//===- Symbols.h ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLD_WASM_SYMBOLS_H #define LLD_WASM_SYMBOLS_H #include "Config.h" #include "lld/Common/LLVM.h" #include "llvm/Object/Archive.h" #include "llvm/Object/Wasm.h" namespace lld { namespace wasm { // Shared string constants // The default module name to use for symbol imports. extern const char *defaultModule; // The name under which to import or export the wasm table. extern const char *functionTableName; using llvm::wasm::WasmSymbolType; class InputFile; class InputChunk; class InputSegment; class InputFunction; class InputGlobal; class InputEvent; class InputSection; class OutputSection; #define INVALID_INDEX UINT32_MAX // The base class for real symbol classes. class Symbol { public: enum Kind : uint8_t { DefinedFunctionKind, DefinedDataKind, DefinedGlobalKind, DefinedEventKind, SectionKind, OutputSectionKind, UndefinedFunctionKind, UndefinedDataKind, UndefinedGlobalKind, LazyKind, }; Kind kind() const { return symbolKind; } bool isDefined() const { return !isLazy() && !isUndefined(); } bool isUndefined() const { return symbolKind == UndefinedFunctionKind || symbolKind == UndefinedDataKind || symbolKind == UndefinedGlobalKind; } bool isLazy() const { return symbolKind == LazyKind; } bool isLocal() const; bool isWeak() const; bool isHidden() const; // Returns true if this symbol exists in a discarded (due to COMDAT) section bool isDiscarded() const; // True if this is an undefined weak symbol. This only works once // all input files have been added. bool isUndefWeak() const { // See comment on lazy symbols for details. return isWeak() && (isUndefined() || isLazy()); } // Returns the symbol name. StringRef getName() const { return name; } // Returns the file from which this symbol was created. InputFile *getFile() const { return file; } uint32_t getFlags() const { return flags; } InputChunk *getChunk() const; // Indicates that the section or import for this symbol will be included in // the final image. bool isLive() const; // Marks the symbol's InputChunk as Live, so that it will be included in the // final image. void markLive(); void setHidden(bool isHidden); // Get/set the index in the output symbol table. This is only used for // relocatable output. uint32_t getOutputSymbolIndex() const; void setOutputSymbolIndex(uint32_t index); WasmSymbolType getWasmType() const; bool isExported() const; // Indicates that the symbol is used in an __attribute__((used)) directive // or similar. bool isNoStrip() const; const WasmSignature* getSignature() const; uint32_t getGOTIndex() const { assert(gotIndex != INVALID_INDEX); return gotIndex; } void setGOTIndex(uint32_t index); bool hasGOTIndex() const { return gotIndex != INVALID_INDEX; } protected: Symbol(StringRef name, Kind k, uint32_t flags, InputFile *f) : name(name), file(f), flags(flags), symbolKind(k), referenced(!config->gcSections), requiresGOT(false), isUsedInRegularObj(false), forceExport(false), canInline(false), traced(false) {} StringRef name; InputFile *file; uint32_t flags; uint32_t outputSymbolIndex = INVALID_INDEX; uint32_t gotIndex = INVALID_INDEX; Kind symbolKind; public: bool referenced : 1; // True for data symbols that needs a dummy GOT entry. Used for static // linking of GOT accesses. bool requiresGOT : 1; // True if the symbol was used for linking and thus need to be added to the // output file's symbol table. This is true for all symbols except for // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that // are unreferenced except by other bitcode objects. bool isUsedInRegularObj : 1; // True if ths symbol is explicitly marked for export (i.e. via the // -e/--export command line flag) bool forceExport : 1; // False if LTO shouldn't inline whatever this symbol points to. If a symbol // is overwritten after LTO, LTO shouldn't inline the symbol because it // doesn't know the final contents of the symbol. bool canInline : 1; // True if this symbol is specified by --trace-symbol option. bool traced : 1; }; class FunctionSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == DefinedFunctionKind || s->kind() == UndefinedFunctionKind; } // Get/set the table index void setTableIndex(uint32_t index); uint32_t getTableIndex() const; bool hasTableIndex() const; // Get/set the function index uint32_t getFunctionIndex() const; void setFunctionIndex(uint32_t index); bool hasFunctionIndex() const; const WasmSignature *signature; protected: FunctionSymbol(StringRef name, Kind k, uint32_t flags, InputFile *f, const WasmSignature *sig) : Symbol(name, k, flags, f), signature(sig) {} uint32_t tableIndex = INVALID_INDEX; uint32_t functionIndex = INVALID_INDEX; }; class DefinedFunction : public FunctionSymbol { public: DefinedFunction(StringRef name, uint32_t flags, InputFile *f, InputFunction *function); static bool classof(const Symbol *s) { return s->kind() == DefinedFunctionKind; } InputFunction *function; }; class UndefinedFunction : public FunctionSymbol { public: UndefinedFunction(StringRef name, StringRef importName, StringRef importModule, uint32_t flags, InputFile *file = nullptr, const WasmSignature *type = nullptr, bool isCalledDirectly = true) : FunctionSymbol(name, UndefinedFunctionKind, flags, file, type), importName(importName), importModule(importModule), isCalledDirectly(isCalledDirectly) {} static bool classof(const Symbol *s) { return s->kind() == UndefinedFunctionKind; } StringRef importName; StringRef importModule; bool isCalledDirectly; }; // Section symbols for output sections are different from those for input // section. These are generated by the linker and point the OutputSection // rather than an InputSection. class OutputSectionSymbol : public Symbol { public: OutputSectionSymbol(const OutputSection *s) : Symbol("", OutputSectionKind, llvm::wasm::WASM_SYMBOL_BINDING_LOCAL, nullptr), section(s) {} static bool classof(const Symbol *s) { return s->kind() == OutputSectionKind; } const OutputSection *section; }; class SectionSymbol : public Symbol { public: SectionSymbol(uint32_t flags, const InputSection *s, InputFile *f = nullptr) : Symbol("", SectionKind, flags, f), section(s) {} static bool classof(const Symbol *s) { return s->kind() == SectionKind; } const OutputSectionSymbol *getOutputSectionSymbol() const; const InputSection *section; }; class DataSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == DefinedDataKind || s->kind() == UndefinedDataKind; } protected: DataSymbol(StringRef name, Kind k, uint32_t flags, InputFile *f) : Symbol(name, k, flags, f) {} }; class DefinedData : public DataSymbol { public: // Constructor for regular data symbols originating from input files. DefinedData(StringRef name, uint32_t flags, InputFile *f, InputSegment *segment, uint32_t offset, uint32_t size) : DataSymbol(name, DefinedDataKind, flags, f), segment(segment), offset(offset), size(size) {} // Constructor for linker synthetic data symbols. DefinedData(StringRef name, uint32_t flags) : DataSymbol(name, DefinedDataKind, flags, nullptr) {} static bool classof(const Symbol *s) { return s->kind() == DefinedDataKind; } // Returns the output virtual address of a defined data symbol. uint32_t getVirtualAddress() const; void setVirtualAddress(uint32_t va); // Returns the offset of a defined data symbol within its OutputSegment. uint32_t getOutputSegmentOffset() const; uint32_t getOutputSegmentIndex() const; uint32_t getSize() const { return size; } InputSegment *segment = nullptr; protected: uint32_t offset = 0; uint32_t size = 0; }; class UndefinedData : public DataSymbol { public: UndefinedData(StringRef name, uint32_t flags, InputFile *file = nullptr) : DataSymbol(name, UndefinedDataKind, flags, file) {} static bool classof(const Symbol *s) { return s->kind() == UndefinedDataKind; } }; class GlobalSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == DefinedGlobalKind || s->kind() == UndefinedGlobalKind; } const WasmGlobalType *getGlobalType() const { return globalType; } // Get/set the global index uint32_t getGlobalIndex() const; void setGlobalIndex(uint32_t index); bool hasGlobalIndex() const; protected: GlobalSymbol(StringRef name, Kind k, uint32_t flags, InputFile *f, const WasmGlobalType *globalType) : Symbol(name, k, flags, f), globalType(globalType) {} const WasmGlobalType *globalType; uint32_t globalIndex = INVALID_INDEX; }; class DefinedGlobal : public GlobalSymbol { public: DefinedGlobal(StringRef name, uint32_t flags, InputFile *file, InputGlobal *global); static bool classof(const Symbol *s) { return s->kind() == DefinedGlobalKind; } InputGlobal *global; }; class UndefinedGlobal : public GlobalSymbol { public: UndefinedGlobal(StringRef name, StringRef importName, StringRef importModule, uint32_t flags, InputFile *file = nullptr, const WasmGlobalType *type = nullptr) : GlobalSymbol(name, UndefinedGlobalKind, flags, file, type), importName(importName), importModule(importModule) {} static bool classof(const Symbol *s) { return s->kind() == UndefinedGlobalKind; } StringRef importName; StringRef importModule; }; // Wasm events are features that suspend the current execution and transfer the // control flow to a corresponding handler. Currently the only supported event // kind is exceptions. // // Event tags are values to distinguish different events. For exceptions, they // can be used to distinguish different language's exceptions, i.e., all C++ // exceptions have the same tag. Wasm can generate code capable of doing // different handling actions based on the tag of caught exceptions. // // A single EventSymbol object represents a single tag. C++ exception event // symbol is a weak symbol generated in every object file in which exceptions // are used, and has name '__cpp_exception' for linking. class EventSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == DefinedEventKind; } const WasmEventType *getEventType() const { return eventType; } // Get/set the event index uint32_t getEventIndex() const; void setEventIndex(uint32_t index); bool hasEventIndex() const; const WasmSignature *signature; protected: EventSymbol(StringRef name, Kind k, uint32_t flags, InputFile *f, const WasmEventType *eventType, const WasmSignature *sig) : Symbol(name, k, flags, f), signature(sig), eventType(eventType) {} const WasmEventType *eventType; uint32_t eventIndex = INVALID_INDEX; }; class DefinedEvent : public EventSymbol { public: DefinedEvent(StringRef name, uint32_t flags, InputFile *file, InputEvent *event); static bool classof(const Symbol *s) { return s->kind() == DefinedEventKind; } InputEvent *event; }; // LazySymbol represents a symbol that is not yet in the link, but we know where // to find it if needed. If the resolver finds both Undefined and Lazy for the // same name, it will ask the Lazy to load a file. // // A special complication is the handling of weak undefined symbols. They should // not load a file, but we have to remember we have seen both the weak undefined // and the lazy. We represent that with a lazy symbol with a weak binding. This // means that code looking for undefined symbols normally also has to take lazy // symbols into consideration. class LazySymbol : public Symbol { public: LazySymbol(StringRef name, uint32_t flags, InputFile *file, const llvm::object::Archive::Symbol &sym) : Symbol(name, LazyKind, flags, file), archiveSymbol(sym) {} static bool classof(const Symbol *s) { return s->kind() == LazyKind; } void fetch(); MemoryBufferRef getMemberBuffer(); // Lazy symbols can have a signature because they can replace an // UndefinedFunction which which case we need to be able to preserve the // signture. // TODO(sbc): This repetition of the signature field is inelegant. Revisit // the use of class hierarchy to represent symbol taxonomy. const WasmSignature *signature = nullptr; private: llvm::object::Archive::Symbol archiveSymbol; }; // linker-generated symbols struct WasmSym { // __global_base // Symbol marking the start of the global section. static DefinedData *globalBase; // __stack_pointer // Global that holds the address of the top of the explicit value stack in // linear memory. static GlobalSymbol *stackPointer; // __tls_base // Global that holds the address of the base of the current thread's // TLS block. static GlobalSymbol *tlsBase; // __tls_size // Symbol whose value is the size of the TLS block. static GlobalSymbol *tlsSize; // __tls_size // Symbol whose value is the alignment of the TLS block. static GlobalSymbol *tlsAlign; // __data_end // Symbol marking the end of the data and bss. static DefinedData *dataEnd; // __heap_base // Symbol marking the end of the data, bss and explicit stack. Any linear // memory following this address is not used by the linked code and can // therefore be used as a backing store for brk()/malloc() implementations. static DefinedData *heapBase; // __wasm_init_memory_flag // Symbol whose contents are nonzero iff memory has already been initialized. static DefinedData *initMemoryFlag; // __wasm_init_memory // Function that initializes passive data segments during instantiation. static DefinedFunction *initMemory; // __wasm_call_ctors // Function that directly calls all ctors in priority order. static DefinedFunction *callCtors; // __wasm_apply_relocs // Function that applies relocations to data segment post-instantiation. static DefinedFunction *applyRelocs; // __wasm_init_tls // Function that allocates thread-local storage and initializes it. static DefinedFunction *initTLS; // __dso_handle // Symbol used in calls to __cxa_atexit to determine current DLL static DefinedData *dsoHandle; // __table_base // Used in PIC code for offset of indirect function table static UndefinedGlobal *tableBase; static DefinedData *definedTableBase; // __memory_base // Used in PIC code for offset of global data static UndefinedGlobal *memoryBase; static DefinedData *definedMemoryBase; }; // A buffer class that is large enough to hold any Symbol-derived // object. We allocate memory using this class and instantiate a symbol // using the placement new. union SymbolUnion { alignas(DefinedFunction) char a[sizeof(DefinedFunction)]; alignas(DefinedData) char b[sizeof(DefinedData)]; alignas(DefinedGlobal) char c[sizeof(DefinedGlobal)]; alignas(DefinedEvent) char d[sizeof(DefinedEvent)]; alignas(LazySymbol) char e[sizeof(LazySymbol)]; alignas(UndefinedFunction) char f[sizeof(UndefinedFunction)]; alignas(UndefinedData) char g[sizeof(UndefinedData)]; alignas(UndefinedGlobal) char h[sizeof(UndefinedGlobal)]; alignas(SectionSymbol) char i[sizeof(SectionSymbol)]; }; // It is important to keep the size of SymbolUnion small for performance and // memory usage reasons. 96 bytes is a soft limit based on the size of // UndefinedFunction on a 64-bit system. static_assert(sizeof(SymbolUnion) <= 96, "SymbolUnion too large"); void printTraceSymbol(Symbol *sym); void printTraceSymbolUndefined(StringRef name, const InputFile* file); template T *replaceSymbol(Symbol *s, ArgT &&... arg) { static_assert(std::is_trivially_destructible(), "Symbol types must be trivially destructible"); static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); static_assert(alignof(T) <= alignof(SymbolUnion), "SymbolUnion not aligned enough"); assert(static_cast(static_cast(nullptr)) == nullptr && "Not a Symbol"); Symbol symCopy = *s; T *s2 = new (s) T(std::forward(arg)...); s2->isUsedInRegularObj = symCopy.isUsedInRegularObj; s2->forceExport = symCopy.forceExport; s2->canInline = symCopy.canInline; s2->traced = symCopy.traced; // Print out a log message if --trace-symbol was specified. // This is for debugging. if (s2->traced) printTraceSymbol(s2); return s2; } } // namespace wasm // Returns a symbol name for an error message. std::string toString(const wasm::Symbol &sym); std::string toString(wasm::Symbol::Kind kind); std::string maybeDemangleSymbol(StringRef name); } // namespace lld #endif