//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of a single recognizable instruction. // Documentation for the disassembler emitter in general can be found in // X86DisassemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86RecognizableInstr.h" #include "X86DisassemblerShared.h" #include "X86ModRMFilters.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; using namespace X86Disassembler; /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. /// Useful for switch statements and the like. /// /// @param init - A reference to the BitsInit to be decoded. /// @return - The field, with the first bit in the BitsInit as the lowest /// order bit. static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (cast(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } /// byteFromRec - Extract a value at most 8 bits in with from a Record given the /// name of the field. /// /// @param rec - The record from which to extract the value. /// @param name - The name of the field in the record. /// @return - The field, as translated by byteFromBitsInit(). static uint8_t byteFromRec(const Record* rec, const std::string &name) { BitsInit* bits = rec->getValueAsBitsInit(name); return byteFromBitsInit(*bits); } RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { UID = uid; Rec = insn.TheDef; Name = Rec->getName(); Spec = &tables.specForUID(UID); if (!Rec->isSubClassOf("X86Inst")) { ShouldBeEmitted = false; return; } OpPrefix = byteFromRec(Rec, "OpPrefixBits"); OpMap = byteFromRec(Rec, "OpMapBits"); Opcode = byteFromRec(Rec, "Opcode"); Form = byteFromRec(Rec, "FormBits"); Encoding = byteFromRec(Rec, "OpEncBits"); OpSize = byteFromRec(Rec, "OpSizeBits"); AdSize = byteFromRec(Rec, "AdSizeBits"); HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); VEX_WPrefix = byteFromRec(Rec,"VEX_WPrefix"); IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); CD8_Scale = byteFromRec(Rec, "CD8_Scale"); Name = Rec->getName(); Operands = &insn.Operands.OperandList; HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); EncodeRC = HasEVEX_B && (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg); // Check for 64-bit inst which does not require REX Is32Bit = false; Is64Bit = false; // FIXME: Is there some better way to check for In64BitMode? std::vector Predicates = Rec->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { if (Predicates[i]->getName().find("Not64Bit") != Name.npos || Predicates[i]->getName().find("In32Bit") != Name.npos) { Is32Bit = true; break; } if (Predicates[i]->getName().find("In64Bit") != Name.npos) { Is64Bit = true; break; } } if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) { ShouldBeEmitted = false; return; } // Special case since there is no attribute class for 64-bit and VEX if (Name == "VMASKMOVDQU64") { ShouldBeEmitted = false; return; } ShouldBeEmitted = true; } void RecognizableInstr::processInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { // Ignore "asm parser only" instructions. if (insn.TheDef->getValueAsBit("isAsmParserOnly")) return; RecognizableInstr recogInstr(tables, insn, uid); if (recogInstr.shouldBeEmitted()) { recogInstr.emitInstructionSpecifier(); recogInstr.emitDecodePath(tables); } } #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ (HasEVEX_K && HasEVEX_B ? n##_K_B : \ (HasEVEX_KZ ? n##_KZ : \ (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) InstructionContext RecognizableInstr::insnContext() const { InstructionContext insnContext; if (Encoding == X86Local::EVEX) { if (HasVEX_LPrefix && HasEVEX_L2Prefix) { errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); } // VEX_L & VEX_W if (!EncodeRC && HasVEX_LPrefix && (VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X)) { if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasVEX_LPrefix) { // VEX_L if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasEVEX_L2Prefix && (VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X)) { // EVEX_L2 & VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasEVEX_L2Prefix) { // EVEX_L2 if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X) { // VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } // No L, no W else if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } /// eof EVEX } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { if (HasVEX_LPrefix && (VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X)) { if (OpPrefix == X86Local::PD) insnContext = IC_VEX_L_W_OPSIZE; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_L_W_XS; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_L_W_XD; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX_L_W; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix) insnContext = IC_VEX_L_OPSIZE; else if (OpPrefix == X86Local::PD && (VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X)) insnContext = IC_VEX_W_OPSIZE; else if (OpPrefix == X86Local::PD) insnContext = IC_VEX_OPSIZE; else if (HasVEX_LPrefix && OpPrefix == X86Local::XS) insnContext = IC_VEX_L_XS; else if (HasVEX_LPrefix && OpPrefix == X86Local::XD) insnContext = IC_VEX_L_XD; else if ((VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X) && OpPrefix == X86Local::XS) insnContext = IC_VEX_W_XS; else if ((VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X) && OpPrefix == X86Local::XD) insnContext = IC_VEX_W_XD; else if ((VEX_WPrefix == X86Local::VEX_W1 || VEX_WPrefix == X86Local::VEX_W1X) && OpPrefix == X86Local::PS) insnContext = IC_VEX_W; else if (HasVEX_LPrefix && OpPrefix == X86Local::PS) insnContext = IC_VEX_L; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_XS; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) { if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) insnContext = IC_64BIT_REXW_OPSIZE; else if (HasREX_WPrefix && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_REXW_ADSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS_OPSIZE; else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE; else if (AdSize == X86Local::AdSize32) insnContext = IC_64BIT_ADSIZE; else if (HasREX_WPrefix && OpPrefix == X86Local::XS) insnContext = IC_64BIT_REXW_XS; else if (HasREX_WPrefix && OpPrefix == X86Local::XD) insnContext = IC_64BIT_REXW_XD; else if (OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS; else if (HasREX_WPrefix) insnContext = IC_64BIT_REXW; else insnContext = IC_64BIT; } else { if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_OPSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_ADSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_ADSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD) insnContext = IC_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16) insnContext = IC_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_OPSIZE; else if (AdSize == X86Local::AdSize16) insnContext = IC_ADSIZE; else if (OpPrefix == X86Local::XD) insnContext = IC_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_XS; else insnContext = IC; } return insnContext; } void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { // The scaling factor for AVX512 compressed displacement encoding is an // instruction attribute. Adjust the ModRM encoding type to include the // scale for compressed displacement. if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0) return; encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) || (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) && "Invalid CDisp scaling"); } void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex, unsigned numPhysicalOperands, const unsigned *operandMapping, OperandEncoding (*encodingFromString) (const std::string&, uint8_t OpSize)) { if (optional) { if (physicalOperandIndex >= numPhysicalOperands) return; } else { assert(physicalOperandIndex < numPhysicalOperands); } while (operandMapping[operandIndex] != operandIndex) { Spec->operands[operandIndex].encoding = ENCODING_DUP; Spec->operands[operandIndex].type = (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); ++operandIndex; } StringRef typeName = (*Operands)[operandIndex].Rec->getName(); OperandEncoding encoding = encodingFromString(typeName, OpSize); // Adjust the encoding type for an operand based on the instruction. adjustOperandEncoding(encoding); Spec->operands[operandIndex].encoding = encoding; Spec->operands[operandIndex].type = typeFromString(typeName, HasREX_WPrefix, OpSize); ++operandIndex; ++physicalOperandIndex; } void RecognizableInstr::emitInstructionSpecifier() { Spec->name = Name; Spec->insnContext = insnContext(); const std::vector &OperandList = *Operands; unsigned numOperands = OperandList.size(); unsigned numPhysicalOperands = 0; // operandMapping maps from operands in OperandList to their originals. // If operandMapping[i] != i, then the entry is a duplicate. unsigned operandMapping[X86_MAX_OPERANDS]; assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { if (!OperandList[operandIndex].Constraints.empty()) { const CGIOperandList::ConstraintInfo &Constraint = OperandList[operandIndex].Constraints[0]; if (Constraint.isTied()) { operandMapping[operandIndex] = operandIndex; operandMapping[Constraint.getTiedOperand()] = operandIndex; } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } #define HANDLE_OPERAND(class) \ handleOperand(false, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); #define HANDLE_OPTIONAL(class) \ handleOperand(true, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); // operandIndex should always be < numOperands unsigned operandIndex = 0; // physicalOperandIndex should always be < numPhysicalOperands unsigned physicalOperandIndex = 0; #ifndef NDEBUG // Given the set of prefix bits, how many additional operands does the // instruction have? unsigned additionalOperands = 0; if (HasVEX_4V) ++additionalOperands; if (HasEVEX_K) ++additionalOperands; #endif switch (Form) { default: llvm_unreachable("Unhandled form"); case X86Local::RawFrmSrc: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDst: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDstSrc: HANDLE_OPERAND(relocation); HANDLE_OPERAND(relocation); return; case X86Local::RawFrm: // Operand 1 (optional) is an address or immediate. assert(numPhysicalOperands <= 1 && "Unexpected number of operands for RawFrm"); HANDLE_OPTIONAL(relocation) break; case X86Local::RawFrmMemOffs: // Operand 1 is an address. HANDLE_OPERAND(relocation); break; case X86Local::AddRegFrm: // Operand 1 is added to the opcode. // Operand 2 (optional) is an address. assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && "Unexpected number of operands for AddRegFrm"); HANDLE_OPERAND(opcodeModifier) HANDLE_OPTIONAL(relocation) break; case X86Local::MRMDestReg: // Operand 1 is a register operand in the R/M field. // - In AVX512 there may be a mask operand here - // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestRegFrm"); HANDLE_OPERAND(rmRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMDestMem: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); HANDLE_OPERAND(memory) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcReg: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a register operand in the R/M field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. // Operand 4 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcRegFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(rmRegister) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMSrcReg4VOp3: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMSrcReg4VOp3Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(rmRegister) HANDLE_OPERAND(vvvvRegister) break; case X86Local::MRMSrcRegOp4: assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcRegOp4Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(immediate) // Register in imm[7:4] HANDLE_OPERAND(rmRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcMem: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a memory operand (possibly SIB-extended) // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcMemFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMSrcMem4VOp3: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMSrcMem4VOp3Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(memory) HANDLE_OPERAND(vvvvRegister) break; case X86Local::MRMSrcMemOp4: assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcMemOp4Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(immediate) // Register in imm[7:4] HANDLE_OPERAND(memory) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMXr: case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: // Operand 1 is a register operand in the R/M field. // Operand 2 (optional) is an immediate or relocation. // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 0 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMnr"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPTIONAL(rmRegister) HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMXm: case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 (optional) is an immediate or relocation. assert(numPhysicalOperands >= 1 + additionalOperands && numPhysicalOperands <= 2 + additionalOperands && "Unexpected number of operands for MRMnm"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(relocation) break; case X86Local::RawFrmImm8: // operand 1 is a 16-bit immediate // operand 2 is an 8-bit immediate assert(numPhysicalOperands == 2 && "Unexpected number of operands for X86Local::RawFrmImm8"); HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::RawFrmImm16: // operand 1 is a 16-bit immediate // operand 2 is a 16-bit immediate HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; #define MAP(from, to) case X86Local::MRM_##from: X86_INSTR_MRM_MAPPING #undef MAP HANDLE_OPTIONAL(relocation) break; } #undef HANDLE_OPERAND #undef HANDLE_OPTIONAL } void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { // Special cases where the LLVM tables are not complete #define MAP(from, to) \ case X86Local::MRM_##from: llvm::Optional opcodeType; switch (OpMap) { default: llvm_unreachable("Invalid map!"); case X86Local::OB: opcodeType = ONEBYTE; break; case X86Local::TB: opcodeType = TWOBYTE; break; case X86Local::T8: opcodeType = THREEBYTE_38; break; case X86Local::TA: opcodeType = THREEBYTE_3A; break; case X86Local::XOP8: opcodeType = XOP8_MAP; break; case X86Local::XOP9: opcodeType = XOP9_MAP; break; case X86Local::XOPA: opcodeType = XOPA_MAP; break; case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break; } std::unique_ptr filter; switch (Form) { default: llvm_unreachable("Invalid form!"); case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!"); case X86Local::RawFrm: case X86Local::AddRegFrm: case X86Local::RawFrmMemOffs: case X86Local::RawFrmSrc: case X86Local::RawFrmDst: case X86Local::RawFrmDstSrc: case X86Local::RawFrmImm8: case X86Local::RawFrmImm16: filter = llvm::make_unique(); break; case X86Local::MRMDestReg: case X86Local::MRMSrcReg: case X86Local::MRMSrcReg4VOp3: case X86Local::MRMSrcRegOp4: case X86Local::MRMXr: filter = llvm::make_unique(true); break; case X86Local::MRMDestMem: case X86Local::MRMSrcMem: case X86Local::MRMSrcMem4VOp3: case X86Local::MRMSrcMemOp4: case X86Local::MRMXm: filter = llvm::make_unique(false); break; case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: filter = llvm::make_unique(true, Form - X86Local::MRM0r); break; case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: filter = llvm::make_unique(false, Form - X86Local::MRM0m); break; X86_INSTR_MRM_MAPPING filter = llvm::make_unique(0xC0 + Form - X86Local::MRM_C0); break; } // switch (Form) uint8_t opcodeToSet = Opcode; unsigned AddressSize = 0; switch (AdSize) { case X86Local::AdSize16: AddressSize = 16; break; case X86Local::AdSize32: AddressSize = 32; break; case X86Local::AdSize64: AddressSize = 64; break; } assert(opcodeType && "Opcode type not set"); assert(filter && "Filter not set"); if (Form == X86Local::AddRegFrm) { assert(((opcodeToSet & 7) == 0) && "ADDREG_FRM opcode not aligned"); uint8_t currentOpcode; for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + 8; ++currentOpcode) tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter, UID, Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, VEX_WPrefix == X86Local::VEX_WIG, AddressSize); } else { tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID, Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, VEX_WPrefix == X86Local::VEX_WIG, AddressSize); } #undef MAP } #define TYPE(str, type) if (s == str) return type; OperandType RecognizableInstr::typeFromString(const std::string &s, bool hasREX_WPrefix, uint8_t OpSize) { if(hasREX_WPrefix) { // For instructions with a REX_W prefix, a declared 32-bit register encoding // is special. TYPE("GR32", TYPE_R32) } if(OpSize == X86Local::OpSize16) { // For OpSize16 instructions, a declared 16-bit register or // immediate encoding is special. TYPE("GR16", TYPE_Rv) } else if(OpSize == X86Local::OpSize32) { // For OpSize32 instructions, a declared 32-bit register or // immediate encoding is special. TYPE("GR32", TYPE_Rv) } TYPE("i16mem", TYPE_M) TYPE("i16imm", TYPE_IMM) TYPE("i16i8imm", TYPE_IMM) TYPE("GR16", TYPE_R16) TYPE("i32mem", TYPE_M) TYPE("i32imm", TYPE_IMM) TYPE("i32i8imm", TYPE_IMM) TYPE("GR32", TYPE_R32) TYPE("GR32orGR64", TYPE_R32) TYPE("i64mem", TYPE_M) TYPE("i64i32imm", TYPE_IMM) TYPE("i64i8imm", TYPE_IMM) TYPE("GR64", TYPE_R64) TYPE("i8mem", TYPE_M) TYPE("i8imm", TYPE_IMM) TYPE("u8imm", TYPE_UIMM8) TYPE("i32u8imm", TYPE_UIMM8) TYPE("GR8", TYPE_R8) TYPE("VR128", TYPE_XMM) TYPE("VR128X", TYPE_XMM) TYPE("f128mem", TYPE_M) TYPE("f256mem", TYPE_M) TYPE("f512mem", TYPE_M) TYPE("FR128", TYPE_XMM) TYPE("FR64", TYPE_XMM) TYPE("FR64X", TYPE_XMM) TYPE("f64mem", TYPE_M) TYPE("sdmem", TYPE_M) TYPE("FR32", TYPE_XMM) TYPE("FR32X", TYPE_XMM) TYPE("f32mem", TYPE_M) TYPE("ssmem", TYPE_M) TYPE("RST", TYPE_ST) TYPE("RSTi", TYPE_ST) TYPE("i128mem", TYPE_M) TYPE("i256mem", TYPE_M) TYPE("i512mem", TYPE_M) TYPE("i64i32imm_pcrel", TYPE_REL) TYPE("i16imm_pcrel", TYPE_REL) TYPE("i32imm_pcrel", TYPE_REL) TYPE("SSECC", TYPE_IMM3) TYPE("XOPCC", TYPE_IMM3) TYPE("AVXCC", TYPE_IMM5) TYPE("AVX512ICC", TYPE_AVX512ICC) TYPE("AVX512RC", TYPE_IMM) TYPE("brtarget32", TYPE_REL) TYPE("brtarget16", TYPE_REL) TYPE("brtarget8", TYPE_REL) TYPE("f80mem", TYPE_M) TYPE("lea64_32mem", TYPE_M) TYPE("lea64mem", TYPE_M) TYPE("VR64", TYPE_MM64) TYPE("i64imm", TYPE_IMM) TYPE("anymem", TYPE_M) TYPE("opaquemem", TYPE_M) TYPE("SEGMENT_REG", TYPE_SEGMENTREG) TYPE("DEBUG_REG", TYPE_DEBUGREG) TYPE("CONTROL_REG", TYPE_CONTROLREG) TYPE("srcidx8", TYPE_SRCIDX) TYPE("srcidx16", TYPE_SRCIDX) TYPE("srcidx32", TYPE_SRCIDX) TYPE("srcidx64", TYPE_SRCIDX) TYPE("dstidx8", TYPE_DSTIDX) TYPE("dstidx16", TYPE_DSTIDX) TYPE("dstidx32", TYPE_DSTIDX) TYPE("dstidx64", TYPE_DSTIDX) TYPE("offset16_8", TYPE_MOFFS) TYPE("offset16_16", TYPE_MOFFS) TYPE("offset16_32", TYPE_MOFFS) TYPE("offset32_8", TYPE_MOFFS) TYPE("offset32_16", TYPE_MOFFS) TYPE("offset32_32", TYPE_MOFFS) TYPE("offset32_64", TYPE_MOFFS) TYPE("offset64_8", TYPE_MOFFS) TYPE("offset64_16", TYPE_MOFFS) TYPE("offset64_32", TYPE_MOFFS) TYPE("offset64_64", TYPE_MOFFS) TYPE("VR256", TYPE_YMM) TYPE("VR256X", TYPE_YMM) TYPE("VR512", TYPE_ZMM) TYPE("VK1", TYPE_VK) TYPE("VK1WM", TYPE_VK) TYPE("VK2", TYPE_VK) TYPE("VK2WM", TYPE_VK) TYPE("VK4", TYPE_VK) TYPE("VK4WM", TYPE_VK) TYPE("VK8", TYPE_VK) TYPE("VK8WM", TYPE_VK) TYPE("VK16", TYPE_VK) TYPE("VK16WM", TYPE_VK) TYPE("VK32", TYPE_VK) TYPE("VK32WM", TYPE_VK) TYPE("VK64", TYPE_VK) TYPE("VK64WM", TYPE_VK) TYPE("vx64mem", TYPE_MVSIBX) TYPE("vx128mem", TYPE_MVSIBX) TYPE("vx256mem", TYPE_MVSIBX) TYPE("vy128mem", TYPE_MVSIBY) TYPE("vy256mem", TYPE_MVSIBY) TYPE("vx64xmem", TYPE_MVSIBX) TYPE("vx128xmem", TYPE_MVSIBX) TYPE("vx256xmem", TYPE_MVSIBX) TYPE("vy128xmem", TYPE_MVSIBY) TYPE("vy256xmem", TYPE_MVSIBY) TYPE("vy512xmem", TYPE_MVSIBY) TYPE("vz256mem", TYPE_MVSIBZ) TYPE("vz512mem", TYPE_MVSIBZ) TYPE("BNDR", TYPE_BNDR) errs() << "Unhandled type string " << s << "\n"; llvm_unreachable("Unhandled type string"); } #undef TYPE #define ENCODING(str, encoding) if (s == str) return encoding; OperandEncoding RecognizableInstr::immediateEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i32i8imm", ENCODING_IB) ENCODING("SSECC", ENCODING_IB) ENCODING("XOPCC", ENCODING_IB) ENCODING("AVXCC", ENCODING_IB) ENCODING("AVX512ICC", ENCODING_IB) ENCODING("AVX512RC", ENCODING_IRC) ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) // This is not a typo. Instructions like BLENDVPD put // register IDs in 8-bit immediates nowadays. ENCODING("FR32", ENCODING_IB) ENCODING("FR64", ENCODING_IB) ENCODING("FR128", ENCODING_IB) ENCODING("VR128", ENCODING_IB) ENCODING("VR256", ENCODING_IB) ENCODING("FR32X", ENCODING_IB) ENCODING("FR64X", ENCODING_IB) ENCODING("VR128X", ENCODING_IB) ENCODING("VR256X", ENCODING_IB) ENCODING("VR512", ENCODING_IB) errs() << "Unhandled immediate encoding " << s << "\n"; llvm_unreachable("Unhandled immediate encoding"); } OperandEncoding RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("RST", ENCODING_FP) ENCODING("RSTi", ENCODING_FP) ENCODING("GR16", ENCODING_RM) ENCODING("GR32", ENCODING_RM) ENCODING("GR32orGR64", ENCODING_RM) ENCODING("GR64", ENCODING_RM) ENCODING("GR8", ENCODING_RM) ENCODING("VR128", ENCODING_RM) ENCODING("VR128X", ENCODING_RM) ENCODING("FR128", ENCODING_RM) ENCODING("FR64", ENCODING_RM) ENCODING("FR32", ENCODING_RM) ENCODING("FR64X", ENCODING_RM) ENCODING("FR32X", ENCODING_RM) ENCODING("VR64", ENCODING_RM) ENCODING("VR256", ENCODING_RM) ENCODING("VR256X", ENCODING_RM) ENCODING("VR512", ENCODING_RM) ENCODING("VK1", ENCODING_RM) ENCODING("VK2", ENCODING_RM) ENCODING("VK4", ENCODING_RM) ENCODING("VK8", ENCODING_RM) ENCODING("VK16", ENCODING_RM) ENCODING("VK32", ENCODING_RM) ENCODING("VK64", ENCODING_RM) ENCODING("BNDR", ENCODING_RM) errs() << "Unhandled R/M register encoding " << s << "\n"; llvm_unreachable("Unhandled R/M register encoding"); } OperandEncoding RecognizableInstr::roRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR16", ENCODING_REG) ENCODING("GR32", ENCODING_REG) ENCODING("GR32orGR64", ENCODING_REG) ENCODING("GR64", ENCODING_REG) ENCODING("GR8", ENCODING_REG) ENCODING("VR128", ENCODING_REG) ENCODING("FR128", ENCODING_REG) ENCODING("FR64", ENCODING_REG) ENCODING("FR32", ENCODING_REG) ENCODING("VR64", ENCODING_REG) ENCODING("SEGMENT_REG", ENCODING_REG) ENCODING("DEBUG_REG", ENCODING_REG) ENCODING("CONTROL_REG", ENCODING_REG) ENCODING("VR256", ENCODING_REG) ENCODING("VR256X", ENCODING_REG) ENCODING("VR128X", ENCODING_REG) ENCODING("FR64X", ENCODING_REG) ENCODING("FR32X", ENCODING_REG) ENCODING("VR512", ENCODING_REG) ENCODING("VK1", ENCODING_REG) ENCODING("VK2", ENCODING_REG) ENCODING("VK4", ENCODING_REG) ENCODING("VK8", ENCODING_REG) ENCODING("VK16", ENCODING_REG) ENCODING("VK32", ENCODING_REG) ENCODING("VK64", ENCODING_REG) ENCODING("VK1WM", ENCODING_REG) ENCODING("VK2WM", ENCODING_REG) ENCODING("VK4WM", ENCODING_REG) ENCODING("VK8WM", ENCODING_REG) ENCODING("VK16WM", ENCODING_REG) ENCODING("VK32WM", ENCODING_REG) ENCODING("VK64WM", ENCODING_REG) ENCODING("BNDR", ENCODING_REG) errs() << "Unhandled reg/opcode register encoding " << s << "\n"; llvm_unreachable("Unhandled reg/opcode register encoding"); } OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_VVVV) ENCODING("GR64", ENCODING_VVVV) ENCODING("FR32", ENCODING_VVVV) ENCODING("FR128", ENCODING_VVVV) ENCODING("FR64", ENCODING_VVVV) ENCODING("VR128", ENCODING_VVVV) ENCODING("VR256", ENCODING_VVVV) ENCODING("FR32X", ENCODING_VVVV) ENCODING("FR64X", ENCODING_VVVV) ENCODING("VR128X", ENCODING_VVVV) ENCODING("VR256X", ENCODING_VVVV) ENCODING("VR512", ENCODING_VVVV) ENCODING("VK1", ENCODING_VVVV) ENCODING("VK2", ENCODING_VVVV) ENCODING("VK4", ENCODING_VVVV) ENCODING("VK8", ENCODING_VVVV) ENCODING("VK16", ENCODING_VVVV) ENCODING("VK32", ENCODING_VVVV) ENCODING("VK64", ENCODING_VVVV) errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; llvm_unreachable("Unhandled VEX.vvvv register encoding"); } OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("VK1WM", ENCODING_WRITEMASK) ENCODING("VK2WM", ENCODING_WRITEMASK) ENCODING("VK4WM", ENCODING_WRITEMASK) ENCODING("VK8WM", ENCODING_WRITEMASK) ENCODING("VK16WM", ENCODING_WRITEMASK) ENCODING("VK32WM", ENCODING_WRITEMASK) ENCODING("VK64WM", ENCODING_WRITEMASK) errs() << "Unhandled mask register encoding " << s << "\n"; llvm_unreachable("Unhandled mask register encoding"); } OperandEncoding RecognizableInstr::memoryEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("i16mem", ENCODING_RM) ENCODING("i32mem", ENCODING_RM) ENCODING("i64mem", ENCODING_RM) ENCODING("i8mem", ENCODING_RM) ENCODING("ssmem", ENCODING_RM) ENCODING("sdmem", ENCODING_RM) ENCODING("f128mem", ENCODING_RM) ENCODING("f256mem", ENCODING_RM) ENCODING("f512mem", ENCODING_RM) ENCODING("f64mem", ENCODING_RM) ENCODING("f32mem", ENCODING_RM) ENCODING("i128mem", ENCODING_RM) ENCODING("i256mem", ENCODING_RM) ENCODING("i512mem", ENCODING_RM) ENCODING("f80mem", ENCODING_RM) ENCODING("lea64_32mem", ENCODING_RM) ENCODING("lea64mem", ENCODING_RM) ENCODING("anymem", ENCODING_RM) ENCODING("opaquemem", ENCODING_RM) ENCODING("vx64mem", ENCODING_VSIB) ENCODING("vx128mem", ENCODING_VSIB) ENCODING("vx256mem", ENCODING_VSIB) ENCODING("vy128mem", ENCODING_VSIB) ENCODING("vy256mem", ENCODING_VSIB) ENCODING("vx64xmem", ENCODING_VSIB) ENCODING("vx128xmem", ENCODING_VSIB) ENCODING("vx256xmem", ENCODING_VSIB) ENCODING("vy128xmem", ENCODING_VSIB) ENCODING("vy256xmem", ENCODING_VSIB) ENCODING("vy512xmem", ENCODING_VSIB) ENCODING("vz256mem", ENCODING_VSIB) ENCODING("vz512mem", ENCODING_VSIB) errs() << "Unhandled memory encoding " << s << "\n"; llvm_unreachable("Unhandled memory encoding"); } OperandEncoding RecognizableInstr::relocationEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i32i8imm", ENCODING_IB) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) ENCODING("i64i32imm_pcrel", ENCODING_ID) ENCODING("i16imm_pcrel", ENCODING_IW) ENCODING("i32imm_pcrel", ENCODING_ID) ENCODING("brtarget32", ENCODING_ID) ENCODING("brtarget16", ENCODING_IW) ENCODING("brtarget8", ENCODING_IB) ENCODING("i64imm", ENCODING_IO) ENCODING("offset16_8", ENCODING_Ia) ENCODING("offset16_16", ENCODING_Ia) ENCODING("offset16_32", ENCODING_Ia) ENCODING("offset32_8", ENCODING_Ia) ENCODING("offset32_16", ENCODING_Ia) ENCODING("offset32_32", ENCODING_Ia) ENCODING("offset32_64", ENCODING_Ia) ENCODING("offset64_8", ENCODING_Ia) ENCODING("offset64_16", ENCODING_Ia) ENCODING("offset64_32", ENCODING_Ia) ENCODING("offset64_64", ENCODING_Ia) ENCODING("srcidx8", ENCODING_SI) ENCODING("srcidx16", ENCODING_SI) ENCODING("srcidx32", ENCODING_SI) ENCODING("srcidx64", ENCODING_SI) ENCODING("dstidx8", ENCODING_DI) ENCODING("dstidx16", ENCODING_DI) ENCODING("dstidx32", ENCODING_DI) ENCODING("dstidx64", ENCODING_DI) errs() << "Unhandled relocation encoding " << s << "\n"; llvm_unreachable("Unhandled relocation encoding"); } OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_Rv) ENCODING("GR64", ENCODING_RO) ENCODING("GR16", ENCODING_Rv) ENCODING("GR8", ENCODING_RB) errs() << "Unhandled opcode modifier encoding " << s << "\n"; llvm_unreachable("Unhandled opcode modifier encoding"); } #undef ENCODING