 1; // True if an undefined or shared symbol is used from a live section. // // NOTE: In Writer.cpp the field is used to mark local defined symbols // which are referenced by relocations when -r or --emit-relocs is given. uint8_t used : 1; // True if a call to this symbol needs to be followed by a restore of the // PPC64 toc pointer. uint8_t needsTocRestore : 1; // True if this symbol is defined by a linker script. uint8_t scriptDefined : 1; // The partition whose dynamic symbol table contains this symbol's definition. uint8_t partition = 1; bool isSection() const { return type == llvm::ELF::STT_SECTION; } bool isTls() const { return type == llvm::ELF::STT_TLS; } bool isFunc() const { return type == llvm::ELF::STT_FUNC; } bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } bool isObject() const { return type == llvm::ELF::STT_OBJECT; } bool isFile() const { return type == llvm::ELF::STT_FILE; } }; // Represents a symbol that is defined in the current output file. class Defined : public Symbol { public: Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, SectionBase *section) : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), size(size), section(section) {} static bool classof(const Symbol *s) { return s->isDefined(); } uint64_t value; uint64_t size; SectionBase *section; }; // Represents a common symbol. // // On Unix, it is traditionally allowed to write variable definitions // without initialization expressions (such as "int foo;") to header // files. Such definition is called "tentative definition". // // Using tentative definition is usually considered a bad practice // because you should write only declarations (such as "extern int // foo;") to header files. Nevertheless, the linker and the compiler // have to do something to support bad code by allowing duplicate // definitions for this particular case. // // Common symbols represent variable definitions without initializations. // The compiler creates common symbols when it sees variable definitions // without initialization (you can suppress this behavior and let the // compiler create a regular defined symbol by -fno-common). // // The linker allows common symbols to be replaced by regular defined // symbols. If there are remaining common symbols after name resolution is // complete, they are converted to regular defined symbols in a .bss // section. (Therefore, the later passes don't see any CommonSymbols.) class CommonSymbol : public Symbol { public: CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) : Symbol(CommonKind, file, name, binding, stOther, type), alignment(alignment), size(size) {} static bool classof(const Symbol *s) { return s->isCommon(); } uint32_t alignment; uint64_t size; }; class Undefined : public Symbol { public: Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, uint8_t type, uint32_t discardedSecIdx = 0) : Symbol(UndefinedKind, file, name, binding, stOther, type), discardedSecIdx(discardedSecIdx) {} static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } // The section index if in a discarded section, 0 otherwise. uint32_t discardedSecIdx; }; class SharedSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == SharedKind; } SharedSymbol(InputFile &file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, uint32_t alignment, uint32_t verdefIndex) : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), size(size), alignment(alignment) { this->verdefIndex = verdefIndex; // GNU ifunc is a mechanism to allow user-supplied functions to // resolve PLT slot values at load-time. This is contrary to the // regular symbol resolution scheme in which symbols are resolved just // by name. Using this hook, you can program how symbols are solved // for you program. For example, you can make "memcpy" to be resolved // to a SSE-enabled version of memcpy only when a machine running the // program supports the SSE instruction set. // // Naturally, such symbols should always be called through their PLT // slots. What GNU ifunc symbols point to are resolver functions, and // calling them directly doesn't make sense (unless you are writing a // loader). // // For DSO symbols, we always call them through PLT slots anyway. // So there's no difference between GNU ifunc and regular function // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. if (this->type == llvm::ELF::STT_GNU_IFUNC) this->type = llvm::ELF::STT_FUNC; } SharedFile &getFile() const { return *cast(file); } uint64_t value; // st_value uint64_t size; // st_size uint32_t alignment; }; // LazyArchive and LazyObject represent a symbols that is not yet in the link, // but we know where to find it if needed. If the resolver finds both Undefined // and Lazy for the same name, it will ask the Lazy to load a file. // // A special complication is the handling of weak undefined symbols. They should // not load a file, but we have to remember we have seen both the weak undefined // and the lazy. We represent that with a lazy symbol with a weak binding. This // means that code looking for undefined symbols normally also has to take lazy // symbols into consideration. // This class represents a symbol defined in an archive file. It is // created from an archive file header, and it knows how to load an // object file from an archive to replace itself with a defined // symbol. class LazyArchive : public Symbol { public: LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s) : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL, llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE), sym(s) {} static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } MemoryBufferRef getMemberBuffer(); const llvm::object::Archive::Symbol sym; }; // LazyObject symbols represents symbols in object files between // --start-lib and --end-lib options. class LazyObject : public Symbol { public: LazyObject(InputFile &file, StringRef name) : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL, llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } }; // Some linker-generated symbols need to be created as // Defined symbols. struct ElfSym { // __bss_start static Defined *bss; // __data_start static Defined *data; // etext and _etext static Defined *etext1; static Defined *etext2; // edata and _edata static Defined *edata1; static Defined *edata2; // end and _end static Defined *end1; static Defined *end2; // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to // be at some offset from the base of the .got section, usually 0 or // the end of the .got. static Defined *globalOffsetTable; // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. static Defined *mipsGp; static Defined *mipsGpDisp; static Defined *mipsLocalGp; // __rel{,a}_iplt_{start,end} symbols. static Defined *relaIpltStart; static Defined *relaIpltEnd; // __global_pointer$ for RISC-V. static Defined *riscvGlobalPointer; // _TLS_MODULE_BASE_ on targets that support TLSDESC. static Defined *tlsModuleBase; }; // A buffer class that is large enough to hold any Symbol-derived // object. We allocate memory using this class and instantiate a symbol // using the placement new. union SymbolUnion { alignas(Defined) char a[sizeof(Defined)]; alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; alignas(Undefined) char c[sizeof(Undefined)]; alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; alignas(LazyArchive) char e[sizeof(LazyArchive)]; alignas(LazyObject) char f[sizeof(LazyObject)]; }; // It is important to keep the size of SymbolUnion small for performance and // memory usage reasons. 80 bytes is a soft limit based on the size of Defined // on a 64-bit system. static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large"); template struct AssertSymbol { static_assert(std::is_trivially_destructible(), "Symbol types must be trivially destructible"); static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); static_assert(alignof(T) <= alignof(SymbolUnion), "SymbolUnion not aligned enough"); }; static inline void assertSymbols() { AssertSymbol(); AssertSymbol(); AssertSymbol(); AssertSymbol(); AssertSymbol(); AssertSymbol(); } void printTraceSymbol(const Symbol *sym); size_t Symbol::getSymbolSize() const { switch (kind()) { case CommonKind: return sizeof(CommonSymbol); case DefinedKind: return sizeof(Defined); case LazyArchiveKind: return sizeof(LazyArchive); case LazyObjectKind: return sizeof(LazyObject); case SharedKind: return sizeof(SharedSymbol); case UndefinedKind: return sizeof(Undefined); case PlaceholderKind: return sizeof(Symbol); } llvm_unreachable("unknown symbol kind"); } // replace() replaces "this" object with a given symbol by memcpy'ing // it over to "this". This function is called as a result of name // resolution, e.g. to replace an undefind symbol with a defined symbol. void Symbol::replace(const Symbol &newSym) { using llvm::ELF::STT_TLS; // st_value of STT_TLS represents the assigned offset, not the actual address // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be // referenced by special TLS relocations. It is usually an error if a STT_TLS // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a // STT_NOTYPE lazy symbol. if (symbolKind != PlaceholderKind && !newSym.isLazy() && (type == STT_TLS) != (newSym.type == STT_TLS) && type != llvm::ELF::STT_NOTYPE) error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " + toString(newSym.file) + "\n>>> defined in " + toString(file)); Symbol old = *this; memcpy(this, &newSym, newSym.getSymbolSize()); // old may be a placeholder. The referenced fields must be initialized in // SymbolTable::insert. versionId = old.versionId; visibility = old.visibility; isUsedInRegularObj = old.isUsedInRegularObj; exportDynamic = old.exportDynamic; inDynamicList = old.inDynamicList; canInline = old.canInline; referenced = old.referenced; traced = old.traced; gwarn = old.gwarn; isPreemptible = old.isPreemptible; scriptDefined = old.scriptDefined; partition = old.partition; // Symbol length is computed lazily. If we already know a symbol length, // propagate it. if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0) nameSize = old.nameSize; // Print out a log message if --trace-symbol was specified. // This is for debugging. if (traced) printTraceSymbol(this); } void maybeWarnUnorderableSymbol(const Symbol *sym); bool computeIsPreemptible(const Symbol &sym); void reportBackrefs(); extern llvm::DenseMap gnuWarnings; // A mapping from a symbol to an InputFile referencing it backward. Used by // --warn-backrefs. extern llvm::DenseMap> backwardReferences; } // namespace elf } // namespace lld #endif