//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/GraphTraits.h" #include "gtest/gtest.h" #include using namespace llvm; namespace llvm { /// Graph - A graph with N nodes. Note that N can be at most 8. template class Graph { private: // Disable copying. Graph(const Graph&); Graph& operator=(const Graph&); static void ValidateIndex(unsigned Idx) { assert(Idx < N && "Invalid node index!"); } public: /// NodeSubset - A subset of the graph's nodes. class NodeSubset { typedef unsigned char BitVector; // Where the limitation N <= 8 comes from. BitVector Elements; NodeSubset(BitVector e) : Elements(e) {} public: /// NodeSubset - Default constructor, creates an empty subset. NodeSubset() : Elements(0) { assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!"); } /// Comparison operators. bool operator==(const NodeSubset &other) const { return other.Elements == this->Elements; } bool operator!=(const NodeSubset &other) const { return !(*this == other); } /// AddNode - Add the node with the given index to the subset. void AddNode(unsigned Idx) { ValidateIndex(Idx); Elements |= 1U << Idx; } /// DeleteNode - Remove the node with the given index from the subset. void DeleteNode(unsigned Idx) { ValidateIndex(Idx); Elements &= ~(1U << Idx); } /// count - Return true if the node with the given index is in the subset. bool count(unsigned Idx) { ValidateIndex(Idx); return (Elements & (1U << Idx)) != 0; } /// isEmpty - Return true if this is the empty set. bool isEmpty() const { return Elements == 0; } /// isSubsetOf - Return true if this set is a subset of the given one. bool isSubsetOf(const NodeSubset &other) const { return (this->Elements | other.Elements) == other.Elements; } /// Complement - Return the complement of this subset. NodeSubset Complement() const { return ~(unsigned)this->Elements & ((1U << N) - 1); } /// Join - Return the union of this subset and the given one. NodeSubset Join(const NodeSubset &other) const { return this->Elements | other.Elements; } /// Meet - Return the intersection of this subset and the given one. NodeSubset Meet(const NodeSubset &other) const { return this->Elements & other.Elements; } }; /// NodeType - Node index and set of children of the node. typedef std::pair NodeType; private: /// Nodes - The list of nodes for this graph. NodeType Nodes[N]; public: /// Graph - Default constructor. Creates an empty graph. Graph() { // Let each node know which node it is. This allows us to find the start of // the Nodes array given a pointer to any element of it. for (unsigned i = 0; i != N; ++i) Nodes[i].first = i; } /// AddEdge - Add an edge from the node with index FromIdx to the node with /// index ToIdx. void AddEdge(unsigned FromIdx, unsigned ToIdx) { ValidateIndex(FromIdx); Nodes[FromIdx].second.AddNode(ToIdx); } /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to /// the node with index ToIdx. void DeleteEdge(unsigned FromIdx, unsigned ToIdx) { ValidateIndex(FromIdx); Nodes[FromIdx].second.DeleteNode(ToIdx); } /// AccessNode - Get a pointer to the node with the given index. NodeType *AccessNode(unsigned Idx) const { ValidateIndex(Idx); // The constant cast is needed when working with GraphTraits, which insists // on taking a constant Graph. return const_cast(&Nodes[Idx]); } /// NodesReachableFrom - Return the set of all nodes reachable from the given /// node. NodeSubset NodesReachableFrom(unsigned Idx) const { // This algorithm doesn't scale, but that doesn't matter given the small // size of our graphs. NodeSubset Reachable; // The initial node is reachable. Reachable.AddNode(Idx); do { NodeSubset Previous(Reachable); // Add in all nodes which are children of a reachable node. for (unsigned i = 0; i != N; ++i) if (Previous.count(i)) Reachable = Reachable.Join(Nodes[i].second); // If nothing changed then we have found all reachable nodes. if (Reachable == Previous) return Reachable; // Rinse and repeat. } while (1); } /// ChildIterator - Visit all children of a node. class ChildIterator { friend class Graph; /// FirstNode - Pointer to first node in the graph's Nodes array. NodeType *FirstNode; /// Children - Set of nodes which are children of this one and that haven't /// yet been visited. NodeSubset Children; ChildIterator(); // Disable default constructor. protected: ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {} public: /// ChildIterator - Copy constructor. ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode), Children(other.Children) {} /// Comparison operators. bool operator==(const ChildIterator &other) const { return other.FirstNode == this->FirstNode && other.Children == this->Children; } bool operator!=(const ChildIterator &other) const { return !(*this == other); } /// Prefix increment operator. ChildIterator& operator++() { // Find the next unvisited child node. for (unsigned i = 0; i != N; ++i) if (Children.count(i)) { // Remove that child - it has been visited. This is the increment! Children.DeleteNode(i); return *this; } assert(false && "Incrementing end iterator!"); return *this; // Avoid compiler warnings. } /// Postfix increment operator. ChildIterator operator++(int) { ChildIterator Result(*this); ++(*this); return Result; } /// Dereference operator. NodeType *operator*() { // Find the next unvisited child node. for (unsigned i = 0; i != N; ++i) if (Children.count(i)) // Return a pointer to it. return FirstNode + i; assert(false && "Dereferencing end iterator!"); return nullptr; // Avoid compiler warning. } }; /// child_begin - Return an iterator pointing to the first child of the given /// node. static ChildIterator child_begin(NodeType *Parent) { return ChildIterator(Parent - Parent->first, Parent->second); } /// child_end - Return the end iterator for children of the given node. static ChildIterator child_end(NodeType *Parent) { return ChildIterator(Parent - Parent->first, NodeSubset()); } }; template struct GraphTraits > { typedef typename Graph::NodeType NodeType; typedef typename Graph::NodeType *NodeRef; typedef typename Graph::ChildIterator ChildIteratorType; static inline NodeType *getEntryNode(const Graph &G) { return G.AccessNode(0); } static inline ChildIteratorType child_begin(NodeType *Node) { return Graph::child_begin(Node); } static inline ChildIteratorType child_end(NodeType *Node) { return Graph::child_end(Node); } }; TEST(SCCIteratorTest, AllSmallGraphs) { // Test SCC computation against every graph with NUM_NODES nodes or less. // Since SCC considers every node to have an implicit self-edge, we only // create graphs for which every node has a self-edge. #define NUM_NODES 4 #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1)) typedef Graph GT; /// Enumerate all graphs using NUM_GRAPHS bits. static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!"); for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS); ++GraphDescriptor) { GT G; // Add edges as specified by the descriptor. unsigned DescriptorCopy = GraphDescriptor; for (unsigned i = 0; i != NUM_NODES; ++i) for (unsigned j = 0; j != NUM_NODES; ++j) { // Always add a self-edge. if (i == j) { G.AddEdge(i, j); continue; } if (DescriptorCopy & 1) G.AddEdge(i, j); DescriptorCopy >>= 1; } // Test the SCC logic on this graph. /// NodesInSomeSCC - Those nodes which are in some SCC. GT::NodeSubset NodesInSomeSCC; for (scc_iterator I = scc_begin(G), E = scc_end(G); I != E; ++I) { const std::vector &SCC = *I; // Get the nodes in this SCC as a NodeSubset rather than a vector. GT::NodeSubset NodesInThisSCC; for (unsigned i = 0, e = SCC.size(); i != e; ++i) NodesInThisSCC.AddNode(SCC[i]->first); // There should be at least one node in every SCC. EXPECT_FALSE(NodesInThisSCC.isEmpty()); // Check that every node in the SCC is reachable from every other node in // the SCC. for (unsigned i = 0; i != NUM_NODES; ++i) if (NodesInThisSCC.count(i)) EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i))); // OK, now that we now that every node in the SCC is reachable from every // other, this means that the set of nodes reachable from any node in the // SCC is the same as the set of nodes reachable from every node in the // SCC. Check that for every node N not in the SCC but reachable from the // SCC, no element of the SCC is reachable from N. for (unsigned i = 0; i != NUM_NODES; ++i) if (NodesInThisSCC.count(i)) { GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); GT::NodeSubset ReachableButNotInSCC = NodesReachableFromSCC.Meet(NodesInThisSCC.Complement()); for (unsigned j = 0; j != NUM_NODES; ++j) if (ReachableButNotInSCC.count(j)) EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty()); // The result must be the same for all other nodes in this SCC, so // there is no point in checking them. break; } // This is indeed a SCC: a maximal set of nodes for which each node is // reachable from every other. // Check that we didn't already see this SCC. EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty()); NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC); // Check a property that is specific to the LLVM SCC iterator and // guaranteed by it: if a node in SCC S1 has an edge to a node in // SCC S2, then S1 is visited *after* S2. This means that the set // of nodes reachable from this SCC must be contained either in the // union of this SCC and all previously visited SCC's. for (unsigned i = 0; i != NUM_NODES; ++i) if (NodesInThisSCC.count(i)) { GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC)); // The result must be the same for all other nodes in this SCC, so // there is no point in checking them. break; } } // Finally, check that the nodes in some SCC are exactly those that are // reachable from the initial node. EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0)); } } }